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Abstract

Bayesian confirmation theory considers a variety of non-equivalent confirmation measures which say in what degree a piece of

evidence confirms a hypothesis. In this paper, we apply some well-known confirmation measures within the rough set approach to

discovering relationships in data in terms of decision rules. Moreover, we discuss some interesting properties of these confirmation

measures and we propose a new property of monotonicity that is particularly relevant within rough set approach. The main result of

this paper states that only two from among confirmation measures considered in the literature have the desirable properties from the

viewpoint of the rough set approach. Moreover, we clarify relationships between logical implications and decision rules, and we

compare the confirmation measures to several related measures, like independence (dependence) of logical formulas, interestingness

measures in data mining and Bayesian solutions of raven’s paradox.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Confirmation measures; Bayes’ theorem; Rough sets; Decision rules; Decision algorithm; Monotonicity property
1. Introduction

Reasoning from data is the domain of inductive
reasoning. Contrary to deductive reasoning, where
axioms expressing some universal truths constitute a
starting point of reasoning, inductive reasoning uses
data about a sample of larger reality to start inference.
Rough set theory (Pawlak, 1991) is a mathematical

approach to data analysis. Rough-set-based data
analysis starts from a data table, called information

table. The information table contains data about objects
of interest, characterized by a finite set of attributes. It is
often interesting to discover some dependency relation-
ships (patterns) in the information table. With this aim,
a set of condition attributes C and a set of decision

attributes D are distinguished, in order to analyze how
values of attributes from C associate with values of
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attributes from D: An information table where condi-
tion attributes and decision attributes are distinguished
is called decision table. From a decision table one can
induce some patterns in form of ‘‘if y, then y’’
decision rules. More exactly, the decision rules say that
if some condition attributes have given values, then
some decision attributes have other given values. For
example, in a data table collecting medical information
on a sample of patients, we can consider as condition
attributes a set of symptoms S ¼ fs1;y; sng; and as
decision attributes, a set of diseases D ¼ fd1;y; dmg: In
the decision table so obtained we can induce decision
rules of the form ‘‘if symptoms si1; si2;y; sih appear,
then there is disease dj’’, with si1; si2;y; sihAS and djAD:
With every decision rule induced from a decision

table, three coefficients are traditionally associated: the
strength, the certainty factor and the coverage factor of
the rule. For example, the decision rule

‘‘if symptoms si1; si2;y; sih appear; then

there is disease dj ’’;
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can be characterized as follows (the numbers of % are
calculated from a hypothetical data table):

* the patients having symptoms si1; si2;y; sih and
disease dj constitute 15% of all the patients in the
sample: in this case, 15% is the strength of the rule,

* 91% of the patients having symptoms si1; si2;y; sih

have also disease dj: in this case, 91% is the certainty

factor of the rule,
* 52% of the patients having disease dj have also
symptoms si1; si2;y; sih: in this case, 52% is the
coverage factor of the rule.

These characteristics are useful to show that discovering
patterns in data can be represented in terms of Bayes’
theorem (Pawlak, 2002; Greco et al., 2002) in a different
way from that offered by standard Bayesian inference
techniques, without referring to prior and posterior
probabilities, inherently associated with Bayesian in-
ference methodology.
Within inductive reasoning, classical Bayesian theory

considers a variety of non-equivalent confirmation
measures (see Fitelson (2001) and Kyburg (1983) for
surveys) which quantify the degree to which a piece of
evidence E provides, ‘‘evidence for or against’’ or
‘‘support for or against’’ a hypothesis H : In this paper,
we take into account some of the most relevant of these
confirmation measures and apply them within rough set
approach to data analysis. Moreover, we discuss some
interesting properties of these confirmation measures,
which are particularly relevant within rough set
approach.
Let us stress how important is the discussion of such a

philosophical question related to epistemology within
rough set approach and, more generally, within data
mining, machine learning and knowledge discovery.
Traditionally, the development of a new theory
requested that, first, a hypothesis was formulated, and
after, confirmation or disconfirmation of the hypothesis
was looked for in the data. Nowadays, due to adoption
of powerful computer-aided automated processing of a
huge amount of data, the order of this process can be
reversed: first, some data are collected, and then,
practically all possible hypotheses are considered trying
to screen the most interesting ones. For example,
association rules (Agrawall et al., 1996) in data mining
and ‘‘if y, then y’’ rules within rough set approach
(Pawlak, 1982, 1991) can be interpreted as theories
induced from data.
In this context, establishing a reliable index, able to

discriminate the most interesting hypotheses discovered
by induction from an automated data processing, is of
fundamental importance for knowledge discovery, data
mining and machine learning (see, for example, Fayyad
et al., 1996; Michalski et al., 1998; Hajek and Havranek,
1978). Thus, even if the origin of the problem is quite
theoretical, the research results have in this context a
strong impact on real world operational applications.
Indeed, our research is strongly related to the rich

discussion about interestingness measures for decision
rules in data mining (see, for example, Hilderman and
Hamilton (2001) and Yao and Zhong (1999) for
exhaustive reviews of the subject). We shall see, for
example, that one of the confirmation measures that we
consider has been already proposed in literature as
interestingness measure. Until now, however, up to our
knowledge, there has not been any discussion about the
possibility of using the confirmation measures as
interestingness measures. Such a discussion is important
from two points of view:

* it permits a systematic construction and analysis of a
large class of interestingness measures, i.e. all the
interestingness measures which can be expressed as
confirmation measures;

* it permits to propose a quantitative confirmation
theory for data analysis which brings to rough set
approach, knowledge discovery, data mining and
machine learning, the results obtained in an impor-
tant sector of the epistemological debate by research-
ers as prominent as Carnap (1962), Hempel (1945)
and Popper (1959); let us remark that while there
were some proposals of a qualitative confirmation
theory for knowledge discovery (see, for example,
Flach, 1995), no similar proposal has been made with
respect to a quantitative confirmation theory.

For reasons raised in the latter point, our research may
also bring some interesting results into philosophical
debate about confirmation. In fact, quantitative con-
firmation theory is strongly based on probability
functions. However, there is a great and well-known
controversy relative to interpretation, origin and status
of probability (see, for example, Kyburg, 1970). Conse-
quently, in this paper, we are considering quantitative
confirmation based on observed data only, without any
consideration of probability functions.
Some confirmation measures considered in this paper

may remember statistical independence tests of a
contingency table. Indeed, some interestingness mea-
sures of decision rules, which are based on these
statistical tests, have been proposed in the specialized
literature (see, for example, Flach and Lachiche, 2001;
Tsumoto, 2002; Zembowicz and Zytkow, 1996). It is
worth stressing that our confirmation measures take a
different perspective than the statistical approach. First,
observe that the independence (dependence) measures
are symmetric while decision rules, for which these
measures are conceived, are not symmetric. The follow-
ing example can explain the point. Let us consider
variable X and Y : Let us suppose that each of them can
take one of two values: 0 or 1. The decision rule ‘‘if a
card is the seven of spades, then the card is black’’ is, of
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course, quite different from the rule ‘‘if a card is black,
then the card is the seven of spades’’, because the fact
that one rule is true does not necessarily mean that the
other is true (Eells and Fitelson, 2002). However, from
the viewpoint of statistical independence we will obtain
the same measure of independence, regardless of the fact
which rule is true. Even if some authors tried to
generalize classical statistical analysis of a contingency
table in order to handle typical asymmetries of rule
induction (Flach and Lachiche, 2001), our approach is
different in nature because we are interested in some
desirable properties of confirmation measures rather
than in their statistical properties.
Let us also remark that the concept of confirmation

we are interested in is related to the concept of
independence of logical formulas (propositions), as
presented by Łukasiewicz (1913). In brief, his definition
of independence between two propositions F and C
amounts to say that the credibility of C given F is the
same as the credibility of C given :F: Thus, indepen-
dence means that the credibility of F does not influence
the credibility of C: For this definition Łukasiewicz
proved the law of multiplication which says that if
propositions F and C are independent, then the
credibility of C given F is equal to the product of the
individual credibilities of F and C: From this law,
Pawlak (2003) derived a dependency factor for flows in
decision networks and then he applied this formula to
decision rules (Pawlak, 2004). From the viewpoint of
confirmation, we can say that F confirms C if the
credibility of C is higher when F is true rather than
when F is false. The difference between the dependency
factors derived from the concept of independence
proposed by Łukasiewicz and the measures of confirma-
tion we are studying is twofold:
(1)
 The original concept of independence proposed by
Łukasiewicz is qualitative (propositions are inde-
pendent or not) and do not imply any quantitative
measure for the degree of independence (or depen-
dence) between propositions.
(2)
 The concept of dependence, as presented above, is
directional because it is used to check if the
credibility of one proposition, C; is affected by the
truth or the falsity of another proposition F: This is
concordant with the concept of confirmation: in
general, if evidence F confirms hypothesis C; then
evidence C does not confirm to the same extent
hypothesis F: For example, the evidence F ¼‘‘x is a
square’’ confirms conclusively hypothesis C ¼‘‘x is
a rectangle’’ (of course, all squares are rectangles),
but the evidence C does not confirm conclusively F
(in fact, not all rectangles are squares). However,
from other parts of the paper by Łukasiewicz (1913),
it appears that the concept of dependence he has in
mind is substantially non-directional. In fact, he
proves that if the credibility of C given F is the same
as the credibility of C given F; then also the
credibility of F given C is the same as the credibility
of F given C: The question of the relation between
dependence and confirmation measures has recently
been raised by Fitelson (2003) who recognized the
directionality of the concept of confirmation and the
non-directionality of the concept of dependence.
For this reason, Fitelson proposed as dependence
measure for propositions F and C; an average
measure between the confirmation of F toC and the
confirmation of C to F:
The article is organized as follows. Section 2 introduces
confirmation measures and recalls some desirable
properties of symmetry and asymmetry proposed by
Eells and Fitelson. Section 3 gives some basic notions
concerning decision rules and decision algorithms within
rough set approach. Section 4 introduces rough set
confirmation measures. Section 5, which deals with
some fundamental contributions of Hempel to logics of
confirmation, presents the Nicod’s criterion, the equiva-
lence condition and the positive instance criterion. In
Section 6, we introduce a specific monotonicity property
of rough set confirmation measures. This property is
extensively discussed and compared to Nicod’s criterion,
as well as to the positive instance criterion. Section 7
investigates which one among the considered rough set
confirmation measures satisfies the monotonicity prop-
erty. Finally Section 8 presents conclusions and some
possible directions of future research.
2. Confirmation measures

According to Fitelson (2001), measures of confirma-
tion quantify the degree to which a piece of evidence E

provides, ‘‘evidence for or against’’ or ‘‘support for or
against’’ a hypothesis H: Fitelson remarks, moreover,
that measures of confirmation are supposed to capture
the impact rather than the final result of the ‘‘absorp-
tion’’ of a piece of evidence.
Bayesian confirmation assume the existence of a

probability Pr. In the following, given a proposition
X ; Pr(X ) is the probability of X : Given X and Y ;
Pr(X jY ) represents the probability of X given Y ; i.e.

PrðX jY Þ ¼
PrðX4Y Þ
PrðY Þ

:

In this context, a measure of confirmation of a piece of
evidence E with respect to a hypothesis H is denoted by
cðE;HÞ: cðE;HÞ is required to satisfy the following
minimal property:

cðE;HÞ ¼

> 0 if PrðH jEÞ > PrðHÞ;

¼ 0 if PrðH jEÞ ¼ PrðHÞ;

o0 if PrðH jEÞoPrðHÞ:

8><
>:
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The most well-known confirmation measures proposed
in the literature are the following:

dðE;HÞ ¼ PrðH jEÞ � PrðHÞ;

rðE;HÞ ¼ log
PrðH jEÞ
PrðHÞ

� �
;

lðE;HÞ ¼ log
PrðEjHÞ
PrðEj:HÞ

� �
;

f ðE;HÞ ¼
PrðEjHÞ � PrðEj:HÞ
PrðEjHÞ þ PrðEj:HÞ

;

sðE;HÞ ¼ PrðH jEÞ � PrðH j:EÞ;

bðE;HÞ ¼ PrðH4EÞ � PrðHÞ PrðEÞ:

Measure dðE;HÞ has been supported by Earman (1992),
Eells (1982), Gillies (1986), Jeffrey (1992) and Rosenk-
rantz (1994). Measure rðE;HÞ has been defended by
Horwich (1982), Keynes (1921), Mackie (1969), Milne
(1995, 1996), Schlesinger (1995) and Pollard (1999).
Measure lðE;HÞ and f ðE;HÞ have been supported by
Kemeny and Oppenheim (1952), Good (1984), Hecker-
man (1988), Horvitz and Heckerman (1986), Pearl
(1988) and Schum (1994). Fitelson (2001) has advocated
for measure f ðE;HÞ: Measure sðE;HÞ has been pro-
posed by Christensen (1999) and Joyce (1999). Measure
bðE;HÞ has been introduced by Carnap (1962).
Many authors have considered, moreover, some more

or less desirable properties of confirmation measures.
Fitelson (2001) makes a comprehensive survey of these
considerations. At the end of his retrospective, Fitelson
concludes that the most convincing confirmation mea-
sures are lðE;HÞ and f ðE;HÞ: He also proves that
lðE;HÞ and f ðE;HÞ are ordinally equivalent, i.e. for all
E; H and E0, H 0,

lðE;HÞXlðE0;H 0Þ if and only if

f ðE;HÞXf ðE0;H 0Þ:

Among the properties of confirmation measures re-
viewed by Fitelson (2001), there are properties of
symmetry introduced by Carnap (1962) and investigated
recently by Eells and Fitelson (2000). For all E and H;
one can have:

* evidence symmetry (ES): cðE;HÞ ¼ 2cð:E;HÞ
* commutativity symmetry (CS): cðE;HÞ ¼ cðH;EÞ
* hypothesis symmetry (HS): cðE;HÞ ¼ 2cðE;:HÞ
* total symmetry (TS): cðE;HÞ ¼ cð:E;:HÞ:

Eells and Fitelson (2002) remarked that, given (CS),
(ES) and (HS) are equivalent, and that (TS) follows
from the conjunction of (ES) and (HS). Moreover, they
advocate in favor of (HS) and against (ES), (CS) and
(TS). The reason in favor of (HS) is that the significance
of E with respect to H should be of the same strength,
but of opposite sign, as the significance of E with respect
to :H : The arguments against (ES), (CS) and (TS) can
be explained by the following example. A card is
randomly drawn from a standard deck. Let E be the
evidence that the card is the seven of spades, and let H

be the hypothesis that the card is black. Clearly, E is
strong and conclusive evidence in favor of H: However,
the confirmation of H by E is not corresponding to the
negative confirmation of H by :E: Indeed, the evidence
‘‘the card is not the seven of spade’’ (:E) is practically
useless with respect to the hypothesis ‘‘the card is black’’
(H), which means that (ES) is not valid. Using the same
example, we can notice that the evidence ‘‘the card is
black’’ does not confirm the hypothesis ‘‘the card is the
seven of spade’’, to the same extent as the evidence ‘‘the
card is the seven of spade’’ confirms the hypothesis ‘‘the
card is black’’. This means that (CS) does not hold.
Similarly, one can show that also (TS) does not hold.
Eells and Fitelson (2002) prove that
(1)
 s and b satisfy (ES), while d; r; l and f do not satisfy
(ES),
(2)
 d; s; b; f and l satisfy (HS), while r does not satisfy
(HS),
(3)
 r and b satisfy (CS), while d; s; f and l do not satisfy
(CS),
(4)
 s and b satisfy (TS), while d; r; f and l do not satisfy
(CS).
Thus, assuming that (HS) is a desirable property, while
(ES), (CS) and (TS) are not, Eells and Fitelson (2002)
conclude that with respect to the property of symmetry,
d; f and l are satisfying confirmation measures while s; r

and b are not satisfying confirmation measures.
3. Decision rules and decision algorithm

Let S ¼ ðU ;AÞ be an information table, where U and
A are finite, non-empty sets called the universe and the
set of attributes, respectively. If in the set A two disjoint
subsets of attributes, called condition and decision

attributes, are distinguished, then the system is called a
decision table and is denoted by S ¼ ðU ;C;DÞ; where C

and D are sets of condition and decision attributes,
respectively. With every subset of attributes, one can
associate a formal language of logical formulas L

defined in a standard way and called the decision

language. Formulas for a subset BDA are build up
from attribute-value pairs (a;v), where aAB and vAVa

(set Va is a domain of a), by means of logical connectives
4 (and), 3 (or), : (not). We assume that the set of all
formula sets in L is partitioned into two classes, called
condition and decision formulas, respectively.
A decision rule induced from S and expressed in L is

presented as F-C; read ‘‘if F; then C’’, where F and C
are condition and decision formulas in L; called premise

and conclusion, respectively. A decision rule F-C is
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Table 1

Decision table

Condition attribute Decision attribute

(result odd or even) (result of rolling the die)

Odd 1

Even 2

Odd 3

Even 4

Odd 5

Even 6
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also seen as a binary relation between premise and
conclusion, called consequence relation (see critical
discussion about interpretation of decision rules as
logical implications at the end of Section 6).
Let jjFjj denote the set of all objects from universe U ;

having the property F in S:
If F-C is a decision rule, then suppSðF;CÞ ¼

cardðjjF4CjjÞ will be called the support of the decision
rule and

sSðF;CÞ ¼
suppSðF;CÞ
cardðUÞ

will be referred to as the strength of the decision rule.
With every decision rule F-C we associate a

certainty factor:

cerSðF;CÞ ¼
suppSðF;CÞ
cardðjjFjjÞ

and a coverage factor:

covS ¼
suppSðF;CÞ
cardðjjCjjÞ

:

If cerSðF;CÞ ¼ 1; then the decision rule F-C will be
called certain, otherwise the decision rule will be referred
to as uncertain.
A set of decision rules supported in total by the

universe U creates a decision algorithm in S: Pawlak
(2002) points out that every decision algorithm asso-
ciated with S displays well-known probabilistic proper-
ties; in particular it satisfies the total probability
theorem and Bayes’ theorem. As a decision algorithm
can also be interpreted in terms of the rough set concept,
these properties give a new look on Bayes’ theorem from
the rough set perspective. In consequence, one can draw
conclusions from data without referring to prior and
posterior probabilities, inherently associated with Baye-
sian reasoning. The revealed relationship can be used to
invert decision rules, i.e., giving reasons (explanations)
for decisions, which is useful in decision analysis.
4. Confirmation measures and decision algorithms

In this section, we translate confirmation measures to
the language of decision algorithms.
A preliminary question that arises naturally in this

context is the following: why a new measure is required
for decision rules in addition to strength, certainty and
coverage? In other words, what is the intuition behind
the confirmation measure that motivates its use for
characterization of decision rules?
To answer this question, it will be useful to recall the

following example proposed by Popper (1959). Consider
the possible result of rolling a die: 1, 2, 3, 4, 5, 6. We can
built a decision table, presented in Table 1, where the
fact that the result is even or odd is the condition
attribute, while the result itself is the decision attribute.
Let us consider the case C ¼ ‘‘the result is 6’’ and the
case :C ¼ ‘‘the result is not 6’’. Let us also take into
account the information F ¼ ‘‘the result is an even
number (i.e. 2 or 4 or 6)’’. Therefore, we can consider
the following two decision rules:

* F-C ¼‘‘if the result is even, then the result is 6’’,
with certainty cerS(F,C)=1

3
;

* F-:C ¼‘‘if the result is even, then the result is not
6’’, with certainty cerS(F,:C)=2

3
:

Remark that the rule F-C has a smaller certainty
than the rule F-:C: However, the probability
that the result is 6 is 1

6
; while the probability that the

result is different from 6 is 5
6
: Thus, the information F

raises the probability of C from 1
6 to

1
3; and decreases

the probability of :C from 5
6
to 2

3
: In conclusion,

we can say that F confirms C and disconfirms :C;
independently of the fact that the certainty of F-C is
smaller than the certainty of F-:C: From this
simple example, one can see that certainty and
confirmation are two completely different concepts, so
it advocates for a new index expressing the latter type of
information.
Given a decision rule F-C; the confirmation

measure we want to introduce should give the credibility
of the proposition: C is satisfied more frequently when F
is satisfied rather than when F is not satisfied.
Differently from Bayesian confirmation, however, we

start from a decision table rather than from a
probability measure. In this context, the probability Pr
of F is substituted by the relative frequency Fr in the
considered data table S; i.e.

FrSðFÞ ¼
cardðjjFjjÞ
cardðUÞ

:

Analogously, given F and C; PrðCjFÞ—the probability
of C given F—is substituted by the certainty factor
cerSðF;CÞ of the decision rule F-C:
Therefore, a measure of confirmation of property C

by property F; denoted by cðF;CÞ; where F is a
condition formula in L and C is a decision formula in
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L; is required to satisfy the following minimal property

cðF;CÞ ¼

> 0 if cerSðF;CÞ > FrSðCÞ;

¼ 0 if cerSðF;CÞ ¼ FrSðCÞ;

o0 if cerSðF;CÞoFrSðCÞ:

8><
>: ðiÞ

(i) can be interpreted as follows:

* cðF;CÞ > 0 means that property C is satisfied more
frequently when F is satisfied (then, this frequency is
cerSðF;CÞ), rather than generically in the whole
decision table (where this frequency is FrSðCÞ),

* cðF;CÞ ¼ 0 means that property C is satisfied with
the same frequency when F is satisfied and generically
in the whole decision table,

* cðF;CÞo0 means that property C is satisfied less
frequently when F is satisfied, rather than generically
in the whole decision table.

Let us also remark that

cerSðF;CÞ � FrSðFÞ

þ cerSð:F;CÞ � FrSð:FÞ ¼ FrSðCÞ: ðiiÞ

The proof of (ii) is as follows:

cerSðF;CÞ ¼
suppSðF;CÞ
cardðjjFjjÞ

; FrSðFÞ ¼
cardðjjFjjÞ
cardðUÞ

;

cerSð:F;CÞ ¼
suppSð:F;CÞ
cardðjj:FjjÞ

;

FrSð:FÞ ¼
cardðjj:FjjÞ
cardðUÞ

and, therefore,

cerSðF;CÞ � FrSðFÞ þ cerSð:F;CÞ � FrSð:FÞ

¼
suppSðF;CÞ
cardðjjFjjÞ

�
cardðjjFjjÞ
cardðUÞ

þ
suppSð:F;CÞ
cardðjj:FjjÞ

�
cardðjjFjjÞ
cardðUÞ

¼
suppSðF;CÞ
cardðUÞ

þ
suppSð:F;CÞ
cardðUÞ

;

since jjF4Cjj-jj:F4Cjj ¼ | and jjF4Cjj,jj:F4Cjj ¼
jjCjj; we have

suppSðF;CÞ þ suppSð:F;CÞ

¼ cardðjjF4CjjÞ þ cardðjj:F4CjjÞ

¼ cardðjjCjjÞ;

thus,

suppSðF;CÞ
cardðUÞ

þ
suppSð:F;CÞ
cardðUÞ

¼
cardðjjCjjÞ
cardðUÞ

¼ FrSðCÞ:

(ii) says that FrSðCÞ is a weighted average of cerSðF;CÞ
and cerSð:F;CÞ; with respective weights FrSðFÞ and
FrSð:FÞ ¼ ½1� FrSðFÞ
: Thus, if cerSðF;CÞ > FrSðCÞ;
then necessarily cerSð:F;CÞoFrSðCÞ:
On the basis of this observation, (i) can also be
interpreted as follows:

* cðF;CÞ > 0 means that property C is satisfied more
frequently when F is satisfied rather than when F is
not satisfied,

* cðF;CÞ ¼ 0 means that property C is satisfied with
the same frequency when F is satisfied and when F is
not satisfied,

* cðF;CÞo0 means that property C is satisfied more
frequently when F is not satisfied rather than when F
is satisfied.

The specific confirmation measures recalled in Section 2
can be rewritten in this context as follows:

dðF;CÞ ¼ cerSðF;CÞ � FrSðCÞ;

rðF;CÞ ¼ log
cerSðF;CÞ
FrSðCÞ

� �
;

lðF;CÞ ¼ log
cerSðC;FÞ
cerSð:C;FÞ

� �
;

f ðF;CÞ ¼
cerSðC;FÞ � cerSð:C;FÞ
cerSðC;FÞ þ cerSð:C;FÞ

;

sðF;CÞ ¼ cerSðF;CÞ � cerSð:F;CÞ;

bðF;CÞ ¼ cerSðF;CÞ � FrSðFÞ FrSðCÞ:

Clearly, all the results about confirmation measures
obtained within Bayesian confirmation theory are valid
for the confirmation measures defined in the context of
decision algorithms considered within rough set theory.
Therefore, according to Fitelson’s conclusions reminded
in Section 2, we believe that lðF;CÞ and f ðF;CÞ are the
most convincing confirmation measures, which continue
to be ordinally equivalent in this new context.
Let us remark that one of the most appreciated

interestingness measures, proposed by Kamber and
Shingal (1996), is strongly related to lðF;CÞ: It is called
sufficiency measure and has the following formulation:

kðF;CÞ ¼
cerSðC;FÞ
cerSð:C;FÞ

:

Let us remark that lðF;CÞ ¼ log½kðF;CÞ
:
Below, we call the confirmation measures presented in

the language of decision algorithms, the rough set

confirmation measures.
5. Confirmation theory and the ravens’ paradox

In view of logics, decision rules are often seen as
implications. Hempel, in a series of articles, derived a
theory of confirmation from logics. His starting point
was the Nicod’s criterion (Nicod, 1923). The Nicod’s
criterion says that an evidence confirms decision rule
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‘‘A implies B’’ if and only if it satisfies both the premise
and the conclusion of the rule; it disconfirms the rule if
and only if it satisfies the premise, but not the conclusion
of the rule. Thus, according to the Nicod’s criterion, an
evidence is neutral, or irrelevant, with respect to the rule
if it does not satisfy the premise.
To illustrate this point, Hempel introduced an

example which became very well known in the
specialized literature. The rule used for the illustration,
denoted by (I1), is the following:

‘‘if x is a raven; then x is black’’ or; in everyday

language; ‘‘all ravens are black’’:

Remark that with respect to the considered rule, there
are four possible evidences:
(a)
 black raven,

(b)
 black non-raven (for example, a black shoe),

(c)
 non-black raven (for example, a white raven),

(d)
 non-black non-raven (for example, a white shoe).
According to the Nicod’s criterion, (a) is a positive
instance of the rule, and so (a) confirms rule (I1). (c) is a
negative instance, and so (c) disconfirms (I1). (b) and (d)
do not satisfy the premise of the rule ‘‘all ravens are
black’’ (i.e., neither (b) or (d) is a raven), and so they are
non-instances and are irrelevant to (I1).
With the aim of discussing the Nicod’s criterion,

Hempel introduced the equivalence condition which
says ‘‘Whatever confirms (disconfirms) one of two

equivalent sentences, also confirms (disconfirms) the

other’’ (Hempel, 1945, p. 12).
It seems that the truth of this condition is quite

uncontestable. As Hempel claimed, the equivalence
condition is ‘‘a necessary condition’’ and ‘‘fulfillment of

this condition makes the confirmation of a rule indepen-

dent of the way in which it is formulated’’ (Hempel, 1945,
p. 12).
Even if the Nicod’s criterion seems so natural and the

equivalence condition so necessary in the theory of
confirmation, when we put the two together, some
problems arise.
To illustrate these problems, let us come back to rule

(I1). Now, consider another rule, denoted by (I2)

‘‘if x is non-black; then x is not a raven’’ or

‘‘all non-black things are not ravens’’

which is logically equivalent to (I1). The equivalence can
easily be observed from the truth tables of these rules
seen as implications: ‘‘A implies B’’ and ‘‘:B implies
:A’’. It can also be observed that (I1) corresponds to
modus ponens and (I2) to modus tollens reasoning
patterns.
Using the logic of the Nicod’s criterion, we see that

evidence (d) confirms (I2), (c) disconfirms (I2) while (a)
and (b) are irrelevant to (I2). The equivalence condition
wants that whatever confirms (I1) also confirms (I2),
however, (a) confirms (I1) but not (I2) and (d) confirms
(I2) but not (I1). In this case, we see that application of
the Nicod’s criterion violates the equivalence condition.
Hempel (1945, p. 11) concludes: ‘‘This means that

Nicod’s Criterion makes confirmation depend not only

on the content of the hypothesis, but also on its

formulation’’.
Thus, instead of the Nicod’s criterion, Hempel

proposes the positive instance criterion. Hempel claims
that since (a) confirms (I1) and (d) confirms (I2), and
(I1) is logically equivalent to (I2), so both (a) and (d)
confirm (I1) and (I2). Moreover, (a) and (d) are not the
only evidence that can confirm (I1) and (I2). In fact, let
us consider the following rule (I3):

‘‘if x is a raven or not; then x is black or not a raven’’

or

‘‘anything which is or is not a raven is either

not a raven or black’’:

According to the Nicod’s criterion, anything which is
not a raven or black can confirm (I3). Obviously, (I3) is
logically equivalent to (I1) and (I2). Therefore, accord-
ing to the positive instance criterion, anything which is
not a raven or a black raven confirms (I1) (and (I2)) as
well. In other words, (a), (b) and (d) would confirm (I1),
while only (c) disconfirms (I1). In Table 2, we summarize
the application of the Nicod’s criterion to (I1), (I2) and
(I3).
From the above reasoning, Hempel (1945, p. 14)

concludes: ‘‘This implies that any non-raven represents

confirming evidence for the hypothesis that all ravens are

black’’. In this case, any red pencil, yellow chalk,
blackboard, white shoe, etc. become evidence to confirm
(I1). In other words, excluding ‘‘non-black ravens’’, all
things in the world confirm (I1). It entails that if we
want to test the hypothesis ‘‘all ravens are black’’, we do
not need to find any black raven, or even any raven, to
support the hypothesis. In other words, most things in
the world can confirm any implication. Hempel (1945, p.
14) writes: ‘‘We shall refer to these implications of the

equivalence criterion and of the above sufficient condition

of confirmation as the paradoxes of confirmation’’, i.e.,
the ravens’ paradox. How to solve the ravens’ paradox?
Hempel proposed some solutions to the paradox. We
think that the most interesting solution is based on a
misunderstanding of logic, as presented below.
Hempel claims that the rule ‘‘A implies B’’ is not only

about the class of objects with property A; but about all
objects. So, for (I1), it is not only a rule about ravens. It
is a rule concerning all objects in the world, whether they
are ravens or not. In other words, it is ‘‘for all x; if x is a
raven, then x is black,’’ and we are focusing on ‘‘all x’’
instead of the class of ravens only. If it is so, we should
not be surprised that the objects like a yellow chalk or a
blue book confirm (I1). In the following section we
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Table 2

Application of the Nicod’s criterion to (I1), (I2) and (I3)

(I1): ‘‘if x is (I2): ‘‘if x is (I3): ‘‘if x is a raven

a raven, then x is non-black, then x or not, then x is black or

black’’ is not a raven’’ not a raven’’

(a) Black ravens Confirmatory Irrelevant Confirmatory

(b) Black non-ravens Irrelevant Irrelevant Confirmatory

(c) Non-black ravens Disconfirmatory Disconfirmatory Disconfirmatory

(d) Non-black non-ravens Irrelevant Confirmatory Confirmatory
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propose a new criterion relative to confirmation, which
is different from both the Nicod’s criterion and the
Hempel’s positive instance criterion: in the rough set
context, it is called property of monotonicity of the
confirmation measure.
6. Desirable properties for rough set confirmation

measures

Even if all the formal properties of the Bayesian
confirmation measures hold also for the corresponding
rough set confirmation measures, we think that there is a
new property which would be desirable for the latter
measures.
To introduce this new property, let us remark that for

each formula F-C in L; one can express the rough set
confirmation measures in terms of the following four
values:

* a¼ suppSðF;CÞ; i.e. the number of objects in U for
which F and C hold together,

* b¼ suppSð:F;CÞ; i.e. the number of objects in U for
which F does not hold while C holds,

* c¼ suppSðF;:CÞ; i.e. the number of objects in U for
which F holds while C does not hold,

* d¼ suppSð:F;:CÞ; i.e. the number of objects in U

for which both F and C do not hold.

Using the terms of the ravens’ paradox, one can notice
that if F is the property ‘‘to be a raven’’ and C is the
property ‘‘to be black’’, then

* a¼ suppSðF;CÞ is the number of objects of U which
are black ravens,

* b¼ suppSð:F;CÞ is the number of objects of U which
are black non-ravens,

* c¼ suppSðF;:CÞ is the number of objects of U which
are non-black ravens,

* d¼ suppSð:F;:CÞ is the number of objects of U

which are non-black non-ravens.

Therefore, the rough set confirmation measures can be
expressed as follows:

dðF;CÞ ¼
a

a þ c
�

a þ b

a þ b þ c þ d
¼

ad � bc

ða þ cÞða þ b þ c þ dÞ
;

rðF;CÞ ¼ log
ða=ða þ cÞÞ

ðða þ bÞ=ða þ b þ c þ dÞÞ

� �
;

lðF;CÞ ¼ log
ða=ða þ bÞÞ
ðc=ðc þ dÞÞ

� �
;

f ðF;CÞ ¼

a

a þ b
�

c

c þ d
a

a þ b
þ

c

c þ d

¼
ad � bc

ad þ bc þ 2ac
;

sðF;CÞ ¼
a

a þ c
�

b

b þ d
¼

ðad � bcÞ
ða þ cÞðb þ dÞ

;

bðF;CÞ ¼
a

a þ b þ c þ d
�

a þ c

a þ b þ c þ d

a þ b

a þ b þ c þ d

¼
ad � bc

ða þ b þ c þ dÞ2
:

In this context, we propose the following property of
monotonicity:
(M)
 cðF;CÞ¼F ½suppSðF;CÞ; suppSð:F;CÞ; suppS

ðF;:CÞ; suppSð:F;:CÞ
 is a function non-decreas-
ing with respect to suppSðF;CÞ and suppSð:F;:CÞ
and non-increasing with respect to suppSð:F;CÞ
and suppSðF;:CÞ:
The monotonicity property (M) has the following
interpretation. Monotonicity of cðF;CÞ with respect to
suppS(F,C) means that any evidence in which F and C
hold together increases (or at least does not decrease)
the credibility of the decision rule F-C. Considering
the example of black ravens, this means that the more
black ravens we observe, the more credible becomes the
decision rule ‘‘if x is a raven, then x is black’’ denoted by
(I1) in Section 5. Monotonicity of c(F,C) with respect to
suppS(F,:C) means that any evidence in which F holds
and C does not hold decreases (or at least does not
increase) the credibility of the decision rule F-C. In the
example of black ravens, this means that the more non-
black ravens we observe, the less credible becomes the
decision rule (I1). Analogously, with respect to
suppS(:F,C), any evidence in which F does not hold
and C holds decreases (or at least does not increase) the
credibility of the decision rule F-C, and with respect
to suppS(:F,:C), any evidence in which both F and C
do not hold increases (or at least does not decrease) the
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Table 3

Application of the Nicod’s criterion to (I1), (I2) and (I3), compared with monotonicity property of the confirmation measure

(I1): ‘‘if x is (I2): ‘‘if x is (I3): ‘‘if x is a Monotonicty

a raven, then x is non-black, then x is raven or not, then property of the

black’’ not a raven’’ x is black or confirmation

not a raven’’ measure

(a) Black-ravens Confirmatory Irrelevant Confirmatory Confirmatory

(b) Black non-ravens Irrelevant Irrelevant Confirmatory Disconfirmatory

(c) Non-black ravens Disconfirmatory Disconfirmatory Disconfirmatory Disconfirmatory

(d) Non-black non-ravens Irrelevant Confirmatory Confirmatory Confirmatory
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credibility of the decision rule F-C. In the example of
black ravens, this means that the more black non-ravens
we observe, the less credible becomes the decision rules
(I1), while the more non-black non-ravens we observe
the more credible becomes the decision rule (I1).
Let us remark that the monotonicity with respect to

suppS(F,C) and suppS(F,:C) amount to the Nicod’s
criterion and are unquestionable. The monotonicity
with respect to suppS(:F,C) and suppS(:F,:C) are
more debatable. To put the Nicod’s criterion, the
Hempel’s positive instance criterion and our monotoni-
city property in the same context, we propose Table 3.
Table 3 clearly shows that our monotonicity property

is different not only from the Nicod’s criterion but also
from the Hempel’s positive instance criterion repre-
sented in the last but one column. Let us note that in the
context of automated analysis of data, Hajek and
Havranek (1978) suggest the same monotonicity prop-
erty M, however, not for a confirmation measure of rule
F-C (for which they suggest the increasing mono-
tonicity with respect to suppS(F,C) and the decreasing
monotonicity with respect to suppS(F,:C) only), but for
a more specific association measure. In other words,
according to Hajek and Havranek (1978), within data
analysis, a decision rule is confirmed according to the
Nicod’s criterion.
We can explain the monotonicity with respect to

suppS(:F,C) and suppS(:F,:C), considering our inter-
pretation of property (i) from Section 4: a positive value
of a confirmation measure c(F,C) means that property
C is satisfied more frequently when property F is
satisfied rather than when F is not satisfied. From this
viewpoint, an evidence in which F is not satisfied and C
is satisfied (objects ||:F4C||) increases the frequency of
C in the situations where F is not satisfied and thus it
should decrease the value of the confirmation. Analo-
gously, an evidence in which both F and C are not
satisfied (objects ||:F4:C||) decreases the frequency of
C in the situations where F is not satisfied and thus it
should increase the value of the confirmation.
We want to give also a more formal justification to the

monotonicty of confirmation measures with respect to
suppS(:F,C) and suppS(:F,:C). Let us consider the
following definition of confirmation: property F con-
firms property C if

cerSðF;CÞ > FrSðCÞ: ðiiiÞ

Let us remark that definition (iii) corresponds to the
definition of incremental confirmation introduced by
Carnap (1962, new preface) under the name of ‘‘con-

firmation as increase in firmness’’ in the following form:
evidence F confirms hypothesis C if

PrðCjFÞ > PrðCÞ: ðivÞ

The confirmation measures dðF;CÞ; rðF;CÞ; lðF;CÞ;
f ðF;CÞ; sðF;CÞ and bðF;CÞ can be seen as quantitative
generalizations of the qualitative incremental confirma-
tion (Fitelson, 2001).
Redefining (iii) in terms of a ¼ suppSðF;CÞ; b ¼ suppS

ð:F;CÞ; c ¼ suppSðF;:CÞ and d ¼ suppSð:F;:CÞ;
we get

a

a þ c
>

a þ b

a þ b þ c þ d
: ðiii0Þ

The following theorem is useful for justifying the
property of monotonicity.

Theorem 1. Let us consider case a in which

a ¼ suppSðF;CÞ; b ¼ suppSð:F;CÞ;

c ¼ suppSðF;:CÞ; d ¼ suppSð:F;:CÞ

and case a0 in which

a0 ¼ suppSðF
0;C0Þ; b0 ¼ suppSð:F

0;C0Þ;

c0 ¼ suppSðF
0;:C0Þ; d 0 ¼ suppSð:F

0;:C0Þ:

Let us suppose, moreover, that

cerSðF;CÞoFrSðCÞ ðvÞ

while

cerSðF0;C0Þ > FrSðC0Þ: ðviÞ

The following implications are satisfied:
(1)
 if a0 ¼ a þ D; b0 ¼ b; c0 ¼ c and d 0 ¼ d; then D > 0;

(2)
 if a0 ¼ a; b0 ¼ b þ D; c0 ¼ c and d 0 ¼ d; then Do0;

(3)
 if a0 ¼ a; b0 ¼ b; c0 ¼ c þ D and d 0 ¼ d; then Do0;

(4)
 if a0 ¼ a; b0 ¼ b; c0 ¼ c and d 0 ¼ d þ D; then D > 0:
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Proof. (v) can be written as

a a þ b
a þ c
o

a þ b þ c þ d
: ðviiÞ

If condition of implication (1) holds, (vi) can be
rewritten as

a0

a0 þ c0
>

a0 þ b0

a0 þ b0 þ c0 þ d 0

3
ða þ DÞ

ða þ DÞ þ c
>

ða þ DÞ þ b

ða þ DÞ þ b þ c þ d
: ðviiiÞ

Using simple algebraic operations, we obtain
from (viii)

ða þ DÞ
ða þ DÞ þ c

>
ða þ DÞ þ b

ða þ DÞ þ b þ c þ d
3 ad � bc > �dD:

ðixÞ

Due to (vii), we have

ad � bco0: ðxÞ

Moreover, let us remark that

d > 0 ðxiÞ

because if d ¼ 0; then (ix) would boil down to

�bc > 0;

which is impossible because bX0 and cX0.For (x) and
(xi), (ix) gives

D >
ad � bc

�d
> 0:

Thus, we proved implication (1). If condition of
implication (2) holds, (vi) can be rewritten as

a0

a0 þ c0
>

a0 þ b0

a0 þ b0 þ c0 þ d 0

3
a

a þ c
>

a þ ðb þ DÞ
a þ ðb þ DÞ þ c þ d

: ðxiiÞ

From (vii) and (xii) we obtain

a þ b

a þ b þ c þ d
>

a

a þ c
>

a þ ðb þ DÞ
a þ ðb þ DÞ þ c þ d

: ðxiiiÞ

Using simple algebraic operations, from (xiii) we obtain

a þ ðb þ DÞ
a þ ðb þ DÞ þ c þ d

o
a þ b

a þ b þ c þ d

3 ðc þ dÞDo0: ðxivÞ

(xiv) holds if Do0; because cX0 and dX0 by definition
and, moreover, ca0 or da0, because otherwise inequal-
ity (vii) would become

a

a
o

a þ b

a þ b

which, of course, is a contradiction. (xiv) says that (v)
and (vi), or equivalently (vii) and (xii), can be
satisfied together only if Do0. This proves impli-
cation (2).
If condition of implication (3) holds, (vi) can be
rewritten as

a0

a0 þ c0
>

a0 þ b0

a0 þ b0 þ c0 þ d 0

3
a

a þ ðc þ DÞ
>

a þ b

a þ b þ ðc þ DÞ þ d
: ðxvÞ

From (xv), we obtain

a

a þ ðc þ DÞ
>

a þ b

a þ b þ ðc þ DÞ þ d

3 ad � bc > bD: ðxviÞ

Due to (vii) and (x), and taking into account that bX0,
(xvi) can be satisfied only if Do0. This proves
implication (3). If condition of implication (4) holds,
(vi) can be rewritten as

a0

a0 þ c0
>

a0 þ b0

a0 þ b0 þ c0 þ d 0

3
a

a þ c
>

a þ b

a þ b þ c þ ðd þ DÞ
: ðxviiÞ

Clearly, (vii) and (xvii) can be satisfied only if D>0 and
this proves implication (4). &

Theorem 1 has the following interpretation. Passing
from case a to case a0, we pass from a situation in which
property F does not confirm property C, to a situation
in which property F0 confirms property C0. Theorem 1
says that this passage from non-confirmation to
confirmation is permitted by an increase of suppS(F,C)
or suppS(:F,:C), or by a decrease of suppS(:F,C) or
suppS(F,:C). Thus, the theorem supports the claim that
confirmation given by property F to property C is
positively related to suppS(F,C) and suppS(:F,:C),
and negatively related to suppS(:F,C) and
suppS(F,:C).
In fact, Theorem 1 supports the monotonicity

property (M) because, if the passage from a situation
of non-confirmation to a situation of confirmation
implies a specific sign of modifications of the four
values suppS(F,C), suppS(:F,:C), suppS(:F,C) and
suppS(F,:C), it is natural to expect that confirmation
measures will react analogously to modifications of the
above values.
Considering Hempel’s theory of confirmation, a

possible objection to our monotonicity property (M)
could be the following: is the equivalence condition
respected by the monotonicity property (M)? To answer
this question we can reconsider the three equivalent
implications (I1), (I2) and (I3). Let us denote again by F
the property ‘‘to be a raven’’ and by C the property ‘‘to
be black’’. With respect to (I1), ‘‘if x is a raven, then x is
black’’, using (iii) we have that F confirms C if

cerSðF;CÞ > FrSðCÞ
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which can be rewritten as

suppSðF;CÞ
suppSðF;CÞ þ suppSðF;:CÞ

>
suppSðF;CÞþsuppSð:F;CÞ

suppSðF;CÞ þ suppSðF;:CÞþsuppSð:F;CÞ þ suppSð:F;:CÞ
:

ðxviiiÞ

With respect to (I2), ‘‘if x is non-black, then x is not a
raven’’, using (iii) we have that :C confirms :F if

cerSð:C;:FÞ > FrSð:FÞ

which can be rewritten as

suppSð:F;:CÞ
suppSðF;:CÞ þ suppSð:F;:CÞ

>
suppSð:F;CÞ þ suppSð:F;:CÞ

suppSðF;CÞ þ suppSðF;:CÞ þ suppSð:F;CÞ þ suppSð:F;:CÞ
:

ðxixÞ

Using elementary algebra, we can prove that, both,
(xviii) and (xix) are equivalent to

suppSðF;CÞ � suppSð:F;:CÞ

> suppSð:F;CÞ suppSðF;:CÞ: ðxxÞ

The equivalence of (xviii) and (xix) says that the
incremental confirmation of the implication F-C is
equivalent to the incremental confirmation of the
implication :C-:F. Thus, with respect to (I1) and
(I2) Hempel’s equivalence condition holds.
Let us remark, however, that equivalent incremental

confirmation does not mean equivalent degree of
confirmation. In fact, considering, for example, con-
firmation measure l we can see that with respect to
implication F-C, the confirmation measure is
lðF;CÞ ¼ log½cerSðC;FÞ=cerSð:C;FÞ
; while with re-
spect to implication :C-:F, the confirmation measure
is lð:F;:CÞ ¼ log½cerSð:F;:CÞ=cerSðF;:CÞ
 and, in
general, lðF;CÞalð:C;:FÞ:
In terms of confirmation measure cðF;CÞ; equivalent

incremental confirmation of F-C and :C-:F means
that for each F and C:

cðF;CÞ > 0 3 cð:C;:FÞ > 0; ðxxiÞ

cðF;CÞo0 3 cð:C;:FÞo0; ðxxiiÞ

cðF;CÞ ¼ 0 3 cð:C;:FÞ ¼ 0: ðxxiiiÞ

It is worth noting that equivalent incremental confirma-
tion holds for F-C;:C-:F; C-F and :F-:C;
thus (xxi), (xxii) and (xxiii) can be generalized as follows:

cðF;CÞ > 03 cð:C;:FÞ > 0 3 cðC;FÞ > 0

3 cð:F;:CÞ > 0; ðxxivÞ

cðF;CÞo03 cð:C;:FÞo0 3 cðC;FÞo0
3 cð:F;:CÞo0; ðxxvÞ
cðF;CÞ ¼ 03 cð:C;:FÞ ¼ 0 3 cðC;FÞ ¼ 0

3 cð:F;:CÞ ¼ 0: ðxxviÞ

With respect to (I3), ‘‘if x is a raven or not, then x is
black or not a raven’’, the discussion is a little more
complex. Formally, (I3) can be written as
ðF3:FÞ-ð:F3CÞ: Thus, with respect to (I3), using
(iii) we have that ðF3:FÞ confirms ð:F3CÞ if

cerSðF3:F;:F3CÞ > FrSð:F3CÞ: ðxxviiÞ

Let us observe that jjF3:Fjj ¼ U ; i.e. ‘‘all x being
ravens or not ravens’’ means all objects in the universe
of discourse U. Therefore, we have

cerSðF3:F;:F3CÞ ¼ FrSð:F3CÞ: ðxxviiiÞ

Of course, (xxvii) and (xxviii) are incompatible. Remark,
however, that F-C can be considered as equivalent to
ðF3:FÞ-ð:F3CÞ only if- is seen as a typical logical
implication, but this is not the case if - is seen as a
decision rule. According to the definition of a typical
logical implication, F-C is false when F is true andC is
false. In all other cases F-C is true. The implication is
thus equivalent to :F3C; so it is also equivalent to
ðF3:FÞ-ð:F3CÞ: In the literature, this interpretation
of an implication corresponds precisely to so-called
material implication. It has been considered by Frege,
Łukasiewicz, Russell, Wittgenstein and logical positivists
(for an exhaustive reconstruction see Edgington, 1995).
We do not wish to enter the discussion about different
interpretations of an implication, however, we would
like to show that the material implication is not the best
interpretation for decision rules resulting from the rough
set approach and, more generally, from data analysis.
The best known objections to the material implication

are the paradoxes of implication. For example, an
implication like, ‘‘if Rome is in Poland, then 2+2=5’’ is
true as material implication because the premise is false
(if Rome is in Poland), so, whatever the conclusion is,
the material implication is true. One of the most natural
alternative interpretations of the implication, which
agrees with decision rules, has been given by Edgington
(1995) (see also Stalnaker, 1968); this non-truth-func-
tional interpretation is the following:
(a)
 F-C is false when F is true and C is false,

(b)
 F-C is true when F and C are both true,

(c)
 F-C may be false or true when F is false.
While situations (a) and (b) are quite natural, situation
(c) needs some clarification. Suppose that F ¼‘‘you
touch that wire’’ and C ¼‘‘you will get an electric
shock’’; then F-C is read as ‘‘if you touch that wire,
then you will get an electric shock’’. Remark that if you
will not touch that wire, you will not know if F-C is
true or false. This corresponds to situation (c) in which
we are not able to say anything about the truth or the
falsity of F-C:



ARTICLE IN PRESS
S. Greco et al. / Engineering Applications of Artificial Intelligence 17 (2004) 345–361356
Therefore, according to the non-truth-functional
interpretation of an implication identified with a
decision rule, we are interested by the cases where F
and C are both true (because they support the decision
rule) or where F is true and C is false (because they
discard the decision rule), while we are not interested by
the cases where F is false. To justify our lack of interest
by the last type of cases, let us consider a decision table
with medical data where F ¼‘‘presence of symptom s’’
and C ¼‘‘presence of disease d’’ (consequently,
:F ¼‘‘absence of symptom s’’ and :C ¼‘‘absence of
disease d’’). In the table there are cases with properties
ð:F4CÞ and ð:F4:CÞ; while there is no case with
properties ðF4CÞ or ðF4:CÞ: In this situation, the
decision rule F-C � ‘‘if there is symptom s, then there
is disease d’’ will not be induced. If, however, we would
accept the interpretation of the material implication,
decision rule F-C would be induced, because, for this
interpretation, the only case permitting to block the
induction of F-C is the case with properties ðF4:CÞ
and there is no case of this type in the considered
decision table.
Thus, coming back to Hempel’s equivalence condi-

tion, F-C and ðF3:FÞ-ð:F3CÞ are equivalent if we
consider the material implication, but they are not
equivalent if we consider the non-truth-functional
interpretation of implication F-C: This explains why
the Hempel’s equivalence condition and our monotoni-
city condition do not agree with respect to formulation
(I3), ‘‘if x is a raven or not, then x is black or not a
raven’’.
Let us end this section, with a remark about our

approach to the ravens’ paradox and the so-called
Bayesian solution (Mackie, 1963; Horwich, 1982; Ear-
man, 1992). We applied the incremental confirmation to
the ravens’ paradox on the basis of the rule F-C � ‘‘if
x is a raven, then x is black’’. Thus, we considered
F=‘‘x is a raven’’ as an evidence for the hypothesis
C ¼ ‘‘x is black’’. The confirmation measure cðF;CÞ
calculated for this rule says how much evidence F
supports (when cðF;CÞ > 0), discards (when cðF;CÞo0)
or is indifferent to (when cðF;CÞ ¼ 0) hypothesisC.
Within the Bayesian solution of the ravens’ paradox, the
interpretation of evidence and hypothesis is different.
There are four evidences: FBR ¼ ‘‘x is a black raven’’,
FNR¼ ‘‘x is a non-black raven’’, FBN¼ ‘‘x is a black
non-raven’’, FNN¼ ‘‘x is a non-black non-raven’’. The
hypothesis is CBR¼ ‘‘all ravens are black’’. Bayesian
approach to the ravens’ paradox considers the following
measures of confirmation:

* cðFBR;CBRÞ; which says how much the observation
of a black raven (FBR), supports (when
cðFBR;CBRÞ > 0), discards (when cðFBR;CBRÞo0) or
is indifferent to (when cðFBR;CBRÞ ¼ 0) the hypoth-
esis that all ravens are black (CBR);
* cðFNR;CBRÞ; which says how much the observation
of a non-black raven (FNR), supports (when
cðFNR;CBRÞ > 0), discards (when cðFNR;CBRÞo0)
or is indifferent to (when cðFNR;CBRÞ ¼ 0) the
hypothesis that all ravens are black (CBR);

* cðFBN;CBRÞ; which says how much the observation
of a black non-raven (FBN), supports (when
cðFBN;CBRÞ > 0), discards (when cðFBN;CBRÞo0)
or is indifferent to (when cðFBN;CBRÞ ¼ 0) the
hypothesis that all ravens are black (CBR);

* cðFNN;CBRÞ; which says how much the observation
of a non-black non-raven (FBR), supports (when
cðFNN;CBRÞ > 0), discards (when cðFNN;CBRÞo0) or
is indifferent to (when cðFNN;CBRÞ ¼ 0) the hypoth-
esis that all ravens are black (CBR).

Bayesian solution of ravens’ paradox says that the
evidence ‘‘black raven’’ has a higher degree of con-
firmation of the hypothesis ‘‘all ravens are black’’ than
the evidence ‘‘non-black non-raven’’ (for a first attempt
of this solution see (Hosiasson-Lindenbaum, 1940); let
us mention that Hosiasson-Lindenbaum was the first to
formulate the ravens’ paradox in print; she attributed it
to Hempel but gave no reference; Hempel (1945)
referred to ‘‘discussions’’ with her). This can solve the
paradox because the observation of ‘‘non-black non-
ravens’’ supports the hypothesis ‘‘all ravens are black’’
so weakly that people will always think that ‘‘non-black
non-ravens’’ do not confirm the hypothesis.
Without entering into details of a complex discussion

about interpretation of probabilities involved in the
Bayesian solution, we will give an idea, of the complex-
ity of the Bayesian approach to the ravens’ paradox,
using an example proposed by Good (1967), who was
one of the first to show that the Nicod’s criterion is not
always acceptable. Good considered the case where
exactly one of the following hypotheses is true:

* (H): there are 100 black ravens, no non-black raven
and 1 million of other birds,

* (:H): there are 1000 black ravens, 1 white raven and
1 million of other birds.

Suppose that an evidence is a bird selected at random
and that it is a black raven. Let us now calculate the
probability of selecting a black raven under the hypoth-
esis H, i.e. PðEjHÞ ¼ 100=1000100; and the probability
of selecting a black raven under the hypothesis :H; i.e.
PðEj:HÞ ¼ 1000=1001001: Clearly,

PðEjHÞoPðEj:HÞ: ðxxixÞ

(xxix) means that selection of a black raven (E) is
supporting more hypothesis ð:HÞ ‘‘not all ravens are
black’’ than hypothesis (H) ‘‘all ravens are black’’.
This example permits to understand that the Bayesian

approach to the ravens’ paradox is based on the estimation
of probabilities of quite complex events, such as: the
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probability that a randomly selected raven is black under
the hypothesis that all ravens are black, or the probability
that a randomly selected raven is black under the
hypothesis that not all ravens are black. This approach
is completely not appropriate to characterization of
decision rules induced from observations contained in a
decision table where we have nothing similar to the two
possible distributions of the populations of birds in
hypothesis H and :H: To be more precise, within
Bayesian approach,H and :H are two different universes.
This is simply meaningless within data analysis where we
have only one universe represented by the available data.
Finally, from the viewpoint of the incremental

confirmation considered within the rough set approach
or, in general, within data analysis, the confirmation
measure cðF;CÞ depends on the number of ‘‘black
ravens’’, ‘‘black non-ravens’’, ‘‘non-black ravens’’ and
‘‘non-black non-ravens’’ contained in the universe of
discourse described in the decision table. Thus, within
rough set approach, ‘‘black ravens’’, ‘‘black non-
ravens’’, ‘‘non-black ravens’’ and ‘‘non black non-
ravens’’ are confirmatory, disconfirmatory or irrelevant
with respect to the decision rule F-C �‘‘if x is a raven,
then x is black’’ to the extent to which an increment of
the respective number increases, decreases or does not
influence cðF;CÞ:We think that this incremental view of
the confirmation measure is very convincing because it
does not need probability estimation (and thus avoids
complex discussions about interpretation of probability;
see for example Kyburg (1970)) and, instead, it makes
use of some elementary parameters of the considered
data set (numbers of objects satisfying some properties).
We believe that for all these reasons the incremental
view is the only acceptable interpretation of the
confirmation measures for data analysis.
7. Rough set confirmation measures satisfying

monotonicity

Theorem 2, presented in this section, answers the
following question: which of the above confirmation
measures do satisfy monotonicity property (M)?

Theorem 2. lðF;CÞ; f ðF;CÞ and sðF;CÞ satisfy (M),
while dðF;CÞ; rðF;CÞ and bðF;CÞ do not satisfy (M).

Proof. In the following we shall assume that modifica-
tion D is positive. Let us start with lðF;CÞ and
modification of a. In this situation we have

a þ D
a þ b þ D

X
a

a þ b

3 ða þ DÞða þ bÞXaða þ b þ DÞ 3 bDX0: ðxxxÞ

Since, by hypothesis, bDX0 is always true, then (xxx)
proves that lðF;CÞ is not decreasing with respect to a ¼
suppSðF;CÞ: For modification of c, we have

c þ D
c þ d þ D

X
c

c þ d
3 ðc þ DÞðc þ dÞ

X cðc þ d þ DÞ 3 dDX0: ðxxxiÞ

Since, by hypothesis, dDX0 is always true, then (xxxi)
proves that lðF;CÞ is not increasing with respect to c ¼
suppSðF;:CÞ: It is obvious, moreover, that s(F,C) is
not increasing (more exactly decreasing) with respect to
b and not decreasing (more exactly increasing) with
respect to d. Due to the fact that l(F,C) and f (F,C) are
ordinally equivalent, the proof that (M) is satisfied by
l(F,C) is sufficient to conclude that (M) is satisfied also
by f (F,C). Let us remark that using arguments similar
to those used in (xxx), one can prove that s(F,C) is not
decreasing with respect to a ¼ suppSðF;CÞ: For mod-
ification of b, we have

b þ D
b þ d þ D

X
b

b þ d

3 ðb þ DÞðb þ dÞXbðb þ d þ DÞ 3 dDX0: ðxxxiiÞ

Since, by hypothesis, dDX0 is always true, then (xxxii)
proves that s(F,C) is not increasing with respect to b ¼
suppSðF;:CÞ: It is obvious, moreover, that sðF;CÞ is
not increasing (more exactly decreasing) with respect to
c and not decreasing (more exactly increasing) with
respect to d. Now, we will prove by a counterexample
that dðF;CÞ; rðF;CÞ and bðF;CÞ do not satisfy (M). Let
us consider the case a in which

a ¼ suppSðF;CÞ ¼ 100; b ¼ suppSð:F;CÞ ¼ 0;

c ¼ suppSðF;:CÞ ¼ 0; d ¼ suppSð:F;:CÞ ¼ 1

and the case a0 in which

a0 ¼ suppSðF
0;C0Þ ¼ 101; b0 ¼ suppSð:F

0;C0Þ ¼ 0;

c0 ¼ suppSðF
0;:C0Þ ¼ 0; d 0 ¼ suppSð:F

0;:C0Þ ¼ 1:

We can easily verify that

dðF;CÞ ¼
100

100þ 0
�

100þ 0
100þ 0þ 0þ 1

>
101

101þ 0
�

101þ 0
101þ 0þ 0þ 1

¼ dðF0;C0Þ

which proves that confirmation measure d(F,C) does
not satisfy the monotonicity property with respect to
a ¼ suppSðF;CÞ: We can also verify that

rðF;CÞ ¼ log

100

100þ 0

� �

100þ 0
100þ 0þ 0þ 1

� �
2
664

3
775

> log

101

101þ 0

� �

101þ 0
101þ 0þ 0þ 1

� �
2
664

3
775 ¼ rðF0;C0Þ
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which proves that also confirmation measure r(F,C)
does not satisfy the monotonicity property with respect
to a ¼ suppSðF;CÞ: Finally, we can verify that

bðF;CÞ ¼
100�1� 0�0

ð100þ 0þ 0þ 1Þ2
>

101�1� 0�0

ð101þ 0þ 0þ 1Þ2

¼ bðF0;C0Þ

which proves that also confirmation measure bðF;CÞ
does not satisfy the monotonicity property with respect
to a ¼ suppSðF;CÞ: For the sake of completeness, we
shall prove that while confirmation measure dðF;CÞ and
rðF;CÞ satisfy the monotonicity property with
respect to b ¼ suppSð:F;CÞ; c ¼ suppSðF;:CÞ and
d¼ suppSð:F;:CÞ; the confirmation measure bðF;CÞ
does not satisfy the monotonicity property with respect
to b ¼ suppSð:F;CÞ; c ¼ suppSðF;:CÞ and d ¼
suppSð:F;:CÞ: For modification of b in dðF;CÞ; we
have

a þ ðb þ DÞ
a þ ðb þ DÞ þ c þ d

X
a þ b

a þ b þ c þ d

3 ða þ b þ DÞða þ b þ c þ dÞ

Xða þ bÞða þ b þ Dþ c þ dÞ 3 ðc þ dÞDX0:

ðxxxiiiÞ

Since, by hypothesis, ðc þ dÞDX0 is always true, then
(xxxiii) proves that dðF;CÞ is not increasing with respect
to b ¼ suppSð:F;CÞ: For modification of c in dðF;CÞ;
we also have

a

a þ ðc þ DÞ
�

a þ b

a þ b þ ðc þ DÞ þ d

p
a

a þ c
�

a þ b

a þ b þ c þ d
3 � bDp0: ðxxxivÞ

Since, by hypothesis, bDX0 is always true, then (xxxiv)
proves that dðF;CÞ is not increasing with respect to
c ¼ suppSðF;:CÞ: It is obvious, moreover, that dðF;CÞ
is not decreasing (more exactly increasing) with respect
to d ¼ suppSð:F;:CÞ: Let us remark that (xxxiii)
proves also that rðF;CÞ is not increasing with respect
to b ¼ suppSð:F;CÞ: Analogously, (xxxiv) proves that
rðF;CÞ is not increasing with respect to c ¼
suppSðF;:CÞ: It is obvious, moreover, that rðF;CÞ is
not decreasing (more exactly increasing) with respect to
d ¼ suppSð:F;:CÞ: To prove that confirmation mea-
sure bðF;CÞ does not satisfy the monotonicity property
with respect to b ¼ suppSð:F;CÞ; let us consider the
case a� in which

a� ¼ suppSðF
�;C�Þ ¼ 0; b�¼ suppSð:F

�;C�Þ ¼ 100;

c� ¼ suppSðF
�;:C�Þ ¼ 1; d� ¼ suppSð:F

�;:C�Þ ¼ 0
and the case a�� in which

a�� ¼ suppSðF
��;C��Þ ¼ 0;

b�� ¼ suppSð:F
��;C��Þ ¼ 101;

c�� ¼ suppSðF
��;:C��Þ ¼ 1;

d�� ¼ suppSð:F
��;:C��Þ ¼ 0:

We can easily verify that

bðF�;C�Þ ¼ 0�0� 100�1

ð0þ 100þ 1þ 0Þ2
o

0�0� 101�1

ð0þ 101þ 1þ 0Þ2
¼ bðF��;C��Þ

which proves that confirmation measure bðF;CÞ does
not satisfy the monotonicity property with respect to
b ¼ suppSð:F;CÞ: To prove that confirmation measure
bðF;CÞ does not satisfy the monotonicity property with
respect to c ¼ suppSðF;:CÞ; let us consider the case a�

in which

a� ¼ suppSðF
�;C�Þ ¼ 0; b� ¼ suppSð:F

�;C�Þ ¼ 1;

c� ¼ suppSðF
�;:C�Þ ¼ 100; d� ¼ suppSð:F

�;:C�Þ ¼ 0

and the case a�� in which

a�� ¼ suppSðF
��;C��Þ ¼ 0;

b�� ¼ suppSð:F
��;C��Þ ¼ 1;

c�� ¼ suppSðF
��;:C��Þ ¼ 101;

d�� ¼ suppSð:F
��;:C��Þ ¼ 0:

We can easily verify that

bðF�;C�Þ ¼
0�0� 1�100

ð0þ 1þ 100þ 0Þ2
o

0�0� 1�101

ð0þ 1þ 101þ 0Þ2

¼ bðF��;C��Þ

which proves that confirmation measure bðF;CÞ does
not satisfy the monotonicity property with respect to
c ¼ suppSðF;:CÞ: To prove that confirmation measure
bðF;CÞ does not satisfy the monotonicity property with
respect to d ¼ suppSð:F;:CÞ; let us consider the case
a# in which

a# ¼ suppSðF
#;C#Þ ¼ 1;

b# ¼ suppSð:F
#;C#Þ ¼ 0;

c# ¼ suppSðF
#;:C#Þ ¼ 0;

d# ¼ suppSð:F
#;:C#Þ ¼ 100
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and the case a## in which

a## ¼ suppSðF
##;C##Þ ¼ 1;

b## ¼ suppSð:F
##;C##Þ ¼ 0;

c## ¼ suppSðF
##;:C##Þ ¼ 0;

d## ¼ suppSð:F
##;:C##Þ ¼ 101:

We can easily verify that

bðF#;C#Þ ¼
1�100� 0�0

ð1þ 0þ 0þ 100Þ2
>

1�101� 0�0

ð1þ 0þ 0þ 101Þ2

¼ bðF##;C##Þ

which proves that confirmation measure b(F,C) does
not satisfy the monotonicity property with respect to
d ¼ suppSð:F;:CÞ: &

The content of the above Theorem 2 is quite clear and
immediate: among the rough set confirmation measures
considered in the paper lðF;CÞ; f ðF;CÞ and sðF;CÞ
satisfy the monotonicity property (M), while dðF;CÞ;
rðF;CÞ and bðF;CÞ do not satisfy property (M).
However, a more detailed comment may be useful.
From our viewpoint, the most important discovery
coming from Theorem 2 is that the confirmation
measure dðF;CÞ does not satisfy the monotonicity
property. The importance of this result is threefold:
(1)
 dðF;CÞ is a very simple rough set confirmation
measure, coherent with the definition of incremental
confirmation; it is rather counterintuitive that
dðF;CÞ does not satisfy monotonicity, while other
confirmation measures having as complex formula-
tion as lðF;CÞ and f ðF;CÞ do;
(2)
 dðF;CÞ does not satisfy monotonicity with respect
to suppSðF;CÞ; in this case the monotonicity
property is indeed an uncontestable principle; using
the terms of the Hempel’s example, the property
says that the more black ravens we see, the more the
rule ‘‘all ravens are black’’ is confirmed;
(3)
 dðF;CÞ is not ruled out by the symmetry/asymmetry
test performed by Eells and Fitelson (2002); this
means that the contribution of monotonicity property
(M) in reducing the field of ‘‘coherent’’ confirmation
measures is very relevant; in fact, the only confirma-
tion measures which satisfy both symmetry/asymme-
try properties of Eells and Fitelson and monotonicity
property (M) are the two ordinally equivalent
confirmation measures lðF;CÞ and f ðF;CÞ:
8. Conclusions

The answer to the question put in the title is positive.
The main result of this paper states that, among the
confirmation measures considered in the literature and
recalled in Section 2, there are two confirmation
measures satisfying the desirable properties of symme-
try/asymmetry of Eells and Fitelson (2002), as well as
our new monotonicity property (M): these are the two
ordinally equivalent measures lðF;CÞ and f ðF;CÞ: In
particular, our property (M) rules out dðF;CÞ: Let us
remark that using the symmetry/asymmetry properties,
it is not possible to discard dðF;CÞ; while using our
monotonicity property, it is not possible to discard
sðF;CÞ: This can be interpreted in the sense that the
symmetry/asymmetry properties together with our
monotonicity property (M) can be considered as
complementary basic principles on which a sound
theory of confirmation measures can be founded. A
special attention merits, moreover, the violation of the
monotonicity property by confirmation measure bðF;CÞ
which is the corroboration measure proposed by Carnap
(1962). From our point of view, the violation of the
monotonicity property by this confirmation measure is
more troubling than its violation of the symmetry/
asymmetry property proposed by Eells and Fitelson
(2002). In fact Carnap (1962) liked that his corrobora-
tion measure b satisfies all four symmetry properties ES,
HS, CS and TS, because he was interested in represent-
ing quantitatively a completely symmetric relevance
relation. This means that in terms of Hempel’s paradox,
b measures the ‘‘correlation’’ between ‘‘black-ness’’ and
‘‘raven-ness’’. However, let us observe that this ‘‘corre-
lation’’ between ‘‘black-ness’’ and ‘‘raven-ness’’ is very
particular – in some situations it increases when one
observes non-black ravens and black non-ravens, and it
decreases when one observes black ravens and non-
black non-ravens!
In addition to the new desirable monotonicity

property proposed for confirmation measures in the
rough set context, we compared the confirmation
measures to several related issues, like independence
(dependence) of logical formulas, interestingness mea-
sures in data mining and Bayesian solutions of raven’s
paradox. Justification of the monotonicity property
required, moreover, to clarify relationships between
logical (material) implications and decision rules. Hope-
fully, all this can contribute to better understanding of
what decision rules mean and what quantitative
measures are the most suitable for them.
We think that the quite theoretical results presented in

this paper can be the basis for important operational
development within rough set theory and, in general,
within data analysis. Only to give some idea of
interesting issues for future researches consider the use
of measures lðF;CÞ and f ðF;CÞ for assessing the interest
of ‘‘if y, then y’’ decision rules induced from a data
table, as well as classification with these rules. Con-
sidering the huge number of decision rules which can be
induced from a data set, and the necessity of presenting
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only the most interesting rules to the users, this is a
problem of primary importance for data analysis. We
believe that the contribution of rough set confirmation
measures to solving this problem is very important.
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