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Abstract } N

This paper presents the idea of a rough fuzzy controller with application to the stabilization of a pendulum-car system.
The structure of such a controller based on the concept of a fuzzy controller (fuzzy logic controller) is suggested. The
results of a simulation comparing the performance of both controllers are shown From these results we infer that the
performance of the proposed rough fuzzy controller is satisfactory. °
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1. Introduction

Fuzzy set theory introduced by Zadeh [11] in 1965 has provided a mathematical tool useful for modelling
uncertain (imprecise) and vague data to be present in many real situations. In his semmal paper [18]
(published in 1973) Zadeh recommended a fuzzy rule-based approach to the analysis of complex systems and
decision processes, the essential concept presented in that paper being the compositional rule of inference
which forms a basis of an important inference method handling uncertain (imprecise) information often
called approximate reasoning. The approximate reasoning processes should be automated and it implies
directly the necessity of software and even hardware implementation of mechanisms realizing such approx-
imate reasoning. It leads to the construction of algorithms and computer systems being able to manipulate
uncertain (imprecise) information.

In many real processes control relies heavily upon human experience. Skilled human operators can
control such processes quite successfully without any qualitative models. The control strategy of the
human operator is mainly based on linguistic qualitative knowledge concerning the behaviour of an
ill-defined process. Numerous applications of the fuzzy_controller'(fuzzy logic controller) to the control of
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In order to express numerically how a set can be approximated using all equivalence classes of R we will
use the accuracy of approximation of X in A (accuracy measure) :

card RX

—_— Y= .. - 2
card RX’ (2)

ar(X) =

where X # 0.
As we can see, if X is- R-exactly approximated in Ag then agx(X) =L -
If X is R-roughly approximated in Ag then 0 < agx(X) < 1.
Below we use another measure related ag(X) defined as

X)) =1-w® | "f‘f“f - "(o

and referred to as R- roughness of X. : e S

Roughness, as opposed to accuracy, represents the degree of inexact approxnnatmn of*)ﬁn“ Ad‘dltrona“l"
numerical characteristics of imprecision, e.g.
— the rough R-membership function of the set X (or rm-function, for short) deﬁned as [15]

card([x]rn X)
card([x]g) °

— coefficient characterizing the uncertainty of membership of the elementtothesetwrthrespectto the

K3 () = @

possessed knowledge ' SO

_ card([x]rnX) v
px(x) = W’ (757)
i - the quality of approximation of the family F = {X;, X,,...,X,}, X,c U, X,nX; #0, (,j=1,2,...,,n)
by R a
., card(RX;

ya(F) = Zizt CTERY) - ©

card(U)

and others are presented in [14] and [15]. The above-mentioned measures may be used in rough fuzzy
controller synthesis.
In the next section general structures of fuzzy and rough fuzzy controllers will be described. .- .

3. The structures of fuzzy and rough fuzzy controllers o

In this section we will recall a rule-based approach to an approximate reasoning process based on the
compositional rule of inference [18], which preserves a maximal amount of information contained in the
rules and observations and forms a common basis of both fuzzy and rough. fuzzy controllers. The design of
the fuzzy and rough fuzzy controllers includes the specrﬁcatron of the collection of control rules consisting of
linguistic statements that link the controller inputs with appropriate outputs respectively. Such knowledge
can be collected and delivered by a human expert (e.g. operator of an industrial coimplex process). This
knowledge, expressed by a finite number (r = 1, 2, ... , n) of the heuristic rules of the MISO type (two input
single output), may be written in the form : o '

Riiso: if x is E{” and y is DE then u is U}, - )

here E{”, DE{ denote values of linguistic variables x, y representing error and change in error (conditions)
efined in the universes of discourse X, ¥, and UY” stands for the value of linguistic variable u of action
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(conclllSlOIl) m the ‘universe of dlscourse ‘U. The llngulstlc values E{" and DE(') may be represented by

* respective fuzzy or rough sets (terms of linguistic variables).
If we employ a knowledge base of MISO system, the compositional rule of inference may be written

.symbohcally as » ‘
U’ = (DE'x E')o R. @

Tﬁe global relation R now aggregating MISO system rules will be expressed as / \
R = also,(R™), \ : : O

where an implicit sentence connective “also” denotes any ¢- or s-norm (e.g. min, max operators) or averages
[6, 8]. Symbol o stands for the compositional rule of inference operators (e.g. sup-min, sup-prod, etc.).

An output of the MISO-type controller, which has a knowledge base containing a finite number of rules
connected by means of the implicit rule connective “also” interpreted as a union (max operator), takes the

following form:

= (DE'xE')o| J(EP xDE)’ - UY) = U, | | - (10)

where in this case x stands for the explicit sentence connective “and”.
Applying sup-min operations to the compositional rule of inference, the membershlp functlon of the output
set may be expressed as follows:

U'(u) = sup min[min(DE’(y), E'(x)), max (E’ x DEY - UP)(x, y, u)]. (11)

X,y r

If we take fuzzy sets E’, DE’ as singletons (measurements), i.e. E'(x) = d,, x0 and DE’(y) = é,,,o, where

1 for z =z, e
07,20 = 1
220 {0 otherwise, (12)

the function of the output may be simplified:
U'(u) = max [(E{” x DEY — U) (X0, yo, u)]. S 13)

Now let us consider the rule connective “also” as an intersection. In this case the following inequality is
valid: v

=(DE' X E')e [ () (EP x DEY — U;p)]
’ ’ ' () ) r) r) 7 .(14)
< (V(DE'XE")o(E’xDEY' > UP)y= U™ = U,

By means of functions that characterize fuzzy and rough sets the inequality may be rewritten as follows:

U’ (u) = sup mm[mm(DE (), E'(x)), min (E” x DEY - UP) (x, y, u)]

X,y . R
< min sup min[min(DE'(y), E (x)), (EPxDEP > UMY (x, y, w)]=ULw). - | (15)
rooxy

Considering E’, DE’ as singletons (in this case U/ \(u) = U, (u) = ljg(u)) we get a simple formula:

UL(u) = min[(EY x DEY — UP) (xo, yo, w)1. | (16)

r
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Assuming the explicit sentence connective “and” as product (prod) and sup-prod for the compositional rule
of inference we obtain formulas analogical to those given above.

Taking into account the fact that none of the operators max or min are suﬁicwntly ‘good” as a rule
connective “also”, we may try to compensate one of them for another one [6, 19]. The convex linear
.~ combination of the type ’ o

(1= p)(x *y) + p(x *;¥) R | (17)

may be used (*, denotes t-norm and *, s-norm, respectively).
~ Such a combination can be written in the form

Ue() = (1 — p) U' %,(w) + pU’ *,(u). | (18)
Taking intersection and union for *, and *,, we obtain ' 3 "
Ucw) = (1 —p)UL(u) + pU'(u). e - » e (19)

Let us notice that for parameter value p = 0.5 we get an arithmetic average that is proport10na1 to the sum
(plus) interpreted as the rule connective “also”. Of course, for parameter value p = 0 we obtaln a max1ma1«
compensation of max operator by min operator [6]. .

Applying the defuzmﬁcatlon operator denoted DEFUZZ to both sxdes of the last equallty we get the
following equation: ‘ - , . ;

DEFUZZ[U’C(u)]=‘DEFUZZ[(1v—p)-U’n(u)+_p:-U’(u)]. o - '(20)

Choosing the defuzzification operator ‘as a centre of gravity (COG) we get
COGU ()] = COGL(1 — p)- U + p- U'(w)] - | (21)
or
C we=Q-puntpu, - @

where u/, and v’ stand for centres of gravity of intersection and union respectively, ie.

' _ZuiUf,'\(ui) , : '
ﬁ =N W) @)
,_Zul'w) | | ” -
u ZU(u) —(24)

At this point lét us assume for simplicity that p = 1 and let us now consider the Cartesian product of the
knowledge base rule ie. E{” x DE{ = X x ¥, the projection of which on the x-y plane represents an element
of the input image (as input pattern) of the knowledge base.

The whole input image consisting of input patterns which are the above-mentioned Cartesian products

II(r) — E(r)XDE(r) ‘ ] . . o e e e e » (25)

obtained from all rules may be written in the form o

Il = U II(r) ' ’ . / S (26)
Using alfa-cut of corresponding sets we get

H=yyany. | “ @7
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The formula written above can be expressed by means of the membership function

II(x, y) = sup max oI (x, y), . (28)
where o _
1Y (x, y) = (EP(x) %, DEY ())a S (29)

and *, denotes a respective t-norm (e.g. min) [6, 8].

It also means that all input patterns projected on the x—y plane create an input image. In other words, the
input image is made up of overlapping input patterns obtained by means of respective rules of a knowledge
base.

After each input pattern has been formed separately in the 1mphcat1on rule, we can d1fferent1ate three
stages of processing the input image.

Firstly, the rules are combined by means of the implicit rule connective “also” (at this point the input image
can be created).

Secondly, the input image is processed by means of the compositional rule of inference on condition that
input information is provided. :

Thirdly, a defuzzification procedure is employed to obtain the respective control value.

The idea of the input image has some advantages. It enables us to test the completeness and correctness of
the knowledge base. An input image for the knowledge base of a fuzzy controller can be obtained, e.g. by
means of an ordinary fuzzy partition of the input space. In this case the number of rules increases
exponentially with the number of inputs. Another way of obtaining an input image for this case may be the
application of fuzzy clustering (fuzzy c-means) [11]. A way of obtaining an input image for the knowledge
base of a rough fuzzy controller is described in Section 5.

Hence, we can say that the input image constitutes a basis for processing in both fuzzy and rough fuzzy
controllers.

In the next section we derive a mathematical model of nonlinear system whose control simulation results

~ will be compared using both controllers.

4. The mathematical model of the pendulum—car system

In this section we will consider a simplified mathematical model describing a dynamic behaviour of an
inverted pendulum—car system. The pendulum-—car system [3] is shown in Fig. 1 and cons1sts of
— a car moving along a line on two rails of limited length,

——a pendulum hinged in-the-car-by-means-of ball bearings, rotating freely in the plane contammg this line,

— a car driving device containing a DC motor, a DC amplifier,-and a pulley- -belt transmission system
Such a system is characterized by an unstable equilibrium point in upr1ght position . of ‘the pendulum,
a stable equilibrium point in pendant position, as well as two. uncontrollable pomts when the pendulum isin
horizontal position.
Now let us describe the model mathematically. Assummg that the pendulum isa r1g1d body, both friction
and damping forces are neglected in the system. Thus we obtain differential equatlons descnbmg the system,
by projecting respective forces on to corresponding axes. Here, however, we will apply ‘the Lagrange method

(cf..[3]). Assuming that L = E — V, we get

=iMx? + imv? — (—$mglcos0), - (30)
where v can be obtained from the cosine formula: »
V=32 + (316)% — 251 10cos(180 — 0). 31)
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X
L DC Motor

o Pendﬁlz’um S

Fig; 1. The peﬁdulumecér system. .

After elementary transformations we gét
= (410cosf + %)* + & 10sin )% (32)

Applying Lagrange equations

d (oL\ oL

a <;3—x—> - 5; =u, : (33)
d oL\ oL | |
H%)-%-o oY

we obtain the following differential equations describing dynamic behaviour of the pendulum-car
system:

(M +m)x —sml6*sinf + 3mlfcosf = u, (35)
iml%cosO + 3mli?0 + i mglsin = 0. (36)

Rearranging Egs. (35) and (36) we get

; 21

X = —’—gtane'_?cose (37
2

4 [(M +m)gtan0+2mlsm0 0 ]+u. (38)

(M + m)lsec@ +3mlcos6

Taking into account subsequent simplification only the last equatlon is used for stablhzmg the system in
two positions: upright and slightly deflected from vertical.
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5. Simulation results

3

Numerical results obtained by simulating the control of the pendulum will be presented here. Block
diagram of the control system is depicted in Fig. 2.

For simplicity and clarity of the proposed methods only nine-rule knowledge bases were used in this
experiment. The knowledge base for a fuzzy controller (Fig. 3) was created using an ordinary fuzzy partition
of input space. Each coordinate of the input space was evenly divided into three parts. In this way we
obtained the above-mentioned nine-rule knowledge base.

The corresponding knowledge base for a rough fuzzy coritroller was created in the following way. At the
beginning, a decision table was made, where condition attributes C = {e, de} corresponded to a decision
attribute D = {u}. In such a decision table an mdlscermblhty relation with respect to both condition and
decision attributes can be determined. Two arbitrary rows in decision table are indiscernible if and only if
their condition and decision attributes have the same values. As we can see, the indiscernibility relation
divides all rows of the decision table into equivalence classes. The family of equivalence classes is denoted by
C* when the condition attributes are considered. The family of equivalence classes is denoted by D* while
decision attributes are considered. It should be emphasized here that one of the main applicational aspects of
rough sets is to approximate elements of D* with elements of C*. For the condition attributes the following
domain was assumed: V, = V,, = {1, 1.5, 2, 2.5, 3} whereas the domain V, = {1, 2, 3, 4, 5} was assumed for
the decision attribute. The respective nondeterministic decision table contained 49 decision rules. Division of
the universum U with respect to the indiscernibility relation for decisions gives D* = {X;, X,, X3, X4, X5}

Accuracy measure and roughness for the elements of D* were calculated:

(X =19, pa(Xy) =89,
(X)) = 13, pa(Xs) = 12/13,
wr(X3) =335, pa(Xs) = 32/35,
“uRX) = 113, pa(X) = 12/13,
ar(Xs)=1/9, pr(Xs) = 8/9.

u PROCESS
DE
: 3 3 2 1
R . e
Ik U | DECISION MAKING 5 N 5
: ' UNIT

OWLEDGE BASE
. fuzzy or rough sets -
; “aid rule base

FUZZY OR ROUGH FUZZY CONTROLLER

Fig.'2. Bldck_:diagram of the control system. Fig. 3 A scheme ofa knowledge basc for a fuzzy controller
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--.Fig. 6. Results of control; rough fuzzy controller (using accuracy measure) applied. X1 = deflection angle, X2 = derivati\;/e of deﬂection

angle, Dr = control value, Err = control error.

By analogy, the accuracy measure and roughness for the respective rough sets were obtamed on the basis
of appropriate 1nformat10n systems for the classification of error and change in error:

ap(Xy) = 1/3,. pR(Xl) 2/3
UR(Xz) =1/5~ pr(Xz) = 4/5, T
an(Xs) =113, px(Xs)=2/3 |
Using the rm- functlons we obtain value 1 for certain regions and 0.5 for all uncertam reglons of condltlon '

attributes (error, change in error) and a decision attribute as well.
The scheme of the final knowledge base for a rough fuzzy controller using accuracy measure roughness \

i i

and rm-function is presented in:Fig. 4. : S
The fuzzy and rough fuzzy controllers used in our expenments employed sup prod as the composrtlonal

- operator, prod for the “and” connective between rule premises, sum for the sentence connectlve ‘also”.

The control objective was: (a) to stabilize the pendulum in upright (180°) pos1t10n and (b) to ‘stabilize it in
a position that would be slightly deflected from vertical, i.e. 185°. e - s
The parameters of the model were taken as follows [3]:

M= 28kg,_ m= 02kg, 1=0.75m, g = 9.81 m/s%.
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Fig. 7. Results of control; rough fuzzy controller (using roughness) applied. X1 = deflection angle, X2 = derivative of deflection angle,
Dr = control value, Err = control error.

The initial position of the pendulum was 170° and the initial control value was 0.

The deflection angle 8 = X1, its derivative df/dt'= X2, control value u=Dr and control error
0; — SP; = Err as functions of time for both types of controllers are shown in Figs. 5-8.

For the purpose of comparative study a quality index (Q1) was defined as

1 N
Q1= Y (6; — SPy)?, . (39)

where SP; is the set point and N + 1 is the total number of observation points.

‘Comparing the controllers we notice that both the fuzzy controller and rough fuzzy controller behave
similarly. In case of the fuzzy controller we obtained a slightly better quality index (582.6 versus 620.7 (using
accuracy measure), 632.5 (using roughness) and 636.3 (using rm-functions) of the rough fuzzy controller.

"However, it should be noted that the speed of a rough fuzzy controller is much higher than that of a fuzzy

controller. In the case of the defuzzification procedure (COG), the rough fuzzy controller is nx 10 (n
fluctuates from 1 to 2 depending on hardware and software used for 1mplement1ng the rough fuzzy controller)
times faster than that of the fuzzy controller.
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6. Concluding remarks

The results of numerrcal experrments show that a rough fuzzy controller performs more crudely than
a conventlonal fuzzy controller in view of the stablhzatlon task. Its crude performance can be explalned by

the fact that rough fuzzy controller operates on a finite number of control levels (in our case — 5 levels).

However, a rough fuzzy controller works much faster than a conventlonal fuzzy controller under the
assumption of COG defuzzification procedure. The accuracy of control is satlsfactory, taking into account
the Tow number of rules © rules) and the low number (3 and 5) of fuzzy and rough sets in input, and output
spaces.

- The difference between the membershrp functions of fuzzy sets and rm-functions of rough sets should be
emphas1zed The former are usually 1intuitively designed whereas the.latter, being upper semicontinuous
functions, are computable in.an glgorithmic way [14]. However, from the computational point of view. we

" may consider the Tough membershlp functions of the rough sets as the step-functlon approxlmatlon of the

mgmbership functlons of: fuzzy sets. . - o :
t{Whrle controlling the system it.can be observed that usmg a fuzzy loglc controller we get a smooth control _
value as a function of time; applylng a rough fuzzy controller we get a sharp function of time for the control

2y

value. Nevertheless, the quality index does not differ very much for both controllers. .




E. Czogala et al. | Fuzzy Sets and Systems 72 (1995) 61 73 ' 73

Hardware SUlllthlIS of a rough fuzzy controller based on embedded InteI rmcroprocessors have also been
tried out: ‘

As an objective for further research, the reasonable partition of input and output spaces for “fuzzy” and
“rough fuzzy” knowledge bases as well as reasonable number of rules should be considered. A grid for
a rough set representing linguistic values of error, change of error and control output in a rough fuzzy
controller -also needs special attention.
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