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Abstract

In this paper the idea of approximate concept learning is
introduced. It covers situations where a complete description
of knowledge is not available. The problems are discussed
within a rigorous formal framework. An application from
computer chess is analysed which is typical for learning to

play positional games.



1 Introduction

In this paper we deal with concept learning depending on an
approximate description of knowledge. In the area of artificial
intelligence related work was done by Banerji (/1/),

Michalski (/5/), Morgan (/6/), Plotkin (/9/), /10/), and
Popplestone (/11/). The concept of an approximate description
was introduced by Pawlak (/8/); an extension including in-

ductive generalization is given in /4/.

A vériety of models and languages is being applied to problems

of knowledge representation (/2/). Our approach is based on a
mathematical model which may be informally described as follows
(/7/) : The basic component of a knowledge representation system
is a finite, non-empty set of objects, the universe of discourse.
The knowledge concerning the objects will be expressed by charac-
teristic features. This is modelled by a function assigning
values of attributes to objects. A formalized language L is
introduced such that the expressions of this language are inter-
preted as sets of objects. We will say that a subset Y of the
universe of discourse is definable in L, if there is an
expression E in L such that Y is the meaning of E. However, if

Y is not a definable set, we only have an approximate description

of Y in L.

In this work concept learning is being understood as inductive
generalization from examples. We consider the problem what
features are inessential in order to describe a set of objects.
The application we have chosen is concerned with learning to
play positional games. It is shown that attributes may be
omitted without losing the adequacy of the description. If there



is no characteristic description of the extension of a concept,

we speak of approximate concept learning.

In the following sections we will discuss these problems within

a rigorous formal framework.

2 Concept Learning

In this section we want to explain an important type of learning.
Extending the work of Banerji '(/1/) it covers situations where

a complete description of objects is not available. As an
application we consider learning to play positional games. In

order to illustrate the main idea we analyse a sample of 12

chess positions being described by a set of attributes (figure 1a,b

The task for a human being or a computer is to learn the concept

of checkmate.

According to the laws of chess of the World Chess Federation

(FIDE) checkmate is defined as follows (/3/):

"10.1 The king is in check when the square it occupies is

attacked by an enemy piece; in this case the latter is said to

be 'checking the king'.

10.2 Check must be parried by the move immediately following.

If the check cannot be parried, it is said to be 'mate'.

Note to Art. 10.2:

Check may be parried:

a) by moving the king to a square which is not threatened by
an enemy piece,

b) by capturing the opponent's piece which is checking the

king and



7%4
BN

P3: CHECKMATE

; , A
% Y V.
B B

P5: NOT CHECKMATE

P6: CHECKMATE

Fig. 1a: Sample of chess positions




S

7
%%@//

P11:

NOT CHECKMATE

~ N

DS

e@ I =
%//%////
A%

y
20

B3
_

e .
/@% .

P8: CHECKMATE

P12: NOT CHECKMATE

Fig. 1b: Sample of chess positions




c) by placing one of one's own pieces on one of the squares
lying between the king and the attacking enemy piece.
This last means of defense is evidently not possible when

the check comes from the knight or in the case of a double

check.
11.1 The game is won by the player who has mated his opponent's

king."

In our investigation we distinguish 3 cases:
1) All essential and only essential attributes are known.
2) All essential and one inessential attribute is known.

3) One essential attribute is unknown.

The following attributes are considered:

al) Safety of the checking piece (saf) with the values "capture

(c) and "no capture" (c').

a2) Mobility of the attacked king (mob) with the values
O’ 1, * e 0y 8-

a3) Number of pieces on the board (num) with the values

O, 1' o o oy 32.

ad4) Possibility of interposition (int) with the values

"possible" (p) and "impossible" (p').

Now let us analyse the sample of positions in figure 1a,b and
explain the meaning of approximate concept learning. In every
position P1 till P12 the black king is in check. The number of
pieces on the board varies from 3 to 7. Chess players know
that this number is not an essential feature of checkmate, but



a checkmate position needs at least 3 pieces. Let us imagine

we know how to move the pieces, but we are not familiar with
the concept of checkmate. After having studied the 12 positions
we will recognize by inductive generalization that the

attribute "num" is redundant.

Let us consider case 3. If the attribute "int" e.g. is not
included in our language, then we will not be able to
distinguish between position P4 (checkmate) and position P5
(not checkmate); the same applies to P6 and P7, P8 and P9,

Plo and P11. Therefore it is impossible to learn the exact
concept of checkmate, but we will show that approximations are
definable. In the following sections we will analyse this

situation in more details.

3 Formal Framework

In this section we summarize concepts and facts from /4/.

A knowledge representation system is a quadruple
S = (X, A, Vlg) ’

where X is a non-empty, finite set of objects, the universe of
discourse; A is a non-empty finite set of attributes; and 8

is a total function from the set X x A into the set V.

X X A is the cartesian product of X and A. Two objects X, and

X, of the universe X are called equivalent, if they are not
distinguishable with respect to all attributes of S. The
equivalence classes are called elementary sets. If all elementary

sets of the system S are units, then S is a selective system.



A knowledge representation language Lg consists of

- attribute symbols: a1, Ayr «-eq @ i A, € A;
- value symbols: Vir Vor ey Vi V& A,
- operation symbols: -, +,*, — , &>,

- brackets ( , ) .

Attribute-value pairs (a,v) are called descriptors being the
atomic expressions of the language LS. The set of all terms of
L. is the least set containing the atomic expressions and

S
being closed under the operations -, +, *, —, &5,

The interpretation of terms is defined inductively by the function
valS mapping the set of all terms into the family of all

subsets of the uniVerse X:

{x€X : Q(x,a) =v},

vals(a,v)
vals(—t) = «zvals t,

vals(t1+t2) = valS t1 Vv valS t2,
Vals(t1-t2) = valS t1 N valS t2,
vals(t1—at2) = «/vals t1 v valS t2,

vals(t1 <——>t2) = valS(t1-—>tS) N vals(tz——? t1) .

The symbols ~, Vv, n are denoting the set-theoretic operations

of complement, union, and intersection.

A term t is called valid in the system S, if valS t = X. We

will write F% t. Then we have the following facts:

Fact 1: If I=S t, =¥ t 2

c
then valS t, € valS t

2! 1

F : = -
act 2 If FE t1 > t2, then valS t1 valS t2




A term t is said to be elementary, if t is of the form
(a1,v1) '(az,vz)-... -(an,vn), where as @ys ..., A, are all
attributes of A and Vyr Voo +-., VvV oare values of V respectively.

We note the following fact:

Fact 3: If t is an elementary term, then valS t is an
elementary set or the empty set.

Let t1, t2, ceey tm be all elementary terms with valS ti # D.

Then the term tS = t1 + t2 + ... 4+ tm will be called the

description of the system S. Then we have

Fact 4: |=S tyF oty e+t
Now we are going to consider the concept of definability. We
will say that a set Y &€ X is definable in the language LS' if
there is a term t of LS such that Y = valS t. We have

Fact 5: If the system S is selective, then every subset

of the universe X is definable in LS'

Suppose the set Y & X is definable in Lg. Then the term

K with elementary terms t1, t2, ceey tk

ti # @ and Y = valS t1L/...v vals tk is called

ty‘=‘t1+t2+...+t
such that valS

a characteristic description of Y.

If the set Y is not definable in LS, then we may construct

approximate descriptions of Y. By an upper description of a set

Y = {x1,x2,...,xm} we mean the term ty Tttty b+, k z 1,
where t1, t2, ey tk are elementary terms such that X & valS ti
holds for every i =1, 2, ..., k. Then we have Y E,valS Ey. The

set valS Ey is said to be an upper approximation of the set Y and
will be denoted by Y. Analogously, the lower description of a set
Y = {X1’X2""’xl} r 1 Z 1, is established by the term

Ey = t1 + t2 + ... + tl, l € m, where t1, t2, ooy tl are all
the elementary terms such that valS ti cY fori=1, 2, ..., 1.



We have valS gy € Y. The set valS Ey is said to be a lower

description of the set Y and denoted by Y

Given a system S = (X,A,V,@), we will say that a set B& A

is the reduct of A, if B is the minimal set such that B = X.
Notice that X and B are the partitions on X being generated
by the set of attributes A and B respectively. B =X implies:
if a pair of objects cannot be distinguished by attributes

of B, then it cannot be distinguished by attributes of A.

A concept C will be characterized by a partition Z = {Y,Y'} p
where Y is the extension of C and Y' the complement of Y with
respect to the universe X. The problem we will deal with in
the next sections is to find the minimal subset of a given

set of attributes being necessary to describe the partition Z.
As mentioned above concept learning is closely connected

with the difference between essential and inessential features

of objects.

4 Characteristic Description of Knowledge

We begin with the case where a characteristic description of
knowledge is available. Learning consists in dropping inessential

features of objects.

Let us consider the system

S1 = (X,A1,V1,g1), where
X ={P1,P2,...,P12},
A1 = {saf,mob,num,int },
Vsaf = {C'cl} ’

Vmob = {0,1,...,8} ’
Vg = 1001,0.0,328,
Vint = [P'pl} ’

vV, =V

1 saf VY Vmob ¥ Vnum V Vint -



The function AP X x A1 —> V1 is represented by the table
in figure 2. The set of attributes A1 induces a partition A1
which is shown in figure 3. Notice that the system S1 is not

selective: the set of positions S_P1,P2 } e.g. is not definable

in S1.

POSITION saf mob num int
P1 c' 0 3 p'
P2 c' 0 3 p'
P3 c' 0 3 p'
P4 c' 0 4 p'
P5 c' 0 4 P
P6 c' 0 5 p'
P7 c' 0 5 P
P8 c' @) 6 p'
P9 c' 0 6 P
Plo c' o 7 p'
P11 c' 0 7 o)
P12 c 0] 7 p'

Fig. 2: Table of the system S1
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our aim is to reduce the system S1 with respect to the number
of attributes. For this purpose we will consider the equivalence

. —~ —~ — L
classes of the relations saf, mob, num, and int:

sat = {{p1,...,p11} , {P12 iy,
meb = {{p1,...,p1211,
fum = {{p1,p2,p3} , {pa,p5}, {pPe,p7} , {Ps,Po} ,

{P1o0,P11,P12} 1,

S

=}

+
]

{{p1,p2,p3,p4,P6,P8,P10,P12 3, | p5,p7,P9,P11 0 ) .

The equivalence classes of the relation

~S

saf n inf = {{P1,P2,P3,P4,P6,P8,P10} , { P5,P7,P9,P11] ,

fr121]

cover the sets M (checkmate positions) and M' {(complement of M),
—~~ o~_r

and none of the relations 53%, mob, num, and int have this

property. From this we suppose that the attributes "mob" and

"num" may be dropped for describing the checkmate positions.

Let us consider the term t , being the characteristic description

M
of the set M:
tM = (saf,c') * (mob,0) * (num,3) - (int,p')
+ (saf,c') - (mob,0) - (num,4) - (int,p')
+ (saf,c') . (mob,0) . (num,5) - (int,p')
+ (saf,c') « (mob,0) + (num,6) =« (int,p')
+ (saf,c') (mob,0) - (num,7) < (int,p')

tm is a conjunction of elementary terms. Obviously we have




By abstraction from the properties "mobility of the king" and

"number of pieces" we get the term
tl\'/l = (saf,c') * (int,p')

' e ]
tM = M. Furthermore we have FE tM > tM .

Notice that valS
1

1

Omitting the attributes "mob" and "num" we get the reduced system

»» > 3 ¥
S1 = (X,A1,V1,91), where
x =[p1,P2,...,P12} ,
A: = fsaf,int} ’
Voaf = {c,c'} !
Vi = {p,p'} .

‘(—
V1 = Vgafr V Vint :

The function _P: : X X A: ——>\ﬁr is represented by the table in

figure 4, the corresponding partition in figure 5.

The process of inductive generalization leading from S1 to S:
is interpreted by us as learning. The safety of the checking piece
and the impossibility of interposition are recognized as essential

features of the concept of checkmate.
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5 Approximate Description of Knowledge

Different from the system S1 the system 82 which we will analyse
now has not incorporated all essential features of checkmate.
In this case we only can get an approximate description reflecting

the incomplete knowledge of the system 82.

Let us analyse the knowledge representation system

82 = (X’AZ'V2’92)’ where
x ={p1,pP2,...,P12},
A, = {saf,mob,num} ,
Vear = leicr},

Vmob = {0,1,...,83 ’
Vioum = 101s...,32),

V2 " Vsafr Y Ymob VY Vinum -

The function _92 P X x A, —> v, is represented by the table in
figure 6. The set of attributes A3 induces the partition in
figure 7. Like the system S1 the system 82 is not selective.

POSITION saf mob num
P1 c' 0] 3
P2 c' 0 3
P3 ct 0] 3
P4 c' 0 4
P5 c' 0 4
P6 c! 0] 5
P7 c' 0] 5
P8 ct o) 6
P9 c' o 6
Plo c' 0 7
P11 c' o 7
P12 o] 0 7

Fig. 6: Table of the system 82
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In order to reduce the number of attributes we consider the

. . ~~ —~ o~
equivalence classes for the relations saf, mob, and num:

saf = {{P1,...,P11} , {p12})

~

mob = {{P1,...,p12}4},

i = ({e1,p2,p33} , {pa,psY, Ipe,p73 , {P8,P9},
{P10,P11,P12}}

It follows
/—‘\___/ I~ o~

a4
{saf,mob,nun\} saf n mob N num

]

N~ o~
saf N num

P i
=fsaf,num}

Therefore the set of attributes {saf,mob,num\} can be reduced

to {saf,num3 .

Figure 7 shows that the set of checkmate positions
M ='{P1,P2,P3,P4,P6,P8} cannot be represented as a union of

elementary sets. {P1,P2,P3S is a lower appro¥imation of M, and

{P1,...,P11} an upper approximation of M. Thus we have two

approximate descriptions for the concept of checkmate.

a) Lower description of checkmate:

ty = (saf,c') - (num,3)

It follows valS2 EM M.

In this description the number of pieces comes out as an

essential property. So the positions P4, P6, and P8 cannot

be recognized as checkmate.




b) Upper description of checkmate:

tM = (saf,c') * (num,3)

+ (saf,c') « (num,4)
+ (saf,c') -+ (num,5)
+ (saf,c') « (num,6)

+ (saf,c') . (num,7)

It follows M C valS t
2

M
By abstraction from the property "number of pieces" being
inessential in this case we have
Eﬁ = (saf,c')
Because of F=S EM < E& we conclude that the attribute
2
"num" is redundant for describing the upper approximation of

the concept of checkmate.

By the definitions M = valSz EM and M = valSz tM

we have

cMc M.

=

Thus we have shown that approximate concept learning delivers

the following classes of positions (figure 8):

a) Surely checkmate:

M ={p1,pP2,P3} .

b) Possibly checkmate:

M = {p1,p2,P3,P4,P5,P6,P7,P8,P9,P10,P11] .




c) Impossibly checkmate:

X -M={Pi2}.

Syntactic methods for deriving abstractions and recognizing
approximations are developed in /4/. A machine implementation

of these techniques will be finished in the near future.

P11

P3

P12
P6
P8
P9 P10
P4 P5
P1
P2

IMPOSSIBLY CHECKMATE

- am . BEE WS ewr e w mw w we A e W

POSSIBLY CHECKMATE

_— e em e . e v 0 me e wn —

SURELY CHECKMATE

Fig. 8: Approximate concept of checkmate.
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6 Conclusion

A method for learning approximate concepts from examples is
described. The problem has been tackled from a semantical point
of view giving deeper insight into the conceptual foundations.

Current work is dedicated to an implementation of syntactic

techniques.
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