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Abstract

Rough set theory was proposed by Zdzistaw Pawlak [43, 44] in the early
1980’s. Since then we have witnessed a systematic, world-wide growth of in-
terest in rough set theory and its applications. Rough set approach has been
introduced to deal with vague or imprecise concepts, to derive knowledge from
data and to reason about knowledge derived from data.

In the first part of this article we outline the basic notions of rough sets,
especially those which are related to knowledge extraction from data.

Searching for knowledge is usually guided by some constraints [25]. A wide
class of such constraints can be expressed by discernibility of objects. Know-
ledge derived from data by the rough set approach consists of different con-
structs. Among them there are reducts, which are the central construct in the
rough set approach, different kinds of rules (such as, for example, decision
rules or association rules), dependencies, patterns (templates) or classifiers.
The reducts are of special importance since all other constructs can be derived
from different kinds of reducts using the rough set approach.

Strategies for searching reducts apply Boolean (propositional) reasoning [4]
since the constraints (e.g. constraints related to the discernibility of objects)
are expressible by propositional formulae. Moreover, using Boolean reasoning,
minimal description length data models [56], [30] can be induced since they
correspond to constructs of Boolean functions called prime implicants (or their
approximations).

The second part of this article includes illustrative examples of applications
of this general scheme to inducing from data various forms of knowledge.

Keywords: indiscernibility, Boolean reasoning, lower and upper approxima-
tions, rough sets, boundary region, positive region, rough membership function,
decision rules, patterns, rough mereology.



2 Skowron, Komorowski, Pawlak, Polkowski

B6.1 Basic rough set approach

We start by presenting the basic notions of classical rough set approach [44] that
was introduced to deal with imprecise or vague concepts.

Information systems

A data set can be represented by a table where each row represents, for instance,
an object, a case, or an event. Every column represents an attribute, or an
observation, or a property that can be measured for each object; it can also
be supplied by a human expert or user. This table is called an information
system. More formally, it is a pair 4 = (U, A) where U is a non-empty finite
set of objects called the universe and A is a non-empty finite set of attributes
such that a : U — V, for every a € A. Set V, is called the value set of a. By
Infp(z) = {(a,a(z)) : a € B} we denote the information signature of x with
respect to B, where B C A and z € U.

Decision systems

In many cases the target of the classification, that is, the family of concepts
to be approximated is represented by an additional attribute called decision.
Information systems of this kind are called decision systems. A decision system
is any system of the form A = (U, A,d), where d ¢ A is the decision attribute
and A is a set of conditional attributes or simply conditions.

Let A = (U, A, d) be given and let Vy = {v1,...,v,(q)}. Decision d determines
a partition {X1,..., X, (4} of the universe U, where X = {z € U : d(z) = vt}
for 1 < k < r(d). The set X; is called the i-th decision class of A. By X4(u) we
denote the decision class {z € U : d(z) = d(u)}, for any u € U.

One can generalize the above definition to a case of decision systems of the
form A = (U, A, D) where the set of decision attributes D = {dy,...dx} and A
are assumed to be disjoint. Formally, this system can be treated as a decision
system A = (U, A,dp) where dp(x) = (di (), ..., di(z)) for z € U.

Decision tables may be identified with training samples known in Machine
Learning and used to induce concept approximations in the process known as
supervised learning [30].

Rough set approach allows to precisely define the notion of concept approxi-
mation. It is based [44] on the indiscernibility relation between objects defining
a partition (or covering) of universe U of objects. Since objects are perceived by
means of the values of the available attributes, the objects having the same (or
similar) values of attributes are indiscernible.

Indiscernibility relation

Let A = (U, A) be an information system, then with any B C A there is associ-
ated an equivalence relation TN D 4(B):

IND4(B) = {(z,2") € U? : Ya € B a(z) = a(z')}.
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IND4(B) (or, IND(B), for short) is called the B-indiscernibility relation and
its equivalence classes are denoted by [#]p. X /B denotes the partition of U which
is defined by the indiscernibility relation IND(B).

We will now discuss what sets of objects may be expressed (defined) by formu-
lae constructed by means of attributes and their values. The simplest formulae,
called descriptors, are of the form a = v where a € A and v € V,. (It is also
possible to consider generalized descriptors of the form a € S where S C V,.)
The descriptors can be combined into more complex formulae using proposi-
tional connectives. The meaning |p| 4 of formula ¢ in A is defined inductively as
follows:

1. if @ is of the form a = v then |p|a={z € U : a(z) = v};
2. o A@la=lela NI’ as e V @la=lela U o' as [mola= U= lpla-

The above definition may be easily extended to generalized descriptors.

Any set of objects X C U definable in A by some formula ¢ (i.e., X=|p|4)
is referred to as a crisp (exact) set — otherwise the set is rough (inezact, vague).
Vague concepts may be only approximated by crisp concepts; these approxima-
tions are defined now [44].

Lower and upper approximation of sets, boundary regions

Let A = (U, A) be an information system and let B C A and X C U. We
can approximate X using only the information contained in B by constructing
the so-called B-lower and B-upper approzimations of X, denoted BX and BX
respectively, where BX = {2 : [z]p C X} and BX = {x : [2]p N X # 0}.

The lower approximation corresponds to certain rules while the upper approx-
imation to possible rules (rules with confidence greater than 0) (see Section ?7?).
The B-lower approximation of X is the set of all objects which can be certainly
classified to X using attributes from B. The set U — BX is called the B-outside
region of X and consists of those objects which can be certainly classified as
not belonging to X using attributes from B. The set BNg(X) = BX — BX
is called the B-boundary region of X thus consisting of those objects that on
the basis of the attributes from B cannot be unambiguously classified into X. A
set is said to be rough (respectively crisp) if the boundary region is non-empty
(respectively empty). Consequently, each rough set has boundary-line cases, i.e.,
objects which can neither be certainly classified as members of the set nor of
its complement. Obviously, crisp sets have no boundary-line elements at all. It
follows that boundary-line cases cannot be properly classified by employing the
available knowledge. The size of the boundary region can be used as a measure
of the quality of set approximation (in U).

It can be easily seen that the lower and upper approximations of a set are,
respectively, the interior and the closure of this set in the topology generated by
the indiscernibility relation.

It is possible to consider weaker indiscernibility relations defined by so called
tolerance relations defining coverings of the universe of objects by tolerance (sim-
ilarity) classes. An extension of rough set approach based on tolerance relations
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has been used for pattern extraction and concept approximation (see, e.g., [63]
[67], [37], [34]).

3

Quality measures of concept approximation and measures of
inclusion and closeness of concepts

We now present some examples of measures of quality approximation as well as
of inclusion and closeness (approximate equivalence). These notions are instru-
mental in evaluating the strength of rules and closeness of concepts. They are also
applicable in determining plausible reasoning schemes [49], [54]. An important
role is also played by entropy measures (see e.g., [11]).

Let us consider first an example of a quality measure of approximations.

Accuracy of approximation. A rough set X can be characterized numerically
by the following coefficient

B(X),

[B(X)]

OéB(X) =

called the accuracy of approximation, where | X| denotes the cardinality of X # ()
and B is a set of attributes. Obviously, 0 < ap(X) < 1.If ap(X) =1, X is crisp
with respect to B (X is exact with respect to B); otherwise, i.e., if ap(X) < 1,
X is rough with respect to B (X is vague with respect to B).

Rough membership function. In classical set theory either an element be-
longs to a set or it does not. The corresponding membership function is the
characteristic function of the set, i.e., the function takes values 1 and 0, respec-
tively. In the case of rough sets the notion of membership is different. The rough
membership function quantifies the degree of relative overlap between the set X
and the equivalence class to which x belongs. It is defined by

|[z]5 N X]

W () U —[0,1] and & (x) =
[GH

The rough membership function can be interpreted as a frequency—based es-
timate of Pr(y € X | wu), the conditional probability that object y belongs
to set X, given the information signature u = Infg(z) of object = with re-
spect to attributes B. The value p%(z) measures the degree of inclusion of
{y €U :Infg(x) =Infp(y)} in X.

Positive region and its measure. If X;,..., X, 4 are the decision classes of
A, then the set BX; U...U BX, g is called the B-positive region of A and is
denoted by POSp(d). The number |POSgp(d)|/|U| measures the degree of in-
clusion of the partition defined by attributes from B in the partition defined by
the decision.

Dependencies to a degree. Another important issue in data analysis is discov-
ering dependencies among attributes. Intuitively, a set of attributes D depends
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totally on a set of attributes C, denoted C' = D, if all values of the attributes
from D are uniquely determined by the values of the attributes from C. In other
words, D depends totally on C, if there exists a functional dependency between
values of D and C. Dependency can be formally defined as follows.

Let D and C be subsets of A. We will say that D depends on C to a degree
k(0 <k <1),denoted C = D, if

k= ’Y(C,D) — |POSC(D)|
U
where POSC (D) = POSC(dD).
Obviously,
c(X
wep= 3 K

XeU/D

If kK = 1, then D depends totally on C, and if k < 1, then D depends partially
(to a degree k) on C. v(C, D) describes the closeness of the partition U/D and
its approximation with respect to the conditions from C.

The coefficient k expresses the ratio of all elements of the universe which can
be properly classified to blocks of the partition U/D by employing attributes C.
It will be called the degree of the dependency.

Inclusion and closeness to a degree. Instead of the classical exact set in-
clusion, inclusion to a degree is often used in the process of deriving knowledge
from data. A well-known measure of inclusion of two non-empty sets X, Y C U
is described by | X NY|/|X| (see [2] and [49]); their closeness may be defined by

min (|X NY[/|X], | X 0Y|/]Y]).

B6.2 Searching for knowledge

We have pointed out that rough set approach has been introduced by Z. Pawlak
[44] in order to deal with vague or imprecise concepts. More generally, it is an
approach for deriving knowledge from data and for reasoning about knowledge
derived from data. Searching for knowledge is usually guided by some constraints
[25]. A wide class of such constraints can be expressed using rough set framework
or its generalizations (e.g., rough mereology [49] or granular computing [54]).
Knowledge derived from data by rough set approach may consist of different
constructs. Among these constructs are reducts, which are fundamental to rough
set approach, different kinds of rules (e.g., decision rules or association rules),
dependencies, patterns (also called templates) or classifiers. The reducts are of
special importance since all other constructs may be derived from different kinds
of reducts.

Searching strategies for reducts are based on Boolean (propositional) rea-
soning [4] since constraints (e.g. related to discernibility of objects) are suitably
expressible by propositional formulae. Moreover, using Boolean reasoning, it is
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possible to induce data models with a minimum description length ([56], [30])
since they correspond to the constructs of Boolean functions called prime impli-
cants (or their approximations).

Searching for knowledge can be performed in the language close to data or
in a language with more abstract concepts; this is closely related to the issues of
feature selection and feature extraction in Machine Learning or Pattern Recog-
nition [30]. Let us also mention that data models derived from data by using
rough set approach are controlled using statistical test procedures (for more de-
tails see, e.g., [11], [10]). A thorugh analysis of the quality of rough set classifiers,
including discrimination and callibration as well as the so-called ROC analysis
[69] has been originally introduced to rough sets in [38] and is available in the
ROSETTA system (see Section D2.1.3 in this Handbook).

In this section we present illustrative examples showing how the outlined
general scheme is used for deriving knowledge.

Finally, we would like to mention that extensions of rough sets (e.g., rough
mereology [49] or granular computing [54]), have been developed for extracting
knowledge and reasoning about knowledge related to more complex data models
such as, for instance, those in distributed environment or related to qualitative
reasoning (e.g., spatial reasoning [57]).

Now, it will be important to make some remarks on Boolean reasoning since
most the methods discussed later are based on generation of reducts using
Boolean reasoning.

Boolean reasoning

The combination of rough set approach with Boolean reasoning [4] has created
a powerful methodology that allows to formulate and efficiently solve searching
problems for different kinds of reducts and their approximations.

The idea of Boolean reasoning is as follows. Given problem P construct a
corresponding Boolean function fp. This function has a property that solutions
of problem P may be recovered from prime implicants of fp. We recall that an
implicant of a Boolean function f is any conjunction of literals (variables or their
negations) such that if the values of these literals are true under an arbitrary
valuation v of variables then the value of the function f under v is also true. A
prime implicant is a minimal implicant.

Using rough set approach, searching strategies for data models under a given
partition of objects are based on discernibility and Boolean reasoning (see e.g.,
[37], [34],[61], [67], [68], [51], [52]). This process covers also tuning of param-
eterssuch as thresholds used to extract relevant partitions (or coverings), to
measure the degree of inclusion (or closeness) of sets, or to extract parameters
measuring the quality of approximation.

It is necessary to deal with Boolean functions of large size in order to solve
real-life problems. Consequently, a successful methodology for computing many
of the constructs important for applications such as reducts and their approxi-
mations, decision rules, association rules, discretization of real value attributes,
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symbolic value grouping, searching for new features defined by oblique hyper-
planes or higher order surfaces, pattern extraction from data as well as conflict
resolution or negotiation, has been developed. The methodology is based on
discernibility of objects and Boolean reasoning.

Reducts are also basic tools in extracting from data functional dependen-
cies or functional dependencies to a degree (for references see the papers and
bibliography in [61], [40], [51], [52]).

Most of the problems related to generation of the above mentioned constructs
are of high computational complexity (i.e., they are NP-complete or NP-hard).
This is also showing that most of the problems related to, e.g., feature selection
or pattern extraction from data, have intrinsic high computational complexity.
However, using the above methodology reasoning it was possible to discover
efficient heuristics returning suboptimal solutions of the problems.

The reported results of experiments on many data sets are very promising.
In comparison with other methods reported in literature, they show very good
quality of solutions (expressed by the classification quality of unseen objects and
time necessary for the construction of solutions) as generated by the heuristics.
Moreover, a method to deal with large relational databases (see e.g., [33]) and a
decomposition method based on patterns called templates have been developed
for processing large data sets (see e.g., [37], [34]). The former method, (see e.g.,
[33]) has shown that Boolean reasoning methodology can be extended to large
relational data bases. Its main idea is based on the observation that Boolean
variables relevant to a very large formula (corresponding to an analyzed rela-
tional data base) may be discovered by analyzing some statistical information.
This statistical information can be efficiently extracted from large data bases.
The latter method is based on a decomposition of large data into regular sub-
domains which are of a size feasible for processing with previously developed
methods. We will discuss this approach later.

Another interesting statistical approach is based on different sampling strate-
gies. Samples are analyzed using the developed strategies and stable constructs
for sufficiently large number of samples are considered as relevant for the whole
table. This approach has been successfully used for generating different kinds of
the so-called dynamic reducts (see e.g., [3]). It has been used for example for
generation of so called dynamic decision rules. Experiments on different data
sets have proven that these methods are applicable to large data sets.

Our approach is strongly related to propositional reasoning [58] and progress
in propositional reasoning will bring further progress in the developing of our
methods. It is important to note that our methodology allows to construct heuris-
tics that have a very important approzimation property. It may be formulated
as follows: expressions (i.e., implicants) generated by heuristics close to prime
implicants define approximate solutions for the problem [58]. This property is
important since the time complexity of heuristics generating implicants close to
prime implicants may be much lower than for generating prime implicants.

In the sequel we will discuss different kinds of reducts and their applications
in deriving different forms of knowledge from data.



8 Skowron, Komorowski, Pawlak, Polkowski

B6.2.1 Reducts in information systems and decision systems

We start from reducts of information systems. Given an A = (U, A), a reduct is
a minimal set of attributes B C A such that IND 4(B) = IND 4(A). In other
words, a reduct is a minimal set of attributes from A that preserves the original
classification defined by the set A of attributes. Finding a minimal reduct is NP-
hard [62]; one can also show that for any m there exists an information system
with m attributes having an exponential number of reducts. There fortunately
exist good heuristics that compute sufficiently many reducts in an acceptable
time.

Let A be an information system with n objects. The discernibility matrix
of A is a symmetric n x n matrix with entries ¢;; as given below. Each entry
consists of the set of attributes upon which objects z; and z; differ.

cij ={a€A|a(z;) #alz;)} for i,j=1,...,n.

A discernibility function f 4 for an information system A is a Boolean function
of m Boolean variables af,...,a%, (corresponding to the attributes ai, ..., am)
defined by

fatad,oean) = AN\ ey [1<5<i<n, ey #0)

where ¢j; = {a* | a € ¢;;}. In the sequel we will write a; instead of aj.

The discernibility function f4 describes constraints which should be pre-
served in order to maintain discernibility between all pairs of discernible objects
from A. Tt requires to keep at least one attribute from each non-empty entry of
the discernibility matrix, i.e., corresponding to any pair of discernible objects.
It has been shown [62] that the sets of all minimal sets of attributes preserving
discernibility between objects, i.e., reducts, correspond to prime implicants of
the discernibility function f4.

The intersection of all reducts is called core.

In general, the decision is not constant for the indiscernibility classes. Let
A = (U, A, d) be a decision system. The generalized decision in A is the function
04 : U — P(Vy) defined by 04(xz) = {i | 3z’ € U 2' IND(A) z and d(a') = i}.
A decision system A is called consistent (deterministic), if |0a(x)| = 1 for any
x € U, otherwise A is inconsistent (non-deterministic). Any set consisting of all
objects with the same generalized decision value is called a generalized decision
class.

It is easy to see that a decision system A is consistent if, and only if,
POS 4(d) = U. Moreover, if g = 0/, then POSg(d) = POSg/(d) for any pair
of non-empty sets B, B’ C A. Hence the definition of a decision-relative reduct:
a subset B C A is a relative reduct if it is a minimal set such that POS4(d) =
POSg(d). Decision-relative reducts may be found from a discernibility matrix:
Me(A) = (cfj) assuming cldj = ¢;; — {d} if (|0a(z;)] = 1 or |0a(z;)] = 1) and
dalx;) # 0a(zy) , ¢ = 0, otherwise. Matrix M?(A) is called the decision-
relative discernibility matriz of A. Construction of the decision-relative discerni-
bility function from this matrix follows the construction of the discernibility
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function from the discernibility matrix. It has been shown [62] that the set of
prime implicants of fi;(A) defines the set of all decision-relative reducts of A.

In some applications, instead of reducts we prefer to use their approximations
called a-reducts, where a € [0,1] is a real parameter. For a given information
system A = (U, A), the set of attributes B C A is called a-reduct if B has a
non-empty intersection with at least a - 100% of the non-empty sets ¢; ; of the
discernibility matrix of A.

B6.2.2 Reducts and Boolean reasoning: Examples of applications

We will present examples showing how a combination of rough set methods
with Boolean reasoning may be successfully used to solve several KDD prob-
lems. Reducts are the crucial constructs. They are (prime) implicants of suit-
ably chosen Boolean functions expressing discernibility conditions which should
be preserved during reduction.

Feature selection

Selection of relevant features is an important problem and has been extensively
studied in Machine Learning and Pattern Recognition (see e.g., [30]). It is also
a very active research area in the rough set community.

One of the first ideas [44] was to consider the core of the reduct set of the
information system A as the source of relevant features. One can observe that
relevant feature sets, in a sense used by the machine learning community, can
be interpreted in most cases as the decision-relative reducts of decision systems
obtained by adding appropriately constructed decisions to a given information
system.

Another approach is related to dynamic reducts (for references see e.g., [51]).
The attributes are considered relevant if they belong to dynamic reducts with a
sufficiently high stability coefficient, i.e., they appear with sufficiently high fre-
quency in random samples of a given information system. Several experiments
(see [51]) show that the set of decision rules based on such attributes is much
smaller than the set of all decision rules. At the same time the quality of classi-
fication of new objects increases or does not change if one only considers rules
constructed over such relevant features.

The idea of attribute reduction can be generalized through an introduction
of a concept of significance of attributes which enables to evaluate attributes not
only in the two-valued scale dispensable — indispensable but also in the multi-
value case by assigning to an attribute a real number from the interval [0,1] that
expresses the importance of an attribute in the information table.

Significance of an attribute can be evaluated by measuring the effect of re-
moving the attribute from an information table.

Let C and D be sets of condition and decision attributes, respectively, and
let a € C be a condition attribute. It was shown previously that the number
~v(C, D) expresses the degree of dependency between attributes C' and D, or the
accuracy of the approximation of U/D by C. It may be now checked how the
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coefficient (C, D) changes when attribute a is removed. In other words, what is

the difference between y(C, D) and v((C — {a}, D). The difference is normalized
and the significance of attribute a is defined by
(@) =GP =A(C —{a}. D) _ | +(C—{a).D)

’ v(C, D) V(C.D)

Coefficient o¢, p(a) can be understood as a classification error which occurs
when attribute a is dropped. The significance coefficient can be extended to sets
of attributes as follows:

(’Y(OvD)_’Y(O_BaD)) ’Y(O_BvD)

7c.0)(B) = +(C, D) == @D

Another possibility is to consider as relevant the features that come from
approximate reducts of sufficiently high quality.
Any subset B of C is called an approzrimate reduct of C and the number
v(B, D)

(4(C, D) =(B, D)) _, _
v(C, D) v(C, D)’

£c,p)(B) =

is called an error of reduct approximation. It expresses how exactly the set of
attributes B approximates the set of condition attributes C' with respect to
determining D. Using a similar approach, [20] showed how feature selection can
be applied to identify population subgroups.

Several other methods of reduct approximation based on measures different
from positive region have been developed. All experiments confirm the hypothesis
that by tuning the level of approximation the quality of the classification of new
objects may be increased in most cases. It is important to note that it is once
again possible to use Boolean reasoning to compute the different types of reducts
and to extract from them relevant approximations.

Feature extraction

The rough set community has been committed to constructing efficient algo-
rithms for (new) feature extraction [52]. Rough set methods combined with
Boolean reasoning [4] lead to several successful approaches to feature extrac-
tion. The most successful methods are: (i) discretization techniques (see, e.g.,
[32], [61]); (ii) methods of partitioning of nominal attribute value sets (see e.g.
[34], [61]) and (iii) combinations of the above methods (see e.g. [61]). The dis-
cretization problems and symbolic value partition problems are NP-complete or
NP-hard which clearly justifies the importance of designing efficient heuristics.

Our illustrative example concerns symbolic (nominal, qualitative) attribute
value grouping. We also present some experimental results of heuristics based
on our methods that are applied to the case of mixed nominal and numeric
attributes.

In case of symbolic value attribute (i.e., without pre-assumed order on values
of given attributes), the problem of searching for new features of the form a € V
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is, in a sense, from practical point of view more complicated than for the real
value attributes. However, it is possible to develop efficient heuristics for this
case using Boolean reasoning,.

Let A = (U, AU {d}) be a decision table. Any function P, : V, = {1,...,m}
(where m, < |V4]) is called a partition of V,,. The rank of P,, is the value
rank (P;) = | Py, (Va,;) |- The family of partitions {P,},cp is consistent with B
(B—consistent) iff the condition [(u,u') ¢ IND(B/{d}) implies 3,ep[Ps(a(u)) #
P,(a(u'))]] holds for any (u,u’) € U. It means that if two objects u,u’ are dis-
cerned by B and d, then they must be discerned by partition attributes defined
by {P.},cp- We consider the following optimization problem

PARTITION PROBLEM: sYMBOLIC VALUE PARTITION PROBLEM:

Given a decision table A = (U, AU {d}) and a set of attributes B C A, search
for the minimal B — consistent family of partitions (i.e., such B — consistent
family {P,},c g that > . grank (P,) is minimal).

In order to discern between pairs of objects will use new binary features aﬁl
(for v # v') defined by a¥ (z,y) = 1 iff a(z) = v # v = a(y). One can apply
Johnson’s heuristics [18] for the new matrix with these attributes to search for
minimal set of new attributes that discerns all pairs of objects from different
decision classes. After extracting these sets, for each attribute a; we construct
graph I'y = (V,, E,) where E, is defined as the set of all new attributes (propo-
sitional variables) found for the attribute a. Any vertex coloring of I', defines a
partition of V,. The colorability problem is solvable in polynomial time for & = 2,
but remains NP-complete for all £ > 3. However, similarly to discretization, it
is possible to apply some efficient heuristics searching for optimal partition.

Let us consider an example Fig. 1 of a decision table presented in Table 1
and (a reduced form) of its discernibility matrix in Table 2.

Fig. 1. A decision table and its discernibility matrix

Al a|b]|d
uy | a1 | b 0 M(.A) U1 uz us U4q
b1 b2 ap b3 a1 b1
uz | a1 lb)z 0 us b, b2 agy, b lagy, by}
us | a2 3 0 w 291 bbl 291 bbz 292 bb1
Us | az | b 0 6 ags Dy, [Rap ba a3y by,
4193191 a a ITRIRS a
u a,l asl, b’!|b! as?
us | a1 | ba || 1 B 7 ag a2’ Py [Pba ag
ap b1l a1 az 3 ba a3z b1
ug | a2 | ba || 1 us agys bb2 ag, EV bb3 agy, bb2
wuy | a2 [ by || 1 a1 s b1l a1 b2 _az .03 b1
ug | aa | ba || 1 “o Baz: bb4 Baz: bb4 Baz: bb4 bb4
ap pbif a1 b2 0b3 az 301
ug | az | ba |[ 1 u10 Qg bb; Qg bb; bb; Aa3, bb;
uio | a2 b5 1

From the Boolean function f4 with Boolean variables of the form a}?2, one can
find the shortest prime implicant: ag! Aag? Aagl Aag? /\b’b’j1 /\b’b’f1 /\b’b’i /\b’b’; /\b’b’g
which can be represented by graphs (see Fig. 2).
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Fig. 2. Coloring of the attribute value graphs and the reduced table.
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We can color vertices of those graphs as it is shown in Fig. 2. The colors are
corresponding to the partitions:

Pa(al):Pa(GS):l; Pa(GQ):Pa(a4):2
Pb (bl) = Pb (bg) = Pb (b5) = 1; Pb (bg) = Pb (b4) = 2.

At the same time one can construct a new decision table (Fig. 2).

One can extend this approach to the case when a given decision system con-
tains nominal and numeric attributes (see e.g., [35]). The obtained heuristics are
of a very good quality. Experiments with classification methods (see [35]) have
been carried over decision systems using two techniques called “train-and-test”
and “n-fold-cross-validation”. Table 1 shows some experimental results obtained
by applying the proposed methods MD (using only discretization based on MD-
heuristics using Johnson approximation strategy [32], [61]) and MD-G (using
discretization and symbolic value grouping [34], [61]) to the classification tasks
for some data tables from the “UC Irvine repository”. The results reported in
[12] are summarized in columns labeled by S-ID3 and C4.5 in Table 1). Let us
note that the heuristics MD and MD-G are also very efficient with respect to
time complexity.

In the case of real value attributes one can search for features in the fea-
ture set that contains the characteristic functions of half-spaces determined by
hyper-planes or parts of spaces defined by more complex surfaces in the multi-
dimensional spaces. Genetic algorithms have been applied in searching for semi-
optimal hyper-planes [32]. The reported results show a substantial increase in
the quality of classification of unseen objects but at the price of increased time
for searching for a semi-optimal hyper-plane.

Decision rules

Reducts serve the purpose of inducing minimal decision rules. Any such rule con-
tains a minimal number of descriptors in the conditional part so that their con-
junction defines the largest subset of a generalized decision class (decision class,
if the decision table is deterministic). Hence, information included in conditional
part of any minimal rule is sufficient for predicting the generalized decision value
for all objects satisfying this part. The conditional parts of minimal rules de-
fine largest object sets relevant for generalized decision classes approximation. It
turns out that the conditional parts of minimal rules can be computed (by using
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Names of | Classification accuracy
Tables [S-ID3[C4.5] MD |[MD-G
Australian|78.26 |85.36|83.69| 84.49
Breast (L)[62.07|71.00{69.95| 69.95
Diabetes |66.23(70.84|71.09| 76.17
Glass |62.79(65.89|66.41| 69.79
Heart |[77.78|77.04(77.04| 81.11
Iris 96.67 (94.67|95.33| 96.67
Lympho |73.33|77.01{71.93| 82.02
Monk-1 |81.25(75.70| 100 | 93.05
Monk-2 |69.91(65.00/99.07| 99.07
Monk-3 |90.28 (97.20|93.51| 94.00
Soybean | 100 |95.56| 100 | 100
TicTacToe|84.38|84.02| 97.7 | 97.70

| Average [78.58]79.94/85.48] 87.00 ]

Table 1. A quality comparison of various decision tree methods and our heuristics.
Abbreviations: MD: MD-heuristic; MD-G: MD-heuristic with symbolic value partition

Boolean reasoning) as the so-called reducts relative to objects or local reducts
(see e.g., [60], [3]). Once the reducts have been computed, the conditional parts
of rules are easily constructed by laying the reducts over the original decision
system and reading off the values. In the discussed case the generalized decision
value is preserved during the reduction. One can consider stronger constraints
which should be preserved. For example, in [65] the constraints are described
by probability distributions corresponding to information signatures of objects.
Once more, the same methodology can be used to compute the reducts corre-
sponding to these constraints.

The main challenge in inducing rules from decision systems lies in deter-
mining which attributes should be included in the conditional part of the rule.
Using the outlined above strategy first minimal rules are computed. Their condi-
tional parts describe largest object sets (definable by conjunctions of descriptors)
with the same generalized decision value in a given decision system. Hence, they
create the largest sets still relevant for defining the decision classes (or sets of
decision classes when the decision system is inconsistent). Although such mini-
mal decision rules can be computed, this approach can result in set of rules with
an unsatisfactory quality of classification. These rules will be too detailed and
will over-fit so that unseen cases will be poorly classified. Shorter rules should
rather be synthesized. Although they will not be perfect on the known cases
there is a good chance that they will be of high quality when classifying new
cases. They can be constructed by computing approximations of the above men-
tioned reducts. Approximations of reducts received by dropping some descriptors
from the conditional parts of minimal rules define larger sets, not entirely in-
cluded in the decision classes but included to a satisfactory degree. It means
that these shorter descriptions may be more relevant for decision class (concept)
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approximation than the exact reducts. This leads to the following observation:
if dropping a descriptor from the conditional part provides a description of the
object set which is almost included in the approximated decision class, then
this descriptor is a good candidate for removal. [1] use systematic approaches to
pruning sets of classification rules.

For estimation of the quality of decision classes approximation global mea-
sures based on the positive region [60] or entropy [11] are used. Methods of
boundary region thinning [76] can be based, e.g., on the idea that neighbor-
hoods included in decision classes in satisfactory degree can be treated as parts
of the lower approximations of decision classes. Hence the lower approximations
of decision classes are enlarged and decision rules generated for them are usually
stronger (e.g., they are supported by more examples). The degree of inclusion is
tuned experimentally to achieve, e.g., high classification quality of new cases.

When a set of rules has been induced from a decision system containing a
set of training examples, they can be used to classify new objects. However,
to resolve conflict between different decision rules recognizing new objects one
should develop strategies for resolving conflicts between them when they are
voting for different decisions (see the bibliography in [51] and [52]). Recently
[70], it has been shown that rough set methods can be used to learn from data
the strategy for conflict resolving between decision rules when they are classifying
new objects contrary to existing methods using some fixed strategies.

a-reducts and association rules

In this section we discuss a relationship between association rules [2] and ap-
proximations of reducts.

We consider formulae called templates that are conjunctions of descriptors.
Templates will be denoted by T, P, Q and descriptors by D with or without sub-
scripts. support 4(T) denotes the cardinality of |T| 4 and con fidence (P — Q)
denotes the ratio support 4(P A Q)/support o(P).

The reduct approximations mentioned above are descriptions of the object
sets matched by templates. They describe these sets in an approximate sense
expressed by coefficients called support and confidence.

There are two main steps rule generation methods for a given information
system A and two parameters (support s and confidence ¢):

1. Extract from the data as many as possible templates T = Dy A Dsy... A Dy,
such that support 4(T) > s and support 4(T A D) < s for any descriptor D
different from descriptors of T (i.e., generation of maximal templates among
those supported by more than s objects);

2. Search for a partition T = P A Q for any of generated template T satisfying

the following conditions:

support 4 (T)
(a) support 4(P) < ZPEALZ

(b) P has the shortest length among templates satisfying the previous con-
dition.
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The second step can be solved using rough set methods and Boolean reason-
ing approach.

Let T = Dy ADs A ... A Dy, be a template with support 4(T) > s. For a
given confidence threshold ¢ € (0;1), the decomposition T = P A Q is called ¢
irreducible if con fidence ,(P — Q) > ¢ and for any decomposition T =P’ A Q'
such that P’ is a sub-template of P, we have con fidence(P' — Q') < c.

Now we explain that the problem of searching for c-irreducible association
rules from the given template is equivalent to the problem of searching for local
a-reducts (for some «) from a decision table. The last problem is a well known
problem in rough set theory.

Let us define a new decision table A|r = (U, A|r,d) from the original infor-
mation system 4 and the template T by

1. Alr ={ap,,ap,,...,ap,, } is a set of attributes corresponding to the descrip-
1 if the object u satisfies D;,
tors of T such that ap, (u) = 0 otherwise.
2. the decision attribute d determines if the object satisfies template T, i.e.,
d(u) = 1 if the object u satisfies T,
~ ]| 0 otherwise.

The following facts [61], [36] describe the relationship between association

rules and approximations of reducts.
For the given information table A = (U, A), the template T, the set of

descriptors P. The implication (/\Di€P Di — Ap,¢p Dj) is

1. 100%-irreducible association rule from T if and only if P is a reduct in A|r.

2. c-irreducible association rule from T if and only if P is an a-reduct of A|r,
where a = 1 — (1 —1)/(2 — 1), n is the total number of objects from U and
s = support 4 (T).

It can be shown that the problem of searching for the shortest a-reducts is
NP-hard [36]. From the above facts it follows that extracting association rules
from data is strongly related to extraction of reduct approximations [36].

Decomposition of large data tables

Several methods based on rough sets have been developed in order to deal with
large data tables, i.e., in order to generate strong decision rules for such tables.
We will discuss one of the methods based on a decomposition of tables using pat-
terns, called templates, that describe regular sub-domains of the universe (e.g.,
they describe a large number of customers having a large number of common
features).

Long templates with large support are preferred in many Data Mining tasks.
Several quality functions can be used to compare templates. For example they
can be defined by quality’ (T) = support o(T) + length(T) and quality’(T) =
support 4(T) x length(T). Problems of high quality template generation (using
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different optimization criteria) are of high computational complexity. However,
efficient heuristics have been developed for solving them (see e.g., [2, 75]), [34]).

Templates extracted from data are used to decompose large data tables. Con-
sequently, a decision tree is built. Its internal nodes are labeled by the templates
extracted from the data, and the edges outgoing from them are labeled by 0
(false) and 1 (true). Any leaf is labeled by a subtable (sub-domain) consisting
of all objects from the original table matching all templates or their comple-
ments appearing on the path from the root of the tree to the leaf. The process
of the decomposition is continued until the size of subtables attached to leaves
is feasible for the rough set algorithms at hand (e.g., decision rules for them can
be generated efficiently). The reported experiments show that such decomposi-
tion returns interesting patterns of regular sub-domains of large data tables (for
references see [34], [37], [51] and [52]).

It is also possible to search for patterns that are almost included in the
decision classes, i.e., default rules [31]. For a presentation of generating default
rules see the bibliography in [51] and [52].

Conclusions

We have shown that rough set theory constitutes a sound basis for KDD: minimal
concept descriptions, classifiers, dependencies, etc, are systematically synthesized
and their quality can be evaluated using statistical methods. Features can be
extracted and selected. The strict concepts are extended with the approximate
ones that usually improve the quality of classification. Methods for processing
very large data sets are developed. Successful software tools are implemented
and used by thousands of researchers world-wide.

There has been done a substantial progress in developing rough set methods
for KDD (like methods for extraction from data rules, partial or total dependen-
cies, methods for elimination of redundant data, methods dealing with missing
data, dynamic data and others reported e.g., in [6], [7], [8], [16], [19], [26], [31],
[32], [40], [51], [52], [53], [78]). New methods for extracting patterns from data
(see e.g., [23], [37], [31]), [22], [47]), decomposition of decision systems (see e.g.,
[37]) as well as a new methodology for data mining in distributed and multi-agent
systems (see e.g., [50]) have been reported. Recently, rough set based methods
have been proposed for data mining in very large relational data bases.

There are numerous areas of successful applications of rough set software sys-
tems (see [52] and http://www.idi.ntnu.no/~aleks/rosetta/ for the ROSET-
TA system). Many interesting case studies are reported (for references see e.g.,
[51, 52], [40] and the bibliography in these books, in particular [7], [16], [22], [71],
[78)).

We would like to mention some generalizations of rough set approach like
rough mereological approach (see e.g., [54], [49]). The inclusion relation zu,y
with the intended meaning z is a part of y to a degree r has been taken as the
basic notion of the rough mereology being a generalization of the Lesniewski
mereology. Rough mereology offers a methodology for synthesis and analysis of
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objects in distributed environment of intelligent agents, in particular, for synthe-
sis of objects satisfying a given specification to a satisfactory degree, i.e., objects
sufficiently close to standard objects (prototypes) satisfying the specification.
Moreover, rough mereology has been recently used [50] for developing founda-
tions of the information granule calculus, an attempt towards a formalization of
the Computing—with-Words paradigm, recently formulated by Lotfi Zadeh [72],
[73]. Let us also note that one of the prospects for rough mereological applications
is to look for algorithmic methods of extracting logical structures from data such
as, for instance, finding relational structures corresponding to relevant feature
extraction, synthesizing default rules (approximate decision rules), constructing
connectives for uncertainty coefficients propagation and synthesizing schemes of
approximate reasoning creating a higher level knowledge extracted from data
(e.g. qualitative schemes of reasoning). The development of such methods is cru-
cial to further progress in many applications. It is also one of the central issues
of KDD as pointed out in [13].

Several other generalizations of rough sets have been investigated and some
of them have been used for real life data analysis (see e.g., [76], [5], [42], [14],
24], [41], [27], [59), [50)).

Finally, we would like to point out that the algebraic and logical aspects of
rough sets have been intensively studied since the beginning of rough set theory.
The reader interested in that topic is referred to the bibliography in [51].
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