Using partitioned databases for statistical data analysis*

by RUVEN BROOKS -
Universi.y of Texas Medical Branch
Galveston, Texas

MEERA BLATTNER

University of California, Davis, and
Lawrence Livermare National Laboraiory
Livermore, California

ZDZISLAW PAWLAK

Polish Academy of Sciences
Warsaw, Poland

and

EAMON BARRETT

Jayecor Corporation
Washington, D.C.

INTRODUCTION

The statistical analysis of scientific data is a process that can
be viewed as consisting of three fundamental phases. First,
the observations are recorded. Next, they are encoded into a
numeric form suitable for statistical analysis. Finally, the cal-
culations are performed for the particular type of analysis
needed for the design of the study. This ordering is, however,
only conceptual; in most real studies, the three phases interact
and are overlapped. Thus, it may be the case that a prelimi-
nary analysis run indicates that a more refined coding scheme
is needed or that the coding process reveals deficiencies in the
data collection. .

A consequence of this interaction is that the data analysis
cal¢ulations are done repeatedly over time using new coding
schemes, new variables, and new selections of grouping of the
cases. We propose the structure of a data organization that
can result in substantial savings in the amount of calculation
needed across these repeated calculations.

OPERATIONS NEEDED IN STATISTICAL ANALYSIS
Case Structure
For most statistical analyses, the data is structured in terms

of a row vector consisting of the information relating to a
particular observational unit. Typical observational units

*This research was supported in part by NSF Grant No. MCS 7702471,

453

might include a single individual in a psychological study, a
single experimental animal in a medical study, or a single
household in a sociological survey. The information recorded
in each case can be a mixture of classification variables which
indicate to which experimental group the particular case be-
longs and measurement variables which are the values of mea-
surements for that particular case. (Note that it is possible for
some variables to serve both functions.) The set of cases for
any particular study or experiment can then be viewed as a
rectangular matrix with each case being a row and all the
values across cases for a given variable occurring in a single
column.

User Operations

In preparing data for statistical analysis and in the course of
performing the analyses, users of statistical packages typically
perform the following operations:

1. Addition and deletions of cases (row addition and dele-
tion}).

2. Updating of variable values within individual cases.

3. Addition and deletion of variables across cases (column
addition and deletion).

4. Variablewise transformations, such as multiplying a
variable by a constant, adding two variables together to
create a new one, etc. Such transformations may also
involve conditional operations.

5. Value replacement (recoding) in which all occurrences

454 Mational Computer Conference, 1981

of specific values for a particular variable are replaced by
new values. This may involve collapsing several values
into a single value.

6. Case selection on the basis of predicates applied to vari-
able values. This operation may be used to designate
subsets for particular analyses or for the application of
variable transformations and recodings.

Statistical Operations .
While the variety of possible statistical analyses is extremely
large, nearly all of the commonly used analyses begin with a
common set of calculations. If X is an m % k& data matrix in
which rows are cases and columns are variables, then these
calculations can be specified as fdllows: .

1. On the basis of values of the classifier variables. parti-
tion the rows of the matrix into sets which are not neces-
sarily disjoint. Let n be the number of rows in a set,

2. For each set, form the following sums:

a. For each of the ; variables (columns). sum &, { =

I ...n where n is the number of rows in the partition.
b. For all pairs of variables j and k, sum x, “x, { =
I, n (Note that j = k is included.)

These sums form the basis for further caleulations in analy-
sis of variance, analysis of covariance, multiple regression
analysis, discriminant analysis, factor analysis, partial corre-
lation, canonical correlation, and multivariate analysis. They
are also useful for the calculation of descriptive statistics, such
as mean and standard deviation.

In conventional statistical systems such as SPSS' and
BMD?, these quantities are calculated de nove for each analy-
sis, an extremely costly process if the amount of data is large.
The data organization we propose here is intended to save this
cost by updating and preserving these quantities across user
manipulations.

BASIS FOR THE PROPOSED ORGANIZATION
Partitioned Databases

The organization is based on the work of Z. Pawlak and
colleagues (Marek and Pawlak’, Lipski and Marek®, Lipski)
on partitioned databases. In their terminology, a database
consists of a set of objects which have attributes. If our objects
are patients participating in a research study, then the patients
have certain attributes of interest for data analysis purposes.
Typical attributes might include sex, age group, weight, blood
pressure, amount of cigarettes smoked, region of the country,
etc. A case for analysis purposes then consists of the values of
these attributes for some particular object.

In a partitioned database, those attributes which will be
used to identify and sefect cases from the database are desig-
nated as selection attributes. Typically, though not necessari-
ly, selection attributes have a small number of possible values
and are referred to as “nominal”™ or “categorical” variables.

The values of selection attributes are considered to be divided
into disjoint descriptors so, for example, sex is divided into
male and female, age is divided into ranges of years, ete. Each
object must have a value for each selection attribute, though
certain values might be used to indicate “unknown” or “data
missing.” The attributes will be referred to by capital (sub-
scripted or unsubscripted) letters and the descriptors will be
referred to by small letters. The selection attributes are or-
dered in some way so that the list of attributes is Ay, Ay, .. .,
A,. Since each attribute has a list of descriptors, a, b, c.
m (we need not have the same number of descriptors for each
attribute), the description of an object may be made by a
vector (a,, a;, . . ., @,) where a; is a descriptor in the set of
attributes of A,. We will ordinarily use the designation a,
ay . . .4, instead of (a,, a2, . . ., a,). The A\, A;, ... A, are
a coordinate system for class descriptors, Observe that each
object falls into one and only one class, hence. the name par-
ttioned database .

An example will illustrate this notation. SupposE that the
following selection attributes have the following values:

sex “

a. male
b. female
age range
a. 20-30
b. 31-40
c. 41-50
d. over 50
region
a. north
b. east
¢. south
d. west

The class of all women 41-50 years old and living in the
north would be designated by bea; there would be a total of
32 possible classes.

The proposed data organization is based on specifying se-
lection attributes which define groupings of cases that are
important for analysis purposes and storing with the classes
that these attributes define the quantities described earlier.
Performing a statistical analysis would then require forming a
query which specified the classes that were required, retriev-
ing the summary quantities stored with the class, and perform-
ing the necessary statistical calculations on these quantities.
For example, if sex and age group had been specified as the
only selection attributes, and an analysis of variance were to
be performed on blood pressure data for cells defined by sex
and age group, sum (r) and sum (x*) would be retrieved for
each of the eight classes of cases that sex and age group
define. To collapse across these classes, the sums for the
individual classes need only to be added together.

A Query Language for Partitioned Databases

In order to specify which classes of objects are to be used
for a statistical analysis, a query language is needed. A formal
syntax for a formal language for partitioned databases was
thoroughly and rigorously described by Lipski and Marek™.
The query language described in this section is rot the same

Partitioned Databases for Statistical Data Analysis 455

one described by Lipski®, however, much of our reasoning
follows his proofs closely. Our query language is called Q.

Definition: An alphaber for Q is:
I. The set of lower case Latin letters, L.
2. The set of lower case Latin letters with a superscripted
¢, L
The set of lower case Latin letters with superscripts g,
L=
4. The set of lower case Latin letters with superscripts 1,
Ll
5. The symbol, @.

[

Definition: If the descriptors D(B) of attribute B are
(a.b.c.d), the complement of x, x°, are those descriptors,
D(B) — {x}. The set of descriptors greater than x , x®, are those
elements of D(B) that appear after x in the linear ordering of
the descriptors (for convenience, we will assume that the de-
scriptors of an attribute always begin with a and continue
sequentially through the alphabet) and the set of deseriptors
less than x, x', are those elements of D(B) that come before
x. @ is a “don't care” symbol , used to indicate that an attri-
bute is not of interest for a particular query.

Definition: A simple term is a concatenation of n symbols
from Q, where n is the number of attributes. A constant
simple term is a concatenation of n symbols from L while a
variable simple term contains an occurrence of a symbol not
in L. Note that a simple constant term is also a class descrip-
tion as long as t =a, a; . . . @, and each g; is in the set of
descriptors of A,

A term is defined recursively as:

1. A simple term.

2. If t and 5 are terms, then ¢, ¢ + 3, t*s, —5 are terms. If we
wish we may define a set of formulas over Q that use the
equality sign as well as the above Boolean operations and
introduce the symbols, TRUE and FALSE. We will omit this
part of the query language from the current discussion, since
formulas do not increase the complexity of the implementa-
tion procedures as presented here. The value of a term v(t) is
as follows:

1. Ift = @@@@@...@, then v(r) is the set of all objects X.
If t=e, then v(r) = ¢.

2. The value of @@...[@a(@...@, where a is in the ith posi-
tion, is the set of all objects that have descriptor a of A;. The
value of @@...@x" @...@ is the set of all objects that have
y in the A, attribute, where y is in the complement of x and
x is a descriptor of the ith attribute. Similarly with @@...@x*
@...@ and @@...@x" @...@.

3. If r is a simple term and ¢ = @, a;...a,, then v(t) is the set
of objects v(ay @...@)"v({@a: @...@)"..."v(@@...@a,).
4, v(=1)=X —v(t), where X is the set of all objects in the
data base, v(t +5)=v(t) + v(s), where + is union, v(r*s) =
v(t)*v(s) where * is set intersection, and v(r—s)=
(X =vir) +vis).

Definition: t =5 if v{r)=v(s).

Definition: Term t is in normal form if t = t, + &+ ... +1, and
each t, 0=i=k, is simple.

Theorem I. Let t be a term. Then there is a term s such that
t =5 and s is in normal form.

The proof is straightforward and omitted.

The result we obtain from these definitions and Theorem 1
is that if we wish to identify the classes that have class descrip-
tors satisfying a query, then we may put the query in normal
form and find the set of class descriptions for each simple
variable term separately.

STORAGE ORGANIZATION

We now describe a storage organization that will permit stor-
age of data for statistical analysis as a partitioned database,
and that will allow efficient implementation of the user data
manipulation operations described earlier while preserving
the advantages of a partitioned database for the statistical
analyses themselves. '

Data Structures

For each equivalence class defined by a set of values of the
selection attributes, a block of storage would be allocated to
contain the following items:

1. The summary quantities described in Statistical Opera-
tions;

2. Head and tail pointers to a chain of blocks containing the
values of the variables for each case.

In order to minimize overhead, users creating a new data-
base would be asked to estimate the maximum number of
variables they are likely to require. This estimate would be
used to determine the size of both the class header blocks and
the data blocks. (Suitable utilities could be provided to re-
build the database, should the estimate prove grossly in
error.)

Retrieval

The major problem in retrieval from a partitioned database
is that the number of possible classes may be very large; if
there are 10 selection attributes with only’5 values each, 5'
classes are possible. There are two circumstances which make
it likely that, at any point in time, a substantial number of the
classes will be empty. The first is that in the initial stages of the
research, when the researcher is still making decisions about
appropriate coding schemes, the number of cases actually
entered may be quite small, even though the number of
classes needed to store them may be quite large. Second,
there may be functional dependencies within the data that
insure that some classes remain empty; for example, if every-
one who smokes has at least one heart attack, then the class
for smokers who have not had a heart attack will always
remain empty.

In order to avoid storage wastage, it would be desirable to
avoid creating class headers for non-existent classes. Hence,

456 National Computer Conference, 1981

the problem becomes one of searching a sparse space of class
identifiers.

The solution we propose is to treat the search for class
headers as a substring search problem. The nonempty class
descriptors are formed into a string sequentially. By sequen-
tially, we mean one class descriptor follows another without
separator characters. The order in which class descriptors are
placed in this string is the same as the order of the class
headers. This string will be referred to as the data stream.

Let f be a comparison function where: .

1. fla,b)=0ifa=0band lifa#h.

2. f(@,a) =0 for all a.

3. fla"b)y=0ifa#bandlifa=5b.

4. fla*,b)=0if b =>a and 1 otherwise.

5. f(a'.b)=1if b <a and 1 Stherwise. .

We may assume that when a query is entered, it may be
analyzed and simplified and changed to normal form. The
query is now of the form where each term is of the form,
n+6+ ...+, and each ¢ is a simple term. A pattern is
query in normal form where the terms are concatenated in the
following order: p =1, £~ t; £"...t, or £ if k is even and 1"
is the reversal of .. The data stream is d, d ...d., where each
d; is a class descriptor.

First, we shall take the case where p has only one simple
term. Then the pattern p is passed over d, and compared
symbol by symbol using the comparison function. The com-
parison continues until the comparison function registers a 1
or all n symbols in the pattern have been compared. If the
comparison function registers a 0 for all the symbols in the
pattern, then we know d, is in the value set of the query. The
pattern then goes on to ;. If a 1 has been registered, then the
pattern goes directly to ;. The pattern match continues this
way until the entire data stream has been matched.

If the pattern is composed on more than one simple term,
then after r, is compared, the pattern and data flow are re-
versed and d, is compared to ', and so on until the entire
pattern is compared to &,. A similar procedure is used for
ds...d,.. A tally is kept as the data stream advances so that if
the d, class description is being examined, the tally contains an
i. The system can then locate the ith class header to retrieve
the desired information.

If each term is ¢ descriptors long, there are ¢ classes in the
database, and there are ¢ terms in the query, the algorithm
will have a worst case performance of O(g *t*c *r). While this
bound will be large, particularly if the number of descriptors
is large, we note several advantages to this approach over
other methods of locating items in a sparse space. First, since
the information is stored in a highly compact form, without
any space needed for pointers, it will usually be possible to
contain the entire data stream in primary memory: hence, the
time required for a search is kept to a minimum. Second. it is
easy to add new classes by simply adding their descriptions to
the end of the data stream; deletions can be handled by re-
piacing a description by a symbol not in the alphabet so that
a match never onccurs. Finally, since the pattern matching
problem already occurs in a wide variety of applications, it is

a likely candidate for hardware enhancement, such as the use
of VLSI components.

User Operations

In a previous section we specified operations that users of
statistical analysis systems desired to perform on their data
before doing the statistical analyses. We now describe how
these operations would be performed using the structures
proposed here.

Operations that do not create new classes

Adding cases. 1f a case to be added falls into an existing
equivalence class, then addition of a case will involve (1)
locating the class header via the pattern match mechanism just
described, (2) updating the summary information in the head-
er by adding the quantities from the new case, and (3) storing
the case values in a data block. This last step could be accom-
plished most rapidly by using the tail pointer stored in the
header.

Deleting a ease. If a case to be deleted was not the only
case in the class, it could be deleted by the following steps: (1)
Locate the class header. (2) Subtract out the case quantities to
update the summary information. (3) Search the chain of data
blocks to locate the case. (4) Mark the case as deleted. (A
special variable or bit in each case might be reserved for this
purpose.) If desired, the spaces for deleted cases might be
chained into a free storage list.

Adding a non-selector variable. If the preallocation
scheme described earlier is used, then values for the new
variable would be placed in the next available slot in all of the
cases. (We assume that each case has the same number of
variables even though some of the variables may have missing
values.) The problem that this presents is how to locate a
particular case for which a value is to be added. If each case
has stored as a variable an identification number or case num-
ber, then it is easy to specify which case is desired. Finding it,
however, could, conceivably, require a search of the entire
file. A more tractable scheme is to require that the user spec-
ify values of selector variables for the case. Search would then
be coafined to a single equivalence class.

Deleting a variable. This would require a pass through all
the data blocks and changing the value of the variable to some
distinguished value. Alternatively, if a table is maintained
which links names of variables to their locations within a case.
the entry for the variable could be removed.

Transforming a non-selector variable, including recoding it.
This operation would, in general, also require a pass through
all data blocks. Note that if all the blocks for all classes are
stored in the same file, this can be done by reading the blocks
sequentially as if they were not linked. If the transformation
is needed for only one analysis and is not to be saved after-
ward and if the transformation only involves operations with
a constant, the summary information in the header block is
sufficient to calculate the quantities needed for statistical
analysis of the new variable.

Partitioned Databases for Statistical Data Analysis 457

Operations that create new classes
(perations that do not change the length of class descriptions

Adding cases that create new classes. This will occur when
the combination of selection attributes in a new case has not
occurred previously. When this happens. (1) 2 new class head-
er is set up and the class description for the new class is added
to the end of the search string, and (2) a new data block is
allocated and the values of the new case are placed in it

Deleting the only case in a class. This can be accomplished
by (1) replacing the class description in the search string with
symbols not in the alphabet so that a match against it always
fails and (2) returning the data block to a free storage list.

a

Operations that change the length of class descriptors

All of the following operations will require rewriting the
entire search string. Note, however, that even for the 100,000
class example, this could be accomplished in less than 50
milliseconds on the slowest commercially available proces-
5018,

Adding a new selector variable. This includes situations in
which an existing non-selection variable is declared to be a
selection variable, as well as those situations in which a new
variable is created either by user entry or by transformations
on existing variables. The steps involved are: (1) Recopy the
search string to permit extending the length of a class. Pad
each descriptor with a dummy, constant attribute. (2) For
each existing class, examine the value of the new variable for
the first case in that class. Use this value to replace the dummy
attribute for that class. If the remainder of the cases in that
class have the same value, no further work is needed. Other-
wise, delete each case from its former class and create a new
class for it. Repeat this process for all existing classes.

CONCLUSION

The problem of performing a statistical analysis on an entire
database is equivalent to computing a function over that en-
tire database, Addressing or indexing schemes that aid in the
localization of particular entries are not of much help in such
situations: indeed, if all access to the database must be
through these schemes, their use can be slower than sequen-
tial processing of an unordered file. The scheme described
here relies, instead, on computing and updating that function
on the data as it is entered into the database. This notion is
similar to the concept of “‘alerters” in relational databases
(Buneman & Clemons®). Since most statistical analyses are
based on a common set of initial computations, this means
that if these quantities are computed at the time of entry they
are available for all subsequent analyses. The use of this type
of partitioned architecture for the database, thus, offers con-
siderable advantage over simple, sequential urganizations‘or
conventional indexing structures.

REFERENCES

Nie. N H.: Hull, C.H.; Jenkins. J.G.: Stenbrenner, Ko and Bent, DOHL.:
Statestical Package fu? the Social Sciences, New York: MeGraw-Hill Book
Company. 1975,
. Dixon. W. 1. (Series Ed.) Biomedical C Prag PSertes. 1977,
Berkeley, Ca.: University of California Press.
. Marek W, and Pawlak, Z. Information storage and retrieval systems: Math-
ematical Foundations. Theoret. Computer Science. 1976, [, 331-354.
Lipski. W. and Marek, W, On information storage and retrieval systems. In
al Foundations af Comyg Science, A. Mazurkiewicz and Z.
Pawlak (Eds.). 1977, Banach Center Publications, Vol 2, Warsaw Poland:
Polish Scientific Publishers, 215-259.
Lipski. W. On semantic issues connected with incomplete information data-
bases. A, C. M. Transactions on Database Systems . 1979, 4(3), 272-296.
Buneman, O, Peter and Clemons, E. K. Efficiently monitoring relational
latab ACM T on Database Systems . 1979, 4(3). 368-382,
. Wong, E. and Chiang, T. €. Canonical structure in attribute based file
organization. Comm. A.C.M.. 1971, 14, 593-597.

.

wn

=

