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Abstract. In this paper we introduce a new kind of flow networks, called flow
graphs, different to that proposed by Ford and Fulkerson. Flow graphs are meant
to be used as a mathematical tool to analysis of information flow in decision al-
gorithms, in contrast to material flow optimization considered in classical flow
network analysis. In the proposed approach branches of the flow graph are in-
terpreted as decision rules, while the whole flow graph can be understood as a
representation of decision algorithm. The information flow in flow graphs is
governed by Bayes’ rule, however, in our case, the rule does not have probabil-
istic meaning and is entirely deterministic. It describes simply information flow
distribution in flow graphs. This property can be used to draw conclusions from
data, without referring to its probabilistic structure.

1 Introduction

The paper is concerned with a new kind of flow networks, called flow graphs, differ-
ent to that proposed by Ford and Fulkerson [3]. The introduced flow graphs are in-
tended to be used as a mathematical tool for information flow analysis in decision
algorithms, in contrast to material flow optimization considered in classical flow net-
work analysis.

In the proposed approach branches of the flow graph are interpreted as decision
rules, while the whole flow graph can be understood as a representation of decision
algorithm.

It is revealed that the information flow in flow graphs is governed by Bayes’ for-
mula, however, in our case the rule does not have probabilistic meaning and is entirely
deterministic. It describes simply information flow distribution in flow graphs, without
referring to its probabilistic structure.

Despite Bayes’ rule is fundamental for statistical reasoning, however it has led to
many philosophical discussions concerning its validity and meaning, and has caused
much criticism [1], [2]. In our setting, beside a very simple mathematical form, the
Bayes’ rule is free from its mystic flavor.
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This paper is a continuation of some authors’ ideas presented in [6], [7], [8], where
the relationship between Bayes’ rule and flow graphs has been introduced and studied.

From theoretical point of view the presented approach can be seen as a generaliza-
tion of �ukasiewicz’s ideas [4], who first proposed to express probability in logical
terms. He claims that probability is a property of propositional functions, and can be
replaced by truth values belonging to the interval <0,1>. In the flow graph setting the
truth values, and consequently probabilities, are interpreted as flow intensity in
branches of a flow graph. Besides, it leads to simple computational algorithms and
new interpretation of decision algorithms.

The paper is organized as follows. First, the concept of a flow graph is introduced.
Next, information flow distribution in the graph is defined and its relationship with
Bayes’ formula is revealed. Further, simplification of flow graphs is considered and
the relationship of flow graphs and decision algorithms is analyzed. Finally, statistical
independence and dependency between nodes is defined and studied.

All concepts are illustrated by simple tutorial examples.

2 Flow Graphs

A flow graph is a directed, acyclic, finite graph G = (N, B, σ), where N is a set of
nodes, B ⊆ N × N is a set of directed branches, σ : B → <0,1> is a flow function.

Input of x∈N is the set I(x) = {y∈N: ),( xy ∈ B}; output of x∈N is defined as

O(x) = {y∈N: ),( yx ∈ B} and ),( yxσ  is called the strength of ),( yx .

Input and output of a graph G, are defined as I(G) = {x∈N : I(x) = ∅}, O(G) =
{x∈N : O(x) = ∅}, respectively.

Inputs and outputs of G are external nodes of G; other nodes are internal nodes of
G.

With every node x of a flow graph G we associate its inflow and outflow defined as
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Obviously )()()( GGG σσσ == −+ , where )(Gσ is a troughflow of G. Moreover,

we assume that .1)( =Gσ
The above formulas can be considered as flow conservation equations [3].
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3 Certainty and Coverage Factors

With every branch of a flow graph we associate the certainty and the coverage factors
[9], [10].

The certainty and the coverage of ),( yx  are defined as 
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properties, which are immediate consequences of definitions given above are pre-
sented:
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Obviously the above properties have a probabilistic flavor, e.g., equations (3) and
(4) are Bayes’ formulas. However, these properties can be interpreted in deterministic
way and they describe flow distribution among branches in the network.

Notice that Bayes’ formulas given above have a new interpretation form which
leads to simple computations and gives new insight into the Bayesian methodology.

Example 1: Suppose that three models of cars x1, x2 and x3 are sold to three dis-
joint groups of customers z1, z2 and z3 through four dealers y1, y2, y3 and y4.

Moreover, let us assume that car models and dealers are distributed as shown in
Fig. 1.

Fig. 1. Cars and dealers distribution
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Computing strength and coverage factors for each branch we get results shown in
Figure 2.

Fig. 2. Strength, certainty and coverage factors

4 Paths and Connections

A (directed) path from x to y, x ≠ y is a sequence of nodes x1,…,xn such that x1 = x, xn =
y and (xi, xi+1) ∈B for every i, 1 ≤ i ≤ n-1. A path x…y is denoted by [x,y].
The certainty of a path [x1, xn] is defined as

∏
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the coverage of a path [x1, xn] is

∏
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+=
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1
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n

i
iin xxxx ������ , (6)

and the strength of a path [x, y] is
σ [x, y] = σ (x) cer[x, y] = σ (y) cov[x, y]. (7)

The set of all paths from x to y (x ≠ y) denoted >< yx, , will be called a connection

from x to y. In other words, connection >< yx, is a sub-graph determined by nodes x

and y.
The certainty of connection >< yx,  is

∑
>∈<

>=<
yxyx

yxceryxcer
,],[

],[, , (8)

the coverage of connection >< yx,  is
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∑
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and the strength of connection >< yx,  is

∑
>∈<
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yxyx

yxyx
,],[

],[, σσ . (10)

Let x, y (x ≠ y) be nodes of G. If we substitute the sub-graph >< yx, by a single

branch ),( yx  such that ><= yxyx ,),( σσ , then ><= yxceryxcer ,),( ,

><= yxyx ,),( ������  and )()( GG ′= σσ , where G′  is the graph obtained from G

by substituting >< yx,  by ),( yx .

Example 1 (cont). In order to find how car models are distributed among customer
groups we have to compute all connections among cars models and consumers groups.
The results are shown in Fig. 3.

Fig. 3. Relation between car models and consumer groups

For example, we can see from the flow graph that consumer group z2 bought 21%
of car model x1, 35% − of car model x2 and 44% − of car model x3. Conversely, for
example, car model x1 is distributed among customer groups as follows: 31% cars
bought group z1, 57% − group z2 and 12% − group z3.

5 Decision Algorithms

With every branch ),( yx we associate a decision rule x→y, read if x then y; x will be

referred to as a condition, whereas y – decision of the rule. Such a rule is characterized
by three numbers, ),,( yxσ  ),( yxcer  and ).,( yxcov
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Thus every path ],[ 1 nxx  determines a sequence of decision rules x1→x2,

x2→x3,…,xn-1→xn.
From previous considerations it follows that this sequence of decision rules can be

interpreted as a single decision rule x1x2…xn-1→xn, in short x*→ xn, where x* = x1x2…xn-1,
characterized by

cer(x*, xn) = cer[x1, xn], (11)
cov(x*, xn) = cov[x1, xn], (12)

and
σ(x*, xn) = σ(x1) cer[x1, xn] = σ(xn) cov[x1, xn]. (13)

Similarly, every connection >< yx,  can be interpreted as a single decision rule

yx → such that:

cer ),( yx  = cer >< yx, , (14)

cov ),( yx  = cov >< yx, , (15)

and
σ ),( yx  = σ(x)cer >< yx, = σ(y)cov >< yx, . (16)

Let [x1, xn] be a path such that x1 is an input and xn an output of the flow graph G,
respectively. Such a path and the corresponding connection >< nxx ,1 will be called

complete.
The set of all decision rules 

nn iiii xxxx →
−121

... associated with all complete paths

],[
1 nii xx will be called a decision algorithm induced by the flow graph.

The set of all decision rules 
nii xx →

1
 associated with all complete connections

><
nii xx ,

1
 in the flow graph, will be referred to as the combined decision algorithm

determined by the flow graph.
Example 1 (cont.). The decision algorithm induced by the flow graph shown in

Fig. 2 is given below:

Rule no. Rule Strength
1) x1 y1→z1 0.036
2) x1 y1→z2 0.072
3) x1 y1→z3 0.012

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .

20) x3 y4→z1 0.025
21) x3 y4→z2 0.075
22) x3 y4→z3 0.150

For the sake of simplicity we gave only some of the decision rules of the decision
algorithm. Interested reader can easily complete all the remaining decision rules.
Similarly we can compute certainty and coverage for each rule.

Remark 1. Due to round-off errors in computations, the equalities (1)...(16) may not be
satisfied exactly in these examples.
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The combined decision algorithm associated with the flow graph shown in Fig. 3, is
given below:

Rule no. Rule Strength
1) x1→z1 0.06
2) x1→z2 0.11
3) x1→z3 0.02
4) x2→z1 0.06
5) x2→z2 0.18
6) x2→z3 0.06
7) x3→z1 0.10
8) x3→z2 0.23
9) x3→z3 0.18

This decision algorithm can be regarded as a simplification of the decision algo-
rithm given previously and shows how car models are distributed among customer
groups.

6 Independence of Nodes in Flow Graphs

Let x and y be nodes in a flow graph G = (N, B, σ), such that (x,y)∈B.
Nodes x and y are independent in G if

σ ),( yx  = σ(x) σ(y). (17)

From (17) we get
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)(

),(
yyxcer

x

yx σ
σ

σ == , (18)

and
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If
cer(x,y) > σ(y), (20)

or
cov ),( yx  > σ(x), (21)

then y depends positively on x in G.
Similarly, if

cer ),( yx  < σ(y), (22)

or
cov ),( yx  < σ(x), (23)

then y depends negatively on x in G.
Let us observe that relations of independency and dependences are symmetric ones,

and are analogous to that used in statistics.
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Example 1 (cont.). In flow graphs presented in Fig. 2 and Fig. 3 there are no inde-
pendent nodes, whatsoever.

However, e.g. nodes x1,y1 are positively dependent, whereas, nodes y1,z3 are nega-
tively dependent.

Example 2. Let X = {1,2,…,8}, x∈X and let a1 denote “x is divisible by 2”, a0 – “x
is not divisible by 2”. Similarly, b1 stands for “x is divisible by 3” and b0 – “x is not
divisible by 3”. Because there are 50% elements divisible by 2 and 50% elements not
divisible by 2 in X, therefore we assume σ(a1) = ½ and σ(a0) = ½. Similarly, σ(b1) = ¼
and σ(b0) = ¾ because there are 25% elements divisible by 3 and 75% not divisible by
3 in X, respectively.

The corresponding flow graph is presented in Fig. 4.

Fig. 4. Divisibility by “2” and “3”

The pair of nodes (a0,b0), (a0, b1), (a1,b0) and (a1,b1) are independent, because, e.g.,
cer(a0,b0) = σ(b0) (cov(a0,b0) = σ(a0)).

Example 3. Let X = {1,2,…,8}, x∈X and a1 stand for “x is divisible by 2”, a0 – “x is
not divisible by 2”, b1 – “x is divisible by 4” and b0 – “x is not divisible by 4”. As in
the previous example σ(a0) = ½ and σ(a1) = ½; σ(b0) = ¾ and σ(b1) = ¼ because there
are 75% dements not divisible by 4 and 25% divisible by 4 – in X.

The flow graph associated with the above problem is shown in Fig. 5.

Fig. 5. Divisibility by “2” and “4”

The pairs of nodes (a0,b0), (a1,b0) and (a1,b1) are dependent. Pairs (a0,b0) and (a1,b1)
are positively dependent, because cer(a0,b0) > σ(b0) (cov(a0,b0) > σ(a0)) and – cer(a1,b1)
> σ(b1) (cov(a1,b1) > σ(a1)). Nodes (a1,b0) are negatively dependent, because cer(a1,b0)
< σ(b0) (cov(a1,b0) < σ(a1)).
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For every branch (x,y)∈B we define a dependency factor ),( yxη  defined as
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Obviously 1),(1 ≤≤− yxη ; 0),( =yxη  if and only if )(),( yyxcer σ=  and

)(),( xyxcov σ= ; 1),( −=yxη  if and only if 0),(),( == yxcovyxcer ; 1),( =yxη  if

and only if .0)()( == xy σσ
It is easy to check that if 0),( =yxη , then x and y are independent, if

0),(1 <≤− yxη  then x and y are negatively dependent and if 1),(0 ≤< yxη  then x

and y are positively dependent. Thus the dependency factor expresses a degree of
dependency, and can be seen as a counterpart of correlation coefficient used in statis-
tics.

For example, in the flow graph presented in Fig. 4 we have: ,0),( 00 =baη
,0),( 10 =baη  0),( 01 =baη  and .0),( 11 =baη  However, in the flow graph shown in

Fig. 5 we have ,7/1),( 00 =baη  5/1),( 01 −=baη  and .3/1),( 11 =baη
The meaning of the above results is obvious.

7 Conclusions

In this paper a relationship between flow graphs and decision algorithms has been
defined and studied. It has been shown that the information flow in a decision algo-
rithm can be represented as a flow in the flow graph. Moreover, the flow is governed
by Bayes’ formula, however the Bayes’ formula has entirely deterministic meaning,
and is not referring to its probabilistic nature. Besides, the formula has a new simple
form, which essentially simplifies the computations.

This leads to many new applications and also gives new insight into the Bayesian
philosophy.

Acknowledgement. Thanks are due to Professor Andrzej Skowron for critical
remarks.
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