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Summary. A black box is considered to be an ordered triple consisting of a fnite set [
of inputs, a finite set O of outputs, and of a mapping [ of B} into O where Bl is

the family of all subsets of I. Under some natural hypotheses on f the relation f lof
is & rough top equality on B (I}, ie, a relation investigated in connection with information
systems. For this case the possibility of reducing the black box is investigated.

1. Introduction. When studying rough top equality (cf. [4], [5]), we looked
for applications of the characterization theorem. One of these applications
is the so called good black box that will be studied in the present paper.
We prove that good black boxes lead to rough top equilities in a natural
way. Thus, recognizing rough top equalitics is the same as recognizing good
black boxes. To any good box there exists an irreducible subbox and
a homomorphism of the box onto the subbox, This means that the subbox
acts, roughly speaking, as the given box and that it cannot be reduced
without offending against the way of its activity.

2. Admissible bMack box. Let I, O be nonempty finite sets; the elements
in I are called inputs, the elements in O outputs. Let f be a mapping
of B(I) into O where B (I} denotes the family of all subsets of the set I.
Then the ordered triple §= ¢, 0, is called a black box or, shortly,
a box.

This is interpreted as follows. For any set X B (I} of inputs activated.
the box S provides the output f(X)eQ. We can imagine that any input
is represented by a push-button and can be activated by pushing it. The
output depends only on the set of inputs activated, not on a string
of inputs.
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1. ExaMPLE, Let a room be given, let I be the set of its windows,
We suppose that the temperature in the room is 20°C when all windows
are shut and the outside temperature is 0°C. For any set X = I, we define
S(X) to be the temperature in the room after all windows of the set ¥
have been open during one minute. Put 0 = (X)X eB(I)}. Then {J, 0, f>
is a box

2. EXAMPLE. Let | be a finite set and (I, B{I), p) a probability space.
We set 0= [p(X); XeB (/). Then ¢I,0,p> is a box.

3. ExaMPLE. Let (B(I),u,n, Co, 0, 1) (B(0),u,n, Co,B, 0) be Boolean
algebras of sets where I, O are finite nonempty sets, _. ~ denote the
operations of union and intersection, respectively, and Co is the operation
of complementation, Suppose that h is a homomorphism of the first algebra
into the second. Then {I,B(0), k> is a box.

We shall deal with boxes of particular type.

Let §=<I,0,f> be a box. It is said to be admissible if the following
condition is satisfied.

(i) For any X, YeB (/) and any xel the condition f(X)=f(Y) implies
F(X U ix}) =1 (YU {x)).

By (i), an output of an admissible box changes by activating one further
Input in a unique way without regard to the set of inputs that has produced
the given output.

Admissible boxes have some particular properties.

4. LEMMA. Let S=(1,0,f> be an admissible box. Then the Jollowing
assertions hold,

(@) If X, YZeB(I) and f(X) =f(Y), then f(X UZ)=f(YuZ).

®) If x, yel, ZeBAI). and [ ({x}) = ({y}). then [ (Z0 {x}) = f (Z 0 13)).

() If X, YeB(l), x, yel, and f(X) = (Y), JUx}) =1 (iv}), then f(X
Ol =1 (Yo {y)).

(d) If X, Y, Z, TeB(I) and f(X)=f(Y), FZ)=F(T), then f(X uZ)=
=f(¥YuT)

€ If nz1, xi,..,x.el, yy,..,y,€l, and flix)=f({y}) for any
Pl .. n}, then f({x1, .., %)) = £ ({y1, s yu}).

Proof (a) follows from (i) by easy induction, (b) is a particular case
of (a). Furthermore, (¢) is a consequence of (i) and (b), (d) is obtained
from (c) by induction. For n = 2, (e} is a particular case of id); the general
case can be obtained by induction. []

3. CHARACTERIZATION THEOREM FOR ADMISSIBLE Boxes. 4 box §= (1,0, f>
is admissible if and only if f'o [ is a congruence on the semillattice
(B I, u}.
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Proof If S is admissible and X, Y, ZeB(l), (X, Y)ef 'cf, then
f{X)=/(Y) which implies (X ~Z)=f(Yu Z) by 4a} and, thus, (X o Z,
YuZ)ef 'of. Hence, f'of is a congruence on (B (1), ).

If f~'<f is a congruence on (B(/),w) and X, YeB(I), xel, are such
that f(X) = f(Y), then (X, Y)ef ~' o/ which implies that (X u {x}, Yu {x]})e
ef ~'of and, therefore, f (X U {x}) = f (Y {x}). Hence, § is admissible. [J

Let I, J be sets, h a mapping of I into J For any XeB(I), we put
f[X]={f(x;xeX} Clearly, f[X Y] =f [X]wf[Y] for any X, YeB(I).

Let §=<{1,0,f3 T=+¢J,0,g5> be boxes, h a mapping of I into J.
Then h is said to be a homomorphism of § into T if f(X)=g (h[X]) for
any XeB(I). Clearly, the activity of § can be simulated in T: an output
in § produced by the set X can be obtained in T by means of the
set h [X].

6. Lemma. The composite of two homomorphism is a homomorphism.

Proof If h is a homomorphism of (1,0, into {J,0,g> and k
a homomorphism of {J,0,g> into {K,O, [ then f(X)=g(h[X])=
=!(k[h[X]])=!(koh) [X]) for any XeB(I). O

Surjective homomorphisms preserve admissibility:

7. THEOREM. Let S =<1,0,f>, T=<{J, 0,95 be boxes, h a surjective
homomorphism of 8 onto T. Then 8 is admissible if and only if so is T.

Proof (1) If § is admissible and U, VeB(J), ueJ, are such that
g(U)=g(V), then there exist X, YeB(I), xel such that h[X]=1U,
h[Y]1=V, h(x)= u regarding the surjectivity of h. Hence f (X) =g (h [X])=
=g(U)=g(V)=g(h[Y]) =/ (Y) which implies g (U0 {x})=g(h[X]u
Clh () = g (h[XJ O h[x]) =g (h[X 0] =/(X0x)=
=f(Yuixj)=g (h [Yu{x])=g (h [Y]uh [{x}])=g (h [Y]u [k (x)}) =
= g (Viu [x}) regarding the admissibility of §. Thus, T is admissible.

(2) If T is admissible and X, YeB(I), xe/ are such that [ (X)=/f(Y),
then g (h [X]) = ¢ (h [Y]) which implies that /(X u {x})=g (R [X w {x]}])=
=g [XIuh[{x|DY=gh[(XIuih =g [YIuh(x})=g(h [YIu
vh{x}l)=g(h[Yuix}])=f(¥Yu{x}) and S is admissible. []

We now assign a “simpler” box to any admissible box, its skeleton.
Before introducing it, we need the following.

8. Lemma Let §=<1,0, f> be an admissible box. We put p(x) = ({x})
Jor any xel. Then jor any X, YeB (I}, the condition ¢ [X] = [Y] implies
that f(X)=f(Y).

Proof For any weg@[X], we put X,={xeX;pixi=u}, Y,={yeV;
@ (¥) = u}, k(u) = max jcard X, card Y.}, let (x¥, ..., X¥u)s (0%, ..., Vi) De sE-
quences of all elements in X, ¥, respectively. Clearly, f ({x{) =1 ({y{}] for
any uep[X] and any ie{l,.. k(u)}. By 2.4{e), we obtain f(X)=f(lx"
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uee [XL1<i<hk))=f(ly;uce[¥], 1<is k(})=f(Y). O

Let =<1 0,f) be an admissible box. We put ¢ (x) = f({x}) for any
xel and F(U)=f(X) for any UeB (o [I]) where XeB(I) is an arbitrary
set such that U = ¢ [X]. Then T= <[], 0, F> is a box that is called the
skeleton of § and ¢ is said to be the normal mapping of § onto T,

By 8, F(U) is uniquely determined by U and the definition of F is
correct. Since f (X) = F (¢ [X]) for any X eB(l), we obtain.

9. Lemma. The normal mapping of an admissible box onto its skeleton
is a surjective homomorphism. [

10. CoroLLary. The skeleton of an admissible box is admissible.
This Is a consequence of 9 and 7. O

11. Examrie. If $=¢I,0,f> is a box such that the mapping f is
injective, then § is admissible. Its skeleton <o [ILO.Fy is defined as
follows: @ (x) = f({x}) for any xel, F{U)={f(e™! [U]) where ¢! [U] =
= {xel; p(x)eU} for any UeB (g L.

12. ExampLEs. (a) Consider the box § = 1,0, of 1. If there are two
windows of the same size, say x,, x,, then Flxi}) =1 ({x.}), ie., opening
either the first or the second window {but not both!) has the same conse-
quence. It is logical to suppose that opening both windows causes a greater
decrease of temperature than opening only ome of them. Thus, f({x,})#
#f({x1. x2}) # f({x,}) and condition (i) is not satisfied; § is not admis-
sible,

(byIF 8= (L, O, pb iz the box al> 2 and |if: ilere exist x,,x,el! such
that x, # x; and p({x,}} = p ({x;}) = 0, then P({x1.x3}) = 2p({x,}) and § is
not admissible.

(c) If I, B(O), h» is the box of 3, then h is a homomorphism and, conse-
quently, h™'ch is a congruence on the algebra (B (1), u,~, Co,0, 1) and,
a fortiori, a congruence on the semilattice (B(I)L ). By 5, the box is
admissible.

3. Good boxes. An admissible box § — {1,0.f is said to be good if the
following condition is satisfied.

(i) For any XeB(I) and any xel with FIX o {x])=f(X). there exists
veX such that f({y}) = f({x]).

l. ExaMpLE. If S = {1, O, is a box such that /18 an injective mapping,
then § is good.

This leads us to.the following definition. A box § — (1,O,f> is said
to be very good if f is an injective mapping.

By 1, a very good box is good,

2. CHARACTERIZATION THEOREM For Goop Boxes. Let §=¢1, 0,/ be an
admissible box. Then the following conditions are equivalent,
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ja) § is good.
(b) The skeleton of § is very good.

Proof, (1) If § is good, if T= (g [I],0,F} is its skeleton, and if U,
VeB(p [I]) are such that F(U)= F(V), there exist X, YeB(l) such that
U=¢[X], V=¢[Y] Let ueU be arbitrary. There exists xe X such that
u=g(x) Wehave f (X)=F (p[X])=F(U)=F (V)=F (¢ [Y]) =/ (Y) and,
thus, f(Yu {x})=F(e[Yu {xj])=Fle[Y]ue [{x1])=F (Vu {u}) = FUu
uiu))=F(U)=f(X)=f(Y) by 210. By (ii), there exists yeV such that
(¥} =7 (Ix}). Hence, u= ¢ (y)e@ [¥Y] = V. We have proved that U = 1}
similarly, ¥ = U, and, thus, U = V. Hence, F is injective and (a) implies (b).

(2) If the skeleton T= (@ [I],0,F> of § is very good and XeB(J)
xel are such that f(X U {x})=f(X), then Flp[X v (x}])=r(Xvix})=
—f(X)=F (@ [X]) and the injectivity of F implies that ¢ [X uix}]=
— @ [X]. Thus, there exists ye X such that f({x})= @ (x) = () =1 (¥})
Hence, S is good and (b) implies (a). [J

We now describe a construction of all good boxes.

3. ConstrucTiON THEOREM FOR GoOD BOXES.

(a) Ler I, O be finite nonempty sets, @ a mapping of I into 0, F an
injection of B(p [I]) inte O such that F ({y}) =y for any yeg [I]. If putting
f(X)=F(p[X]) for any XeB(I) and $={1,0,f), § is a good box.

(b) Any good box can be obtained by a construction described in (a).

Proof (1) If the hypotheses of (a) are satisfied, then § is a box and
T={w[I],0, F; is a very good box. For any xel and any XeB(I). we
have f ({x}) = F (¢ [{x}]) = F ({¢ (x)}) = @ (x) and {(X) = F (@ [X]). By de-
finition, T is the skeleton of § and S is good by 2

(2) If S=¢1,0,f> is a good box and T=<{g [[],0,F) its skelcton,
then f(X)=F(p[X]) for any XeB(l) and F({g(x)})=F (¢ [{x}])=
=f({x}) = @ (x) for any xel and, thus, F({y})=y for any yeg [I]. Thus,
there exist some objects I, 0, @, F, f with the properties described in (a). [

4. ExameLe. Let us have I = la, b, ¢}, O = !m, n, p, q}, suppose that o, F
are given by the following tables.

Jof At ot i L L L
|m n n Jibt Ml q

Then [ is given by the following table

[0 ta) (b {e} {ab} {a ¢ ibc} [
EE it SRR q g R g

Thus, {I.0,f% is a good box.
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4. Rough top equality. As it was said in the Introduction, good boxes
are motivated by looking for examples of rough top cqualities. The role
of rough top equalities follows from the investigation of information systems,
We sketch briefly the relationship between these notions.

An information system (cf. [3]) is an ordered quadruple {X, 4, V, p%
where X, A, V are finite nonempty sets and ¢ is a mapping of X x 4
into V. The elements of X are interpreted as objects, the clements of A4 as
attributes, the elements of I as values of attributes. The function ¢ assigns
to any object x in X and to any attribute a in A the value o(x,a) in
V that the attribute & assumes for the object x. For any a in A4, we put
el@)={{x,)eXxX:p(x,a)= ¢ (y. a)}. Clearly, e (a) is an equivalence on X.
Furthermore, we put R =1 iela);acA}. Then R is an equivalence on X
its blocks are called elementary sets. A wmion of a family of elementary
sets is said to be a definable set. The information system can construct
only definable sets; other sets can be only approximated by means of
definable sets. For any Z - X, we set (RNZ)=U {Q; Qe X/R, QnZ Q)
Clearly, {uR)(Z) is the lcast definable set including Z; it is said to be the
upper approximation of Z in the given information system.

1. ExaMmPLE. Let X be a set of patients in a hospital, 4 a set of medical
criteria, as body temperature, blood-pressure, blood coagulation, etc. whose
values are stated for any patient at a given moment. We suppose that any
of these criteria has only a finite number of values. E.g.. the body temperature
is given by one of the following numbers: 33.0; 35,1; ...:41,9; 42,0; similarly
for the other criteria. Let ¥ be the set of values of all criteria. For any
X€X, acA let g(x,a) be the value of the criterion g for the patient x.
Then § =<¢X, A, V. g> is an information sysiem,

An elementary set consists of all patients that present the same wvalue
for any criterion.

Let Z =X be a set of patients that are suffering from a certain
disease s. This set has been found by means of experts and we suppose
that it is representative enough to say that any patient whose values of
criteria do not agree with the values of at least one patient of the set Z
does not suffer from the disease s It follows that only patients of the set
(uR)(Z) are suspected to have the disease s

Let s, be another disease with a representative set £, of sick patients
fourd by means of experts. Then only patients in the set (uR)(Z,) can be
suspected to suffer from s5,. It can happen that (uR)(Z) = (uR)(Z;). Then
the information system § is not able to distinguish between the diseases
s and s, if any disease is measured by means of the set of patients
suspected to suffer from the disease. From this point of view, the sets 2, Z i
play the same role; they are said to be roughly top equal.
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Now, it is not important that the equivalence R has been constructed
by means of an information system. We introduce the concept of roughly
top equal sets and of rough top equality in a more abstract form (cf. [1],
(21, [3]. [4])

Let U be a finite nonempty set, R an equivalence on U. For any X = I,
we put (uR) (X) = U {Q: Qe U/R, @ n X + 0. Clearly, (uR) (X) = {yeU; there
exists x,€ X with (y, x,)eR}. Furthermore, we set E(R)={(X,Y)eB(U)x
x B (U): (uR) (X) = (uR) (Y)}. The equivalence E(R) on B(U) is said to be
the rough top equality corresponding to the equivalence R. An equivalence E
on B(U) is called a rough top equality if there exists an equivalence R on U
such that E = E(R).

There is a natural relationship between rough top equalities and good
boxes.

2. THEOREM.. A box S = ¢I,0,f> is good if and only if f "'of is a rough
rop equality.

Proof. (1) Let § be good. We put R = {(x, y)e IxL;f({x}) =1 ({y})

If XeB(l) and (uR) (X) = {¥1. ... ¥,), then, by the definition of (uR) (X},
there exist x,,..,x, in X such that f({y})=/({x}) for any ie{l,..,pj
for any v;e X, we may choose x; =y, By 24(e), we obtain f{uR) (X)) =
= {{r1s - ¥pb) = (%0 s Xp}) = F (X)), Le, (X, (R) (X)ef ' of.

I Y=B(l} Y=X, xe¥, and (X, V)ef ‘of; then f(X)=j(T) and,
therefore, £ (X w [x}) = f (Yu {x}) =f (¥) =f (X) regarding (i). By (i), there
exists yeX such that (x,y)eR and, thus, xe(uR)(X) Hence, Y= X.
(X, Y)ef 'of imply Y = (uR)(X) and, therefore, (uR}(X) is the greatest
YeB (I) such that (X, Y)ef “'of. Thus, (X, ¥Y)ef ~'of means (uR)(X)=
= (uR) (Y) which is (X, Y)eE(R) We have proved that flof=E{R]L

(2) If f "' of is a rough top equality, there exists an equivalence R on 1
such that f 'of=E(R)L If X, YeB(I), xel, and [ (X) = f(Y), then (X, Y)e
¢ E (R) which implies that (uR) (X) = (uR) (¥). Thus (R} (X Ix})= (WR) (X)u
_(uR) ({x}) = mR) (Y} (uR) ({x}) = @R) (YU {x}) by (A6) in 1.3 of [2], and,
therefore, f (X u {x])=/f(Yu {x}) which is (i If XeB(I), xel are such
that £ (X U {x}) = f(X), then (uR)(X)u (uR) ({x}) = (uR) (X u {x}) = (uR) (X)
and, thus, xe(uR)({x}) = (R)(X) which implies the existence of ye X such
that (x, v)eR, ie., f ({x}) =/ ({y}) which is (ii). (J

Thus, recognizing rough top equalities among all congruences is the same
as recognizing good boxes among all admissible boxes.

5. Reducibility of boxes. If §=¢I[,0,f> is a box and K =1 then
T=¢K,0,f} B(K)» is a box that is referred to as a subbox of S; /| B(K)
denotes the restriction of f to the set B{K). A subbox T of § is said to be
proper il T# §.
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A subbox T of § is said to be a reduct of S if there exists a surjective
homomorphism of § onto T. Clearly, the activity of a box can be simulated
in any of its reducts.

By 2.6, we obtain

l. LEMMA. If T is a reduct of 8§ and U a reduct of T, then U is
a reduct of 8. [

A box is said to be reducible if it has at least one proper reduct.
A box that is not reducible is said to be irreducible.

2. THEOREM. Any box has an irreducible reduct.

Froof. The family of all reducts of a box § is nonempty because § is
a reduct of §; this family is ordered by the relation “to be a subbox™
on the basis of 1. A minimal element of this family is irreducible as it
is easy to see. [

3. LeMMA. 4 very good box is irreducible.

Proof Let S = (I, 0,1 be very good and T= ¢/, O.f | B(J)> its reduct,
h a homomorphism of § onto T. Then h is a mapping of I onto J and
SX)=(f 1Bk [X]) =/ (h[X]) for any X eB(I). The injectivity of f
implies that X = h [X] for any XeB (/). Particularly, {x} = h[{x}]= {h(x)}
and, therefore, h (x) = x for any xel and, thus, J = h [{]1=1I, h=id;. Thus,
the only reduct of § is S: hence, § is irreducible. ] )

Let S=<I,0,f% be a good box. By 4.2, there exists an equivalence R
on [ such that f~'af=E(R). Let J be a subset of | such that J~C
has exactly one element for any block Cel/R. Then T=¢J, O.fIB{J) is
a subbox of §; it is called a kernel of S For any xel, let h(x) be the
only element yeJ such that (x, ¥)ER. Then h is a mapping of I onte J that
will be called the canonical mapping of § onto T

4. Lemma. If § is a good box, T a kernel of S, and h the canonical
mapping of S onto T, then h is a surjective homomorphism of § onte T and
T is very good.

Proof If S =<1,0.f5, T=¢J,0,f| B (J)>. then (uR) (X) = (uR) (h [X])
by the definition of J and h and, hence, (X, h[X])eE(R)=f"'of which -
implies f (X) = (k[XT) = (/] B () (h [X]) for any XeB(I). Hence, h is
2 sutjective homomorphism of 5 onto L If X, YelB|{FL XK= ¥ . theq
(uR) (X) # (uR)(¥) by definition of J. Thus, (X, YI¢E(R)=/f"'of and,
hence, f(X) = 1 (Y). Therefore, f| B(J) is injective and T is very good. [

3. CoroLLARY. A kernel of a good box is its very good reduct. []

6. THEOREM. A good box is irreducible if and only if it is very good,

Proof. By 3, a very good box is irreducible. An irreducible good box
coincides with any of its kernels and is very good by 5. []
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7. ExAMPLE. Let §= {1, 0,f be the good box of 34 Then / "'of has
the following blocks: {0}, [{a}j', ({b), {c}, {b, e}}, {a b}, fach, I). It
follows that R has the blocks {a}, /b ¢}. We take J= {a, b}, hia)=a,
hib)=b=h(chg® =p,gl{a})=m, g ({b})=n g(J)=q Then T={J,0,g)
is a kernel of § and h is the corresponding canonical mapping.

6. Concluding remarks. We have secen that a good box may be replaced
by a very good box that can be simpler than the given box and that the
activity of the given box can be simulated by the activity of the simpler
very good box. This property of good boxes and the possibility of constructing
kernels seems to be important enough to motivate mathematical means for
recognizing good boxes. We have seen that rough top equalities belong to
such means and that recognizing rough top equalities is the same as
recognizing good boxes.
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