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- Abstract

This paper presents the idea of a rough fuzzy controller with application to the
stabilization of a pendulum-car system. The structure of such a controller based on the
- concept of a fuzzy logic controller (fuzzy controller) is suggested. The results of a simulation
comparing the performance of both controllers are shown. From these results we infer that

the performance of the proposed rough fuzzy controller is satisfactory.

Keywords: fuzzy set, rough set, fuzzy controller, rough fuzzy controller, inverted

peﬁdulum.




1. Introduction
Many decisions in real situations have to be made on the basis of imprecise,
incomplete, uncertain and/or vague information. Fuzzy set theory introduced by Zadeh [18]
in 1965 has provided a decision maker with a mathematical tooi useful for modelling
uncertain (impfecise) and vague data to be present in many real decision problems. Zadeh
in his seminal paper [17] (published in 1973) recommended a fuzzy rule-based approach to
the analysis of such complex systems and decision processes. The essential concept
presented in that paper is the compositional rule of inference which preserves a maximal
amount of information contained in the rules and the observations. The compositional rule
of inference forms a basis of an important inference method handling uncertain (imprecise)
information often called approximate reasoning. The automation of the approximate
reasoning processes is unquestionable and it implies directly the necessity of software and
even hardware implementation of mechanisms realizing such approximate reasoning. Itleads
to the construction of computer systems being able to manipulate uncertain (imprecise)
information
In many real processes control relies heavily upon human experience. Skilled human
operators can control such processes quite successfully without any quantitative models. The
~control strategy of the human operator is mainly based on linguistic qualitative knowledge
. concerning the behaviour of an ill-defined process. Numerous applications of the fuzzy

1 controller (fuzzy logic controller) to the control of various ill-defined complex processes have

S

;lwccn reported since Mamdani’s first paper was published in 1974 (cf. [8,9]).

Fuzzy controllers, synthesized from a collection of qualitative "rules of thumb", are

E:lpplicable to the control of the processes (plants) that are mathematically difficult to

o R TS

ﬁundcrstand and describe [2,4,5].




The most important advantages of fuzzy controllers are: intuitive design, reflecting
the behaviour of human operator, the fact that the model of the controlled process is not
necessary (an important feature when ill-defined processes are to be controlled), and good
control quality (not worse than that of classical controllers) [4].

The main disadvantages of fuzzy controllers are: the necessity of the acquisition and
preprocessing of the human operator’s knowledge about the controlled process, sequential
scarch through rule bases, and time consuming defuzzification methods [5].

The alternative approach to manipulating incomplete or imprecise information was
presented by Pawlak in 1982 as a rough set theory [13]

The essence of this approaéh relies on the approximation of incomplete or imprecise
. information by means of completely and precisely known pieces of information. Such pieces

of information constitute equivalence classes of equfvalence relation which is called an
indiscernibility relation.

The theory of rough sets turned out to be applicable in many cases [14]. For example in
[11,12] rough sets were applied to the generation of decision rules from the data describing
decision process of a human operator.

By analogy with the concept of a fuzzy controller [8] the idea of a rough fuzzy
. controller based on the notion of a rough set [13,14] will be introduced below.

This paper consists of five sections: the first one presents introductory remarks, next,
%the idea of a rough set is presented, the third section introduces the structures of fuzzy and

rough fuzzy controllers, the fourth section presents the mathematical model of the inverted

pendulum-car system, the results of numerical experiments are shown in fifth section , while

the last one presents the most important concluding remarks.



2, The idea of a rough set

Below we recall the fundamental notions and notation of the rough set theory. More
detailed considerations on rough sets and their applications can be found in [13].
Let U be a finite set. The set U will be called a univefs'e and elements of U will be
referred to as states ( situations or objects).
& Let R € U X U be an equivalence relation called an indiscernibility relation. We
4 denote by U/R the family of all equivalence classes R, and [x], denotes an equivalence class
' containing x € U.
| An ordered pair A, = < U,R > will be called an approximation space.
With every X € U we asséciate two sets defined as follows:
RX ={x€U:xl; €X}
(1

Rx = €EU:xINX = T}
- and called the R-lower and R-upper approximations of X in A, respectively.
A set Bng(X) = RX\RX will be called the R-boundary of X in A4,.

If RX = RX , we say that X € U is R-exactly approximated in A.

It is easy to see that in this case we have Bng(X) = 0.

If RX # RX , we say that X € U is R-roughly approximated in Ag.

In this case we have Bng(X) # 0.

In order to express numerically how a set can be approximated using all equivalence



classes of R we will use the accuracy of approximation of X in A, (accuracy measure)

_ cardRX (2)

where X #0.
It is easy to see that if X is R-exactly aproximated in A, then ayx(X) = 1.
If X is R-roughly approximated in A; then 0 < ag(X) < 1.

Below we use another measure related ag(X) defined as
0z (X) = 1-0gx(X) (3)

and referred to as a R-roughness of X.
Roughness, as oppqsed to accuracy, represents the degree of inexact approximation
of X in Agz. Additional numverical characteristics of imprecision, e.g.
- the rough R-membership function of the set X (or rm-function, for short)[15]
defined as [15]:

card((x], [1X)
card([x],)

By (x) = (4)

- coefficient characterizing the uncertainty of membership of the element to the set

with respect to the possessed knowledge

card([x]), NX) (5)

My (X) = card (U)

- the quality of approximation of the family F = {X,, X,, ... X,} by R

Ecard (RX,) (6)

’YR(F) - i=1

card (U)

and others are presented in [14] and [15].
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The above mentioned measures may be used in rough fuzzy controller synthesis.

In the next general structures of fuzzy and rough fuzzy controllers will be described.

3. The structures of fuzzy and rough fuzzy controllers

In this section we will recall a rule-based approach to an approximate reasoning
process based on the compositional rule of inference [17], which forms a common basis of
both the fuzzy and rough fuzzy controllers. The design of the fuzzy and rough fuzzy
controllers includes the specification of the collection of control rules consisting of linguistic
statements that link the controller inputs with appropriate outputs, respectively. Such
knowledge can be collected and deiivered by a human expert (e.g. operator of an industrial
complex process). This knowledge, exﬁressed by a finite number (r=1,2,..,n) of the

heuristic rules of the type MISO (two input single out;;ut), may be written in the form:

RO : if x is E” and y is DEj(’) then u is U” (7)
where E”, DE denote values of linguistic variables x,y representing error and change in
error (conditions) defined in the universes of discourse X, Y, and U, stands for the value
of linguistic variable u of action (conclusion) in the universe of discourse U. The linguistic
values E” and DE” may be represented by the respective fuzzy or rough sets (terms of
linguistic variables).

If we employ a knowledge base of MISO system, the compositional rule of inference

may be written symbolically as:
U’ = (DE’,E’)oR (8)

The global relation R now aggregating MISO system rules will be expressed as:

where an implicit sentence connective "also” denotes any ¢- or s-norm (e.g. min, max




R = also, (R¥V) (9)
operators) or averages [6,8]. Symbol O stands for the compositional rule of inference
operators (e.g. sup-min, sup-prod etc.).

An output of the controller (MISQO), which has a knowledge base containing a finite
number of rules connected by means of the implicit rule connective "also” interpreted as a
union (max operator), takes the following form:

u’= (DE’',E’) o EPXDE-U) = u'o (10)
i § k
r

r

where X stands in this case for the explicit sentence connective "and".
Applying sup-min operations to the compositional rule of inference, the membership

function of the output set may by expressed as follows:

(11)
U/ (u) =supmin E\in(DE’ (v),E'(x)), max(E,.(”xDEj(')-r ,f'))(x,y, u):l
Ly r

If we take fuzzy sets E’, DE’ as singletons (measurements), i.e. E’(x) = §,,, and
DE’(y) = .0 Where
5 = 1 forz‘= Z, (12)
.20 0 otherwise
the function of the output may be simplified:
U'(u) = max[(E,.("xDEj(" - U,f")(xo, Yor u)] (13)

Now let us consider the rule connective "also" as an intersection. In this case the

inequality mentioned above takes the following form:



_r]

r

ul = (DE',E') o n(E,."’xDE}" - Ug”)]g
(14)

2 ) _
<N (DE’,E')o(EPxDEj(') - k)) = Nv' = oy
r r

By means of functions that characterize fuzzy and rough sets the inequality may be

rewritten as follows:

%(u) = S:lyp min l%in(DE’ (v),E'(x)), m%n(E,.(”xDEjm - Ui’)) (X,¥, u)]ls)

< min sup min[min(DE’ (v)  E'(x)), (E,-‘”xDEj(’) - U,f”)(x, y,u)

r X,y

= U} (u)

Considering E’, DE’ as singletons (in this case U’'nyu) = U’'nu) = U’ryu)) we get

a simple formula:

Uy (u) = m%n(E‘.(’)xDEj(” - U,ﬁ’Z)(xo, Yor u)} (16)

Assuming the explicit sentence connective "and" as product (prod) and sup-prod for
the compositional rule of inference we obtain formulas analogical to those given above.

Taking into account the fact that none of the operators max or min are sufficiently
"good" as a rule connective "also", we may try to compensate one of them for another one

[6], [19]. The convex linear combination of the type:
(1-p) (x *, ¥) +p(x *, ¥) (17)

may be used (*, denotes t-norm and *, s-norm respectively).

Such a combination can be written in the form:

Uc(u) = (1-p)U. (u) +pU. (u) (18)

Taking intersection and union for * and *,, we obtain:



Uc(u) = (1-p) Uf(u) +pU’ (u) (19)
Let us notice that for parameter value p=0.5 we get an arithmetic average that is
proportional to the sum (plus) interpreted as the rule connective "also". Of course, for
parameter value p=0 we obtain a maximal compensation of max operator by min operator
[6].
Applying the defuzzification operator denoted DEFUZZ to both sides of the last equality we

get the following expression:

DEFUZZ [Ug(u)] = DEFUZZ [ (1-p) «Uj(u)+p-U’(u)] (20)

Choosing the defuzzification operator as a center of gravity (COG) we get:

CcoG [.(’J(’;(u)] = COG [(1-p) °UfI](u)+p-U’(u)] (21)

or
Uc = (1-p) *uy+p-u (22)

where u, and u stand for centers of gravity of intersection and union respectively.

Let us notice that the x-y plane projection of the Cartesian product £” X DE/” (defined
in the input space) represents an element of the input image, here called an input pattern.

All input patterns projected on the x-y plane create an input image.

In other words, the input image is made up of overlapping input patterns obtained by
means of respective rules of a knowledge base. Consequently, we can infer that the input

image constitutes a basis for processing in both the fuzzy and the rough fuzzy controllers.

4.The mathematical model of the pendulum-car system.

The pendulum-car system [3], shown in Fig. |, consists of



X
DC Motor

Car

Pendulum

Fig. 1. The pendulum-car system

- acar moving along a line on two rails of limited iength,

- a pendulum hinged in the car by means of ball .bearings, rotating freely in the plane

containing this line,

- a car driving device containing a dc motor, a dc amplifier, and a pulley-belt

transmission system.

Such a system is characterized by an unstable equilibrium point in upright position of
the pendulum, a stable equilibrium point in pendant position, as well as two uncontrollable
points when the pendulum is in horizontal position.

Now let us introduce a simple mathematical description of the system. Assuming that the
pendulum is a rigid body, both friction and damping forces are neglected in the system. Thus
we obtain differential equations, describing the system, by projecting respective forces on to
corresponding axes. Here, however, we will apply the Lagrange method (cf.[3]). Assuming

that L = E - V, we get

10



L= %M}'{"‘+—§—mvz—(-—;—mglcos8) (23)

where v can be obtained from the cosine formula:
X 1 2 .1
vZ = x2+(—2—16) —2x§lﬁcos(180-8) (24)
After elementary transformations we get
ve = (% 16c0s6+)&)2+(%163in6)2 (25)

Applying the Lagrange equations

d {JdL\ OJL

_a (oL)_oL _ 26
dt(a)'() ox (26)
dforL)_oL _ 27
dt(ag) 00 0 (27)

we obtain the following differential equations describing the dynamic behaviour of the

pendulum-car system:

(M+m))‘{'—%mlezsin6+—21-mlecose = u (28)

%mlj&cos6+%mlze+—;—mglsine =0 (29)

Rearranging equations (28) and (29) we get:

(M+m) g-tan®+ = mlsin®-062|+u
g = 2 2 (30)
"3 (M+m) lsecB*-%mlcosG

The last equation is used for the stabilization of the system in two positions: upright and

11



slightly deflected from vertical.

5. Simulation results.

Numerical results obtained by simulating the control of the pendulum will be presented

here. Block diagram of the control system is depicted in Fig. 2.

u_, PROCESS
& U Decision making
S unit
(3]
Al
Knowiedge base
(rules)

'FUZZY OR ROUGH FUZZY CONTROLLER

Fig. 2. Block diagram of the control system

For simplicity only nine-rule knowledge bases were used in this experiment. The
knowledge base for a fuzzy controller (Fig. 3) was created using an ordinary fuzzy partition
of input space. Each coordinate of the input space was evenly divided into three parts. In this

way we obtained the above mentioned nine-rule knowledge base.

12
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12345 ,
a1 0 1 g

Fig. 3. A scheme of a knowledge base
for a fuzzy controller

The knowledge base for a rough fuzzy controller was created in the following way.
Firstly, a decision table was made, where condition attributes C = {e, de} corresponded to
a decision attribute D = {u}.

For the condition attributes the following domain was assumed: V, = V,, = {1, 1.5, 2, 2.5,
3} whereas the domain V, = {l, 2, 3, 4, 5} was assumed for the decision attribute. The
respective nondeterministic decision table contained 49 decision rules. Division of the
universum U with respect to the indiscernibility relation for decisions gives D° = {X,, X,,
X; X, X}
Accuracy measure and roughness for the elements of D* were calculated:
ar(X)) = 0.111 pg(X,) = 0.889

aplXy) = 0.077 pe(X,) = 0.923

13



ag(X;) = 0.086 pg(X;) = 0.914

ax(Xy) = 0.077 pg(X,) = 0.923

ap(Xy) = 0.111 pg(X;) = 0.889
By analogy, the accuracy measure and roughness for the respective rough sets were
obtained on the basis of appropriate information systems for the classification of error and

change in error:

ag(X) = 0.333 pa(X)) = 0.667
ar(X,) = 0.2 pr(Xy) = 0.8
ag(X;) = 0.333 pu(Xy) = 0.667

Using the rm-functions we obtain value 1 for certain regions and 0.5 for all uncertain
regions of condition attributes (error, change in error) and a decision attribute as well.

The scheme of the final knowledge base for a rc;ugh fuzzy controller using accuracy

measure, roughness and rm-function is presented in Fig. 4.

14
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12345
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Fig. 4. A scheme of a knowledge base
for a rough fuzzy controller

The fuzzy and rough fuzzy controllers used in our experiments employed sup-prod as
the compositional operator, prod for the ’and’ connective between rule premises, sum for
the sentence connective ’also’.

The control objective was: a) to stabilize the pendulum in upright (180° ) position and
b) to stabilize it in a position that would be slightly deflected from vertical, i.e. 185° .

The parameters of the model were taken as follows [3]:

M=28kg, m=02kg, [ =0.75m, g =9.81 m/s?
The initial position of the pendulum was 170° and the initial control value was 0.
The deflection angle 8§ = XI, its derivative df/dt = X2, control value u = Dr and

-control error 6,-SP; = Err as functions of time for both types of controllers are shown in

Figs. 5, 6, 7 and 8.

For the purpose of comparative study a quality index (QI) was defined as below

15




N
= 1 -Sp)? (31)
o1 T ,26 (0,-sP,)

where SP; is the set point and N+ is the total number of observation points.

Comparing the controllers we notice that both the fuzzy logic controller and rough fuzzy
controller behave similarly. In case of the fuzzy logic controller we obtained a slightly better
quality index (582.6 versus 620.7 (using accuracy measure), 632.5 (using roughness) and
636.3 (using rm-functions) of the rough fuzzy controller. However, it should be noted that
the speed of a rough fuzzy controller is much greater than that of a fuzzy logic controller.
In our case the defuzzification procedure (COG) of the rough fuzzy controller is ca. 40 times

faster than that of the fuzzy controller.

6. Concluding remarks.

The results of numerical experiments show that a rough fuzzy controller performs
similarly to a conventional fuzzy logic controller in almost the same conditions. Moreover,
it is much faster than the latter. The accuracy of control is satisfactory, taking into account
the low number of rules (9 rules) and the low number (3 and 5) of fuzzy and rough sets in
input and output spaces.

The difference between the membership functions of fuzzy sets and rm-functions of
rough sets should be emphasized. The former are usually intuitively designed whereas the
latter are computable in an algorithmjc way [14].

While controlling the system it can be observed that using a fuzzy logic controller we
get a smooth control value as a function of time; applying a rough fuzzy controller we get
a sharp function of time for the control value. Nevertheless, the quality index does not differ

very much for both controllers.

16



As an objective for further research, the reasonable partition of input and output spaces
for "fuzzy" and "rough fuzzy " knowledge bases as well as a reasonable number of rules

should be considered.
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Fig. 5. Results of control; fuzzy controller applied.

X1 = deflection angle, X2 = derivative of deflection
angle, Dr = control value, Err - control error
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Fig. 6. Results of control; rough fuzzy controller (using accuracy
measure) applied.
X1 = deflection angle, X2 = derivative of deflection
angle, Dr = control value, Err - control error
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X1 = deflection angle, X2 = derivative of deflection
angle, Dr = control value, Err - control error
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