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Summary. Black boxes introduced in the article [1] are used to solve the problem whether
two sets of features generate the same concept or not. This problem has a simple solution
if the concepts are formed on the basis of the so called good context. Algorithms are
given for recognizing good contexts and for deciding whether two sets of features in
a good context generate the same concept or not. Contexts are proved to correspond to
the so called admissible boxes.

1. Introduction. Let (G, M,r) be an ordered triple where G, M are
finite nonempty sets and r 1s a correspondence from G to M. Then the
triple is said to be a context and the elements in G are interpreted
to be objects, the elements in M features; (g, m)er means that the object
g€ G has the feature me M; cf. [3]

For any X € G and any Y M, we set (cf [2] §27, 28)

s(X)= {meM; (g, m)er for any ge X},
t(Y)=1lgeG; (g, m)er for any me Y},
p=10s, q=sot.

Then the ordered pair of mappings (s, t) establishes a Galois connection
and the mappings p, g are closure operators; p is a closure operator
on G, g is a closure operator on M.

It is well-known that the set C of all p-closed sets is a complete
lattice if ordered by inclusion; similarly, the set D of all g-closed sets
is a complete lattice that is antiisomorphic to C.

An ordered pair (C,D)eC x D is said to be a concept if D= s(C)
or, equivalently, C =1t (D) (cf [3]). Then C is said to be the extent
of the concept (C, D), D is called its intent.
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If N M is a set of features, then (t(N),q(N)) is a concept that
is said to be the concept generated by the set N. Two sets of features
N, =M and N, &M are said to generate the same concept if (t(N;),
q(Ny)) = (¢t (N,), q(N,)). It follows from the general properties of Galois
connections that N; and N, generate the same concept if and only
if t (N{)=1t(N,) or, equivalently, q (N,) =g (N,).

We shall deal with the following problems.

ProBLEM 1. Find an algorithm for recognition whether two sets of
features generate the same concept or not.

ProBLEM 2. Find a class of contexts with a simple algorithm solving
Problem 1. :
The following will be useful in what follows.

1. LEMMA. If (G, M,r) is a context and Y = M, then t(Y)=fW (t ({m});

meY}.
Indeed, t(Y)= {geG; (g,m)er for any meY}=N{geG; (g, mer};
meY!=N{t({m}); meY}. O

Let (G, M,r) be a context; an object geG is said to be parasitic if
(g, my¢r for any meM. A context (G,M,r) is said to be a context
without parasitic objects if no element in G is parasiticc. To any context
(G, M, r), there exists a context (H, M,r) without parasitic objects such
that ¢t (N)=t"(N) for any N =M where t'(N)= {geH; (g, m)er for any
meN}; we take H to be the set of all nonparasitic objects in G.

2. Examples. We may suppose that a context is given by means of its
incidence table. Let G = {g;, ..., gm}, M = {my, .., m,} where m>1, n>1
are integers; we may suppose that g;#g; for 1<i<j<m and m, # m
for 1 <h<k<n. We define

{1 if  (g;, mj)er
%= if Cm
1 (gnmj)¢r,

for any i,j with 1 <i<m, 1<j<n. The incidence matrix (a;;) defines
the correspondence r. If we add the entries formed of elements in G
and of elements in M, we obtain the incidence table of the context.
In what follows we suppose that any context is given by its incidence
table.

We now extend the definition of a;;. If 0 # N = M, N = {m;,,, mjq, ..,
v Mgy where 1 <k <n, 1 <j(l)<n for every | with 1 <I<k, we put
a;y = inf {a;;q; 1 <1<k} for any i with 1 <i<m. Furthermore, we set
ap=1 for any i with 1 <i<m. Hence, a;y is defined for any i with
1 <i<mand for any N = M.
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Directly from definitions we obtain

1. LemMa. If (G, M, r) is a context and N = M, then t (N) = [g;; aiy = 1}.

, U

From this Lemma an algorithm can be deduced for recognizing whether

t(Ny) =t(N;) or not; it suffices to test whether a;y, =a;y, for any
i=1,2,..,m or not.

2. ExampLE. Let us have G = {g,, ..., g4}, M = [my, ..., ms}; suppose that
the incidence table of (G, M, r) is as follows

r m; ms ms my ms
gr | 1.1 0 0 1
g | 0 0 1 1 1
gs | 1 1 o 0 0
ga 1 0 0 1 1 0
Then, eg, t({m;, m3}) =0 =1t ({m,, my, ms}). O

3. ExampLE. Let G, M be the same as in 2; let the incidence table
be as follows.

r m; my ny my ms
91 1 1 0 0 1
g2 0 0 1 1 1
'E 1 1 1 1 0
ga 0 0 1 1 0
Then) €.g., t ({mla m3}) = {g3}, t ({mla My, mS}) = 9 D

3. Black boxes. An ordered triple {I,0,f> where I, O are finite
nonempty sets and f is a mapping of the set B(I) of all subsets of I
into O is said to be a (black) box. The elements in I are said to be
inputs, the elements in O are called outputs. The mapping f assigns
an output to any set of inputs. An output o is called parasitic, if
f(X)#o0 for any XeB(I). A box {I,0,f) is said to be a box without
parasitic outputs if no element in O is parasitic. If {I,0,f) is a box,
then {I,P,f) is a box without parasitic outputs where P is the set
of all nonparasitic outputs in O.

Let {I,O,f)> be a box and suppose that the following condition is
satisfied.
(1) For any X, YeB(I) and any xel the condition f (X)=f (Y) implies
that f (XU {x})=f (YU {x}).
Then the box is said to be admissible.

Let {I,O0,f) be an admissible box satisfying the following condition.

Biul. M Y
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(1) For any XeB(I) and any xel with f(XU{x})=f (X), there exists

ye X such that f ({x}) =/ ({y}).
Then the box is said to be good.

A box {I,0,f> is called very good if the mapping f is injective.

There is a natural relationship between contexts and boxes. For any
context T= (G, M, r), the ordered triple S = (M, C,t) is a box where C
and t have the same meaning as in 1. We set S= (' (T) and the box §
is said to be assigned to T.

1. THEOREM. For any context T the box ( (T) is admissible and has
no parasitic outputs..

Proof By 1.3, we have t (XU {x})=N{t({m } ); me X U{x}} = 0 {r ({m});
meX}Nt({x})=t(X)Nt({x})=t ()Nt ({x}) =t (YU{x}) if t( X) =t (Y);
thus, (i) holds.

Let CeC be arbitrary. We put D=s(C). Then C =t (D) where
DeB (M). It follows that C is not parasitic. []

Hence, admissible boxes are interesting in connection with our problems.
In the remaining part of this paragraph, we prove that any admissible
box without parasitic outputs is assigned to a suitable context.

2. LeMMA. A4 box {I,0,f> is admissible if and only if f~' of is
a congruence on the semilattice (B (I), U).
For the proof see [1] 2.1. [

3. CorovrLARY. If {I,0,f> is an admissible 7brox, then for anyAXeB(I)
the set of all elements ZeB(I) with f(X)=f (Z) has a greatest element

(with respect to inclusion). T

This element will be denoted by u (X). We set Z = {u (X); XeB I)}

4. CorOLLARY. The mapping u of B(I) into B(I) is a closure operator.

Indeed, X < u (X) and u (u (X)) = u (X) obviously hold for any X eB (I).
If X<V, then (u(X),X)ef 'of, (u(Y),Y)ef 'of imply that (u(X)U
Uu(Y), Y)=(u(X)Uu(Y), XUY)ef *of by 2; since u(Y) is the greatest
element in the block of f~!of that contains Y, we have u(X)<u(Y)U

Uu(Y) < u(Y). n
5. CoroLLAry. For any XeB(I), we have {ZeZ; X < Z} = {(ZeZ;
u(Xycz}. v
Indeed, if ZeZ, X <= Z, then u(X)Su(Z)=2. O

Let S =<1, 0,f) be an admissible box without parasitic outputs. We set
(*) r = {(y, x)€ 0 x I; there exists ZeZ with xeZ, y =f (Z)}. Then (0,1, 1)
1s a context; we put (O,I,r)=&(S); the context & (S) is said to be
associated with S. :

i e 2K ad son 1 LI IR
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We construct ¢ (& (S)) = ¢ ((0,1,r) =<1, C,t) where r is defined by (*)
and C, t are defined according to 1 taking O for G and I for M.

6. LEMMA. For any XeB(l), we have t(X)={f(Z); X € Zel}.

Clearly, for any xel, we have ¢ fx})— {yeO0; (y,x)er} = {yeO; there
exists ZeZ with xeZ, y=f(2)} ={f (Z); xeZeZ}. Therefore, for any
X eB(I), we obtain ¢ (X) =N {t {x; ; xeX) =N{{f(Z); xeZel}; xeX} =
={f(Z); X = Zel} by 13. ‘ [

Let <I,0,f>, {I,P,g> be boxes, h a mapping of O into P such
that h(f (X)) =g (X) for any XeB(I). Then h is said to be an o-homo-
morphism of {I,0,f> into {I,P,qg). A bijective o-homomorphism is said
to be an o-isomorphism. Two boxes are said to be o-isomorphic if there
exists an o-isomorphism of the first onto the second.

7. TueoreM. If {I,0,f> is an admissible box without parasitic outputs,
then {I,0.,f> and ¢ (& ({I,0,f)) are o-isomorphic.

Proof Put 6({I,0,f>)=(0,1,r), C(O,1,r)=<I,C,ty. For any
0€0, we set h(0)=rt(u(X)) where XeB(I) is an arbitrary element with
f(X)=o0 and u has heen defined above. This definition is correct because
f(X)=o0=f(Y) implies u (X) = u(Y) and, hence, ¢ (u (X)) =t (u(Y)).

Furthermore, if 0,€0, 0,0 are such that h(o;)= h(0,), there are
X,eB(I), X,eB(I) with f (X1) = 0y, f (X3) = 03, h(0)) =t (u(X,)), h(02) =
=t (u(X,)). Thus, ¢ (u(X,))=t(u(X,)) which implies that {f (Z); u(X,) <
=Zell=1{f(Z); u(X,)=ZeZ} by 6. Hence, there exists YeZ with
u(X)<Y, f(V)=f(u(X,), ie, (Y,u(X,)ef 'of. This implies that
Y <u(u(X,)=u(X,) by 4 and, hence, u (X,) < u(X,). Similarly, we obtain
u(X,) < u(X,)and, therefore, u (X ) = u (X,). Thisentails h (0,) =t (u (X)) =
=t (u(X,)) = h(0,) and the mapping h is injective.

Clearly, h(f (X)) =1t (u (X)) =1t (X) for any XeB(I) by 5 and 6 and h
is an o-homomorphism of <I,0,f) into € (& (I, O,f))).

-Finally, {h(0); 0€0} = {t(X); XeB(I)} = C and h is surjective. ]

8. Exampre. Let {I,O0,f) be a box such that I={a,b,c}, O=
= {0, 0,,03,04}, and f be given by the following table

0 fap {by {c¢f {a,b} la,c} {b,cf I

01 01 07 03 (20} b3 Oy4 O4
It is easy to see that f~'of is a congruence on (B(I),U) so that
(I, O f > is an admissible box without parasitic outputs by 2. Clearly,
Z = {a}, {a,b}, {a,c}, I}. If putting & ({I,0,f>)=(0,1,r), the table
of r is as follows '
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r a b c
04 1 0 0
03 1 1 0
03 . 1 0 1
04 1 1 1

We now construct the mapping t of the context (0, I,r). Clearly,

t @) =0 =t({a}), t ({b}) = {02,04} =t ({a, b}), t({c})={03,04} =1t ({a, c}),
t({b,c})= {04} =1t (I) Hence, C = {{04}, {03, 04}, {02, 04}, O} . Furthermore,
(01)— 0, h(0y)= 103,04}, h(03)= [03,04}, h(0og)= {04} and h is an
o-isomorphism of {I,0,f) onto <{I,C,t). O

4. Good boxes. We now introduce some algebraic concepts for boxes.

If S=<,0,f) is a box and J<I, J#0, is a set, then §' =
={J,0,f]'B(J)) is a box that is said to be a subbox of S; the
symbol f|B(J) means the restricion of f to the set B(J). Clearly,
for any XeB(J), S and S’ produce the same output; but, for XeB(I)—
—B(J), the box S provides no output. This leads to the following
definition.

Let S=<1,0,f>, §=<J,0,g9> be boxes, h a mapping of I into J
such that f (X)=g (h[X]) for any XeB(I) where h[X] = {h(x); xeX}.
Then the mapping h is said to be an i-homomorphism of S into §'.
Clearly, any output of S can be obtained by means of §".

A subbox §'=<J,0,g) of a box S=<I,0,f) is said to simulate
the activity of the box S if there exists an i-homomorphism h of §
into §' such that h|J =id;; this i-homomorphism will be said to be
a simulation of S in §".

1. LEMMA. Let {I,0,f> be a box and h its simulation in its very
good subbox {J,0,g). Then <I,0,f) is good.

Proof Suppose f (X)=f(Y)and xel. Then g(h[X])=f(X)=f(Y)=
=g (h[Y]) and the injectivity of g implies that h[X]=h[Y] which
entails h [XU{x}]=h[X]JU{h(x)} =h[Y]U{h(x)} = h[YU{x}] and, thus,
fXUxD=gh[XU{x}])=9gh[YU{x}]) =S (XU{x}). Therefore, <I, O,
f> is admissible. Furthermore, if f (X)=f (X U {x}), then, similarly, h [X] =
=h[XU{x}]=h[X]U{h(x)} which implies the existence of yeX with
h(y) = h(x). Thus, f ({y}) =g ({h (x)}) =f ({x}). Hence, the box is good. [

If T is a set, R an equivalence on I and J a subset of I such that
INC has exactly one element for any Cel/R, then J is said to be
a set of representatives of R-blocks.

2. LEMMA. Let <I,>0,f> be an admissible box. We put R= {(x, y)el x I,
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fUx)=f(y})}. Let J be a set of representatives of R-blocks and, for

any xel, let h(x) be such that h(x)eJ(1C where xeCel/R.
Then h is a simulation of {I,0,f) in {J,0,f'B(J)).

Proof. Clearly, h|J = id,.

Let XeB(I) be arbitrary. Then h[X]eB(J) and, for any xe X, we
have (x, h(x)eR, ie, f({x})=f({h(x)}). By 24 (e) of [1]. we obtain
f(X)=f(h[X]) which means that h is an i-homomorphism in of
{I,0,f> into its subbox <{J,O,f[B(J)). O

We now deduce a criterion for recognizing good boxes among admissible

-Ones.

3. THEOReM. Let {I,0,f> be an admissible box. Let us put R=
={(x, el xI; f({x})=f({y})}. Let J be a set of representatives of
R-blocks and, for any xel, let h(x) be such that h(x)eJNC where

’ xeCel/R.

Then {I,0,f> is good if and only if the mapping f | B (J) is injective.

Proof If <I,0,f) is good and XeB(J), YeB(J) are such that
f(X)=f(Y), then, for any xe X, we have f (YU {x})=f (XU {x})=f (X)=
=f(Y). Thus, there exists yeY with the property f ({y})=f ({x}), ie
(x, y)eR. Hence, there exists Cel/R such that xeCNJ, yeCNJ. By
definition of J, we obtain x=y. Thus X £ Y and, similarly, Y< X.
Hence, X = Y and f| B (J) is an injective mapping.

If f|'B(J) is injective, then <{J,O0,f|B(J)> is a very good box and
{I,0,f> is good by 1 and 2. O

A context T 1is said to be good if the box ¢ (T) is good. |

From 3, we deduce an algorithm for recognizing good contexts.

Let a context (G,M,r) be given. Construct R = {(m;, m))eM x M;
ay = ay; for any ke{l,..,m}j, M/R=1{C,,..,C,}, J={m, ., my } where
m eC, for any te{l,..,p} (we may choose I, to be the least index
he(l,..,n} such that m,eC,). For any N<J and any ie{l,..,m}
define a;y by 2.1. For any NeB(J), N'eB(J), N # N’ test whether
aiy = ay- for any ie {1, .., m}; if such sets N, N’ exist, the context is not
good; in the opposite case it is good.

4. ExaMmpLE. Let us consider the context of 1.2. Then the blocks of R
are {my, my}, (my, my}, {ms}. We may take J = m;, my, ms} and, clearly,
Aipm, myt = O = Qiym, my.msy fOr any ief{l,..,4}. Thus, the context is not
good. O]

S. ExaMpLE. Let us consider the context of 1.3. Then the blocks of R
are (my,my}, (my,my}, (ms}. We may take J= {m,, ms, ms}. We form
the table of values a;y for all subsets N of J.
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9 tmy} ms) (ms} (myms){myms)imams) J
g1 1 1 0 1 0 1 0 0
g, 1 0 1 1 0 0 1 0
g5 1 1 1 0 1 0 0 0
9s 1 0 1 0 0 0 0 0
Clearly, all columns are different and the context is good. O

6. THEOREM. Let T= (G, M,r) be a good context. We put R = {(x, y)e
eM x M; (g,x)er and only if (g,y)er for any geG}. Let us have
N, =M, Ny M. Then N and N, generate the same concept if and
only if NyOOC #0, N,NC # 0 are equivalent for any Ce M/R.

Proof We put ¢ (T)= (M, C,t>. Then (x, y)eR means ¢ ({x}) =t ({y}).
Let J be an arbitrary set of representatives of R-blocks and, for any
xeM, let h(x) be such that h(x)eJNC where xeCe M/R.

By 2, h is a simulation of <M, C,t> in <J,C,t|'B(J)> and t|'B(J)
is injective by 3. Thus, t (N;)=t (h[N;]) for ie {1, 2}.

Suppose N;NC #0 if and only if N,NC #0 for any CeM/R. If
xeN;NC, then there exists xX’'e N,NC and h(x)= h(x’) which means
that h [N,] < h[N,]; similarly h [N,] = h[N,] holds. Thus, h [N,] = h [N,]
and, thus t (N,;) =t (N,) holds.

If, conversely, t (N) =t (N,) holds, we have t (h[N])=1t (h[N,]). Since
h[N;1eB(J), h[N,]JeB(J) and ¢|B(J) is injective, we have h[N,] =
=h[N,]. If xeCNN; where Ce M/R, then h(x)eh[N,] and there exists
yeN, such that h(y)=h(x) which implies that t({x})=t({h(x)}) =
=t ({h(y)}) =1t ({y}) and, hence, (x,y)eR which entails yeC. Thus, C
NN;#0 implies that CNN, # 0 and, similarly, the reverse implication
holds. ]

Let a good context (G, M,r) be given. We construct R = |(m;, m;)€
eM x M; a; = a; for any kefl,..,m}}, M/R={C,,..,C,}.

Then the algorithm for recognizing whether t (N,) =t (N,) or not is as
follows.

For any he {1, .., p} test whether NyNC, =0, N,NC,#0 or N,NC, #
=0, N,NC,=0. If such h exists, then t(N,)#t(N,); if not, then
t(Ny)=1(N,).

Clearly, this algorithm is simpler than the algorithm deduced in 2
for a general context.

7. ExampLE. Let (G, M,r) be the context from 5. Let us have N; =
= (m;, my,ms3}, Np={my,my}. Then NN {my,my} #05% NyN{my, my},
NN my,mg} #0# NN {my, my}, NyNims} =0=N,Nms}. Thus, Ny,
N, generate the same concept. O
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M. Hosotasl, 3. [laBnsk, O6paszoBanne nousiTHii ¥ ‘‘yepHbie SAKH

“UepHble smMku”’, BBeJeHble B pabore [l] ucnons3yloTcs ans pellleHMs 3aJavd, Koraa
JBa MHOXECTBa CBOMCTB MOPOXJAIOT TO K€ CaMO€ NOHATHE (=KOHUENUHI0). T4 3ajaya
HMeeT MNpPOCTOE pelleHHe, KOrga KOHHeNUMH oOpa3yroTCs Ha OCHOBE, Tak HA3bIBAEMBIX
XOpOLIMX KOHTeKCTOB. JlaeTcs omucaHue ajropuiMa pacnO3HABAaHHS XOPOIIUX KOHTEKCTOB
M peuleHys 3adady, KOTJa [Ba MHOXECTBA CBOWCTB B XOpONIEM KOHTEKCTE MOPOXIAIOT HIIH
HeT Ty e CaMyio KOHLENNUMIo. BBISICHEHO OTHOMICHHE KOHTEKCTOB M, TaK HAa3biBAEMEBIX,

»» JOIYCTUMBIX SAIIHKOB” .




