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tRough set theory was proposed by Zdzis law Pawlak [43, 44℄ in the early1980's. Sin
e then we have witnessed a systemati
, world-wide growth of in-terest in rough set theory and its appli
ations. Rough set approa
h has beenintrodu
ed to deal with vague or impre
ise 
on
epts, to derive knowledge fromdata and to reason about knowledge derived from data.In the �rst part of this arti
le we outline the basi
 notions of rough sets,espe
ially those whi
h are related to knowledge extra
tion from data.Sear
hing for knowledge is usually guided by some 
onstraints [25℄. A wide
lass of su
h 
onstraints 
an be expressed by dis
ernibility of obje
ts. Know-ledge derived from data by the rough set approa
h 
onsists of di�erent 
on-stru
ts. Among them there are redu
ts, whi
h are the 
entral 
onstru
t in therough set approa
h, di�erent kinds of rules (su
h as, for example, de
isionrules or asso
iation rules), dependen
ies, patterns (templates) or 
lassi�ers.The redu
ts are of spe
ial importan
e sin
e all other 
onstru
ts 
an be derivedfrom di�erent kinds of redu
ts using the rough set approa
h.Strategies for sear
hing redu
ts apply Boolean (propositional) reasoning [4℄sin
e the 
onstraints (e.g. 
onstraints related to the dis
ernibility of obje
ts)are expressible by propositional formulae. Moreover, using Boolean reasoning,minimal des
ription length data models [56℄, [30℄ 
an be indu
ed sin
e they
orrespond to 
onstru
ts of Boolean fun
tions 
alled prime impli
ants (or theirapproximations).The se
ond part of this arti
le in
ludes illustrative examples of appli
ationsof this general s
heme to indu
ing from data various forms of knowledge.Keywords: indis
ernibility, Boolean reasoning, lower and upper approxima-tions, rough sets, boundary region, positive region, rough membership fun
tion,de
ision rules, patterns, rough mereology.



2 Skowron, Komorowski, Pawlak, PolkowskiB6.1 Basi
 rough set approa
hWe start by presenting the basi
 notions of 
lassi
al rough set approa
h [44℄ thatwas introdu
ed to deal with impre
ise or vague 
on
epts.Information systemsA data set 
an be represented by a table where ea
h row represents, for instan
e,an obje
t, a 
ase, or an event. Every 
olumn represents an attribute, or anobservation, or a property that 
an be measured for ea
h obje
t; it 
an alsobe supplied by a human expert or user. This table is 
alled an informationsystem. More formally, it is a pair A = (U;A) where U is a non-empty �niteset of obje
ts 
alled the universe and A is a non-empty �nite set of attributessu
h that a : U ! Va for every a 2 A. Set Va is 
alled the value set of a. ByInfB(x) = f(a; a(x)) : a 2 Bg we denote the information signature of x withrespe
t to B, where B � A and x 2 U:De
ision systemsIn many 
ases the target of the 
lassi�
ation, that is, the family of 
on
eptsto be approximated is represented by an additional attribute 
alled de
ision.Information systems of this kind are 
alled de
ision systems. A de
ision systemis any system of the form A = (U;A; d), where d 62 A is the de
ision attributeand A is a set of 
onditional attributes or simply 
onditions.Let A = (U;A; d) be given and let Vd = fv1; : : : ; vr(d)g. De
ision d determinesa partition fX1; : : : ; Xr(d)g of the universe U , where Xk = fx 2 U : d(x) = vkgfor 1 � k � r(d). The set Xi is 
alled the i-th de
ision 
lass of A. By Xd(u) wedenote the de
ision 
lass fx 2 U : d(x) = d(u)g, for any u 2 U .One 
an generalize the above de�nition to a 
ase of de
ision systems of theform A = (U;A;D) where the set of de
ision attributes D = fd1; :::dkg and Aare assumed to be disjoint. Formally, this system 
an be treated as a de
isionsystem A = (U;A; dD) where dD(x) = (d1(x); :::; dk(x)) for x 2 U:De
ision tables may be identi�ed with training samples known in Ma
hineLearning and used to indu
e 
on
ept approximations in the pro
ess known assupervised learning [30℄.Rough set approa
h allows to pre
isely de�ne the notion of 
on
ept approxi-mation. It is based [44℄ on the indis
ernibility relation between obje
ts de�ninga partition (or 
overing) of universe U of obje
ts. Sin
e obje
ts are per
eived bymeans of the values of the available attributes, the obje
ts having the same (orsimilar) values of attributes are indis
ernible.Indis
ernibility relationLet A = (U;A) be an information system, then with any B � A there is asso
i-ated an equivalen
e relation INDA(B):INDA(B) = f(x; x0) 2 U2 : 8a 2 B a(x) = a(x0)g:



Rough Sets 3INDA(B) (or, IND(B), for short) is 
alled the B-indis
ernibility relation andits equivalen
e 
lasses are denoted by [x℄B .X=B denotes the partition of U whi
his de�ned by the indis
ernibility relation IND(B).We will now dis
uss what sets of obje
ts may be expressed (de�ned) by formu-lae 
onstru
ted by means of attributes and their values. The simplest formulae,
alled des
riptors, are of the form a = v where a 2 A and v 2 Va. (It is alsopossible to 
onsider generalized des
riptors of the form a 2 S where S � Va.)The des
riptors 
an be 
ombined into more 
omplex formulae using proposi-tional 
onne
tives. The meaning j'jA of formula ' in A is de�ned indu
tively asfollows:1. if ' is of the form a = v then j'jA= fx 2 U : a(x) = vg;2. j' ^ '0jA=j'jA \ j'0jA; j' _ '0jA=j'jA [ j'0jA; j:'jA= U� j'jA.The above de�nition may be easily extended to generalized des
riptors.Any set of obje
ts X � U de�nable in A by some formula ' (i.e., X=j'jA)is referred to as a 
risp (exa
t) set { otherwise the set is rough (inexa
t, vague).Vague 
on
epts may be only approximated by 
risp 
on
epts; these approxima-tions are de�ned now [44℄.Lower and upper approximation of sets, boundary regionsLet A = (U;A) be an information system and let B � A and X � U . We
an approximate X using only the information 
ontained in B by 
onstru
tingthe so-
alled B-lower and B-upper approximations of X , denoted BX and BXrespe
tively, where BX = fx : [x℄B � Xg and BX = fx : [x℄B \X 6= ;g.The lower approximation 
orresponds to 
ertain rules while the upper approx-imation to possible rules (rules with 
on�den
e greater than 0) (see Se
tion ??).The B-lower approximation of X is the set of all obje
ts whi
h 
an be 
ertainly
lassi�ed to X using attributes from B. The set U �BX is 
alled the B-outsideregion of X and 
onsists of those obje
ts whi
h 
an be 
ertainly 
lassi�ed asnot belonging to X using attributes from B. The set BNB(X) = BX � BXis 
alled the B-boundary region of X thus 
onsisting of those obje
ts that onthe basis of the attributes from B 
annot be unambiguously 
lassi�ed into X . Aset is said to be rough (respe
tively 
risp) if the boundary region is non-empty(respe
tively empty). Consequently, ea
h rough set has boundary-line 
ases, i.e.,obje
ts whi
h 
an neither be 
ertainly 
lassi�ed as members of the set nor ofits 
omplement. Obviously, 
risp sets have no boundary-line elements at all. Itfollows that boundary-line 
ases 
annot be properly 
lassi�ed by employing theavailable knowledge. The size of the boundary region 
an be used as a measureof the quality of set approximation (in U).It 
an be easily seen that the lower and upper approximations of a set are,respe
tively, the interior and the 
losure of this set in the topology generated bythe indis
ernibility relation.It is possible to 
onsider weaker indis
ernibility relations de�ned by so 
alledtoleran
e relations de�ning 
overings of the universe of obje
ts by toleran
e (sim-ilarity) 
lasses. An extension of rough set approa
h based on toleran
e relations
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tion and 
on
ept approximation (see, e.g., [63℄,[67℄, [37℄, [34℄).Quality measures of 
on
ept approximation and measures ofin
lusion and 
loseness of 
on
eptsWe now present some examples of measures of quality approximation as well asof in
lusion and 
loseness (approximate equivalen
e). These notions are instru-mental in evaluating the strength of rules and 
loseness of 
on
epts. They are alsoappli
able in determining plausible reasoning s
hemes [49℄, [54℄. An importantrole is also played by entropy measures (see e.g., [11℄).Let us 
onsider �rst an example of a quality measure of approximations.A

ura
y of approximation. A rough set X 
an be 
hara
terized numeri
allyby the following 
oeÆ
ient �B(X) = jB(X)jjB(X)j ;
alled the a

ura
y of approximation, where jX j denotes the 
ardinality of X 6= ;and B is a set of attributes. Obviously, 0 � �B(X) � 1. If �B(X) = 1, X is 
rispwith respe
t to B (X is exa
t with respe
t to B); otherwise, i.e., if �B(X) < 1,X is rough with respe
t to B (X is vague with respe
t to B).Rough membership fun
tion. In 
lassi
al set theory either an element be-longs to a set or it does not. The 
orresponding membership fun
tion is the
hara
teristi
 fun
tion of the set, i.e., the fun
tion takes values 1 and 0, respe
-tively. In the 
ase of rough sets the notion of membership is di�erent. The roughmembership fun
tion quanti�es the degree of relative overlap between the set Xand the equivalen
e 
lass to whi
h x belongs. It is de�ned by�BX(x) : U ! [0; 1℄ and �BX(x) = j[x℄B \X jj[x℄B j :The rough membership fun
tion 
an be interpreted as a frequen
y{based es-timate of Pr(y 2 X j u), the 
onditional probability that obje
t y belongsto set X , given the information signature u = InfB(x) of obje
t x with re-spe
t to attributes B. The value �BX(x) measures the degree of in
lusion offy 2 U : InfB(x) = InfB(y)g in X .Positive region and its measure. If X1; : : : ; Xr(d) are the de
ision 
lasses ofA, then the set BX1 [ : : : [ BXr(d) is 
alled the B{positive region of A and isdenoted by POSB(d). The number jPOSB(d)j=jU j measures the degree of in-
lusion of the partition de�ned by attributes from B in the partition de�ned bythe de
ision.Dependen
ies to a degree.Another important issue in data analysis is dis
ov-ering dependen
ies among attributes. Intuitively, a set of attributes D depends



Rough Sets 5totally on a set of attributes C, denoted C ) D, if all values of the attributesfrom D are uniquely determined by the values of the attributes from C. In otherwords, D depends totally on C, if there exists a fun
tional dependen
y betweenvalues of D and C. Dependen
y 
an be formally de�ned as follows.Let D and C be subsets of A. We will say that D depends on C to a degreek (0 � k � 1), denoted C )k D, ifk = 
(C;D) = jPOSC(D)jjU j ;where POSC(D) = POSC(dD).Obviously, 
(C;D) = XX2U=D jC(X)jjU j :If k = 1, then D depends totally on C, and if k < 1, then D depends partially(to a degree k) on C. 
(C;D) des
ribes the 
loseness of the partition U=D andits approximation with respe
t to the 
onditions from C:The 
oeÆ
ient k expresses the ratio of all elements of the universe whi
h 
anbe properly 
lassi�ed to blo
ks of the partition U=D by employing attributes C.It will be 
alled the degree of the dependen
y.In
lusion and 
loseness to a degree. Instead of the 
lassi
al exa
t set in-
lusion, in
lusion to a degree is often used in the pro
ess of deriving knowledgefrom data. A well-known measure of in
lusion of two non-empty sets X;Y � Uis des
ribed by jX \ Y j=jX j (see [2℄ and [49℄); their 
loseness may be de�ned bymin (jX \ Y j=jX j; jX \ Y j=jY j) :B6.2 Sear
hing for knowledgeWe have pointed out that rough set approa
h has been introdu
ed by Z. Pawlak[44℄ in order to deal with vague or impre
ise 
on
epts. More generally, it is anapproa
h for deriving knowledge from data and for reasoning about knowledgederived from data. Sear
hing for knowledge is usually guided by some 
onstraints[25℄. A wide 
lass of su
h 
onstraints 
an be expressed using rough set frameworkor its generalizations (e.g., rough mereology [49℄ or granular 
omputing [54℄).Knowledge derived from data by rough set approa
h may 
onsist of di�erent
onstru
ts. Among these 
onstru
ts are redu
ts, whi
h are fundamental to roughset approa
h, di�erent kinds of rules (e.g., de
ision rules or asso
iation rules),dependen
ies, patterns (also 
alled templates) or 
lassi�ers. The redu
ts are ofspe
ial importan
e sin
e all other 
onstru
ts may be derived from di�erent kindsof redu
ts.Sear
hing strategies for redu
ts are based on Boolean (propositional) rea-soning [4℄ sin
e 
onstraints (e.g. related to dis
ernibility of obje
ts) are suitablyexpressible by propositional formulae. Moreover, using Boolean reasoning, it is
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e data models with a minimum des
ription length ([56℄, [30℄)sin
e they 
orrespond to the 
onstru
ts of Boolean fun
tions 
alled prime impli-
ants (or their approximations).Sear
hing for knowledge 
an be performed in the language 
lose to data orin a language with more abstra
t 
on
epts; this is 
losely related to the issues offeature sele
tion and feature extra
tion in Ma
hine Learning or Pattern Re
og-nition [30℄. Let us also mention that data models derived from data by usingrough set approa
h are 
ontrolled using statisti
al test pro
edures (for more de-tails see, e.g., [11℄, [10℄). A thorugh analysis of the quality of rough set 
lassi�ers,in
luding dis
rimination and 
allibration as well as the so-
alled ROC analysis[69℄ has been originally introdu
ed to rough sets in [38℄ and is available in theROSETTA system (see Se
tion D2.1.3 in this Handbook).In this se
tion we present illustrative examples showing how the outlinedgeneral s
heme is used for deriving knowledge.Finally, we would like to mention that extensions of rough sets (e.g., roughmereology [49℄ or granular 
omputing [54℄), have been developed for extra
tingknowledge and reasoning about knowledge related to more 
omplex data modelssu
h as, for instan
e, those in distributed environment or related to qualitativereasoning (e.g., spatial reasoning [57℄).Now, it will be important to make some remarks on Boolean reasoning sin
emost the methods dis
ussed later are based on generation of redu
ts usingBoolean reasoning.Boolean reasoningThe 
ombination of rough set approa
h with Boolean reasoning [4℄ has 
reateda powerful methodology that allows to formulate and eÆ
iently solve sear
hingproblems for di�erent kinds of redu
ts and their approximations.The idea of Boolean reasoning is as follows. Given problem P 
onstru
t a
orresponding Boolean fun
tion fP . This fun
tion has a property that solutionsof problem P may be re
overed from prime impli
ants of fP . We re
all that animpli
ant of a Boolean fun
tion f is any 
onjun
tion of literals (variables or theirnegations) su
h that if the values of these literals are true under an arbitraryvaluation v of variables then the value of the fun
tion f under v is also true. Aprime impli
ant is a minimal impli
ant.Using rough set approa
h, sear
hing strategies for data models under a givenpartition of obje
ts are based on dis
ernibility and Boolean reasoning (see e.g.,[37℄, [34℄,[61℄, [67℄, [68℄, [51℄, [52℄). This pro
ess 
overs also tuning of param-eterssu
h as thresholds used to extra
t relevant partitions (or 
overings), tomeasure the degree of in
lusion (or 
loseness) of sets, or to extra
t parametersmeasuring the quality of approximation.It is ne
essary to deal with Boolean fun
tions of large size in order to solvereal-life problems. Consequently, a su

essful methodology for 
omputing manyof the 
onstru
ts important for appli
ations su
h as redu
ts and their approxi-mations, de
ision rules, asso
iation rules, dis
retization of real value attributes,



Rough Sets 7symboli
 value grouping, sear
hing for new features de�ned by oblique hyper-planes or higher order surfa
es, pattern extra
tion from data as well as 
on
i
tresolution or negotiation, has been developed. The methodology is based ondis
ernibility of obje
ts and Boolean reasoning.Redu
ts are also basi
 tools in extra
ting from data fun
tional dependen-
ies or fun
tional dependen
ies to a degree (for referen
es see the papers andbibliography in [61℄, [40℄, [51℄, [52℄).Most of the problems related to generation of the above mentioned 
onstru
tsare of high 
omputational 
omplexity (i.e., they are NP-
omplete or NP-hard).This is also showing that most of the problems related to, e.g., feature sele
tionor pattern extra
tion from data, have intrinsi
 high 
omputational 
omplexity.However, using the above methodology reasoning it was possible to dis
overeÆ
ient heuristi
s returning suboptimal solutions of the problems.The reported results of experiments on many data sets are very promising.In 
omparison with other methods reported in literature, they show very goodquality of solutions (expressed by the 
lassi�
ation quality of unseen obje
ts andtime ne
essary for the 
onstru
tion of solutions) as generated by the heuristi
s.Moreover, a method to deal with large relational databases (see e.g., [33℄) and ade
omposition method based on patterns 
alled templates have been developedfor pro
essing large data sets (see e.g., [37℄, [34℄). The former method, (see e.g.,[33℄) has shown that Boolean reasoning methodology 
an be extended to largerelational data bases. Its main idea is based on the observation that Booleanvariables relevant to a very large formula (
orresponding to an analyzed rela-tional data base) may be dis
overed by analyzing some statisti
al information.This statisti
al information 
an be eÆ
iently extra
ted from large data bases.The latter method is based on a de
omposition of large data into regular sub-domains whi
h are of a size feasible for pro
essing with previously developedmethods. We will dis
uss this approa
h later.Another interesting statisti
al approa
h is based on di�erent sampling strate-gies. Samples are analyzed using the developed strategies and stable 
onstru
tsfor suÆ
iently large number of samples are 
onsidered as relevant for the wholetable. This approa
h has been su

essfully used for generating di�erent kinds ofthe so-
alled dynami
 redu
ts (see e.g., [3℄). It has been used for example forgeneration of so 
alled dynami
 de
ision rules. Experiments on di�erent datasets have proven that these methods are appli
able to large data sets.Our approa
h is strongly related to propositional reasoning [58℄ and progressin propositional reasoning will bring further progress in the developing of ourmethods. It is important to note that our methodology allows to 
onstru
t heuris-ti
s that have a very important approximation property. It may be formulatedas follows: expressions (i.e., impli
ants) generated by heuristi
s 
lose to primeimpli
ants de�ne approximate solutions for the problem [58℄. This property isimportant sin
e the time 
omplexity of heuristi
s generating impli
ants 
lose toprime impli
ants may be mu
h lower than for generating prime impli
ants.In the sequel we will dis
uss di�erent kinds of redu
ts and their appli
ationsin deriving di�erent forms of knowledge from data.
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ts in information systems and de
ision systemsWe start from redu
ts of information systems. Given an A = (U;A), a redu
t isa minimal set of attributes B � A su
h that INDA(B) = INDA(A). In otherwords, a redu
t is a minimal set of attributes from A that preserves the original
lassi�
ation de�ned by the set A of attributes. Finding a minimal redu
t is NP-hard [62℄; one 
an also show that for any m there exists an information systemwith m attributes having an exponential number of redu
ts. There fortunatelyexist good heuristi
s that 
ompute suÆ
iently many redu
ts in an a

eptabletime.Let A be an information system with n obje
ts. The dis
ernibility matrixof A is a symmetri
 n � n matrix with entries 
ij as given below. Ea
h entry
onsists of the set of attributes upon whi
h obje
ts xi and xj di�er.
ij = fa 2 A j a(xi) 6= a(xj)g for i; j = 1; :::; n:A dis
ernibility fun
tion fA for an information systemA is a Boolean fun
tionof m Boolean variables a�1; :::; a�m (
orresponding to the attributes a1; :::; am)de�ned by fA(a�1; :::; a�m) =^n_ 
�ij j 1 � j � i � n, 
ij 6= ;owhere 
�ij = fa� j a 2 
ijg. In the sequel we will write ai instead of a�i .The dis
ernibility fun
tion fA des
ribes 
onstraints whi
h should be pre-served in order to maintain dis
ernibility between all pairs of dis
ernible obje
tsfrom A. It requires to keep at least one attribute from ea
h non-empty entry ofthe dis
ernibility matrix, i.e., 
orresponding to any pair of dis
ernible obje
ts.It has been shown [62℄ that the sets of all minimal sets of attributes preservingdis
ernibility between obje
ts, i.e., redu
ts, 
orrespond to prime impli
ants ofthe dis
ernibility fun
tion fA.The interse
tion of all redu
ts is 
alled 
ore.In general, the de
ision is not 
onstant for the indis
ernibility 
lasses. LetA = (U;A; d) be a de
ision system. The generalized de
ision in A is the fun
tion�A : U �! P(Vd) de�ned by �A(x) = fi j 9x0 2 U x0 IND(A)x and d(x0) = ig.A de
ision system A is 
alled 
onsistent (deterministi
), if j�A(x)j = 1 for anyx 2 U , otherwise A is in
onsistent (non-deterministi
). Any set 
onsisting of allobje
ts with the same generalized de
ision value is 
alled a generalized de
ision
lass.It is easy to see that a de
ision system A is 
onsistent if, and only if,POSA(d) = U . Moreover, if �B = �B0 , then POSB(d) = POSB0(d) for any pairof non-empty sets B;B0 � A. Hen
e the de�nition of a de
ision-relative redu
t:a subset B � A is a relative redu
t if it is a minimal set su
h that POSA(d) =POSB(d). De
ision-relative redu
ts may be found from a dis
ernibility matrix:Md(A) = (
dij) assuming 
dij = 
ij � fdg if (j�A(xi)j = 1 or j�A(xj)j = 1) and�A(xi) 6= �A(xj) , 
dij = ;, otherwise. Matrix Md(A) is 
alled the de
ision-relative dis
ernibility matrix of A. Constru
tion of the de
ision-relative dis
erni-bility fun
tion from this matrix follows the 
onstru
tion of the dis
ernibility
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tion from the dis
ernibility matrix. It has been shown [62℄ that the set ofprime impli
ants of fdM (A) de�nes the set of all de
ision-relative redu
ts of A.In some appli
ations, instead of redu
ts we prefer to use their approximations
alled �-redu
ts, where � 2 [0; 1℄ is a real parameter. For a given informationsystem A = (U;A), the set of attributes B � A is 
alled �-redu
t if B has anon-empty interse
tion with at least � � 100% of the non-empty sets 
i;j of thedis
ernibility matrix of A.B6.2.2 Redu
ts and Boolean reasoning: Examples of appli
ationsWe will present examples showing how a 
ombination of rough set methodswith Boolean reasoning may be su

essfully used to solve several KDD prob-lems. Redu
ts are the 
ru
ial 
onstru
ts. They are (prime) impli
ants of suit-ably 
hosen Boolean fun
tions expressing dis
ernibility 
onditions whi
h shouldbe preserved during redu
tion.Feature sele
tionSele
tion of relevant features is an important problem and has been extensivelystudied in Ma
hine Learning and Pattern Re
ognition (see e.g., [30℄). It is alsoa very a
tive resear
h area in the rough set 
ommunity.One of the �rst ideas [44℄ was to 
onsider the 
ore of the redu
t set of theinformation system A as the sour
e of relevant features. One 
an observe thatrelevant feature sets, in a sense used by the ma
hine learning 
ommunity, 
anbe interpreted in most 
ases as the de
ision-relative redu
ts of de
ision systemsobtained by adding appropriately 
onstru
ted de
isions to a given informationsystem.Another approa
h is related to dynami
 redu
ts (for referen
es see e.g., [51℄).The attributes are 
onsidered relevant if they belong to dynami
 redu
ts with asuÆ
iently high stability 
oeÆ
ient, i.e., they appear with suÆ
iently high fre-quen
y in random samples of a given information system. Several experiments(see [51℄) show that the set of de
ision rules based on su
h attributes is mu
hsmaller than the set of all de
ision rules. At the same time the quality of 
lassi-�
ation of new obje
ts in
reases or does not 
hange if one only 
onsiders rules
onstru
ted over su
h relevant features.The idea of attribute redu
tion 
an be generalized through an introdu
tionof a 
on
ept of signi�
an
e of attributes whi
h enables to evaluate attributes notonly in the two-valued s
ale dispensable { indispensable but also in the multi-value 
ase by assigning to an attribute a real number from the interval [0,1℄ thatexpresses the importan
e of an attribute in the information table.Signi�
an
e of an attribute 
an be evaluated by measuring the e�e
t of re-moving the attribute from an information table.Let C and D be sets of 
ondition and de
ision attributes, respe
tively, andlet a 2 C be a 
ondition attribute. It was shown previously that the number
(C;D) expresses the degree of dependen
y between attributes C and D, or thea

ura
y of the approximation of U=D by C: It may be now 
he
ked how the
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oeÆ
ient 
(C;D) 
hanges when attribute a is removed. In other words, what isthe di�eren
e between 
(C;D) and 
((C�fag; D): The di�eren
e is normalizedand the signi�
an
e of attribute a is de�ned by�(C;D)(a) = (
(C;D) � 
(C � fag; D))
(C;D) = 1� 
(C � fag; D)
(C;D) ;CoeÆ
ient �C;D(a) 
an be understood as a 
lassi�
ation error whi
h o

urswhen attribute a is dropped. The signi�
an
e 
oeÆ
ient 
an be extended to setsof attributes as follows:�(C;D)(B) = (
(C;D)� 
(C �B;D))
(C;D) = 1� 
(C �B;D)
(C;D) :Another possibility is to 
onsider as relevant the features that 
ome fromapproximate redu
ts of suÆ
iently high quality.Any subset B of C is 
alled an approximate redu
t of C and the number"(C;D)(B) = (
(C;D) � 
(B;D))
(C;D) = 1� 
(B;D)
(C;D) ;is 
alled an error of redu
t approximation. It expresses how exa
tly the set ofattributes B approximates the set of 
ondition attributes C with respe
t todetermining D. Using a similar approa
h, [20℄ showed how feature sele
tion 
anbe applied to identify population subgroups.Several other methods of redu
t approximation based on measures di�erentfrom positive region have been developed. All experiments 
on�rm the hypothesisthat by tuning the level of approximation the quality of the 
lassi�
ation of newobje
ts may be in
reased in most 
ases. It is important to note that it is on
eagain possible to use Boolean reasoning to 
ompute the di�erent types of redu
tsand to extra
t from them relevant approximations.Feature extra
tionThe rough set 
ommunity has been 
ommitted to 
onstru
ting eÆ
ient algo-rithms for (new) feature extra
tion [52℄. Rough set methods 
ombined withBoolean reasoning [4℄ lead to several su

essful approa
hes to feature extra
-tion. The most su

essful methods are: (i) dis
retization te
hniques (see, e.g.,[32℄, [61℄); (ii) methods of partitioning of nominal attribute value sets (see e.g.[34℄, [61℄) and (iii) 
ombinations of the above methods (see e.g. [61℄). The dis-
retization problems and symboli
 value partition problems are NP-
omplete orNP-hard whi
h 
learly justi�es the importan
e of designing eÆ
ient heuristi
s.Our illustrative example 
on
erns symboli
 (nominal, qualitative) attributevalue grouping. We also present some experimental results of heuristi
s basedon our methods that are applied to the 
ase of mixed nominal and numeri
attributes.In 
ase of symboli
 value attribute (i.e., without pre-assumed order on valuesof given attributes), the problem of sear
hing for new features of the form a 2 V
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ti
al point of view more 
ompli
ated than for the realvalue attributes. However, it is possible to develop eÆ
ient heuristi
s for this
ase using Boolean reasoning.LetA = (U;A [ fdg) be a de
ision table. Any fun
tion Pa : Va ! f1; : : : ;mag(where ma � jVaj) is 
alled a partition of Vai . The rank of Pai is the valuerank (Pi) = jPai (Vai) j. The family of partitions fPaga2B is 
onsistent with B(B�
onsistent) i� the 
ondition [(u; u0) =2 IND(B=fdg) implies 9a2B [Pa(a(u)) 6=Pa(a(u0))℄℄ holds for any (u; u0) 2 U: It means that if two obje
ts u; u0 are dis-
erned by B and d, then they must be dis
erned by partition attributes de�nedby fPaga2B . We 
onsider the following optimization problemPARTITION PROBLEM: symboli
 value partition problem:Given a de
ision table A = (U;A [ fdg) and a set of attributes B � A, sear
hfor the minimal B�
onsistent family of partitions (i.e., su
h B�
onsistentfamily fPaga2B that Pa2B rank (Pa) is minimal).In order to dis
ern between pairs of obje
ts will use new binary features av0v(for v 6= v0) de�ned by av0v (x; y) = 1 i� a(x) = v 6= v0 = a(y). One 
an applyJohnson's heuristi
s [18℄ for the new matrix with these attributes to sear
h forminimal set of new attributes that dis
erns all pairs of obje
ts from di�erentde
ision 
lasses. After extra
ting these sets, for ea
h attribute ai we 
onstru
tgraph �a = hVa; Eai where Ea is de�ned as the set of all new attributes (propo-sitional variables) found for the attribute a. Any vertex 
oloring of �a de�nes apartition of Va: The 
olorability problem is solvable in polynomial time for k = 2,but remains NP-
omplete for all k � 3: However, similarly to dis
retization, itis possible to apply some eÆ
ient heuristi
s sear
hing for optimal partition.Let us 
onsider an example Fig. 1 of a de
ision table presented in Table 1and (a redu
ed form) of its dis
ernibility matrix in Table 2.Fig. 1. A de
ision table and its dis
ernibility matrixA a b du1 a1 b1 0u2 a1 b2 0u3 a2 b3 0u4 a3 b1 0u5 a1 b4 1u6 a2 b2 1u7 a2 b1 1u8 a4 b2 1u9 a3 b4 1u10 a2 b5 1 =) M(A) u1 u2 u3 u4u5 bb1b4 bb2b4 aa1a2 , bb3b4 aa1a3 , bb1b4u6 aa1a2 , bb1b2 aa1a2 bb2b3 aa2a3 , bb1b2u7 aa1a2 aa1a2 , bb1b2 bb1b3 aa2a3u8 aa1a4 , bb1b2 aa1a4 aa2a4 , bb2b3 aa3a4 , bb1b2u9 aa1a3 , bb1b4 aa1a3 , bb2b4 aa2a3 , bb3b4 bb1b4u10 aa1a2 , bb1b5 aa1a2 , bb2b5 bb3b5 aa2a3 , bb1b5From the Boolean fun
tion fA with Boolean variables of the form av2v1 , one 
an�nd the shortest prime impli
ant: aa1a2 ^aa2a3 ^aa1a4 ^aa3a4 ^bb1b4 ^bb2b4 ^bb2b3 ^bb1b3 ^bb3b5whi
h 
an be represented by graphs (see Fig. 2).
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ed table.rr bb��� ��� bbr r ra1a3 a2a4 b5 b1 b2 b3b4 BBBQQQQBBBB ����a b =) aPa bPb d1 1 02 2 01 2 12 1 1We 
an 
olor verti
es of those graphs as it is shown in Fig. 2. The 
olors are
orresponding to the partitions:Pa (a1) = Pa (a3) = 1; Pa (a2) = Pa (a4) = 2Pb (b1) = Pb (b2) = Pb (b5) = 1; Pb (b3) = Pb (b4) = 2:At the same time one 
an 
onstru
t a new de
ision table (Fig. 2).One 
an extend this approa
h to the 
ase when a given de
ision system 
on-tains nominal and numeri
 attributes (see e.g., [35℄). The obtained heuristi
s areof a very good quality. Experiments with 
lassi�
ation methods (see [35℄) havebeen 
arried over de
ision systems using two te
hniques 
alled \train-and-test"and \n-fold-
ross-validation". Table 1 shows some experimental results obtainedby applying the proposed methods MD (using only dis
retization based on MD-heuristi
s using Johnson approximation strategy [32℄, [61℄) and MD-G (usingdis
retization and symboli
 value grouping [34℄, [61℄) to the 
lassi�
ation tasksfor some data tables from the \UC Irvine repository". The results reported in[12℄ are summarized in 
olumns labeled by S-ID3 and C4.5 in Table 1). Let usnote that the heuristi
s MD and MD-G are also very eÆ
ient with respe
t totime 
omplexity.In the 
ase of real value attributes one 
an sear
h for features in the fea-ture set that 
ontains the 
hara
teristi
 fun
tions of half-spa
es determined byhyper-planes or parts of spa
es de�ned by more 
omplex surfa
es in the multi-dimensional spa
es. Geneti
 algorithms have been applied in sear
hing for semi-optimal hyper-planes [32℄. The reported results show a substantial in
rease inthe quality of 
lassi�
ation of unseen obje
ts but at the pri
e of in
reased timefor sear
hing for a semi-optimal hyper-plane.De
ision rulesRedu
ts serve the purpose of indu
ing minimal de
ision rules. Any su
h rule 
on-tains a minimal number of des
riptors in the 
onditional part so that their 
on-jun
tion de�nes the largest subset of a generalized de
ision 
lass (de
ision 
lass,if the de
ision table is deterministi
). Hen
e, information in
luded in 
onditionalpart of any minimal rule is suÆ
ient for predi
ting the generalized de
ision valuefor all obje
ts satisfying this part. The 
onditional parts of minimal rules de-�ne largest obje
t sets relevant for generalized de
ision 
lasses approximation. Itturns out that the 
onditional parts of minimal rules 
an be 
omputed (by using



Rough Sets 13Names of Classi�
ation a

ura
yTables S-ID3 C4.5 MD MD-GAustralian 78.26 85.36 83.69 84.49Breast (L) 62.07 71.00 69.95 69.95Diabetes 66.23 70.84 71.09 76.17Glass 62.79 65.89 66.41 69.79Heart 77.78 77.04 77.04 81.11Iris 96.67 94.67 95.33 96.67Lympho 73.33 77.01 71.93 82.02Monk-1 81.25 75.70 100 93.05Monk-2 69.91 65.00 99.07 99.07Monk-3 90.28 97.20 93.51 94.00Soybean 100 95.56 100 100Ti
Ta
Toe 84.38 84.02 97.7 97.70Average 78.58 79.94 85.48 87.00Table 1. A quality 
omparison of various de
ision tree methods and our heuristi
s.Abbreviations: MD: MD-heuristi
; MD-G: MD-heuristi
 with symboli
 value partitionBoolean reasoning) as the so-
alled redu
ts relative to obje
ts or lo
al redu
ts(see e.g., [60℄, [3℄). On
e the redu
ts have been 
omputed, the 
onditional partsof rules are easily 
onstru
ted by laying the redu
ts over the original de
isionsystem and reading o� the values. In the dis
ussed 
ase the generalized de
isionvalue is preserved during the redu
tion. One 
an 
onsider stronger 
onstraintswhi
h should be preserved. For example, in [65℄ the 
onstraints are des
ribedby probability distributions 
orresponding to information signatures of obje
ts.On
e more, the same methodology 
an be used to 
ompute the redu
ts 
orre-sponding to these 
onstraints.The main 
hallenge in indu
ing rules from de
ision systems lies in deter-mining whi
h attributes should be in
luded in the 
onditional part of the rule.Using the outlined above strategy �rst minimal rules are 
omputed. Their 
ondi-tional parts des
ribe largest obje
t sets (de�nable by 
onjun
tions of des
riptors)with the same generalized de
ision value in a given de
ision system. Hen
e, they
reate the largest sets still relevant for de�ning the de
ision 
lasses (or sets ofde
ision 
lasses when the de
ision system is in
onsistent). Although su
h mini-mal de
ision rules 
an be 
omputed, this approa
h 
an result in set of rules withan unsatisfa
tory quality of 
lassi�
ation. These rules will be too detailed andwill over-�t so that unseen 
ases will be poorly 
lassi�ed. Shorter rules shouldrather be synthesized. Although they will not be perfe
t on the known 
asesthere is a good 
han
e that they will be of high quality when 
lassifying new
ases. They 
an be 
onstru
ted by 
omputing approximations of the above men-tioned redu
ts. Approximations of redu
ts re
eived by dropping some des
riptorsfrom the 
onditional parts of minimal rules de�ne larger sets, not entirely in-
luded in the de
ision 
lasses but in
luded to a satisfa
tory degree. It meansthat these shorter des
riptions may be more relevant for de
ision 
lass (
on
ept)
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t redu
ts. This leads to the following observation:if dropping a des
riptor from the 
onditional part provides a des
ription of theobje
t set whi
h is almost in
luded in the approximated de
ision 
lass, thenthis des
riptor is a good 
andidate for removal. [1℄ use systemati
 approa
hes topruning sets of 
lassi�
ation rules.For estimation of the quality of de
ision 
lasses approximation global mea-sures based on the positive region [60℄ or entropy [11℄ are used. Methods ofboundary region thinning [76℄ 
an be based, e.g., on the idea that neighbor-hoods in
luded in de
ision 
lasses in satisfa
tory degree 
an be treated as partsof the lower approximations of de
ision 
lasses. Hen
e the lower approximationsof de
ision 
lasses are enlarged and de
ision rules generated for them are usuallystronger (e.g., they are supported by more examples). The degree of in
lusion istuned experimentally to a
hieve, e.g., high 
lassi�
ation quality of new 
ases.When a set of rules has been indu
ed from a de
ision system 
ontaining aset of training examples, they 
an be used to 
lassify new obje
ts. However,to resolve 
on
i
t between di�erent de
ision rules re
ognizing new obje
ts oneshould develop strategies for resolving 
on
i
ts between them when they arevoting for di�erent de
isions (see the bibliography in [51℄ and [52℄). Re
ently[70℄, it has been shown that rough set methods 
an be used to learn from datathe strategy for 
on
i
t resolving between de
ision rules when they are 
lassifyingnew obje
ts 
ontrary to existing methods using some �xed strategies.�-redu
ts and asso
iation rulesIn this se
tion we dis
uss a relationship between asso
iation rules [2℄ and ap-proximations of redu
ts.We 
onsider formulae 
alled templates that are 
onjun
tions of des
riptors.Templates will be denoted by T, P, Q and des
riptors by D with or without sub-s
ripts. supportA(T) denotes the 
ardinality of jTjA and 
onfiden
eA(P! Q)denotes the ratio supportA(P ^Q)=supportA(P):The redu
t approximations mentioned above are des
riptions of the obje
tsets mat
hed by templates. They des
ribe these sets in an approximate senseexpressed by 
oeÆ
ients 
alled support and 
on�den
e.There are two main steps rule generation methods for a given informationsystem A and two parameters (support s and 
on�den
e 
):1. Extra
t from the data as many as possible templates T = D1 ^D2::: ^Dksu
h that supportA(T) � s and supportA(T ^D) < s for any des
riptor Ddi�erent from des
riptors of T (i.e., generation of maximal templates amongthose supported by more than s obje
ts);2. Sear
h for a partition T = P^Q for any of generated template T satisfyingthe following 
onditions:(a) supportA(P) < supportA(T)
(b) P has the shortest length among templates satisfying the previous 
on-dition.
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ond step 
an be solved using rough set methods and Boolean reason-ing approa
h.Let T = D1 ^ D2 ^ : : : ^ Dm be a template with supportA(T) � s. For agiven 
on�den
e threshold 
 2 (0; 1), the de
omposition T = P ^Q is 
alled 
-irredu
ible if 
onfiden
eA(P! Q) � 
 and for any de
omposition T = P0 ^Q0su
h that P0 is a sub-template of P, we have 
onfiden
eA(P0 ! Q0) < 
:Now we explain that the problem of sear
hing for 
-irredu
ible asso
iationrules from the given template is equivalent to the problem of sear
hing for lo
al�-redu
ts (for some �) from a de
ision table. The last problem is a well knownproblem in rough set theory.Let us de�ne a new de
ision table AjT = (U;AjT; d) from the original infor-mation system A and the template T by1. AjT = faD1 ; aD2 ; :::; aDmg is a set of attributes 
orresponding to the des
rip-tors of T su
h that aDi(u) = �1 if the obje
t u satis�es Di;0 otherwise:2. the de
ision attribute d determines if the obje
t satis�es template T, i.e.,d(u) = �1 if the obje
t u satis�es T;0 otherwise:The following fa
ts [61℄, [36℄ des
ribe the relationship between asso
iationrules and approximations of redu
ts.For the given information table A = (U;A), the template T, the set ofdes
riptors P. The impli
ation �VDi2PDi �! VDj =2PDj� is1. 100%-irredu
ible asso
iation rule from T if and only if P is a redu
t in AjT.2. 
-irredu
ible asso
iation rule from T if and only if P is an �-redu
t of AjT,where � = 1� ( 1
 � 1)=(ns � 1), n is the total number of obje
ts from U ands = supportA(T).It 
an be shown that the problem of sear
hing for the shortest �-redu
ts isNP-hard [36℄. From the above fa
ts it follows that extra
ting asso
iation rulesfrom data is strongly related to extra
tion of redu
t approximations [36℄.De
omposition of large data tablesSeveral methods based on rough sets have been developed in order to deal withlarge data tables, i.e., in order to generate strong de
ision rules for su
h tables.We will dis
uss one of the methods based on a de
omposition of tables using pat-terns, 
alled templates, that des
ribe regular sub-domains of the universe (e.g.,they des
ribe a large number of 
ustomers having a large number of 
ommonfeatures).Long templates with large support are preferred in many Data Mining tasks.Several quality fun
tions 
an be used to 
ompare templates. For example they
an be de�ned by quality1A(T) = supportA(T) + length(T) and quality2A(T) =supportA(T)� length(T). Problems of high quality template generation (using
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riteria) are of high 
omputational 
omplexity. However,eÆ
ient heuristi
s have been developed for solving them (see e.g., [2, 75℄), [34℄).Templates extra
ted from data are used to de
ompose large data tables. Con-sequently, a de
ision tree is built. Its internal nodes are labeled by the templatesextra
ted from the data, and the edges outgoing from them are labeled by 0(false) and 1 (true). Any leaf is labeled by a subtable (sub-domain) 
onsistingof all obje
ts from the original table mat
hing all templates or their 
omple-ments appearing on the path from the root of the tree to the leaf. The pro
essof the de
omposition is 
ontinued until the size of subtables atta
hed to leavesis feasible for the rough set algorithms at hand (e.g., de
ision rules for them 
anbe generated eÆ
iently). The reported experiments show that su
h de
omposi-tion returns interesting patterns of regular sub-domains of large data tables (forreferen
es see [34℄, [37℄, [51℄ and [52℄).It is also possible to sear
h for patterns that are almost in
luded in thede
ision 
lasses, i.e., default rules [31℄. For a presentation of generating defaultrules see the bibliography in [51℄ and [52℄.Con
lusionsWe have shown that rough set theory 
onstitutes a sound basis for KDD: minimal
on
ept des
riptions, 
lassi�ers, dependen
ies, et
, are systemati
ally synthesizedand their quality 
an be evaluated using statisti
al methods. Features 
an beextra
ted and sele
ted. The stri
t 
on
epts are extended with the approximateones that usually improve the quality of 
lassi�
ation. Methods for pro
essingvery large data sets are developed. Su

essful software tools are implementedand used by thousands of resear
hers world-wide.There has been done a substantial progress in developing rough set methodsfor KDD (like methods for extra
tion from data rules, partial or total dependen-
ies, methods for elimination of redundant data, methods dealing with missingdata, dynami
 data and others reported e.g., in [6℄, [7℄, [8℄, [16℄, [19℄, [26℄, [31℄,[32℄, [40℄, [51℄, [52℄, [53℄, [78℄). New methods for extra
ting patterns from data(see e.g., [23℄, [37℄, [31℄), [22℄, [47℄), de
omposition of de
ision systems (see e.g.,[37℄) as well as a new methodology for data mining in distributed and multi-agentsystems (see e.g., [50℄) have been reported. Re
ently, rough set based methodshave been proposed for data mining in very large relational data bases.There are numerous areas of su

essful appli
ations of rough set software sys-tems (see [52℄ and http://www.idi.ntnu.no/~aleks/rosetta/ for the ROSET-TA system). Many interesting 
ase studies are reported (for referen
es see e.g.,[51, 52℄, [40℄ and the bibliography in these books, in parti
ular [7℄, [16℄, [22℄, [71℄,[78℄).We would like to mention some generalizations of rough set approa
h likerough mereologi
al approa
h (see e.g., [54℄, [49℄). The in
lusion relation x�rywith the intended meaning x is a part of y to a degree r has been taken as thebasi
 notion of the rough mereology being a generalization of the Le�sniewskimereology. Rough mereology o�ers a methodology for synthesis and analysis of
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ts in distributed environment of intelligent agents, in parti
ular, for synthe-sis of obje
ts satisfying a given spe
i�
ation to a satisfa
tory degree, i.e., obje
tssuÆ
iently 
lose to standard obje
ts (prototypes) satisfying the spe
i�
ation.Moreover, rough mereology has been re
ently used [50℄ for developing founda-tions of the information granule 
al
ulus, an attempt towards a formalization ofthe Computing{with{Words paradigm, re
ently formulated by Lot� Zadeh [72℄,[73℄. Let us also note that one of the prospe
ts for rough mereologi
al appli
ationsis to look for algorithmi
 methods of extra
ting logi
al stru
tures from data su
has, for instan
e, �nding relational stru
tures 
orresponding to relevant featureextra
tion, synthesizing default rules (approximate de
ision rules), 
onstru
ting
onne
tives for un
ertainty 
oeÆ
ients propagation and synthesizing s
hemes ofapproximate reasoning 
reating a higher level knowledge extra
ted from data(e.g. qualitative s
hemes of reasoning). The development of su
h methods is 
ru-
ial to further progress in many appli
ations. It is also one of the 
entral issuesof KDD as pointed out in [13℄.Several other generalizations of rough sets have been investigated and someof them have been used for real life data analysis (see e.g., [76℄, [5℄, [42℄, [14℄,[24℄, [41℄, [27℄, [59℄, [50℄).Finally, we would like to point out that the algebrai
 and logi
al aspe
ts ofrough sets have been intensively studied sin
e the beginning of rough set theory.The reader interested in that topi
 is referred to the bibliography in [51℄.A
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