
European Journal of Operational Research 154 (2004) 184–190

www.elsevier.com/locate/dsw
Computing, Artificial Intelligence and Information Technology

Decisions rules and flow networks

Zdzisław Pawlak *

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44 100 Gliwice, Poland

Received 9 September 2002; accepted 9 December 2002

For late Professor Henryk Greniewski, my mentor
Abstract

This paper, which is continuation of a series of the author�s papers on the relationship between decision algorithms
and Bayes� theorem, is related to Łukasiewicz�s ideas concerning the relationship between multivalued logic, probability
and Bayes� theorem. We propose in this paper a new mathematical model of a flow network, different from that in-

troduced by Ford and Fulkerson. Basically, the presented model is intended to be used rather as a mathematical model

of decision processes than as a tool for flow optimization in networks. Moreover, it concerns rather flow of information

than material media. Branches of the network are interpreted as decision rules with elementary conditions and decisions

in the nodes, whereas the whole network represents a decision algorithm. It is shown that a flow in such networks is

governed by Bayes� formula. In this case, however, the formula describes deterministic information flow distribution

among branches of the network, without referring to its probabilistic character. This leads to a new look on Bayes�
formula and many new applications.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is an extension of the article [7] and
is a continuation of ideas presented in author�s
previous papers on rough sets, Bayes� theorem and

decision tables [8].

In [4] flow optimization in networks has been

introduced and studied. The model was intended

to capture the nature of flow in transportation or

communication networks.
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In this paper, we present another kind of

mathematical model for flow networks, which may

be interpreted rather as a model of a deterministic,
steady state flow in a plumbing network––than a

transportation network. Essentially, the model is

intended to be used as a description of decision

processes and not as a description of flow opti-

mization. Branches of the network are interpreted

as decision rules with elementary conditions and

decisions in the nodes, whereas the network is

supposed to describe a decision algorithm. It is
shown that a flow in such a network is governed

by Bayes� rule. Furthermore, this interpretation

brings to light another understanding of Bayes�
ed.
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rule: the rule may be interpreted entirely in a de-
terministic way, without referring to its probabi-

listic nature, inherently associated with classical

Bayesian philosophy. This leads to new philo-

sophical and practical consequences. Some of

them will be discussed in this paper.

The plan of the paper is the following: First, the

definition of the flow graph is introduced, and next

basic properties of flow graphs are given and dis-
cussed. Further, simplification of flow graphs is

formulated and analyzed. Finally, the relation-

ship between flow graphs and decision algorithms

(tables) is presented. A simple tutorial example

is used to illustrate the ideas presented in the

paper.
2. Flow graphs

A flow graph is a directed, acyclic, finite graph

G ¼ ðN ;B;uÞ, where N is a set of nodes,

B � N � N is a set of directed branches,

u : B ! Rþ is a flow function and Rþ is the set of

non-negative reals.

Input of a node x 2 N is the set IðxÞ ¼
fy 2 N : ðy; xÞ 2 Bg; output of a node x 2 N is

defined as OðxÞ ¼ fy 2 N : ðx; yÞ 2 Bg.
We will also need the concept of input and output

of a graph G, defined, respectively, as follows:

IðGÞ ¼ fx 2 N : IðxÞ ¼ £g;
OðGÞ ¼ fx 2 N : OðxÞ ¼ £g:

Inputs and outputs of G are external nodes of G;
other nodes are internal nodes of G.
If ðx; yÞ 2 B then uðx; yÞ is a troughflow from x

to y.
With every node of a flow graph we associate its

inflow and outflow defined as

uþðyÞ ¼
X

x2IðyÞ
uðx; yÞ;

u�ðxÞ ¼
X

y2OðxÞ
uðx; yÞ;

respectively.

Similarly, we define an inflow and an outflow

for the whole flow graph, which are defined as
uþðGÞ ¼
x2IðGÞ

u�ðxÞ;

u�ðGÞ ¼
X

x2OðGÞ
uþðxÞ;

respectively.

We assume that for any internal node x,
uþðxÞ ¼ u�ðxÞ ¼ uðxÞ, where uðxÞ is a troughflow
of node x.
Obviously, uþðGÞ ¼ u�ðGÞ ¼ uðGÞ, where uðGÞ

is a troughflow of graph G.
The above formulas can be considered as flow

conservation equations [4].
3. Strength, certainty and coverage factors

With every branch ðx; yÞ we associate its

strength defined as

rðx; yÞ ¼ uðx; yÞ=uðGÞ:
Obviously, 06rðx; yÞ6 1 and it can be consid-

ered as a normalized flow of the branch ðx; yÞ. The
strength of a branch expresses simply the per-

centage of a total flow through the branch.

We define now two important coefficients as-
signed to every branch of a flow graph––the cer-

tainty and the coverage factors.

The certainty and the coverage of ðx; yÞ are de-
fined as cerðx; yÞ ¼ rðx; yÞ=rðxÞ, and the covðx; yÞ ¼
rðx; yÞ=rðyÞ, respectively, where rðxÞ is the nor-

malized troughflow of x, defined as

rðxÞ ¼
X

y2OðxÞ
rðx; yÞ ¼

X

y2IðxÞ
rðy; xÞ

and rðyÞ is defined in a similar way.
The certainty factor describes outflow distribu-

tion between outputs of a node, whereas the cov-

erage factor reveals how inflow is distributed
between inputs of the node.

The below properties are immediate conse-

quences of definitions given in the preceding sec-

tion:
X

y2OðxÞ
cerðx; yÞ ¼ 1; ð1Þ

X

x2IðyÞ
covðx; yÞ ¼ 1; ð2Þ



Fig. 1. Paint demand.
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cerðx; yÞ ¼ covðx; yÞrðyÞ=rðxÞ; ð3Þ

covðx; yÞ ¼ cerðx; yÞrðxÞ=rðyÞ: ð4Þ

It is easily seen that the strength, certainty,

coverage factors and consequently properties (1)–
(4) have a probabilistic flavor. In particular, Eqs.

(3) and (4) are well known Bayes� formulas.

However, in our case the properties are interpreted

without referring to their probabilistic character.

They simply describe some features of flow distri-

bution among branches in the network.

Let us also observe that Bayes� formula is, in

our setting, expressed by means of the strength
coefficient. This leads to very simple computations

and gives also new insight into the meaning of

Bayesian methodology.
Fig. 2. Paint distribution.
Remark. It is worthwhile to mention that the cer-

tainty and coverage factors have been for a long

time used in another context in machine learning

and data bases, see e.g., [9,10]. In fact these coef-
ficients have been first used by Łukasiewicz in

connection with his study of logic, probability and

Bayes� theorem [5].
Fig. 3. Car production distribution.
Example. Suppose that cars are painted in two

colors y1 and y2 and that 60% of cars have color y1,
whereas 40% cars have color y2. Moreover, assume

that colors y1 and y2 can be obtained by mixing
three paints x1, x2 and x3 in the following propor-
tions:

• y1 contains 20% of x1, 70% of x2 and 10% of x3,
• y2 contains 30% of x1, 50% of x2 and 20% of x3.

We have to find demand of each paint and its

distribution among cars y1 and y2.
Employing terminology introduced in previous

section we can represent our problem by means of

flow graph shown in Fig. 1.

Thus in order to solve our task first we have to

compute strength of each branch. Next, we com-

pute demand of each paint. Finally, we compute

the distribution of each paint among colors of

cars.
The final result is presented in Fig. 2.
Suppose now that the cars are produced by
three manufacturers z1, z2 and z3, in proportions

shown in Fig. 3, i.e.,

• 50% of cars y1 are produced by manufacturer z1,
• 30% of cars y1 are produced by manufacturer z2,
• 20% of cars y1 are produced by manufacturer z3



Fig. 4. Manufactures distribution.
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and

• 40% of cars y2 are produced by manufacturer z1,
• 30% of cars y2 are produced by manufacturer z2,
• 30% of cars y2 are produced by manufacturer z3.

Employing the technique used previously, we

can compute car production distribution among

manufacturers as shown in Fig. 4, e.g., manufac-

turer z1 produces 65% of cars y1 and 35% of cars y2
etc. Finally, the manufacturer z1 produces 46% of
cars, manufacturer z2––30% of cars and manu-

facturer z3––24% of cars.

We can combine graphs shown in Figs. 2

and 4 and we obtain the flow graph shown in

Fig. 5.

The graph shows clearly the flow structure of

the whole production process. From this graph it

is easily seen how the flow of decisions is struc-
tured.
Fig. 5. Combined
4. Paths and connections

For many applications we will need general-

ization of the strength, the certainty and coverage

factors, which will be discussed next.

A (directed) path from x to y, x 6¼ y denoted

½x; y�, is a sequence of nodes x1; . . . ; xn such that

x1 ¼ x, xn ¼ y and ðxi; xiþ1Þ 2 B for every i,
16 i6 n� 1.

Now, we extend the concept of certainty, cov-

erage and strength from single branch to a path, as

shown below.

The certainty of a path ½x1; xn� is defined as

cer½x1; xn� ¼
Yn�1

i¼1
cerðxi; xiþ1Þ;

the coverage of a path ½x1; xn� is the following

cov½x1; xn� ¼
Yn�1

i¼1
covðxi; xiþ1Þ;

the strength of a path ½x; y� is
r½x; y� ¼ rðxÞcer½x; y� ¼ rðyÞcov½x; y�:
The set of all paths from x to y ðx 6¼ yÞ denoted

hx; yi, will be called a connection from x to y. In
other words, connection hx; yi is a sub-graph de-
termined by nodes x and y.
We will also need extension of the above coef-

ficients for connections (i.e., sub-graphs deter-

mined by nodes x and y) as shown in what follows:
The certainty of connection hx; yi is

cerhx; yi ¼
X

½x;y�2hx;yi
cer½x; y�;
flow graph.
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the coverage of connection hx; yi is

covhx; yi ¼
X

½x;y�2hx;yi
cov½x; y�;

the strength of connection hx; yi is

rhx; yi ¼
X

½x;y�2hx;yi
r½x; y�:

Let x, y ðx 6¼ yÞ be nodes of G. If we substitute
the sub-graph hx; yi by a single branch ðx; yÞ, such
that rðx; yÞ ¼ rhx; yi, then cerðx; yÞ ¼ cerhx; yi,
covðx; yÞ ¼ covhx; yi and rðGÞ ¼ rðG0Þ, where G0

is the graph obtained from G by substituting hx; yi
by ðx; yÞ.
Table 1

Decision table induced by the flow graph

Rule no. Paint Car Manufacturer Strength

1 x1 y1 z1 0.06

2 x1 y1 z2 0.04

3 x1 y1 z3 0.02

4 x2 y1 z1 0.21

5 x2 y1 z2 0.12

6 x2 y1 z3 0.08

7 x3 y1 z1 0.03

8 x3 y1 z2 0.02

9 x3 y1 z3 0.01

10 x1 y2 z1 0.05

11 x1 y2 z2 0.04

12 x1 y2 z3 0.04

13 x2 y2 z1 0.08

14 x2 y2 z2 0.06

15 x2 y2 z3 0.06

16 x3 y2 z1 0.03

17 x3 y2 z2 0.02

18 x3 y2 z3 0.02
5. Flow graph and decision rules

With every branch ðx; yÞ we associate a decision
rule x ! y, read if x then y.
Thus every path ½x1; xn� determine a sequence of

decision rules x1 ! x2; x2 ! x3; . . . ; xn�1 ! xn.
From previous considerations it follows that

this sequence of decision rules can be replaced by a

single decision rule x1x2; . . . ; xn�1 ! xn, in short

Xi ! xn, such that

cerðXi; xnÞ ¼ cer½x1; xn�;

covðXi; xnÞ ¼ cov½x1; xn�

and

rðXi; xnÞ ¼ rðx1Þcer½x1; xn� ¼ rðxnÞcov½x1; xn�:

Similarly, with every connection hx; yi we will
associate a decision rule x ! y, such that

cerðx; yÞ ¼ cerhx; yi;

covðx; yÞ ¼ covhx; yi
and

rðx; yÞ ¼ rðxÞcerhx; yi ¼ rðyÞcovhx; yi:
The definitions given above allow us to asso-

ciate with every flow graph a decision algorithm

(decision table).

Let ½x1; xn� be a path such that x1 is an input and
xn an output of the graph respectively. Such path
will be called complete.
The set of all decision rules xi1xi2 . . . xin�1 ! xin
associated with all complete paths ½xi1 ; xin � in G will

be called a decision algorithm of G.

Example (cont.). The decision algorithm, pre-

sented in the form of a decision table, associated

with flow graph shown in Fig. 5, is given in Table

1.

Remark. The sum of strengths in the decision table

is 0.99. This is due the round-off errors.

In the decision table paint and car are condition
attributes, manufactures is the decision attribute,
whereas xi, yi and zi are values of these attributes,
respectively.

Let us notice that all combinations of condition
attributes value are present in the decision table. In

general case this is not necessary.

We can also look at the relationship between

flow graph and decision algorithms differently. We

can be interested in replacing all connections of

each complete path by a single decision rule, ac-

cording to definitions given previously. In this case

we obtain a decision algorithm, which is a kind of
composition of constituent algorithms. This will be

explained in more details in the example which

follows.



Table 3

Car manufacturer distribution

Rule no. Car Manufacturer Strength

1 y1 z1 0.30

2 y1 z2 0.18

3 y1 z3 0.12

4 y2 z1 0.16

5 y2 z2 0.12

6 y2 z3 0.12

Table 4

Paint demand by manufacturers

Rule no. Paint Manufacturer Strength

1 x1 z1 0.11

2 x1 z2 0.07

3 x1 z3 0.06

4 x2 z1 0.30

5 x2 z2 0.19

6 x2 z3 0.14

7 x3 z1 0.05

8 x3 z2 0.04

9 x3 z3 0.04

Z. Pawlak / European Journal of Operational Research 154 (2004) 184–190 189
Example (cont.). We can ask what is the paint

demand by each manufacturer. To this end we

have to replace each complete connection by a

single branch as shown in Fig. 6.

It is easily seen from the flow graph how paint

supply is distributed among manufacturers and

what the demand for each paint by every manu-
facturer is.

For example, supply of paint x1 is distributed
among manufacturers z1, z2 and z3 in the propor-

tions 46%, 29% and 25%, whereas demand for

paints x1, x2 and x3 by manufacturer z1 is 24%, 65%
and 13%, respectively.

The flow graph presented in Fig. 5 can be de-

picted by two decision tables given in Tables 2 and
3, respectively.

The decision table corresponding to the flow

graph shown in Fig. 6 is given in Table 4.

This table can be understood as a result of

operation performed on the constituent decision

tables Tables 2 and 3.
Fig. 6. Paint demand by manufacturers.

Table 2

Paint distribution

Rule no. Paint Car Strength

1 x1 y1 0.12

2 x1 y2 0.12

3 x2 y1 0.42

4 x2 y2 0.20

5 x3 y1 0.06

6 x3 y2 0.08
6. Conclusions

We presented in this paper a new approach to

flow networks. This approach is basically meant as

a new tool for modeling a flow of information

represented by a set of decision rules. It may be

useful for knowledge-based decision support. It is

also shown that the flow in the flow graph is
governed by Bayes� formula, however the meaning
of the Bayes� formula has entirely deterministic

character and does not refer to any probabilistic

interpretation. Thus our approach is entirely free

from the mystic flavor of Bayesian reasoning

raised by many authors, e.g., [1–3]. Besides, it gives

clear interpretation of obtained results and simple

computational algorithms.
It seems that the presented ideas could be gen-

eralized along the lines presented in [6].
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