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2 Skowron, Komorowski, Pawlak, PolkowskiB6.1 Basi rough set approahWe start by presenting the basi notions of lassial rough set approah [44℄ thatwas introdued to deal with impreise or vague onepts.Information systemsA data set an be represented by a table where eah row represents, for instane,an objet, a ase, or an event. Every olumn represents an attribute, or anobservation, or a property that an be measured for eah objet; it an alsobe supplied by a human expert or user. This table is alled an informationsystem. More formally, it is a pair A = (U;A) where U is a non-empty �niteset of objets alled the universe and A is a non-empty �nite set of attributessuh that a : U ! Va for every a 2 A. Set Va is alled the value set of a. ByInfB(x) = f(a; a(x)) : a 2 Bg we denote the information signature of x withrespet to B, where B � A and x 2 U:Deision systemsIn many ases the target of the lassi�ation, that is, the family of oneptsto be approximated is represented by an additional attribute alled deision.Information systems of this kind are alled deision systems. A deision systemis any system of the form A = (U;A; d), where d 62 A is the deision attributeand A is a set of onditional attributes or simply onditions.Let A = (U;A; d) be given and let Vd = fv1; : : : ; vr(d)g. Deision d determinesa partition fX1; : : : ; Xr(d)g of the universe U , where Xk = fx 2 U : d(x) = vkgfor 1 � k � r(d). The set Xi is alled the i-th deision lass of A. By Xd(u) wedenote the deision lass fx 2 U : d(x) = d(u)g, for any u 2 U .One an generalize the above de�nition to a ase of deision systems of theform A = (U;A;D) where the set of deision attributes D = fd1; :::dkg and Aare assumed to be disjoint. Formally, this system an be treated as a deisionsystem A = (U;A; dD) where dD(x) = (d1(x); :::; dk(x)) for x 2 U:Deision tables may be identi�ed with training samples known in MahineLearning and used to indue onept approximations in the proess known assupervised learning [30℄.Rough set approah allows to preisely de�ne the notion of onept approxi-mation. It is based [44℄ on the indisernibility relation between objets de�ninga partition (or overing) of universe U of objets. Sine objets are pereived bymeans of the values of the available attributes, the objets having the same (orsimilar) values of attributes are indisernible.Indisernibility relationLet A = (U;A) be an information system, then with any B � A there is assoi-ated an equivalene relation INDA(B):INDA(B) = f(x; x0) 2 U2 : 8a 2 B a(x) = a(x0)g:



Rough Sets 3INDA(B) (or, IND(B), for short) is alled the B-indisernibility relation andits equivalene lasses are denoted by [x℄B .X=B denotes the partition of U whihis de�ned by the indisernibility relation IND(B).We will now disuss what sets of objets may be expressed (de�ned) by formu-lae onstruted by means of attributes and their values. The simplest formulae,alled desriptors, are of the form a = v where a 2 A and v 2 Va. (It is alsopossible to onsider generalized desriptors of the form a 2 S where S � Va.)The desriptors an be ombined into more omplex formulae using proposi-tional onnetives. The meaning j'jA of formula ' in A is de�ned indutively asfollows:1. if ' is of the form a = v then j'jA= fx 2 U : a(x) = vg;2. j' ^ '0jA=j'jA \ j'0jA; j' _ '0jA=j'jA [ j'0jA; j:'jA= U� j'jA.The above de�nition may be easily extended to generalized desriptors.Any set of objets X � U de�nable in A by some formula ' (i.e., X=j'jA)is referred to as a risp (exat) set { otherwise the set is rough (inexat, vague).Vague onepts may be only approximated by risp onepts; these approxima-tions are de�ned now [44℄.Lower and upper approximation of sets, boundary regionsLet A = (U;A) be an information system and let B � A and X � U . Wean approximate X using only the information ontained in B by onstrutingthe so-alled B-lower and B-upper approximations of X , denoted BX and BXrespetively, where BX = fx : [x℄B � Xg and BX = fx : [x℄B \X 6= ;g.The lower approximation orresponds to ertain rules while the upper approx-imation to possible rules (rules with on�dene greater than 0) (see Setion ??).The B-lower approximation of X is the set of all objets whih an be ertainlylassi�ed to X using attributes from B. The set U �BX is alled the B-outsideregion of X and onsists of those objets whih an be ertainly lassi�ed asnot belonging to X using attributes from B. The set BNB(X) = BX � BXis alled the B-boundary region of X thus onsisting of those objets that onthe basis of the attributes from B annot be unambiguously lassi�ed into X . Aset is said to be rough (respetively risp) if the boundary region is non-empty(respetively empty). Consequently, eah rough set has boundary-line ases, i.e.,objets whih an neither be ertainly lassi�ed as members of the set nor ofits omplement. Obviously, risp sets have no boundary-line elements at all. Itfollows that boundary-line ases annot be properly lassi�ed by employing theavailable knowledge. The size of the boundary region an be used as a measureof the quality of set approximation (in U).It an be easily seen that the lower and upper approximations of a set are,respetively, the interior and the losure of this set in the topology generated bythe indisernibility relation.It is possible to onsider weaker indisernibility relations de�ned by so alledtolerane relations de�ning overings of the universe of objets by tolerane (sim-ilarity) lasses. An extension of rough set approah based on tolerane relations



4 Skowron, Komorowski, Pawlak, Polkowskihas been used for pattern extration and onept approximation (see, e.g., [63℄,[67℄, [37℄, [34℄).Quality measures of onept approximation and measures ofinlusion and loseness of oneptsWe now present some examples of measures of quality approximation as well asof inlusion and loseness (approximate equivalene). These notions are instru-mental in evaluating the strength of rules and loseness of onepts. They are alsoappliable in determining plausible reasoning shemes [49℄, [54℄. An importantrole is also played by entropy measures (see e.g., [11℄).Let us onsider �rst an example of a quality measure of approximations.Auray of approximation. A rough set X an be haraterized numeriallyby the following oeÆient �B(X) = jB(X)jjB(X)j ;alled the auray of approximation, where jX j denotes the ardinality of X 6= ;and B is a set of attributes. Obviously, 0 � �B(X) � 1. If �B(X) = 1, X is rispwith respet to B (X is exat with respet to B); otherwise, i.e., if �B(X) < 1,X is rough with respet to B (X is vague with respet to B).Rough membership funtion. In lassial set theory either an element be-longs to a set or it does not. The orresponding membership funtion is theharateristi funtion of the set, i.e., the funtion takes values 1 and 0, respe-tively. In the ase of rough sets the notion of membership is di�erent. The roughmembership funtion quanti�es the degree of relative overlap between the set Xand the equivalene lass to whih x belongs. It is de�ned by�BX(x) : U ! [0; 1℄ and �BX(x) = j[x℄B \X jj[x℄B j :The rough membership funtion an be interpreted as a frequeny{based es-timate of Pr(y 2 X j u), the onditional probability that objet y belongsto set X , given the information signature u = InfB(x) of objet x with re-spet to attributes B. The value �BX(x) measures the degree of inlusion offy 2 U : InfB(x) = InfB(y)g in X .Positive region and its measure. If X1; : : : ; Xr(d) are the deision lasses ofA, then the set BX1 [ : : : [ BXr(d) is alled the B{positive region of A and isdenoted by POSB(d). The number jPOSB(d)j=jU j measures the degree of in-lusion of the partition de�ned by attributes from B in the partition de�ned bythe deision.Dependenies to a degree.Another important issue in data analysis is disov-ering dependenies among attributes. Intuitively, a set of attributes D depends



Rough Sets 5totally on a set of attributes C, denoted C ) D, if all values of the attributesfrom D are uniquely determined by the values of the attributes from C. In otherwords, D depends totally on C, if there exists a funtional dependeny betweenvalues of D and C. Dependeny an be formally de�ned as follows.Let D and C be subsets of A. We will say that D depends on C to a degreek (0 � k � 1), denoted C )k D, ifk = (C;D) = jPOSC(D)jjU j ;where POSC(D) = POSC(dD).Obviously, (C;D) = XX2U=D jC(X)jjU j :If k = 1, then D depends totally on C, and if k < 1, then D depends partially(to a degree k) on C. (C;D) desribes the loseness of the partition U=D andits approximation with respet to the onditions from C:The oeÆient k expresses the ratio of all elements of the universe whih anbe properly lassi�ed to bloks of the partition U=D by employing attributes C.It will be alled the degree of the dependeny.Inlusion and loseness to a degree. Instead of the lassial exat set in-lusion, inlusion to a degree is often used in the proess of deriving knowledgefrom data. A well-known measure of inlusion of two non-empty sets X;Y � Uis desribed by jX \ Y j=jX j (see [2℄ and [49℄); their loseness may be de�ned bymin (jX \ Y j=jX j; jX \ Y j=jY j) :B6.2 Searhing for knowledgeWe have pointed out that rough set approah has been introdued by Z. Pawlak[44℄ in order to deal with vague or impreise onepts. More generally, it is anapproah for deriving knowledge from data and for reasoning about knowledgederived from data. Searhing for knowledge is usually guided by some onstraints[25℄. A wide lass of suh onstraints an be expressed using rough set frameworkor its generalizations (e.g., rough mereology [49℄ or granular omputing [54℄).Knowledge derived from data by rough set approah may onsist of di�erentonstruts. Among these onstruts are reduts, whih are fundamental to roughset approah, di�erent kinds of rules (e.g., deision rules or assoiation rules),dependenies, patterns (also alled templates) or lassi�ers. The reduts are ofspeial importane sine all other onstruts may be derived from di�erent kindsof reduts.Searhing strategies for reduts are based on Boolean (propositional) rea-soning [4℄ sine onstraints (e.g. related to disernibility of objets) are suitablyexpressible by propositional formulae. Moreover, using Boolean reasoning, it is



6 Skowron, Komorowski, Pawlak, Polkowskipossible to indue data models with a minimum desription length ([56℄, [30℄)sine they orrespond to the onstruts of Boolean funtions alled prime impli-ants (or their approximations).Searhing for knowledge an be performed in the language lose to data orin a language with more abstrat onepts; this is losely related to the issues offeature seletion and feature extration in Mahine Learning or Pattern Reog-nition [30℄. Let us also mention that data models derived from data by usingrough set approah are ontrolled using statistial test proedures (for more de-tails see, e.g., [11℄, [10℄). A thorugh analysis of the quality of rough set lassi�ers,inluding disrimination and allibration as well as the so-alled ROC analysis[69℄ has been originally introdued to rough sets in [38℄ and is available in theROSETTA system (see Setion D2.1.3 in this Handbook).In this setion we present illustrative examples showing how the outlinedgeneral sheme is used for deriving knowledge.Finally, we would like to mention that extensions of rough sets (e.g., roughmereology [49℄ or granular omputing [54℄), have been developed for extratingknowledge and reasoning about knowledge related to more omplex data modelssuh as, for instane, those in distributed environment or related to qualitativereasoning (e.g., spatial reasoning [57℄).Now, it will be important to make some remarks on Boolean reasoning sinemost the methods disussed later are based on generation of reduts usingBoolean reasoning.Boolean reasoningThe ombination of rough set approah with Boolean reasoning [4℄ has reateda powerful methodology that allows to formulate and eÆiently solve searhingproblems for di�erent kinds of reduts and their approximations.The idea of Boolean reasoning is as follows. Given problem P onstrut aorresponding Boolean funtion fP . This funtion has a property that solutionsof problem P may be reovered from prime impliants of fP . We reall that animpliant of a Boolean funtion f is any onjuntion of literals (variables or theirnegations) suh that if the values of these literals are true under an arbitraryvaluation v of variables then the value of the funtion f under v is also true. Aprime impliant is a minimal impliant.Using rough set approah, searhing strategies for data models under a givenpartition of objets are based on disernibility and Boolean reasoning (see e.g.,[37℄, [34℄,[61℄, [67℄, [68℄, [51℄, [52℄). This proess overs also tuning of param-eterssuh as thresholds used to extrat relevant partitions (or overings), tomeasure the degree of inlusion (or loseness) of sets, or to extrat parametersmeasuring the quality of approximation.It is neessary to deal with Boolean funtions of large size in order to solvereal-life problems. Consequently, a suessful methodology for omputing manyof the onstruts important for appliations suh as reduts and their approxi-mations, deision rules, assoiation rules, disretization of real value attributes,



Rough Sets 7symboli value grouping, searhing for new features de�ned by oblique hyper-planes or higher order surfaes, pattern extration from data as well as onitresolution or negotiation, has been developed. The methodology is based ondisernibility of objets and Boolean reasoning.Reduts are also basi tools in extrating from data funtional dependen-ies or funtional dependenies to a degree (for referenes see the papers andbibliography in [61℄, [40℄, [51℄, [52℄).Most of the problems related to generation of the above mentioned onstrutsare of high omputational omplexity (i.e., they are NP-omplete or NP-hard).This is also showing that most of the problems related to, e.g., feature seletionor pattern extration from data, have intrinsi high omputational omplexity.However, using the above methodology reasoning it was possible to disovereÆient heuristis returning suboptimal solutions of the problems.The reported results of experiments on many data sets are very promising.In omparison with other methods reported in literature, they show very goodquality of solutions (expressed by the lassi�ation quality of unseen objets andtime neessary for the onstrution of solutions) as generated by the heuristis.Moreover, a method to deal with large relational databases (see e.g., [33℄) and adeomposition method based on patterns alled templates have been developedfor proessing large data sets (see e.g., [37℄, [34℄). The former method, (see e.g.,[33℄) has shown that Boolean reasoning methodology an be extended to largerelational data bases. Its main idea is based on the observation that Booleanvariables relevant to a very large formula (orresponding to an analyzed rela-tional data base) may be disovered by analyzing some statistial information.This statistial information an be eÆiently extrated from large data bases.The latter method is based on a deomposition of large data into regular sub-domains whih are of a size feasible for proessing with previously developedmethods. We will disuss this approah later.Another interesting statistial approah is based on di�erent sampling strate-gies. Samples are analyzed using the developed strategies and stable onstrutsfor suÆiently large number of samples are onsidered as relevant for the wholetable. This approah has been suessfully used for generating di�erent kinds ofthe so-alled dynami reduts (see e.g., [3℄). It has been used for example forgeneration of so alled dynami deision rules. Experiments on di�erent datasets have proven that these methods are appliable to large data sets.Our approah is strongly related to propositional reasoning [58℄ and progressin propositional reasoning will bring further progress in the developing of ourmethods. It is important to note that our methodology allows to onstrut heuris-tis that have a very important approximation property. It may be formulatedas follows: expressions (i.e., impliants) generated by heuristis lose to primeimpliants de�ne approximate solutions for the problem [58℄. This property isimportant sine the time omplexity of heuristis generating impliants lose toprime impliants may be muh lower than for generating prime impliants.In the sequel we will disuss di�erent kinds of reduts and their appliationsin deriving di�erent forms of knowledge from data.



8 Skowron, Komorowski, Pawlak, PolkowskiB6.2.1 Reduts in information systems and deision systemsWe start from reduts of information systems. Given an A = (U;A), a redut isa minimal set of attributes B � A suh that INDA(B) = INDA(A). In otherwords, a redut is a minimal set of attributes from A that preserves the originallassi�ation de�ned by the set A of attributes. Finding a minimal redut is NP-hard [62℄; one an also show that for any m there exists an information systemwith m attributes having an exponential number of reduts. There fortunatelyexist good heuristis that ompute suÆiently many reduts in an aeptabletime.Let A be an information system with n objets. The disernibility matrixof A is a symmetri n � n matrix with entries ij as given below. Eah entryonsists of the set of attributes upon whih objets xi and xj di�er.ij = fa 2 A j a(xi) 6= a(xj)g for i; j = 1; :::; n:A disernibility funtion fA for an information systemA is a Boolean funtionof m Boolean variables a�1; :::; a�m (orresponding to the attributes a1; :::; am)de�ned by fA(a�1; :::; a�m) =^n_ �ij j 1 � j � i � n, ij 6= ;owhere �ij = fa� j a 2 ijg. In the sequel we will write ai instead of a�i .The disernibility funtion fA desribes onstraints whih should be pre-served in order to maintain disernibility between all pairs of disernible objetsfrom A. It requires to keep at least one attribute from eah non-empty entry ofthe disernibility matrix, i.e., orresponding to any pair of disernible objets.It has been shown [62℄ that the sets of all minimal sets of attributes preservingdisernibility between objets, i.e., reduts, orrespond to prime impliants ofthe disernibility funtion fA.The intersetion of all reduts is alled ore.In general, the deision is not onstant for the indisernibility lasses. LetA = (U;A; d) be a deision system. The generalized deision in A is the funtion�A : U �! P(Vd) de�ned by �A(x) = fi j 9x0 2 U x0 IND(A)x and d(x0) = ig.A deision system A is alled onsistent (deterministi), if j�A(x)j = 1 for anyx 2 U , otherwise A is inonsistent (non-deterministi). Any set onsisting of allobjets with the same generalized deision value is alled a generalized deisionlass.It is easy to see that a deision system A is onsistent if, and only if,POSA(d) = U . Moreover, if �B = �B0 , then POSB(d) = POSB0(d) for any pairof non-empty sets B;B0 � A. Hene the de�nition of a deision-relative redut:a subset B � A is a relative redut if it is a minimal set suh that POSA(d) =POSB(d). Deision-relative reduts may be found from a disernibility matrix:Md(A) = (dij) assuming dij = ij � fdg if (j�A(xi)j = 1 or j�A(xj)j = 1) and�A(xi) 6= �A(xj) , dij = ;, otherwise. Matrix Md(A) is alled the deision-relative disernibility matrix of A. Constrution of the deision-relative diserni-bility funtion from this matrix follows the onstrution of the disernibility



Rough Sets 9funtion from the disernibility matrix. It has been shown [62℄ that the set ofprime impliants of fdM (A) de�nes the set of all deision-relative reduts of A.In some appliations, instead of reduts we prefer to use their approximationsalled �-reduts, where � 2 [0; 1℄ is a real parameter. For a given informationsystem A = (U;A), the set of attributes B � A is alled �-redut if B has anon-empty intersetion with at least � � 100% of the non-empty sets i;j of thedisernibility matrix of A.B6.2.2 Reduts and Boolean reasoning: Examples of appliationsWe will present examples showing how a ombination of rough set methodswith Boolean reasoning may be suessfully used to solve several KDD prob-lems. Reduts are the ruial onstruts. They are (prime) impliants of suit-ably hosen Boolean funtions expressing disernibility onditions whih shouldbe preserved during redution.Feature seletionSeletion of relevant features is an important problem and has been extensivelystudied in Mahine Learning and Pattern Reognition (see e.g., [30℄). It is alsoa very ative researh area in the rough set ommunity.One of the �rst ideas [44℄ was to onsider the ore of the redut set of theinformation system A as the soure of relevant features. One an observe thatrelevant feature sets, in a sense used by the mahine learning ommunity, anbe interpreted in most ases as the deision-relative reduts of deision systemsobtained by adding appropriately onstruted deisions to a given informationsystem.Another approah is related to dynami reduts (for referenes see e.g., [51℄).The attributes are onsidered relevant if they belong to dynami reduts with asuÆiently high stability oeÆient, i.e., they appear with suÆiently high fre-queny in random samples of a given information system. Several experiments(see [51℄) show that the set of deision rules based on suh attributes is muhsmaller than the set of all deision rules. At the same time the quality of lassi-�ation of new objets inreases or does not hange if one only onsiders rulesonstruted over suh relevant features.The idea of attribute redution an be generalized through an introdutionof a onept of signi�ane of attributes whih enables to evaluate attributes notonly in the two-valued sale dispensable { indispensable but also in the multi-value ase by assigning to an attribute a real number from the interval [0,1℄ thatexpresses the importane of an attribute in the information table.Signi�ane of an attribute an be evaluated by measuring the e�et of re-moving the attribute from an information table.Let C and D be sets of ondition and deision attributes, respetively, andlet a 2 C be a ondition attribute. It was shown previously that the number(C;D) expresses the degree of dependeny between attributes C and D, or theauray of the approximation of U=D by C: It may be now heked how the



10 Skowron, Komorowski, Pawlak, PolkowskioeÆient (C;D) hanges when attribute a is removed. In other words, what isthe di�erene between (C;D) and ((C�fag; D): The di�erene is normalizedand the signi�ane of attribute a is de�ned by�(C;D)(a) = ((C;D) � (C � fag; D))(C;D) = 1� (C � fag; D)(C;D) ;CoeÆient �C;D(a) an be understood as a lassi�ation error whih ourswhen attribute a is dropped. The signi�ane oeÆient an be extended to setsof attributes as follows:�(C;D)(B) = ((C;D)� (C �B;D))(C;D) = 1� (C �B;D)(C;D) :Another possibility is to onsider as relevant the features that ome fromapproximate reduts of suÆiently high quality.Any subset B of C is alled an approximate redut of C and the number"(C;D)(B) = ((C;D) � (B;D))(C;D) = 1� (B;D)(C;D) ;is alled an error of redut approximation. It expresses how exatly the set ofattributes B approximates the set of ondition attributes C with respet todetermining D. Using a similar approah, [20℄ showed how feature seletion anbe applied to identify population subgroups.Several other methods of redut approximation based on measures di�erentfrom positive region have been developed. All experiments on�rm the hypothesisthat by tuning the level of approximation the quality of the lassi�ation of newobjets may be inreased in most ases. It is important to note that it is oneagain possible to use Boolean reasoning to ompute the di�erent types of redutsand to extrat from them relevant approximations.Feature extrationThe rough set ommunity has been ommitted to onstruting eÆient algo-rithms for (new) feature extration [52℄. Rough set methods ombined withBoolean reasoning [4℄ lead to several suessful approahes to feature extra-tion. The most suessful methods are: (i) disretization tehniques (see, e.g.,[32℄, [61℄); (ii) methods of partitioning of nominal attribute value sets (see e.g.[34℄, [61℄) and (iii) ombinations of the above methods (see e.g. [61℄). The dis-retization problems and symboli value partition problems are NP-omplete orNP-hard whih learly justi�es the importane of designing eÆient heuristis.Our illustrative example onerns symboli (nominal, qualitative) attributevalue grouping. We also present some experimental results of heuristis basedon our methods that are applied to the ase of mixed nominal and numeriattributes.In ase of symboli value attribute (i.e., without pre-assumed order on valuesof given attributes), the problem of searhing for new features of the form a 2 V



Rough Sets 11is, in a sense, from pratial point of view more ompliated than for the realvalue attributes. However, it is possible to develop eÆient heuristis for thisase using Boolean reasoning.LetA = (U;A [ fdg) be a deision table. Any funtion Pa : Va ! f1; : : : ;mag(where ma � jVaj) is alled a partition of Vai . The rank of Pai is the valuerank (Pi) = jPai (Vai) j. The family of partitions fPaga2B is onsistent with B(B�onsistent) i� the ondition [(u; u0) =2 IND(B=fdg) implies 9a2B [Pa(a(u)) 6=Pa(a(u0))℄℄ holds for any (u; u0) 2 U: It means that if two objets u; u0 are dis-erned by B and d, then they must be diserned by partition attributes de�nedby fPaga2B . We onsider the following optimization problemPARTITION PROBLEM: symboli value partition problem:Given a deision table A = (U;A [ fdg) and a set of attributes B � A, searhfor the minimal B�onsistent family of partitions (i.e., suh B�onsistentfamily fPaga2B that Pa2B rank (Pa) is minimal).In order to disern between pairs of objets will use new binary features av0v(for v 6= v0) de�ned by av0v (x; y) = 1 i� a(x) = v 6= v0 = a(y). One an applyJohnson's heuristis [18℄ for the new matrix with these attributes to searh forminimal set of new attributes that diserns all pairs of objets from di�erentdeision lasses. After extrating these sets, for eah attribute ai we onstrutgraph �a = hVa; Eai where Ea is de�ned as the set of all new attributes (propo-sitional variables) found for the attribute a. Any vertex oloring of �a de�nes apartition of Va: The olorability problem is solvable in polynomial time for k = 2,but remains NP-omplete for all k � 3: However, similarly to disretization, itis possible to apply some eÆient heuristis searhing for optimal partition.Let us onsider an example Fig. 1 of a deision table presented in Table 1and (a redued form) of its disernibility matrix in Table 2.Fig. 1. A deision table and its disernibility matrixA a b du1 a1 b1 0u2 a1 b2 0u3 a2 b3 0u4 a3 b1 0u5 a1 b4 1u6 a2 b2 1u7 a2 b1 1u8 a4 b2 1u9 a3 b4 1u10 a2 b5 1 =) M(A) u1 u2 u3 u4u5 bb1b4 bb2b4 aa1a2 , bb3b4 aa1a3 , bb1b4u6 aa1a2 , bb1b2 aa1a2 bb2b3 aa2a3 , bb1b2u7 aa1a2 aa1a2 , bb1b2 bb1b3 aa2a3u8 aa1a4 , bb1b2 aa1a4 aa2a4 , bb2b3 aa3a4 , bb1b2u9 aa1a3 , bb1b4 aa1a3 , bb2b4 aa2a3 , bb3b4 bb1b4u10 aa1a2 , bb1b5 aa1a2 , bb2b5 bb3b5 aa2a3 , bb1b5From the Boolean funtion fA with Boolean variables of the form av2v1 , one an�nd the shortest prime impliant: aa1a2 ^aa2a3 ^aa1a4 ^aa3a4 ^bb1b4 ^bb2b4 ^bb2b3 ^bb1b3 ^bb3b5whih an be represented by graphs (see Fig. 2).



12 Skowron, Komorowski, Pawlak, PolkowskiFig. 2. Coloring of the attribute value graphs and the redued table.rr bb��� ��� bbr r ra1a3 a2a4 b5 b1 b2 b3b4 BBBQQQQBBBB ����a b =) aPa bPb d1 1 02 2 01 2 12 1 1We an olor verties of those graphs as it is shown in Fig. 2. The olors areorresponding to the partitions:Pa (a1) = Pa (a3) = 1; Pa (a2) = Pa (a4) = 2Pb (b1) = Pb (b2) = Pb (b5) = 1; Pb (b3) = Pb (b4) = 2:At the same time one an onstrut a new deision table (Fig. 2).One an extend this approah to the ase when a given deision system on-tains nominal and numeri attributes (see e.g., [35℄). The obtained heuristis areof a very good quality. Experiments with lassi�ation methods (see [35℄) havebeen arried over deision systems using two tehniques alled \train-and-test"and \n-fold-ross-validation". Table 1 shows some experimental results obtainedby applying the proposed methods MD (using only disretization based on MD-heuristis using Johnson approximation strategy [32℄, [61℄) and MD-G (usingdisretization and symboli value grouping [34℄, [61℄) to the lassi�ation tasksfor some data tables from the \UC Irvine repository". The results reported in[12℄ are summarized in olumns labeled by S-ID3 and C4.5 in Table 1). Let usnote that the heuristis MD and MD-G are also very eÆient with respet totime omplexity.In the ase of real value attributes one an searh for features in the fea-ture set that ontains the harateristi funtions of half-spaes determined byhyper-planes or parts of spaes de�ned by more omplex surfaes in the multi-dimensional spaes. Geneti algorithms have been applied in searhing for semi-optimal hyper-planes [32℄. The reported results show a substantial inrease inthe quality of lassi�ation of unseen objets but at the prie of inreased timefor searhing for a semi-optimal hyper-plane.Deision rulesReduts serve the purpose of induing minimal deision rules. Any suh rule on-tains a minimal number of desriptors in the onditional part so that their on-juntion de�nes the largest subset of a generalized deision lass (deision lass,if the deision table is deterministi). Hene, information inluded in onditionalpart of any minimal rule is suÆient for prediting the generalized deision valuefor all objets satisfying this part. The onditional parts of minimal rules de-�ne largest objet sets relevant for generalized deision lasses approximation. Itturns out that the onditional parts of minimal rules an be omputed (by using



Rough Sets 13Names of Classi�ation aurayTables S-ID3 C4.5 MD MD-GAustralian 78.26 85.36 83.69 84.49Breast (L) 62.07 71.00 69.95 69.95Diabetes 66.23 70.84 71.09 76.17Glass 62.79 65.89 66.41 69.79Heart 77.78 77.04 77.04 81.11Iris 96.67 94.67 95.33 96.67Lympho 73.33 77.01 71.93 82.02Monk-1 81.25 75.70 100 93.05Monk-2 69.91 65.00 99.07 99.07Monk-3 90.28 97.20 93.51 94.00Soybean 100 95.56 100 100TiTaToe 84.38 84.02 97.7 97.70Average 78.58 79.94 85.48 87.00Table 1. A quality omparison of various deision tree methods and our heuristis.Abbreviations: MD: MD-heuristi; MD-G: MD-heuristi with symboli value partitionBoolean reasoning) as the so-alled reduts relative to objets or loal reduts(see e.g., [60℄, [3℄). One the reduts have been omputed, the onditional partsof rules are easily onstruted by laying the reduts over the original deisionsystem and reading o� the values. In the disussed ase the generalized deisionvalue is preserved during the redution. One an onsider stronger onstraintswhih should be preserved. For example, in [65℄ the onstraints are desribedby probability distributions orresponding to information signatures of objets.One more, the same methodology an be used to ompute the reduts orre-sponding to these onstraints.The main hallenge in induing rules from deision systems lies in deter-mining whih attributes should be inluded in the onditional part of the rule.Using the outlined above strategy �rst minimal rules are omputed. Their ondi-tional parts desribe largest objet sets (de�nable by onjuntions of desriptors)with the same generalized deision value in a given deision system. Hene, theyreate the largest sets still relevant for de�ning the deision lasses (or sets ofdeision lasses when the deision system is inonsistent). Although suh mini-mal deision rules an be omputed, this approah an result in set of rules withan unsatisfatory quality of lassi�ation. These rules will be too detailed andwill over-�t so that unseen ases will be poorly lassi�ed. Shorter rules shouldrather be synthesized. Although they will not be perfet on the known asesthere is a good hane that they will be of high quality when lassifying newases. They an be onstruted by omputing approximations of the above men-tioned reduts. Approximations of reduts reeived by dropping some desriptorsfrom the onditional parts of minimal rules de�ne larger sets, not entirely in-luded in the deision lasses but inluded to a satisfatory degree. It meansthat these shorter desriptions may be more relevant for deision lass (onept)



14 Skowron, Komorowski, Pawlak, Polkowskiapproximation than the exat reduts. This leads to the following observation:if dropping a desriptor from the onditional part provides a desription of theobjet set whih is almost inluded in the approximated deision lass, thenthis desriptor is a good andidate for removal. [1℄ use systemati approahes topruning sets of lassi�ation rules.For estimation of the quality of deision lasses approximation global mea-sures based on the positive region [60℄ or entropy [11℄ are used. Methods ofboundary region thinning [76℄ an be based, e.g., on the idea that neighbor-hoods inluded in deision lasses in satisfatory degree an be treated as partsof the lower approximations of deision lasses. Hene the lower approximationsof deision lasses are enlarged and deision rules generated for them are usuallystronger (e.g., they are supported by more examples). The degree of inlusion istuned experimentally to ahieve, e.g., high lassi�ation quality of new ases.When a set of rules has been indued from a deision system ontaining aset of training examples, they an be used to lassify new objets. However,to resolve onit between di�erent deision rules reognizing new objets oneshould develop strategies for resolving onits between them when they arevoting for di�erent deisions (see the bibliography in [51℄ and [52℄). Reently[70℄, it has been shown that rough set methods an be used to learn from datathe strategy for onit resolving between deision rules when they are lassifyingnew objets ontrary to existing methods using some �xed strategies.�-reduts and assoiation rulesIn this setion we disuss a relationship between assoiation rules [2℄ and ap-proximations of reduts.We onsider formulae alled templates that are onjuntions of desriptors.Templates will be denoted by T, P, Q and desriptors by D with or without sub-sripts. supportA(T) denotes the ardinality of jTjA and onfideneA(P! Q)denotes the ratio supportA(P ^Q)=supportA(P):The redut approximations mentioned above are desriptions of the objetsets mathed by templates. They desribe these sets in an approximate senseexpressed by oeÆients alled support and on�dene.There are two main steps rule generation methods for a given informationsystem A and two parameters (support s and on�dene ):1. Extrat from the data as many as possible templates T = D1 ^D2::: ^Dksuh that supportA(T) � s and supportA(T ^D) < s for any desriptor Ddi�erent from desriptors of T (i.e., generation of maximal templates amongthose supported by more than s objets);2. Searh for a partition T = P^Q for any of generated template T satisfyingthe following onditions:(a) supportA(P) < supportA(T)(b) P has the shortest length among templates satisfying the previous on-dition.



Rough Sets 15The seond step an be solved using rough set methods and Boolean reason-ing approah.Let T = D1 ^ D2 ^ : : : ^ Dm be a template with supportA(T) � s. For agiven on�dene threshold  2 (0; 1), the deomposition T = P ^Q is alled -irreduible if onfideneA(P! Q) �  and for any deomposition T = P0 ^Q0suh that P0 is a sub-template of P, we have onfideneA(P0 ! Q0) < :Now we explain that the problem of searhing for -irreduible assoiationrules from the given template is equivalent to the problem of searhing for loal�-reduts (for some �) from a deision table. The last problem is a well knownproblem in rough set theory.Let us de�ne a new deision table AjT = (U;AjT; d) from the original infor-mation system A and the template T by1. AjT = faD1 ; aD2 ; :::; aDmg is a set of attributes orresponding to the desrip-tors of T suh that aDi(u) = �1 if the objet u satis�es Di;0 otherwise:2. the deision attribute d determines if the objet satis�es template T, i.e.,d(u) = �1 if the objet u satis�es T;0 otherwise:The following fats [61℄, [36℄ desribe the relationship between assoiationrules and approximations of reduts.For the given information table A = (U;A), the template T, the set ofdesriptors P. The impliation �VDi2PDi �! VDj =2PDj� is1. 100%-irreduible assoiation rule from T if and only if P is a redut in AjT.2. -irreduible assoiation rule from T if and only if P is an �-redut of AjT,where � = 1� ( 1 � 1)=(ns � 1), n is the total number of objets from U ands = supportA(T).It an be shown that the problem of searhing for the shortest �-reduts isNP-hard [36℄. From the above fats it follows that extrating assoiation rulesfrom data is strongly related to extration of redut approximations [36℄.Deomposition of large data tablesSeveral methods based on rough sets have been developed in order to deal withlarge data tables, i.e., in order to generate strong deision rules for suh tables.We will disuss one of the methods based on a deomposition of tables using pat-terns, alled templates, that desribe regular sub-domains of the universe (e.g.,they desribe a large number of ustomers having a large number of ommonfeatures).Long templates with large support are preferred in many Data Mining tasks.Several quality funtions an be used to ompare templates. For example theyan be de�ned by quality1A(T) = supportA(T) + length(T) and quality2A(T) =supportA(T)� length(T). Problems of high quality template generation (using



16 Skowron, Komorowski, Pawlak, Polkowskidi�erent optimization riteria) are of high omputational omplexity. However,eÆient heuristis have been developed for solving them (see e.g., [2, 75℄), [34℄).Templates extrated from data are used to deompose large data tables. Con-sequently, a deision tree is built. Its internal nodes are labeled by the templatesextrated from the data, and the edges outgoing from them are labeled by 0(false) and 1 (true). Any leaf is labeled by a subtable (sub-domain) onsistingof all objets from the original table mathing all templates or their omple-ments appearing on the path from the root of the tree to the leaf. The proessof the deomposition is ontinued until the size of subtables attahed to leavesis feasible for the rough set algorithms at hand (e.g., deision rules for them anbe generated eÆiently). The reported experiments show that suh deomposi-tion returns interesting patterns of regular sub-domains of large data tables (forreferenes see [34℄, [37℄, [51℄ and [52℄).It is also possible to searh for patterns that are almost inluded in thedeision lasses, i.e., default rules [31℄. For a presentation of generating defaultrules see the bibliography in [51℄ and [52℄.ConlusionsWe have shown that rough set theory onstitutes a sound basis for KDD: minimalonept desriptions, lassi�ers, dependenies, et, are systematially synthesizedand their quality an be evaluated using statistial methods. Features an beextrated and seleted. The strit onepts are extended with the approximateones that usually improve the quality of lassi�ation. Methods for proessingvery large data sets are developed. Suessful software tools are implementedand used by thousands of researhers world-wide.There has been done a substantial progress in developing rough set methodsfor KDD (like methods for extration from data rules, partial or total dependen-ies, methods for elimination of redundant data, methods dealing with missingdata, dynami data and others reported e.g., in [6℄, [7℄, [8℄, [16℄, [19℄, [26℄, [31℄,[32℄, [40℄, [51℄, [52℄, [53℄, [78℄). New methods for extrating patterns from data(see e.g., [23℄, [37℄, [31℄), [22℄, [47℄), deomposition of deision systems (see e.g.,[37℄) as well as a new methodology for data mining in distributed and multi-agentsystems (see e.g., [50℄) have been reported. Reently, rough set based methodshave been proposed for data mining in very large relational data bases.There are numerous areas of suessful appliations of rough set software sys-tems (see [52℄ and http://www.idi.ntnu.no/~aleks/rosetta/ for the ROSET-TA system). Many interesting ase studies are reported (for referenes see e.g.,[51, 52℄, [40℄ and the bibliography in these books, in partiular [7℄, [16℄, [22℄, [71℄,[78℄).We would like to mention some generalizations of rough set approah likerough mereologial approah (see e.g., [54℄, [49℄). The inlusion relation x�rywith the intended meaning x is a part of y to a degree r has been taken as thebasi notion of the rough mereology being a generalization of the Le�sniewskimereology. Rough mereology o�ers a methodology for synthesis and analysis of



Rough Sets 17objets in distributed environment of intelligent agents, in partiular, for synthe-sis of objets satisfying a given spei�ation to a satisfatory degree, i.e., objetssuÆiently lose to standard objets (prototypes) satisfying the spei�ation.Moreover, rough mereology has been reently used [50℄ for developing founda-tions of the information granule alulus, an attempt towards a formalization ofthe Computing{with{Words paradigm, reently formulated by Lot� Zadeh [72℄,[73℄. Let us also note that one of the prospets for rough mereologial appliationsis to look for algorithmi methods of extrating logial strutures from data suhas, for instane, �nding relational strutures orresponding to relevant featureextration, synthesizing default rules (approximate deision rules), onstrutingonnetives for unertainty oeÆients propagation and synthesizing shemes ofapproximate reasoning reating a higher level knowledge extrated from data(e.g. qualitative shemes of reasoning). The development of suh methods is ru-ial to further progress in many appliations. It is also one of the entral issuesof KDD as pointed out in [13℄.Several other generalizations of rough sets have been investigated and someof them have been used for real life data analysis (see e.g., [76℄, [5℄, [42℄, [14℄,[24℄, [41℄, [27℄, [59℄, [50℄).Finally, we would like to point out that the algebrai and logial aspets ofrough sets have been intensively studied sine the beginning of rough set theory.The reader interested in that topi is referred to the bibliography in [51℄.Aknowledgment. The number of people that are involved in this researh isvery large and we an only express our general thanks to all olleagues, ollab-orators, reviewers, students, wives and funding agenies who have ontributedto this artile in very many diret and indiret ways and who supported us overthe years. Authors would like thank to Willi Kl�osgen, Jan _Zytkow and to theanonymous reviewer for their ritiism and omments on the previous version ofthe paper.Jan Komorowski has been supported in part by the European Union 4thFramework Telematis projet CardiAssist, and by the Norwegian ResearhCounil (NFR) grants #74467/410, #110177/730. Leh Polkowski has been sup-ported by the grant No 8T11C02417 from the State Committee for Sienti� Re-searh (KBN) of the Republi of Poland. Andrzej Skowron has been supportedby the grant of the Wallenberg Foundation, by the ESPRIT-CRIT 2 projet#20288, and by grant from the State Committee for Sienti� Researh (KBN)of the Republi of Poland.Referenes1. T. �Agotnes, J. Komorowski, T. L�ken (1999), Taming large rule models in roughset approahes, Proeedings of the 3rd European Conferene of Priniples andPratie of Knowledge Disovery in Databases, September 15-18, 1999, Prague,Czeh Republi, Leture Notes in Arti�ial Intelligene 1704, Springer-Verlag,Berlin, pp. 193-203.2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkano(1996), Fast disoveryof assoiation rules, Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R.
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