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Summary. If K is a congruence on the semilattice (B(A), ) where B(A) denotes the system of all
subsets of A, the set of all elements in B{A) is investigated such that any of them is minimal in some
black of K: such elements are said to be independent. For any subset P of A its reduct is defined o
be a minimal element in the block of K containing P; furthermore, a subreduct of P is a maximal
clement in the set of all indepedent elements that are included in P. Some resulis concerning the
intersection of all reducts and the union of all subreducts of P are presented. This investigation is
motivated by dependency problems concerning attributes in an information system.

1. Introduction. Let (X, A, V. ) be an information system (see [1, 5]). This
means that X, 4, ¥ are finite nonempty sets and fis a mapping of X x 4 into ¥,
Flements of X are interpreted to be objects, elements of A are said to be
attributes, elements in V are called values of attributes; the equality v = f(x, a)
is interpreted to express that the attribute a has the value v for the object x.

For any set P < A4 of attributes we put '

P={xneXxX:f(x,a)=[(y,a) for any aeP}.

Clearly. P is an equivalence on the set X. Thus, a set P of attributes defines an
equivalence P on the set X of objects; objects of X that are in a block of P are
indiscernible by means of attributes of the set P. )

Two sets P < 4 and Q < A of attributes are said to be equivalent if F = ¢,
i.e, if they define the same indiscernibility relation. A set P < A of attributes is
said to be independent if P # @ for any Q = P with Q # P.

For any set of attributes P < A, there exists at least one independent set
Q < P such that § = P. It is said to be a reduct of P. Reducts of a set of
attributes are of practical use; any of them define the same indiscernibility
relation as the original set but can be essentially smaller.

1.1. ExaMmpLE Let (X, A, V. f) be an information system where X 1s the set
of patients in a hospital, 4 is the set of medical symptoms (e.g. temperature,
blood pressure, etc.),V the set of values of these symptoms. For a set F = A,
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a block of P is a set of patients with the same values of all symptoms in P; we
suppose that a diagnosis can be assigned to any block of P. It can happen that
the same blocks are obtained on the basis of some set @ = P, ¢ # P, ie., that
some sympioms in P are superfluous. o

For this reason, reducts are investigated in the present paper. The
intersection of all reducts of a set P of attributes is proved to be the set of all
the so-called indispensable elements in P.

If P< A is a set of attributes, then any reduct @ of P has the following

property:
(p) Q@<= P. Q is independent and for any independent set R
with @ = R = P the equality Q = R holds.

We shall construct some examples of sets Q. P with the property (p) where
Q is not a reduct of P. If 0, P are sets of attributes with the property (p), then
Q will be called a subreduct of P. We prove that the union of all subreducts of
P and of a suitable set of attributes equivalent with © equal to P.

2. Equivalence of sets of attributes, Let § = (X, A, V, [} be an information
system and B(A) denote the set of all subsets of 4. We put

K= {(P, Q)eB(A) =< B(A), P = ().

This means that K is the equivalence of attribute sets as it was mentioned in
Section 1. We have

2.1. THEOREM. (i) For any information system S = (X, A, V. [) the equivalence
Ks is a congruence on the semilattice (B(A), v).

(i) For any finite set A # @ and any congruence K on the semilattice
(B(A), L_J} there exists an information system S = (X, A, V, f) such that K = K.

For the proof, see 2.3 and 24 of [2] and 2.1 of [3]. 0

Thus, instead of equivalences of attribute sets we may investigate congruen-
ces on semilattices of the form (B(A), u). This is a simplification from the
formal point of view. The following results concerning congruences will be useful.

2.2. LemMa, Let K be a congruence on (B(A), ). If P, Q, R are in B(A), and
P=Q <R, (P, RicK hold, then (P, Q)e K, (0, R)eK hold, too.

Proof. Clearly, (PuQ, RuQ)e K which means ((, R)e K. Transitivity and
symmetry of K imply (P, Q)e K. o

2.3. LEMMA. Let K be a congruence on (B(A), w) where A is finite. If P& B(A)
and @ # M = B(A) are such that (P, M)e K jor any MM, then (P, [ JM)e K
where | M means | |{M; MeM].

Proulf The ﬁnitencqs of A implies that of B(A) and, therefore, of M. Thus,
M= { for some p=1, and (P, M)eK for any i with 1 <i<p
JITI]J].I'Eb lth. lP DM}—{PU WP, Mu...uMekK. o

‘uﬂ_ﬂ

p times
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3. Independent elements. Let 4 # O be a finite set, K a congruence on the
semilattice (B(A), w). The set B(A) is (partially) ordered by inclusion. An
element P e B(A) is said to be K-independent if there exists a block Ce B{A)K
such that P is minimal in C. We denote by IND,, the set of all K-independent
elements in B(A).

3.1. Lemma, If PeINDg and Q = P, then QelIND,,

Proof. Suppose Q= P, ¢ # P, and Q¢IND,. There exists Ce B(4)/K
such that QeC; clearly, Q is not minimal in C. Hence, there exists ¢, = @,
Q, # Q such that @ is minimal in C. Furthermore, (Q,. Q)€ K which implies
that (Q,u(P—Q), P)ekK, Q,u(P-Q)= P, Q,u(P—Q) # P. Thus, P is not
minimal in its block of K. Hence, P¢IND, which is a contradiction.

3.2. Lemma. The following two assertions are equivalent:

(i) PEIND,.

(ii) (P, P—{p})¢ K for any peP.

Proof. Clearly, (i) implies (ii). Suppose that (ii) holds and that P¢IND,.
Thus, there exists Q@ = P such that Q # P and (@, P)eK. Let pe P—Q be
arbitrary. Then @ € P—{p} < P and, hence, (P—{p}, P)e K by 2.2 which is
a contradiction.

4. Reducts. Let 4 # O be a finite set, K a congruence on the semilattice
(B(A), w). For any set P e B(A), the set Qe B(A) is said to be a K-reduct of P if
QeIND,, Q= P, (P, Q)e K hold. The set of all K-reducts of P is denoted by
RED,(P).

4.1. THeoreMm. For any X e BiA). the set RED(X) is nonempty.

[t is a consequence of the fact that the set |YeB(4) Y= X, (Y, X)e K] is
finite and nonempty. Thus, the set of its mimimal elements with respect to
inclusion is nonempty. o

Let P be a subset of A

An element pe P is said to be K-dispensable for P if (P, P—{p})e K. An
element pe P is said 1o be K-indispensable for P il it is not K-dispensable for P,
ie, il (P, P—{p})¢ K. The set of all K-indispensable elements for P is said to be
the K-core of P and is denoted by CORE,(P).

4.2. Tueorem. CORE(P) = [|{Q: Qe RED(P)} for any PeB(A).

Proof If QeREDy(P) and peP—Q, then (P.Q)eK, Q< P—{plcP
which implies that (P— {p}, P)e K by Lemma 2.2. Thus, p¢ CORE,(P) and,
therefore, we have CORE.(P) = ﬂ{Q; Qe RED(P)}.

On the other hand, if p=Q for any Qe RED(P) and (P, P—{p})e K, then
there exists a minimal set Q, in the set {QeB(Ad), Q = P—{p}, (P, Q)eK].
Then Q,eRED(FP). Furthermore, p#Q, which is a contradiction. Thus,
(1{Q: QeRED(P)} = CORE(P). o
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5. Subreducts. Let 4 # © be a finite set, K a congruence on the semilattice
(B(A), ). For any set PeB(4), we set IND(P)={QcIND Q = P); let
SRED(P) be the set of all elements in IND(P) that are maximal with respect
to the inclusion. Any set in SRED(P) is called a K-subreduct of P. Clearly

5.1. Lemma. For any PeB(A),_ the inclusion REDy(P) < SRED(P)
holds. O
An element Pe B(A) is said to be an almost K-zero element if (P, @) e K.
Furthermore, an element PeB(A) is called K-accessible if there exists a set
M <= INDy and an almost K-zero element Q such that P = Qu| M. Clearly

5.2. LeMMA. Any almost K-zero element is K-accessible. 0

5.3. Lemma. For any element X € B(A) that is not almost K-zero element, therg
exists an element Ye B(A) such that X = Yu| |RED(X), Y= X, (¥, X)¢K.

Proof Since REDg(X) # @ by 4.1 and (Q, X)e K for any Qe RED(X),
we have (| JREDy(X), X)eK by Lemma 2.3. If | JRED,(X) = X, we put
Y=0 and the assertion holds.

Suppose | JREDg(X) # X. Since (| JREDy(X), X)eK and X is not almost
zero element, we have | JREDy(X) # . Thus, @ # X —| JRED(X) # X. We
put Y= X —| JRED(X). If (X, Y)e K, there exists a set Y,e RED,(Y) by 4.1.
Thus ¥,eINDy and (Y;, X)eK, ¥, € Y= X. This implies that ¥,e RED(X)
and, therefore, ¥, = | JREDg(X). Hence ¥, <= Y= X—| |RED.(X) which
entails that ¥; = @ and, consequently, X is an almost K-zero element contrary
to our hypothesis. Thus, (X, Y)¢K, Y= X, and X = YU| JRED(X). 0

54. Lemma. If X eB(A) is such that any ZeB(A) with Z< X, Z# X is
K-accessible, then X is K-accessible.

Proof If X is an almost K-zero element, then it is K-accessible by 5.2, If
X 15 not almost K-zero element, there exists YeB(4) such that
X = YUl JREDy(X), Y= X, Y#X, (¥, X)¢K by 53. By hypothesis, Y is
K-accessible, i.e. there exists a set N = IND, and an almost K-zero element
Q such that Y= Qu||N. It follows that X = Qu| J(NURED(X)). Clearly,
NURED,(X) = IND,. o

5.5. CoroLLarY. Any element in B(A) is K-accessible. o

5.6. THEOREM. For any X € B(A) there exists an almost K-zero element Y such
that X = YUl |SRED(X).

Proof. By 5.1 there exists M = IND, and an almost K-zero element
¥ such that X = Yu| /M. Clearly M = INDy(X) which implies that
X =Yul /M < Yu| JIND,(X). Since SRED(X) is the set of all maximal
elements in IND(X), for any QeIND.(X) there exists PeSRED(X) such
that Q< P; it follows that X = Yu| JINDg(X) = Yu| JSRED,(X) s X
which implies that X = Yu| JSRED,(X). o

6. Examples. In the following examples, we investigate congruences on the
semilattice (B(A), u) where 4 = {a, b, c}. For the sake of brevity, we put
0=@, 1={a}, 2={b}, 3={c}, 4={a b}, 5={ac}, 6=1{b,c}. In the
following diagrams, the blocks of K and their minimal elements are marked.
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6.1, ExampLE. The blocks of K are: {0}, {2
IND, = {0,1,2,3,6}. We

i1 f
1131'1-

1,4, 5 6, Al
have RED,(5) = {l}, SREDg(5) = {1, 3},

COREg(5) =1, | JSREDy(5) = 5. Furthermore, RED,(A) = {1, 6}
— SREDg(A), CORE(4) = 0, | JSREDy(4) = A. o
6.2. Exampre. The blocks of K are {0, 1}, {2, 4}, {3, 5}, {6, A}. Then

IND, = {0, 2, 3, 6}. We have RED(5) = {3} = SREDg(5). CORE,(3) =3,

Furthermore, 1 is an almost K-zero element and 35=1u3
= IUUSREDK[S}. O

6.3. Exampre. The blocks of K are {0}, {1}
Then IND, = {0, 1, 2, 3, 4, 5, 6. Clearly, RED,(

I
] !
A) = {4, 5, 6} = SRED(4),

RED,(X) = X = SRED(X) for any XeB(4)—{A}. Furthermore, 0 is the
only almost K-zero eclement.




464 M. Novolny, £. Pawlak

7. Problem. In 6.3, we have constructed a congruence K on (B(A), w) such
that RED(X) = SRED,(X) for any X € B(A) and that @ is the only K-zero
element in B(A4). This condition is not satisfied for congruences described in
Examples 6.1 and 6.2. This inspires the following

1.1 ProBLEM. Characterize all congruences K on (B(A), U) such that @ is the
only almost K-zero element and that RED(X)= SRED.(X) for any
X e B(A).

We prove that rough top equalities (see [4]) solve our Problem.

1.2. THEOREM. A rough top equality K on B(A) is a congruence on (B(A), )
such that @ is the only almost K-zero element and that RED(X) = SRED (X)
for any X e B(A).

Proof There exists an equivalence R on A such that for any X = B(A) and
any YeB(A4) the condiotion (X, ¥)eK means that either X nC # ©,
YnC#£G or XnC=0, YnC =0 for any CeA/R.

It follows that X eINDy if and only if X ~ C has at most one element for
any Ce A/R. If X e B(A) is arbitrary, then YeB(A) is a subreduct of X if and
only if' ¥ contains exactly one element from any nonempty intersection X n C
where CeA/R; but such a set Y is a reduct of X, too. Thus,
RED;(X) = SRED(X) for any X € B(A). Clearly, (X, @)K implies X = @.

Thus, rough top equalities are positive solutions of Problem. Example 6.3
presents a congruence on (B(A4), u) that is a solution of our Problem, too; this
congruence is not a rought top equality as it follows, e.g. from 3.8 of [4]. Thus,
the class of congruences solving our Problem is larger than the class of rough
top equalities.
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M. Hororue, 3. [NMannsx, HelanscumocTe NpEInakon

Kanoe MHOKCCTBO TPHIHAKOE WHPODMAINOHHOR CHCTEMBl ONPEAEIRET  OTHOUEHHE
IKBHBALIEHTHOCTH HA MHOKECTEE NPEAMETOR JTOH CHETeMBL, MHOKECTEO NPHIHAKOD HAZLIBACTCH
HEIABUCHMEBIM, CCIH OHO OMPEIEIdeT OTHOMIEHHE JKBHBANEHTHOCTH OTIHYHOS OT OTHOUWEHHHA
INANBANICHTHOCTH  OTPCASACHHBIX  BCEMH  ero coBCTREHHBIMH - noasMHomecTaamu.  Ton
CYOpENYKTOM  MHOMCCTEA  TNPHIHAKDS DAIYMECTCR  MAKCHMANBHOC  €I0  HESABMCHMOE
nogMuaoKecTeo. Jdokasano, 410 odbEAHHCHHC BCCX CYOPCIYKTOB MOG0re MHOKCCTES ITPHIHAKOB
LIOUTH PARHG. ITOMY MHOKECTRY.



