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Abstract.A set Y of attributes of z;n information system is said to
be dependent on a set X of attributes if the classification of objects
defined by X is finer or as fine as the classification defined by Y. An
important problem reads as follows. If Y depends on X find a minimal
X' C X such that Y depends on X'. A set X' is said to be a reduct
of X if X' is a minimal subset of X defining the same classification of
objects as X. The paper is devoted to the study of relationship between
reducts and dependence. Both dependence and reducts can be defined

* in the so called dependence spaces and the above mentioned problem can
! be transformed into the problem of constructing reducts in a suitable

dependence space. We also present some algorithms providing reducts
$ in a dependence space; in this way, we obtain an algorithmic solution
‘ of our problem.

) Key words: information system, dependence space, reduct, depen-
dence

AMS: 68T30, 06A12

1. Introduction

An information system S is an ordered quadruple (U, A,V, f) where U, A,V are
- finite nonempty sets and f is a mapping of U x A into V. The elements of U are said
to be objects, elements of A attributes, elements of V values of attributes; if u € U,
a € A, v € V, then f(u,a) = v means that the attribute a has the value v for the
object u (see [5,6,7] where further literature is quoted).
For any X C A, we put

N

EQ(S,X) = {(u,u') € U xU; f(u,a) = f(u',a) for any a € X} .

Then EQ(S, X) is an equivalence on the set U. ‘ ‘
Let X C A, Y C Abesets. Weput X - Y (S)if EQ(S,X) C EQ(S,Y); in this
case, the set Y is said to be dependent on X with respect to S (cf. [3]).
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The equivalence EQ(S,X) is a classification of objects of the information system
S. Then the dependence X — Y (S) means that the classification EQ(S, X) corre-
sponding to X is finer or as fine as the classification EQ(S,Y’) corresponding to Y. In
a little different terminology, a set X C A may be considered to be a test of objects
in U; this test divides the objects in U into blocks where objects belonging to the
same block are indiscernible by the test X. Then X — Y (S) means that the test X
is better or as good as the test Y, i.e., that the test Y is superfluous if X has been
performed.

Another interpretation of X — Y (S) is as follows. The attributes of X may be
considered to be conditions while the attributes of Y are interpreted to be decisions
where X NY = { is supposed. The condition X — Y (.9) means that any two objects
with the same values of conditions have the same values of decisions (cf. Section 6.3
of [6]).

From this point of view the following problem is important.

Problem A. Let S = (U, A,V, f) be an information system, suppose that X C A4,
Y C A are sets of attributes such that X — Y (S). Find a set X' such that X'
is minimal with respect to inclusion among all sets T" with the properties T' C X,
T —-Y (5).

This means that we are looking for a minimal subset of X that is better or as good
as Y regarding X and Y as tests; if considering elements in X to be conditions and
elements in Y to be decisions, we are looking for a minimal set of conditions that
provides the same values of decisions as X. )

In this paper, we present a solution of Problem A. This problem will be formulated
in a more abstract way for the so called dependence spaces (Problem A') where
dependence and reducts of sets can be defined and constructed. We prove that the
solution of Problem A’ for a given dependence space coincides with finding a reduct
of a set in another dependence space. The results are reformulated for information
systems in such a way that Problem A is solved.

Hence, we prove that finding reducts in dependence spaces solves not only problem
of finding reducts in information systems but also Problem A, i.e., that one algorithm
solves several problems.

A useful instrument will be following relation.

K(S5) = {(X,Y) € B(4) x B(4); EQ(S,X) = EQ(S,Y)}
where B(A) denotes the set of all subsets of A. We obtain (see 6.4 of [5])

1. Theorem. IfS = (U, A,V, f) is an information system, then K(S) is a congruence
on the semilattice (B(A),U) where U means the binary operation of union. O

2. Dependence spaces

These investigations lead us to the following definition. Let A be a finite nonempty
set, K a congruence on the semilattice (B(A),U). Then the ordered pair (4, K) is
said to be a dependence space (see Section 2 of [5], [3]).

If (A,K) is a dependence space, then any block of A/K has a greatest element
owing to the finiteness of A. For any X € B(A) we denote by CK(X) the greatest

e
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element of the block of K that contains X. We obtain (see Lemma 2.2 of [4] and
Lemma 2 of [3]) ‘

2. Theorem. If (A, K) is a dependence space, then the following assertions hold.
HDIEXCYCZC Aand(X,Z)€ K hold, then (Y,Z) € K.
(ii) CK is a closure operator on A. O

Let (A, K) be a dependence space, X C A, Y C A sets. We put X =Y (4,K) if
CK(Y) C CK(X); in this case the set Y is said to be dependent on X with respect
to (4, K).

3. Example. Let us have W = {a,b,c}, N = 0, A = {a}, B = {4}, C = {c},
D = {a,b}, E = {a,c}, F = {b,c}. Suppose that K has the following blocks: {N, A},
{B,D}, {C,E}, {F,W}. Clearly, K is a congruence on (B(W),U) and (W,K) is a
dependence space. Let ushave Y =A, X =F. It followsthat CK(Y)=A4,

CK(X)=W. Thus CK(Y) C CK(X) holds and we have X —» Y (W, K). O

The abstract form of Problem A reads as follows.

Problem A’. Let (A, K) be a dependence space, suppose that X C A, Y C A4 are
sets such that X — Y (A4, K). Find a set X' such that X' is minimal with respect to
inclusion among all sets T with the properties T C X, T - Y (4, K).

Let (A, K) be a dependence space and X C A a set. A set X' C A is said to be a
K-reduct of X if X' is minimal with respect to inclusion among all sets T with the
properties T'C X, (X,T) € K. We denote by RED(K, X) the set of all K-reducts of
the set X.

Construction of K-reducts solves some important problems concerning information
systems and contexts in the sense of Wille (cf. [9] and Section 7 of [5]).

Starting with a dependence space we construct a new one.

4. Theorem. Let (A, K) be a dependence space, Y € B(A) a set. For any X €
B(A), X' € B(A) put (X,X') € D(K,Y) if and only if one of the following conditions
(i), (ii) is satisfied.

(i) CK(Y) CCK(X), CK(Y) C CK(X'");

(i) CK(Y) € CK(X) = CK(X").

Then D(K,Y) is a congruence on (B(A),V).

Proof (1) Clearly, D(K,Y) is reflexive and symmetric. Suppose (X,X') €
D(K,Y), (X', X") € D(K,Y ). Then the following cases may occur.

(o) CK(Y) € CK(X). Then (X,X') € D(K,Y) implies CK(Y) C CK(X') by
(i); since (X', X") € D(K,Y’), we obtain CK(Y) C CK(X") by (i) and, therefore,
(X,X") e D(K,Y) by (i).

(B) CK(Y) € CK(X). Then (X,X') € D(K,Y) implies CK(X) = CK(X') by
(i) and, therefore, CK(Y) € CK(X'). Then (X', X") € D(K,Y) entails CK(X') =
CK(X") by (ii). Thus CK(Y) € CK(X) = CK(X") and we obtain (X,X") €
D(K,Y) by (ii).

We have proved that D(K,Y") is transitive and, hence, an equivalence on B(A).

(2) Suppose (X,X') € D(K,Y), (Z,2') € D(K,Y). Then the following cases may

occur.
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(v) CK(Y) € CK(X). Then (X,X') € D(K,Y) implies CK(Y) C CK(X') by
(i). Thus CK(Y) C CK(X)UCK(Z)C CK(XUZ),CK(Y)C CK(X"\UCK(Z') C
CK(X'U Z') by 2 which means (X UZ,X'UZ') € D(K,Y) by (i).

(§) CK(Y) C CK(Z). Replacing X by Z, X' by Z', Z by X, and Z' by X' in (7)
we obtain (X UZ,X'UZ') € D(K,Y).

(€) CK(Y) ¢ CK(X), CK(Y) ¢ CK(Z). Then (X,X') € D(K,Y), (3,2') €
D(K,Y) imply CK(X)=CK(X'), CK(Z) = CK(Z') by (ii) which means (X, X") €
K,(Z,2") € K and, hence, (X U Z,X'U Z') € K which entails that CK(X U Z) =
C’K(X’ uZzZ'. Thus, either CK(Y) C CK(X U Z) = CK(X'U Z') which means
(XU Z,X'UZ') e D(K,Y) by (i) or CK(Y) ¢ CK(X U Z) = CK(X'U 2') which
means (X UZ,X'U Z') € D(K,Y) by (ii).

We have proved that D(K,Y) is a congruence on (B(4),U). O

Thus, (A,D(K,Y)) is a new dependence space which enables the construction of
D(K,Y )-reducts. They are solutions of Problem A’ as it follows from the next result.

5. Theorem. Let (A, K) be a dependence spaceand X C A, Y C A be sets such
that X — Y (A, K). Then for any X' C A the following conditions are equivalent.
(i) X' C X and X' is minimal with respect to inclusion among all sets T such that
TCX, T-Y (4K).
(ii) X' is a D(K,Y )-reduct of X.

P r o o f. By hypothesis CK(Y) C CK(X) holds. We prove that for any T' C X the
conditions T' = Y (4,K) and (T,X) € D(K,Y) are equivalent.

Indeed, T — Y (A, K) means CK(Y) C CK(T) which is equlvalent to (T,X) €
D(K,Y) by (i) of 4 regarding that CK(Y') C CK(X) holds.

If (T,X) € D(K,Y), then CK(Y) C CK(X) implies that CK(Y) C CK(T) by
(i) of 4 which means T' — Y (4, K).

The assertion of our Theorem is an immediate consequence of the just proved
equivalence. O

6. Example. Let (W, K) be the dependence space defined in 3. Clearly, CK(A) C
CK(Z) for any Z € B(W). It follows that (Z,Z') € D(K, A) for any Z, Z' € B(W)
which means that B(W) is one block of D(K, A). Since N is its least element, it is

also the unique D(K, A)-reduct of X for any X € B(W). O

- 3. Reducts

Construction of K-reducts solves some important problems. It covers finding
reducts in information systems and in contexts in the sense of Wille (¢f. [9] and
Section 7 of [5]). Furthermore, the solution of Problem A’ may be reduced to find-
ing reducts in a suitable dependence space as we have seen. Since Problem A’ is an
abstract formulation of Problem A, also Problem A may be reduced to looking for
reducts in a suitable dependence space. Problem A has an analogue in the theory
of Wille’s contexts; this will be investigated in a subsequent paper. Thus, also this
analogous problem may be solved by finding reducts in a suitable dependence space.
Hence, looking for reducts in a dependence space seems to have great importance for
various parts of Artifical Intelligence. Therefore, the main aim of this paper is to
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describe how to transform Problem A’ to finding reducts and to present algorithms
for finding reducts in dependence spaces. Since any information system defines a de-
pendence space and any dependence space defines an information system (cf. Section
6 of [5]), any algorithm for finding reducts in dependence spaces may be transformed
into an algorithm for finding reducts in information systems and vice versa; thus,
both types of algorithms have the same effectivity. ,

We now study the problem of constructing the set RED(K,X) where (4,K) is
a dependence space and X € B(A). The construction following directly from the
definition of a K-reduct of X means to test all subsets X' of X and to state which
of them satisfy the condition (X, X') € K; furthermore, it is necessary to compare
the sets satisfying this condition with respect to inclusion and to find all minimal
elements among them. But this is too laborious because the above mentioned test
is superfluous for many subsets X' of X if we have some information about them.
Thus, our leading idea is as follows. We start with the set X and cancel successively
its elements in such a way that any set X' obtained by cancelling some elements
satisfies the condition (X, X') € K'; we stop this procedure if X' is such that for any
X" obtained from X' by cancelling one element, we obtain (X,X") ¢ K. Clearly,
it is superfluous to test further subsets of X'. This X' is, clearly, a K-reduct of X
(it satisfies (X, X') € K and is minimal among sets with this property). As we have
seen, the resulting set X' is dependent on the order in which the elements of X have
been cancelled.

Some algorithms for finding reducts are known (see, e.g., [1], [2], [8], and Section 2
of [5]). First, we describe an algorithm for finding one K-reduct, then an algorithm for
finding all K -reducts of a set where the former is a step of the latter. Our description
will be informal. Some steps of the algorithms require properties that can be proved
from the preceding steps; such proofs are separated by square brackets from the
description of the algorithm.

Let (4, K) be a dependence space.

We suppose that the set A is given by the list of its elements and that an effective
criterion is presented that permits to decide for any X, Y € B(A) whether (X,Y) € K
holds or not.

Let Z € B(A) be a set, o a linear ordering on Z. We now define the successor
SC(K,o0,Z) and the set of bad elements BD(K,o0,Z) of Z with respect to K and o
as follows.

Zif(Z,Z—-{z}) ¢ K for any z € Z,
SC(K,0,Z) = ‘
(K,0,2) Z — {a} if a is the least element in Z with respect
to o such that (Z,Z — {a}) € K;

( 0if(Z,Z—{z}) ¢ K for any z € Z,

BD(K,0,Z) = {Z-{z}; 2€Z, (z,a)€0,z#a}ifa
is the least element in Z with respect to o such that

(2,2 -{a}) €K,
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where (z,a) € o means that z precedes a in o.

7. Algorithm for finding one K-reduct. Let (4,K) be a dependence space,
Z C X C A sets such that (Z,X) € K. Suppose that o is a linear ordering on
Z. We put SCO(K,0,Z) = Z, BD®(K,0,Z) = § and proceed by induction:
SCU+1)(K,0,Z) = SC(K,0,SC)(K,o,Z2)), BDU+)(K,0,Z) = BD¥)(K,0,Z) U
BD(K,0,SC%(K,o0,Z2)) for any i > 0 where o denotes also the restrictions of o to
subsets of Z.

[By an easy induction we obtain SC)(K,0,2) C Z, (SC)(K,0,2),Z) € K and,
therefore, ' (SC)K,0,2),X) € K forany i>0. Furthermore, Y € BD(K,o,
SCW(K,o0,Z)) implies that (SCU)(K,0,Z),Y) ¢ K and, therefore, (Y,Z) ¢ K,
(Y,X) ¢ K for any 1 > 0.]

There exists a least integer ¢ > 0 such that SCUTY(K,0,2) = SCO(K,0,Z). We
put R(K,0,2) = SCY(K,o0,Z), P(K,0,Z) = BDY(K,o,Z). m

8. Theorem. Let (A,K) be a dependence space, Z C X C A sets such that
(Z,X) € K. Suppose that o is a linear ordering on Z. Then the following assertions
hold.

(a) R(K,o0,7) is a K-reduct of X.

(b) (X,Y) ¢ K holds for any Y € P(K,o,Z).

Proof. Wehave R(K,0,Z) = SC9(K,o,Z) for some ¢ > 0 and we have proved that
SCW(K,0,Z)C Z C X, (SCW(K,o,2),X) € K. Furthermore, SCUt)(K,0,2) =
SCW(K,o,Z) implies that SC(K,0,SC9D(K,0,2)) = SCO(K,o,Z) which entails
(SCYW(K,0,2), SCWO(K,o0,Z)—{z}) ¢ K for any z € SCD(K, o0, Z) and, therefore,
SC)(K,o,Z) is minimal with respect to inclusion among all subsets Y of X with

the property (Y, X) € K. Thus (a) holds. Property (b) has been proved above. [

We denote by LO(X) the set of all linear orderings on X. By 8, we obtain

9. Corollary. Let (A, K) be a dependence space, X C A a set. Then RED(K,X) =
{R(K,0,X);0 € LO(X)}.

Proof By8, any R(K,0,X) with o € LO(X) is a member of RED(K, X).
Conversely, if X' € RED(K,X), we define a linear ordering o on X in such a way

that elements of the set X — X' precede elements of X' in o. It is easy to see that
X' = R(K,o,X)). O

By 9, a K-reduct of X corresponds to a linear ordering on X and any linear ordering
on X defines a K-reduct of X. But the construction of all K-reducts of X on the
base of all linear orderings on X is difficult in practice and requires many elementary
steps that can be excluded. The construction of all K-reducts of X may be simplified
using the following

10. Theorem. Let (A, K) be a dependence space, X C A a set, X' its K -reduct.

Then the following assertions hold. ‘
(i) If Z is such that X' CZ C X, X' # Z, then 7 is not a K-reduct of X.
(ii)) If Z is such that Z C X', X' # Z, then Z is not a K-reduct of X . -
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(iii) IfY,Z aresuchthat Z CY C X, (X,Y) ¢ K, then Z is not a K-reduct of X.

Proof (i)and (ii) follow directly from the definition of a K- reduct (iii) is a
consequence of 2. O

This theorem characterizes some subsets of X that can be excluded from the con-
structions of K-reducts if some K-reducts have been constructed.

We now present an algorithm for finding all K-reducts. We construct objects
Z(i), RD(3), EX (i), CN(i), MA(:), T(i), NS(i), NC(i), EM(:) by induction using
algorithm of 7 as a step of this construction. The objects Z(7), T(¢) are elements
in B(X), and RD(:), EX (i), CN(i), MA(i), NS(:), NC(i), EM(i) are subsets of
B(X): RD(i) consists of K-ReDucts, EX(i) of elements that can be EXcluded if
constructing new K-reducts, CN(7) consists of elements that are CaNdidates where
~ constructions of new K-reducts can start, M A(:) consists of M Aximal elements in
CN(i), NS(i) of elements in M A(¢) that are Not Suitable for further construction,
NC(7) of elements that are Not Congruent to X with respect to K, EM(7) of elements
that have been ExaMined.

An important role is played by a linear ordering o on X; its restrictions to subsets

of X are also linear orderings and will be denoted by the same symbol 0. Furthermore,
‘O is a linear ordering on B(X); (Y,Z) € O means that Y precedes Z in O.

11. Algorithm for finding all K-reducts. Let (4, K) be a dependence space,
Xe B(A) a set, o a linear ordering on X, O a linear ordering on B(X). We put
7(0) =

RD0) = (R(K, 0, 2(0));

EX(0) = {¥ € B(X);Y C R(K,0,2(0))} U{Y € B(X);

R(K,0,Z(0)) CY}U{Y € B(X); there exists W € P(K,o,Z(0)) with Y C W};
CN(0) = B(X) — EX(0);

MA(0) = {Y € CN(0); Y is maximal in CN(0) with respect to inclusion};

X if (Y,X) ¢ K for any Y € MA(0),

T(0) =
© T where T is the least element in M A(0) with respect
to O such that (T, X) € K;
MA(0) if (Y,X) ¢ K for any Y € MA(0),
NS(0) =

{Z € MA(0);(Z,T(0)) € 0,Z # T(0)} if there exists at least
one element Y € M A(0) such that (Y, X) € K

NC(0) = {Y € B(X); there exists W € NS(0) with Y C W};

EM(0) = EX(0) UNC(0).

Let i > 0 and 2(i), RD(i), EX(i), CN(i), MA(i), T(:), NS(:), NC(i), EM(3) have
been constructed. Suppose that EM(7) # B(X). Then put

206+ 1) = T(0)

RD(i +1) = RD(i) U {R(K,0,Z(i + 1))}



282 M. Novotny and Z. Pawlak/Dependence Spaces

EX(i+1)=EX(G)u{Y € B(X);Y C R(K,0,Z2(i +1))} U{Y € B(X);
R(K,0,Z(i+1)) C Y}U{Y € B(X); thereexists W € P(K,0,Z(i+1)) withY C W},
CN(i+1)=B(X)—- EX(i+1);

MA(Gi+1)={Y € CN(i +1); Y is maximal in CN(i 4 1)with respect to inclusion};

X if(Y,X)¢ KforanyY € MA(i + 1),

Ti+1) = T  where T is the least element in M A(i + 1) with respect
to O such that (T, X) € K
MA(i+1)if (Y,X) ¢ K for any Y € MA(: + 1),
NS(@E+1)=

{Z € MAG +1); (2,T(;i +1)) € O, Z # T(i + 1)} if there
exists at least one element Y € MA(7 4+ 1) with (Y, X) € K;

NC(i+1) = {Y € B(X); there exists W € NS(i + 1) with Y C W},
EM(i +1) = EM()UEX(i + 1) UNC( + 1).

[We now prove some properties of constructed objects.

(A) f T(:) = X, then EM(¢) = B(X) holds.

Indeed, if Z € B(X), then either Z € EX(i) or Z € CN(i). In the first case,
we obtain Z € EM(:) because EX(¢) € EM(:). In the second case, there exists
Y € MA(%) such that Z C Y. By T(i) = X, we obtain NS(7) = M A(?) which implies
that Z € NC(i) C EM(3).

(B) If EM(i) # B(X), then Z(i + 1) € EM(i + 1) — EM(i).

Indeed, Z(i+1) 2 R(K,o0,Z(i+1)) implies that Z(i+1) € EX(i+1) C EM(:+41).
Furthermore, Z(i + 1) = T(z) and T(z) # X holds by (A). We have EM(:) = EX(0)
UNC(0) U---UEX(¢) UNC() = EX(i1) UNC(0) U--- U NC(z). Since T(:) €
MA(x) € CN(2) and (T(z),X) € K, we obtain T(z) ¢ EX(7) and T(¢) ¢ NC(j) for
0 <j <t by 2 which means that Z(¢ + 1) ¢ EM(3).]

There exists a least integer r > 0 such that EM(r) = B(X). Then we put
RD(K, X) = RD(r).

12. Theorem. Let (A, K) be a dependence space and X C A aset. Then RD(K,X) =
RED(K, X).

P r o o f. By definition, (T(¢),X) € K for any ¢ with 0 <7 < r which implies that
R(K,0,T(z)) is a K-reduct of X by 8. By definition of RD(:), we have RD(i) C
RED(K,X) for any ¢ with 0 < ¢ < r. Thus, RD(K,X) = RD(r) C RED(K, X).

Suppose Y € RED(K,X). Thus,Y € B(X) = EM(r) for some r > 0. Let j be
the least integer with 0 < j <r,Y € EM(j). Theneither Y € NC(j)or Y € EX(j).

If Y € NC(j), there exists W € NS(j) such that Y C W. By definition of
NS(j), we have (W,X) ¢ K and (Y,X) ¢ K by 2 which is a contradiction to the
condition Y € RED(K, X). It follows that Y € EX(j). Let h be the least integer
with 0 < h < j, Y € EX(h). '




M. Novotny and Z. Pawlak/Dependence Spaces 283

The case Y C W for some W € P(K,o,Z(h)) is excluded because (Z(h),X) € K
holds by definition of Z(h), (W, Z(h)) ¢ K holds by 8 which implies that (W, X) ¢ K
by transitivity of K. Since Y € RED(K,X), we have (Y, X) e KandY CW C X
implies that (W, X) € K by 2 which is a contradiction.

Thus, we have either Y C R(K,0,Z(h)) or R(K,0,Z(h)) € Y by definition of
EX(h). Since Y € RED(K, X), we obtain Y = R(K,0,Z(h)) by 10. Thus, Y €

RD(h) C RD(r) = RD(K,X). We have RED(K,X) C RD(K, X). O

13. Example. Let (W, K) be the dependence space defined in 3. We construct
RED(K,W) using 11. Let the linear ordering o of elements in W be as follows:
a,b,c; suppose that the linear ordering O of elements in B(W) is the following:
N,C,B,F,A,E,D, .

We put Z(0) = W, RD(0) = {R(K,0,Z(0))} = {R(K,0,W)}. The set R(K,o0, W)
~ will be constructed by 7: SCNK,0,W) =W, BDO(K,o,W) =0, SC(K,o0,W)
= SC(K,o,W) = F, BDO(K,o,W) = §, SCO(K,o,W) = SC(K,o,F) = F,
BD®(K,o0,W) = §. Since SC)(K,o0,W) = F = SC®(K,0,W), we have R(K,o,
W) =F, P(K,o,W) = 0 and, therefore, RD(0) = {F}, EX(0) = {N,B,C,F,W},
CN(0) = {A,D,E}, MA(0) = {D,E}, T(0) = W, NS(0) = {D,E}, NC(0) =
(D,E,A,B,C,N}, EM(0) = B(W).

It follows that RD(K,W) = RD(0) = {F'}. Thus, RED(K,W) = {F}. O

4., Problem A'.

- By 5, Problem A’ is solved by means of D(K,Y )-reducts. We may either look for
one solution of the problem or for all -solutions. Algorithms 7 and 11 are suitable

for finding the required reducts. For the use of these algorithms the construction of
objects SC(D(K,Y),0,Z) and BD(D(K,Y),0,Z) is necessary. This is described by
the following

14. Theorem. Let (A,K) be a dependence space, X C A, Y C A sets such that
X —»Y (A,K), o a linear ordering on X. Suppose that Z C X and Z - Y (4,K)
hold. Then

Z if CK(Y) L CK(Z - {z}) for any z € Z,

SC(D(K,Y),0,Z) =
(D( )0 2) Z — {a} where a is the least element in Z with

respect to o such that CK(Y) C CK(Z — {a});

( QifCK(Y)ZL CK(Z —{2}) for any z € Z,

BD(D(K,Y),0,Z) =S {Z —{z};z € Z,(2,a) € 0,z # a} where a is the
least element in Z with respect to o such that

\  CK(Y)C CK(Z - {a}).
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Proof Since Z — Y (4, K) holds, we have CK(Y) C CK(Z). Hence, CK(Y) C
CK(Z —{z}) is equivalent to (Z,Z — {z}) € D(K,Y). Thus, if replacing conditions
appearing in the definition of SC(D(K,Y),0,Z) and BD(D(K,Y),0,Z) by the

equivalent ones, we obtain the theorem. O

From 14 it follows that the construction of all D(K,Y )-reducts of X requires an
effective criterion that permits to decide for some sets Z C X whether CK(Y) C
CK(Z) holds or not. We suppose that an effective criterion for the decision whether
(X,Y) € K holds or not is given for arbitrary sets X C A, Y C A. Then the required
criterion reads as follows. .

15. Theorem. Let (A, K) be a dependence space, X C A, Y C A sets. Then the
following two conditions are equivalent.

(i) CK(Y) & CK(X).

- (ii) There exists a € A such that (Y,Y U{a}) € K, (X, X U{a}) ¢ K.

Proof. If (i) holds, there exists a € CK(Y)—CK(X). ThenY CYU{a} C CK(Y)
and, hence, (Y,Y U {a}) € K by 2. On the other hand, (X,X U {a}) € K does not
hold because it implies that a« € X U {a} € CK(X) which is a contradiction. Thus
(X,X U{a}) ¢ K and (ii) holds.

If (ii) is satisfied, then a € Y U {a} C CK(Y). The hypothesis a € CK(X) would
imply that X C X U {a} C CK(X) and, hence, (X,X U {a}) € K contrary to the
hypothesis. Thus a € CK(Y) — CK(X) and (i) holds. a

16. Example. Let us consider the dependence space (W, K) defined in 3. We have
stated that ' — A (W, K) holds. By 5, the set of all solutions of Problem A’ coincides
with the set RED(D(K, A),F). We apply 11 where O is the same as in 13 and o is
the linear ordering on F' = {b, ¢} such that ¢ precedes b in o.

We have Z(0) = F, RD(0) = {R(D(K, A),0,Z(0))} = {R(D(K,A),o0,F)}. The
set R(D(K,A),o,F) will be constructed by 7 and 14; since the sets CK(Z) are
known for any Z C W, we do not use 15. We obtain SC)(D(K, A),o0,F) =
SC(D(K,A),o0,F) =B, BDW(D(K,A),0,F) =0, SC®(D(K,A),o,F)=
= SC(D(K, A),0,B) = N, BD®(D(K, A),0, F) = 0. Clearly, SC®)(D(K, A), o0, F)
= N = SC®(D(K, A), 0, F) and, therefore, R(D(K, A),0,F) = N, P(D(K, A), 0, F)
= {. It follows that RD(0) = {N}, EX(0) = B(F), CN(0) = § = M A(0), T(0) = F,
NS(0)=0= NC(0), EM(0) = B(F). Thus, RD(D(K,A),F)={N} =
RED(D(K, A), F) in accord with 6. O

5. Applications to information systems

The connection of Problem A to Problem A’ is given by the following

17. Theorem. Let S = (U, A,V, f) be an information system, X C A, Y C A sets
of attributes. Then the conditions X — Y (S) and X — Y (4, K(S)) are equivalent.

For the proof see Theorem 14 of [3]. O
Basing on this result we may reformulate 5 as follows.
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18. Theorem. Let S = (U, A,V, f) be an information system, X C A, Y C A sets
of attributes such that X — Y (S). Then for any X' C A the following conditions
are equivalent.

(i) X' € X and X' is minimal with respect to inclusion among all sets T with the
properties T C X, T —» Y (5).

(#) X' is a D(K(S),Y)-reduct of X. O

Hence, an information system S = (U, A4,V, f) defines two dependence spaces:
(A4, K(S)) that is constructed by means of the discernibility relation EQ(S,X) and
(A,D(K(S),Y)) that may be used to solve Problem A.

The construction of D(K(S),Y )-reducts requires the knowledge of the objects
SC(D(K(S),Y),0,2) and BD(D(K(S),Y),0,Z). Basing on 14 and 17, we obtain

19. Theorem. Let S = (U, A,V, f) be an information system, X C A, Y C A sets
of attributes such that X — Y (S), and o a linear ordering on X. Suppose that
ZC X and Z —Y (S) hold. Then

Z if EQ(S,Z — {z}) € EQ(S,Y) for any z € Z,
SC(D(K(S),Y),0,2) =
(D(K(S), Y), 0, 2) Z — {a} where a is the least element in Z with
respect to o such that EQ(S,Z — {a}) C EQ(S,Y);

( OifEQ(S,Z —{z}) € EQ(S,Y) for any zye Z,

BD(D(K(S),Y),0,Z)=< {Z—{z};2 € Z,(z,a) € 0,2 # a} where a is the
least element in Z with respect to o such that

. EQ(S,Z - {a}) C EQ(S,Y). O

We complete these investigations by presenting the explicit definition of the con-

gruence D(K(S),Y).

20. Theorem. Let S = (U, A,V, f) be an information system,Y C A a set. For any
X C A and any X' C A the condition (X,X') € D(K(S),Y) is satisfied if and only
if one of the following conditions (i), (ii) holds.

(i) BQ(S, X) C EQ(S,Y), EQ(S,X") C EQ(S,Y).

(i) BQ(S,X") = EQ(S,X) £ BQ(S,Y).

This follows from 17 and 4. O
The construction of D(K(S), Y )-reducts requires an effective criterion that permits
to decide, for any X C A, whether EQ(S,X) C EQ(S,Y) holds or not. This is

presented in the following theorem.
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21. Theorem. Let S = (U, A,V, f) be an information system and X C A, Y C A
sets of attributes. Then the following conditions are equivalent.

(i) EQ(S,X) € EQ(S,Y).

(ii) There exist u € U, u' € U, ao € Y such that f(u,a0) # f(u',a0) and f(u,a) =
f(u',a) for any a € X. '

P r oo f If () holds, then there exist u,u’ € U such that (u,u') € EQ(S,X),
(u,u') ¢ EQ(S,Y). It follows that f(u,a) = f(u',a) for any a € X while there exists
ap € Y such that f(u,a0) # f(u',a0). Thus, (i) holds. N

If (22) holds, then (u,u') € EQ(S, X) but (u,u’) ¢ EQ(S,Y’) which is (7). O

We now illustrate Problem A.

22. Example. Let us have S = (U, A,V, f) where U = {u1,u2,us,us, us,us, ur},
A = {a,b,c,d,e}, V ={0,1,2}, and f is defined by the following table.

d

Ui
U2
Uus
Ugq
Uus
Ue
ur

NN PR O =R
=== )
MO OO O OO ]|
NN - OO

OO O |

We put X = {a,b,¢,d}, Y = {e}. Clearly EQ(S,X) = idy and EQ(S,Y) has the
blocks {u1,us}, {us,ua}, {us,us,ur}. Hence X — Y (S) holds.

The solution of Problem A means finding minimal sets X' C X with X' - Y (.9).
By 17, this is the same as the construction of minimal sets X' C X such that X' —
Y (A,K(S)). By 5, this means finding D(K(S),Y)-reducts of X. We construct all
D(K(S),Y)-reducts of X using 11.

Let o be a linear ordering on' X where the order of elements is as follows: a, b, ¢, d.
Furthermore, let O denote the linear ordering on B(X) such that the order of its
elements is the following: 0, {d}, {c}, {¢,d}, {8}, {b,d}, {b,¢}, {b,c,d}, {a}, {a,d},
{a,¢c}, {a,¢c,d}, {a,b}, {a,b,d}, {a,b,c}, {a,b,c,d} (alphabetic order of characteristic '
functions of elements in B(X') where X is ordered by o). We put Z(0) = X, RD(0) =
{R(D(K(S),Y),0,X)}. We now use 7 for constructing R(D(K(S),Y),0,X). We
obtain SC(D(K(S),Y),0,X) = X, BDO(D(K(S),Y),0,X) = 0. Using 19, we
obtain SC(D(K(S),Y),0,X) = {a,b,d}, BDW(D(K(S),Y),0,X) = {{b,c,d},
{a,c,d}}. Furthermore, SC®(D(K(S),Y),0,X) = SC(D(K(S),Y),0,{a,b,d}) =
{a,b,d}, BD®(D(K(S),Y),0,X) = {{b,¢c,d},{a,c,d},{b,d}, {a,d},{a,b}}. “Thus,
SC®(D(K(S),Y),0,X) = {a,b,d} = SCO(D(K(S),Y),0,X) and, therefore,
R(D(K(S),Y),0,X) = {a,b,d}, P(D(K(S),Y),0,X) = {{b,¢,d}, {a,c,d}, {b,d},
{a,d}, {a,b}}. It follows that RD(0) = {{a,b,d}}, EX(0) = {6, {a}, {0}, {d},{a,b},
{a’ d}’ {b7 d}’ {a’ b’ d}, {a’ b’ c, d}’{c}’{b7 C}’{C7 d},{b, C’ d}’{a7 c}’ {a, c7 d}}’ CN(O) =
{{a,5,c}} = MA(0), T(0) = X, NS(0) = {{a,b,c}}, NC(0) = {0, {a}, {b}, {c},

{a’ b}’ {a, c}’ {b, c}a {a, b, c}}1 EM(O) = B(X)
It follows that RD(K, X) = {{a,b,d}} = RED(K, X).
We have proved that {a, b, d} is the only solution of Problem A.
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The information system S is an example of a consistent decision table where X is
the set of conditions and Y the set of decisions. Our procedure leads to a reduction
of the set of conditions where the reduced set suffices to provide correct values of
decisions. Cf. Section 6.3 of [6] where further examples can be found. O
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