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In this article we attempt to clarify some aspects of expressive power of knowledge
representation systems. We show that information about objects provided by a system
is given up to an indiscernibility relation determined by the system and hence it is
incomplete in a sense. We discuss the influence of this kind of incompleteness on
definability of concepts in terms of knowledge given by a system. We consider indiscerni-
bility relations as a tool for representing expressive power of systems, and develop a
logic in which properties of knowledge representation systems related to definability
can be expressed and proved. We present a complete set of axioms and inference rules

for the logic.

1. Introduction

Methods of knowledge representation are related to many artificial intelligence tasks
such as natural language processing, theorem proving, development of information
retrieval systems, problem-solving systems and expert consulting systems. Techniques
for modelling and representation of knowledge have come from several of the applica-
tion areas and there are many ways of dealing with these problems (Bobrow, 1977,
Bobrow & Winograd, 1977; Brachman & Smith, 1980; McDermott, 1978; Goguen,
1969; Hajek & Havranek, 1978; Newell, 1982; Nilsson, 1982; Tou, 1980; Vopenka,
1979; Winograd, 1975; Zadeh, 1965).

Our object in this article is to draw attention to some aspects of knowledge representa-
tion which are common to many methods and to discuss expressive power of knowledge
representation systems from the point of view of these common features.

Any knowledge representation system provides information about some parts of the
perceivable reality. We assume that is the process of perception we distinguish entities
(objects) and their properties. Properties of objects are perceived through assignment
of some characteristics (attributes) and their values to the objects. In this way we
establish a universe of discourse (a problem domain) consisting of objects and elemen-
tary information items providing a characterization of these objects in terms of
attributes and attribute values. In general, information about objects obtained in this
way is not sufficient to characterize objects uniquely; that is, we are not able to
distinguish all the objects by means of the admitted attributes and their values. This
means that objects are recognized up to an indiscernibility relation determined by
elementary information items. Any two objects are indiscernible whenever they assume
the same values for all the attributes under consideration.

Next, we form concepts; that is, we agregate some objects into sets. Information
about a concept is composed from information about objects which are instances of
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the concept. Since objects are not necessarily distinguishable, information characteriz-
ing a concept may be ambiguous to some extent. For example, let a universe of
discourse consist of some dogs, cats, horses and bears, and let these aniamals be
characterized by means of colour. That is, our primary knowledge is given, for example,
by the following table:

Animal Colour
Al Bear Black
A2 Bear Black
A3 Dog Brown
A4 Cat Black
A5 Horse Black
A6 Horse Black
A7 Horse Brown

Let animals A1, A3, A6 and A7 be recognized to be instances of concept “dangerous
animal”’. Information represented by the given table does not enable us to characterize
this concept precisely. We cannot say that an animal from universe of discourse
{A1,..., A7) is dangerous iff it is a black bear, a brown dog, a black horse or a brown
horse, because A2 and A5 are also instances of the concept defined by this information.
This means that knowledge represented by the table is incomplete in a sense.

In this article we offer an approach to the interpretation of the expressive power of
knowledge representation systems based on the fact that in general a system determines
an indiscernibility relation it its universe of discourse. As a result, implicit information
which can be inferred from explicit information provided by the system is not necessarily
precise, it is determined with some tolerance. The limits of this tolerance are chosen
to be a measure of the expressive power of systems.

In the first part of the article we present formal counterparts of a notion of knowledge
representation system and we discuss the problem of definability of concepts in the
system. In the second part, a language and a logic are introduced enabling us to express
and to prove facts concerning expressive power of systems.

The article is a revised version of an earlier report Ortowska & Pawlak (1981),
and it includes some definitions and facts presented in Konrad, Ortowska & Pawlak
(1981), Ortowska (1982) and Pawlak (1981, 1982, 1983).

2. Knowledge representation system

The basic component of a system is a non-empty set OB of objects, e.g. books or
human beings. Knowledge about objects is expressed through assignment of some
characteristic features to the objects, e.g. human beings can be characterized by sex
and age, books by title and author’s name, etc. These features are represented by
attributes and values of attributes. Thus a non-empty set AT of attributes, and for
each a € AT a set VAL, of values of attribute a are the components of the system.
Moreover, we assume that a function f assigning attribute values to objects is given.
The formal definition of knowledge representation system is as follows. A knowledge
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representation system is a quadruple
S = (OB’ AT7 {VALa}aEAT7 f);

where OB is a non-empty set, whose elements are called objects, AT is a non-empty
set, whose elements are called attributes, VAL, is a non-empty set, whose elements
are called values of attribute a and f is a total function (information function) from
set OB X AT into set VAL =\, .at VAL, such that f(o, a) e VAL, for each o€ OB
and each ae AT.

Consider the following system.

EXAMPLE 2.1
OB ={01, 02, 03, 04, 05, 06},

AT ={sex, age},
VAL,., ={male, female},
VAL, ={young, medium, old}.

Function f is defined by the table:

Sex Age
ol Male Young
02 Male Medium
03 Female Old
04 Male Medium
05 Female Old
06 Female Young

3. Definable sets of objects

Usually it is the case that information about objects provided by attributes and attribute
values is not sufficient for distinguishing all the objects of a system. In general, we
cannot tell one object from all others by means of values of an information function.
In example 2.1, objects 01, 02 and 04 cannot be distinguished by attribute sex, objects
03 and 05 cannot be distinguished by attributes sex and age. To deal with such cases
we introduce family {A}scat Of equivalence relations on set OB defined as follows:

(01,02)61& iff f(ol,a)=f(02,a) forallacA
if A is the empty set then &=0BXOB

Relation AT determined by all the attributes of system S is called indiscernibility
determined by S, and it will be denoted by ind (S).
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EXAMPLE 3.1
Consider system S given in example 2.1. We have

(01, 02) € sex,
(01, 06) € age,

(02,04),(03,05)eind (S).

Observe that for any ACAT we have A=ﬂaeA a. Equivalence classes of relation
ind (S) are called elementary sets in S. Relation ind(S) determines a classification of
objects of system S according to information about these objects provided by the
system. Objects belonging to the elementary sets are undistinguishable with respect

to this information.

EXAMPLE 3.2
The elementary sets in the system from example 2.1 are

{01},{02, 04}, {03, 05}, {06}.

This means that knowledge provided by the given system enables us to distinguish the
following sets of individuals:

young males,
males of medium age,
old females,
young females,
all sets which can be obtained from the
sets given above by using set theoretical operations. .

We say that set X C OB is definable in system S (S-definable) iff X is the empty set
or the union of some of the elementary sets of relation ind (S).

EXAMPLE 3.3

Set X={o01, 02, 04, 06} is definable in system S from example 2.1. Sets Y ={o1, 03}
and Z ={02, 05} are not definable in this system. It follows that set X consists of young
males, males of medium age and young females. For sets Y and Z we are able to given
a characterization of this kind. We cannot say that Y coincides with a set of young
males and old females, since 05 does not belong to Y. Similarly, it is not true that set
Z coincides with a set of males of medium age and old females, since 04 and 03 do

not belong to Z.
Observe that in any system set OB of this system and the empty set are definable.

Moreover, the family of definable sets is closed under union, intersection, and comple-
ment. Hence we have the following theorems:

FACT 3.1

(a) Family DEF (S) of all the sets definable in system S is a Boolean algebra.
(b) Elementary sets are atoms in algebra DEF (S).

A system S is said to be selective iff each elementary set consists of exactly one object.
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FACT 3.2
The following conditions are equivalent:

(a) system S is selective and
(b) any set XC OB is definable in S.

Given a definable set X C OB, knowledge provided by the system enables us to
decide for any object 0 € OB whether it belongs to X or not. However, if set X is not
definable in system S, and as a consequence it is not uniquely characterized by
knowledge of the system, we are not able to answer a membership question precisely.
For example, on the base of knowledge provided by the system from example 2.1 we
cannot establish whether 05 belongs to set Y from example 3.3, because 03 and 05
are indistinguishable in this system. To deal with such cases we introduce notions of
approximations of sets of objects.

4. Approximations of sets of objects

Let a system S=(OB, AT, VAL, f) be given, we define a pair of operations in set OB
of objects, namely the operation of lower approximation and upper approximation of
a set. These operations enable us to assign a pair of definable sets to any subset X of
set OB. For a set X which is definable in the system its approximations coincide with
X, and for a nondefinable set X its approximations are, roughly speaking, close enough
to X. They determine limits of tolerance for deciding whether objects belong to X or
not.

An upper approximation SX of set X in system S is the least set which is definable
in S and includes set X.

A lower approximation (SX of set X in system S is the greatest set which is definable
in S and is included in X. ‘

The following facts follow immediately from the given definitions.

FACT 4.1

(a) SX={0€OB: there is an o' € OB such that (o, 0’) eind (S) and o’ € X},
(b) SX={0e€OB: for all o' OB if (0, 0’) eind (S) then o’ € X}.

FACT 4.2
The following conditions are equivalent:

(a) aset XC OB is definable in system S and

(b) SX=X=SX.
EXAMPLE 3.1
Let us consider the system from example 2.1 and the following sets of objects
X ={ol, 02}, Y ={o01, 03, 06}, Z={02, 04, 06}.
We have

SX={o1, 03, 04}, SX={ol},
SY ={o1, 03, 05,06},  SY={02, 06},
SZ=SZ={02, 04, 06} =Z.
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In the following we list some properties of the operations of lower and upper
approximation.

FACT 4.3

(a) S(XNnY)=SXnSY,
(b) SXc X,

(c) SSX=8X,

(d) SOB=O0B.

FACT 4.4

(a) S(XuY),=SXuSY,
(b) X<=8X,

(c) S§X=S8X,

(d) So=0.

_ It follows that algebra P(OB) of all the su_bsets of set OB with additional operations
S and S 1s a topological field of sets, where S is a closure operation and § is an interior
operation.

FACT 4.5
(a) SX=-$(-X),
(b) SX=-S(-X),
(c) if XY then SX< SY and SX < SY.

Thus operations S and S are dual and monotonic with respect to inclusion.

5. Rough definability

Given a system S=(OB, AT, VAL, f) and a set X< OB, for any object o€ OB we
say that:

o 1s an S-positive instance of X iff 0 € SX, _
o is an S-negative instance of X iff o€ OB—SX and
o 1s an S-borderline instance of X iff 0 € SX—SX.

It follows that if o is a positive instance of X then knowledge provided by system S
enables us to state that o definitely belongs to X. For negative instances of X we know
that they definitely do not belong to X. Borderline instances of X represent a doubtful
region, they possibly belong to X but we cannot decide if for certain in virtue of
knowledge given in the system.

We say that (Pawlak, 1984):

a set X is roughly definable in a system S iff SX » ¢ and SX # OB.

Thus, for roughly definable sets a membership question can be decided approximately.
However, if lower approximation SX is empty then there are no S-positive instances
of X and hence none of the objects can be recognized to be surely an element of X.
Similarly, if upper approximation SX equals set OB then there are no negative instances
of X and hence none of the objects can be definitely excluded from X.
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We say that:
a set X 1s internally nondefinable in a system S iff SX =,
a set X is externally nondefinable in a system S iff SX=0OB and
a set X is totally nondefinable in a system S iff X is internally nondefinable and
externally nondefinable in S

FACT 5.1

(a) A set X is internally nondefinable in a system S iff none of the objects is an
S-positive instance of X,

(b) A set X is externally nondefinable in S iff none of the objects is an S-negative
instance of X.

EXAMPLE 5.1
Consider system S from example 2.1 and the following sets:

X ={02, 03, 04}, Y ={02, 03}, Z={01, 02, 03, 06}.

We have

SX={02,04}, SX={02,03, 04,05},

SY=¢, SY ={02, 03, 04, 05},

SZ={o1,06}, SZ=OB.
It follows that objects 02 and 04 are the positive instances of X, objects 01 and 06
are the negative instances of X and objects 03 and 05 are borderline instances of X.
Set Y is internally nondefinable and set Z is externally nondefinable in system S.

Observe, that if an indiscernibility ind (S) generates a one-element elementary set
then there are no totally nondefinable objects in system S.

6. Comparing knowledge representation systems

It can be seen from the previous considerations that expressive power of knowledge
representation systems is closely related to their ability for defining sets of objects. In
this section we consider a family ¥ ={S,},.; of knowledge representation systems of
the form

Si = (OB, ATia VALi7 ft)9

where set OB is the same for all the systems and I is a nonempty set of indices.
We say that

a system S; € ¥ is more expressive than a system S, € (S, < S,)iff ind (S;) < ind (S,).

This means that if S; =S, then the indiscernibility relation of system S, provides a
finer partition of set OB into elementary sets than the indiscernibility relation of system
S;. It follows that approximations of sets of objects in system S, are closer to these
sets than their approximations in system S,, namely the following theorems hold.
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FACT 6.1
The following conditions are equivalent:

(a) S;=8, and
(b) S$;X<S,X for any X< OB.

Proof

Let [o], for i=1,2, denote the equivalence class with respect to relation ind (S;)
determined by object o< OB. If ind (S;)<ind(S;) then for any o€ OB we have
[0], =[0],, and hence condition (b) holds. Let us now suppose that for any set X< OB
we have S, X c S,X and not S;=S,. Hence there is a pair (o, 0') of objects such that
(0,0 )eind (S;) and (o, 0')¢ ind (S;). Consider set {o}. We have o'€ S,{o} and
o' £ S,{o}, which contradicts condition (b).

FACT 6.2

The following conditions are equivalent:

(a) Sl SSZ and
(b) S;X< §,X for any X< OB.

A proof follows from 4.5 and 6.1.
In the following we list some properties of relation =.

FACT 6.3

(a) If AT, < AT, then S, =8S,.

(b) If S; =8, then algebra DEF (S,) is a subalgebra of algebra DEF (S,).

(c) Relation = is a partial order in any family & of systems.

(d) Selective systems are minimal elements in any family ¥ ordered by relation =.

EXAMPLE 6.1
Consider systems S, and S, such that
OB, =0B,={0l1, 02, 03, 04, 05},
AT, ={a, b}, AT, ={a, c d},
VAL, ={pl,p2}, VAL,={ql,42},
VAL, ={rl, r2}, VAL, ={s1, s2}.

a b a c d

fi ol pl gl fa ol prl rl s1
02 p2 q2 02 p2 r2 52

03 pl gl 03 pl r2 s1

04 p2 ql 04 p2 r2 51

05 p2 gl 05 p2 r2 sl
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The indiscernibility relations of these systems generate the following elementary sets:

ind (S,): {01, 03},{02},{04, 05};
ind (S,): {01},{02},{03}, {04, 05}.

We clearly have S,=S,. Consider set X ={01, 04} and its approximations in the
given systems:

S, X={o01, 03, 04,05}, $;X=0,
S5, X ={o01, 04, 05}, S, X ={o1}.

7. A formalized language

The logic considered in the following sections is intended to provide a formal method
for comparing an expressive power of knowledge representation systems. The expres-
sive power of a system is represented by the indiscernibility relation of the system. A
system S; is considered to be more expressive than a system S, iff indiscernibility
relation ind (S,) is included in indiscernibility relation ind (S,). We define a formalized
language which enables us to express facts concerning sets of objects in knowledge
representation systems. We also give a deductive structure to the language and hence
we are able to recognize valid facts or to infer facts from given facts. In particular we
can axiomatize a class of selective systems.

Expressions of the logic are intended to represent sets of objects. They are built up
from atomic expressions, i.e. variables by means of operations corresponding to
set-theoretical operations and operations of upper and lower approximation. To define
formulae of the logic we use symbols from the following non-empty at most denumer-
able and pairwise disjoint sets:

set VAROB of variables representing sets of objects,

set CONREL of constants representing indiscernibility relations,

set{—, v, A, », &} of propositional operations of negation, disjunction, conjunc-
tion, implication and equivalence,

set {_, } of equations of lower approximation and upper approximation and

set FOR of all formulae of the logic is the least set satisfying the conditions:

VAROBcFOR,
if A, BeFOR then 17A, AvB, AAB, A->B, A«BcFOR,
if Re CONREL and A €FOR then RA, RAFOR.

Formulae of the form A, Av B, and A A B are intended to represent complement,
union and intersection of sets of objects represented by A and B, repsectively.
Expression A - B represents the union of complement of a set corresponding to A
and set corresponding to B. Expression A <> B represents the intersection of sets of
objects determined by A— B and B~ A. Finally, expressions RA and RA represent
the lower and upper approximation, respectively, of a set corresponding to A with
respect to an indiscernibility relation R.
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8. Semantics of the language

We define a meaning of formulae of the given language by means of notions of model
and satisfiability of formulae in a model. By a model we mean a triple

M= (OB, m, v),

where OB is a non-empty set of objects, m is a meaning function which assigns
equivalence relations on set OB to constants from set CONREL and v is a function
from set VAROB into set P(OB) of all the subsets of set OB.

By induction with respect to a structure of a formula we define the notion of
satisfiability of formulae in a model. We say that a formula A is satisfied in a model
M by an object 0 € OB (M, o sat A) iff the following conditions are satisfied:

M, o sat p iff o€ v(p) for pe VAROB,
M, o set 11 A iff not M, o sat A,
M, o sat AvB iff M, o sat A or M, o sat B,
M, o sat AAB iff M, o sat A and M, o sat B,
M, o sat A- B iff not M, o sat A or M, o sat B,
M, o sat AoB iff M, 0 sat A>B and M, o sat B> A,
M, o sat RA iff for all o' OB if (0, 0') € m(R) then, M, o sat A and
M, o sat RA iff there is an o' € OB such that (o, 0') e m(R) and M, o’ sat A.

We say that a set T of formulae is satisfied in a model M by an object 0 (M, o sat
T) iff for each formula A €T we have M, o sat A. A set T is satisfiable iff there is a
model M and an object o such that M, o sat T.

According to the given semantics to each formula A of the language there is associated
the set of those objects which satisfy the formula in a model; we call this set extension
of formula in model

exty A={oe OB: M, o sat A}.

Extensions of compound formulae depend on the extensions of their components
in the following way

FACT 8.1

(a) exty p=v(p) for pe VAROB,

(b) exty 1A =—exty A,

(c) exty AvB=exty AuextyB,

(d) exty; ArB=exty Anexty B,

(e) extyy A->B=—exty; AuextyB,

(f) exty AeB=exty (A->B)nexty (B~ A),
(g) extyy RA=m(R) exty A and

(h) exty RA =m(R) exty (A).

We say that a formula A is true in a model M (=4 A) iff exty, A=OB. A formula
Ais valid (FA) iff it is true in every model. A formula A is a semantical consequence
of a set T of formulas (TEA) iff M, o sat A whenever M, o sat T for every model M
and for every object o from the set of objects of M.
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9. Properties of systems expressible in the language

In this section we show how formulae of the given language can be used to express
properties of sets of objects and properties of knowledge representation systems.

FACT 9.1

(a) =pA->Biff exty Acexty B,

(b) EqA<B iff exty, A =exty B,

(c) EmRA > RA iff exty A is definable in a system S such that ind (S) = m(R),

(d) EmRAiff exty, A isinternally nondefinable in a system S such that ind (S)=m(R),

(e) FmRAiff exty A is externally nondefinable in a system S such that ind (S)=m(R)
and

() Eq1(RA-RA) iff exty A is totally nondefinable in a system S such that
ind (S) = m(R).

The proof follows immediately from the definition of satisfiability.

In the next lemma we list some properties of a knowledge representation system
related to a model. Let a model M= (OB, m, v) be given and let S be a system such
that ind (S) = m(R) for a certain R € CONREL.

FACT 9.2

(A) EyRA->RA for every AeFOR iff system S is selective,

(b) =M R(A AB) AR(A A —1B) for every A, B e FOR iff equivalence classesof ind (S)
have at least two elements and

(¢) EmR(AAB)AR(A A—1B)->R(A) forevery A, B e FOR iff each equivalence class
of ind (S) has exactly two elements.

Proof

The formula in condition (a) says that for any A the upper approximation of a set
corresponding to A is included in its lower approximation. By 4.3(b) and 4.4(b)
condition (a) holds. The formula in condition (b) says that in model M for any object
0 € OB there are objects 0, and o0, such that o, eexty; A, 0, cexty B, (o, 0,) e m(R),
o, € exty A, 0,€exty B, and (o, 0,) e m(R). m(R) is an equivalence relation and we
possibly have o, =0 or 0, = o0 but not 0, = 0,, since 0, and o, are separated by ext,, B.
Hence condition (b) holds. In the formula from condition (c) the left-hand side of the
implication guarantees the existence of an object o satisfying condition (b). The formula
on the right-hand side of this implication says that this object is the only one satisfying
this condition.

It is easy to see that in the similar way we can define formulae expressing the fact
in a system related to a model each elementary set has at least or exactly n elements,
for n=1.

In the following we list some formulae which express relations between knowledge
representation systems. Let a model M= (OB, m, v) be given and let S,, S,, be the
systems such that ind (S;) = m(R;), for i=1, 2, 3 for some constants R,, R, and R;.

FACT 9.3

(a) =y RjA>R,A for every AcFOR iff S, <8,
(b) FmR;A->R A for every AcFOR iff S; <8,
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(c) Em(RIA-R:A) A (R,A>R3A) for every AeFOR and Fy(R;A-RA)A
(R,A->RA)-> (R;A-> RA) for every A€ FOR and every Re CONREL iff ind (S;)=
ind (S,) nind (S,) and

(d) =m (RZA>R1A) A (R;A>R,A) for every AeFOR and Ey (RA-R;A)A
(RA-R,A)-> (RA-> R;A) for every A€ FOR and for every Re CONREL iff ind (S3) =
(ind (S;) wind (S,))*.

Proof

The formula in condition (a) says that for any A the upper approximation of exty A
in system S, is included in its upper approximation in system S,. By 6.1, condition (a)
holds. Similarly, condition (b) follows from (6.2). The first formula in condition (c)
says that relation ind (S,) is included both in ind (S,) and ind (S,). The second formula
says that ind (S;) is the greatest relation with that property and hence condition (c)
holds. The formulae given in condition (d) say that ind (S;) is the least relation
containing both ind (S;) and ind (S,). Since these relations are equivalences, ind (S3)
is the transitive closure of ind (S;) uind (S,). Thus condition (d) holds.

10. Deductive system for the language

We give a deductive structure to the language in the usual way, first specifying a
recursive set of axioms and inference rules, and then defining a theorem to be any
formula obtainable from the axioms by repeated application of the rules.

Observe that the following conditions are satisfied.

FACT 10.1

(a) exty (A v B)=exty (MA->B),

(b) exty (A A B)=exty, 1(A->—B) and

(c) exty RA =exty (RT1A).

Due to 10.1 and 9.1(f) it is sufficient to define the deductive system for the language
based on operations of negation, implication and lower approximation.

AXIOMS

Al. All formulae having the form of a tautology of the classical propositional logic.
A2. R(A->B)->(RA~>RB).

A3. RA-A.
A4. A-RRA.
AS5. RA->RRA.
Rules of inference
rp 2828 o A
B RA

This axiomatization corresponds very closely to the axiomatization for modal logic
S5 (Gabbay, 1976); however, a difference consists in considering a family of equivalence
relations in the language and in models.

A proof of a formula A from a set T of formulae is a finite sequence of formulae
each of which is either an axiom or an element of set T or else is obtainable from
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earlier formulae by a rule of inference, and A is the last formula in the sequence. A
formula A is derivable from a set T (T —A) whenever there is a proof of A from T. A
formula A is a theorem (—A) iff there is a proof of A merely from axioms. A set T is
consistent if a formula of the form A A 1A is not derivable from T.

FACT 10.2 (SOUNDNESS THEOREM)

(a) —A implies FA,
(b) T—A implies TEA and
(¢) T satisfiable implies T consistent.

The proof can be easily obtained by checking that all the axioms are valid and the
rules preserve validity.

11. Completeness theorem

We prove the completeness theorem for the logic by using the Rasiowa & Sikorski
(1970) method adopted for modal logics by Mirkowska (1983).
Let T be a consistent set of formulae. We define relation =~ in set FOR as:

A=B i THFA<B.

FACT 11.1

(a) Relation = is an equivalence relation.
(b) Relation = is a congruence with respect to operations =1, v, and A.
(c) If A=B then RA=RB for any Re CORNREL.

Let FOR/ - denote the set of all the equivalence classes of relation =, and let [A]
denote the equivalence class determined by a formula A. We consider the algebra

AFOR=(FOR/., -, N, U, 1,0),

where
—[A]=["Al
[AJU[B]=[AVvB], [A]N[B]=[AAB],
1=[Av—A] 0=[AArA]
FACT 11.2

(a) Algebra AFOR is a non-degenerate Boolean algebra,
(b) [A]l=[B]iffT—-A- B,

(c) THAIff[A]=1 and

(d) [A]#0 iff not THA.

Proofs of these two facts are similar to that presented in Rasiowa & Sikorski (1970).
Let & be the family of all the maximal filters in algebra AFOR. Set ¥ is non-empty
since the algebra is non-degenerate. We define a canonical model as:

M, = (OBoy ny, Uo),
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where OB, =%,
mo(R) ={(F,,F,) € ¥ X %: for any formula A if [RA]€F, then [A]eF,},

vo(p) ={Fe%F:[pleF}.

FACT 11.3
For any R € CONREL my(R) is an equivalence relation.

Proof

By axiom A2 and 11.2(b) we have [RA]<=[A]. Hence if [RA]€F then [A]€F, and
so relation mo(R) is reflexive. Let us now assume that (F,, F5) € mo(R), [RA]€F, and
suppose that [A]J¢F,. Hence, F, is a maximal filter, we have [MA]eF,. By axiom
A4 we have [RRA]eF,. Thus [TRA]€F,, a contradiction. Hence relation my(R) is
symmetric. Let us now assume that (F,, F,) € my(R), (F,, F3) € my(R), [RA]eF,, and
suppose that [A}lg F;. By Axiom A5 we have [RRA]JeF,, and hence [RA]eF;. It
follows that [A]€ F, a contradiction. Hence relation m,(R) is transitive.

FACT 114

The following conditions are equivalent:
(a) M,,F sat A and
(b) [A]€F.

Proof
The proof is by inducation with respect to a structure of a formula.

Case 1. A is pe VAROB

We have My, F sat p iff Fe vo(p) iff [p]eF.

Case 2. A is "B

Condition M, F sat =B is equivalent to not M,, F sat B. By the induction hypothesis
we have [B]£F. Since F is a maximal filter, we have [B]eF.

Case 3. Ais B> C

Condition M,, F sat B~ C is equivalent to not M,, F sat B or M,, F sat C. By the
induction hypothesis we have [B]¢ F or [C]€F. Since F is a maximal filter, we have
["B]eF or [C]eF. Since F is a prime filter, we have [1B]U[C]eF, and hence
[B->C]eF.

Case 4. Ais RB

Let us assume that M,, F sat RB and suppose that [RB]¢F. We consider set
Zrr ={[C]: [RC]€ F}. We now prove four properties of this set.

(4a) Set Zry is non-empty

It follows from the fact that [R(A v —1A)]€ Zgk.

(4b) Set Zry is a filter

We have [B,]n[B,] € Zgg iff [B, A B,]€ Zgr. Hence [R(B, A B,)]e F. Since FR(A A
B)<> RA A RB, we have [RB, A RB,] € F. It is equivalent to [RB,] € F and [RB,] e F.
Hence [B,]€ Zgr and [B,] € Zgg.

(4c) Filter Zey is a proper filter

Let us suppose that 0e€ Zgz. Then we have [R(Ar—1A)]eF and hence 1=
[R(A v—A)]£F, a contradiction.

(4d) Filter G generated by set Zrr U{{—B]} is a proper filter
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We show that for any [A,],...,[A,]€Zeg, for n=1, we have [A{]n -+ N
[A,]~["B]# 0. For suppose not, then we have THA, N - N A, A1 B>AATA,
andhence T—=A; A+ - A A, ~>B.Byrule R2and axiom A2 weobtain THFRA; A -+ A
RA, - RB. Since [A,],...,[A,]€Zgg, we have [RA], ..., [RA,]€F, and hence
[RA1A ---ARA,]JeF. So [RB]€F and this is in conflict with the supposition
under case 4.

It follows that filter G can be extended to a maximal filter H such that [B]Je H
and for any formula C if [RC]eF then [C]€ H. Hence (F, H) € mo(R). By case 2 we
have M,, H sat—B, and this is a contraction with the assumption under case 4.

Let us now assume that [RB]€F and consider set Zgr. We have [B]e€ Zgg. By the
Kuratowski-Zorn lemma there is a maximal filter G which includes set Zgg, and hence
(F,G) e my(R) and [B]e G. But Zy is included in every filter G such that (F, G) ¢
my(R), thus [B] belongs to every such filter. By the induction hypothesis we have M,,
G sat B for all G satisfying (F, G) € my(R). Hence M,, F sat RB.

FACT 11.5 (COMPLETENESS THEOREM)
(a) EA implies FA, ,
(b) TEA implies T A and
(¢) T consistent implies T satisfiable.

Proof

Let us assume that T=A and suppose not T—A. By 11.2(d) we have [1A]# 0 and
hence there is a maximal filter Fye & such that [1A]€ F,. By 11.4 we have M,, F, sat
—A for canonical model M,. Moreover, for any formula Be T we have THB, and hence
[B]e Fy. By 11.4 My, F,, sat B for any B € T, a contradiction. This proves (b) from which
(a) and (c) follow immediately.

FACT 11.6 (COMPACTNESS THEOREM)
The following conditions are equivalent:

(a) A set T of formulae is satisfiable and
(b) every finite subset of T is satisfiable.

Completness theorem enables us to consider theories based on the given logic. We
can consider, for example, the theory of selective systems by adjoining the scheme of
formulae given in 9.2(a) to the logical axioms A1-A6.
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