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MOTTO:
“It is a capital mistake to theorise before one has data”

Sherlock Holms
In: A Scandal in Bohemia

Abstract. Rough set theory offers new perspective on Bayes’ theorem.
The look on Bayes’ theorem offered by rough set theory reveals that any
data set (decision table) satisfies total probability theorem and Bayes’
theorem. These properties can be used directly to draw conclusions from
objective data without referring to subjective prior knowledge and its
revision if new evidence is available.
Thus the rough set view on Bayes’ theorem is rather objective in contrast
to subjective “classical” interpretation of the theorem .

1 Introduction

In his paper [2] Bayes considered the following problem: “Given the number of
times in which an unknown event has happened and failed: required the chance
that the probability of its happening in a single trial lies somewhere between
any two degrees of probability that can be named.”

In fact “... it was Laplace (1774 – 1886) – apparently unaware of Bayes’ work
– who stated the theorem in its general (discrete) from” [3].

Currently Bayes’ theorem is the basic of statistical interference.
“The result of the Bayesian data analysis process is the posterior distribution

that represents a revision of the prior distribution on the light of the evidence
provided by the data” [5].

Bayes’ based inference methodology rised many controversy and criticism.
For example,

“Opinion as to the values of Bayes’ theorem as a basic for statistical inference
has swung between acceptance and rejection since its publication on 1763” [4].

“The technical results at the heart of the essay is what we now know as
Bayes’ theorem. However, from a purely formal perspective there is no obvious
reason why this essentially trivial probability result should continue to excite
interest” [3].

Rough set theory offers new insight into Bayes’ theorem. The look on Bayes’
theorem offered by rough set theory is completely different to that used in the
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Bayesian data analysis philosophy. It does not refer either to prior or posterior
probabilities, inherently associated with Bayesian reasoning, but it reveals some
probabilistic structure of the data being analyzed. It states that any data set
(decision table) satisfies total probability theorem and Bayes’ theorem. This
property can be used directly to draw conclusions from the data without referring
to prior knowledge and its revision if new evidence is available. Thus in the
presented approach the only source of knowledge is the data and there is no
need to assume that there is any prior knowledge besides the data.

Moreover, the rough set approach to Bayes’ theorem shows close relation-
ship between logic of implications and probability, which was first observed by
�Lukasiewicz [6] and also independly studied by Adams [1] and others. Bayes’
theorem in this context can be used to “invert” implications, i.e., to give reasons
for decisions. This is a very important feature of utmost importance to data
mining and decision analysis, for it extends the class of problem which can be
considered in these domains.

Besides, we propose a new form of Bayes’ theorem where basic role plays
strength of decision rules (implications) derived from the data. The strength of
decision rules is computed from the data or it can be also a subjective assess-
ment. This formulation gives new look on Bayesian method of inference and also
simplifies essentially computations.

It is also interesting to note a relationship between Bayes’ theorem and flow
graphs.

Let us also observe that the rough set view on Bayes’ theorem is rather
objective in contrast to subjective “classical” interpretation.

2 Information Systems and Approximation of Sets

In this section we define basic concepts of rough set theory: information system
and approximation of sets. Rudiments of rough set theory can be found in [7,
10].

An information system is a data table, whose columns are labeled by at-
tributes, rows are labeled by objects of interest and entries of the table are
attribute values.

Formally, by an information system we will understand a pair S = (U, A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va, of
its values, called the domain of a. Any subset B of A determines a binary rela-
tion I (B) on U , which will be called an indiscernibility relation, and defined as
follows: (x, y) ∈ I (B) if and only if a (x) = a (y) for every a ∈ A, where a(x)
denotes the value of attribute a for element x. Obviously I(B) is an equivalence
relation. The family of all equivalence classes of I (B), i.e., a partition deter-
mined by B, will be denoted by U/I (B), or simply by U/B; an equivalence class
of I (B), i.e., block of the partition U/B, containing x will be denoted by B (x) .

If (x, y) belongs to I (B) we will say that x and y are B-indiscernible (indis-
cernible with respect to B). Equivalence classes of the relation I (B) (or blocks
of the partition U/B) are referred to as B-elementary sets or B-granules.
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If we distinguish in an information system two disjoint classes of attributes,
called condition and decision attributes, respectively, then the system will be
called a decision table and will be denoted by S = (U, C, D), where C and D are
disjoint sets of condition and decision attributes, respectively.

Thus the decision table determines decisions which must be taken, when
some conditions are satisfied. In other words each row of the of the decision
table specifies a decision rule which determines decisions in terms of conditions.

Observe, that elements of the universe are in the case of decision tables simply
labels of decision rules.

Suppose we are given an information system S = (U, A), X ⊆ U , and B ⊆ A.
Our task is to describe the set X in terms of attribute values from B. To this
end we define two operations assigning to every X ⊆ U two sets B∗ (X) and
B∗ (X) called the B-lower and the B-upper approximation of X, respectively,
and defined as follows:

B∗ (X) =
⋃

x∈U

{B (x) : B (x) ⊆ X},

B∗ (X) =
⋃

x∈U

{B (x) : B (x) ∩ X �= ∅}.

Hence, the B-lower approximation of a set is the union of all B-granules that are
included in the set, whereas the B-upper approximation of a set is the union of
all B-granules that have a nonempty intersection with the set. The set

BNB (X) = B∗ (X) − B∗ (X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB (X) = ∅, then X is

crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅, X is
referred to as rough (inexact) with respect to B.

3 Rough Membership

Rough sets can be also defined employing instead of approximations rough mem-
bership function [9], which is defined as follows:

µB
X : U → [0, 1]

and

µB
X (x) =

|B (x) ∩ X|
|B (x) | ,

where X ⊆ U and B ⊆ A and |X| denotes the cardinality of X.
The function measures the degree that x belongs to X in view of information

about x expressed by the set of attributes B.
The rough membership function has the following properties:
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1. µB
X (x) = 1 iff x ∈ B∗ (X)

2. µB
X (x) = 0 iff x ∈ U − B∗ (X)

3. 0 < µB
X (x) < 1 iff x ∈ BNB (X)

4. µB
U−X (x) = 1 − µB

X (x) for any x ∈ U

5. µB
X∪Y (x) ≥ max

(
µB

X (x) , µB
Y (x)

)
for any x ∈ U

6. µB
X∩Y (x) ≤ min

(
µB

X (x) , µB
Y (x)

)
for any x ∈ U

Compare these properties to those of fuzzy membership. Obviously rough mem-
bership is a generalization of fuzzy membership.

The rough membership function, can be used to define approximations and
the boundary region of a set, as shown below:

B∗ (X) = {x ∈ U : µB
X (x) = 1},

B∗ (X) = {x ∈ U : µB
X (x) > 0},

BNB (X) = {x ∈ U : 0 < µB
X (x) < 1}.

4 Information Systems and Decision Rules

Every decision table describes decisions determined, when some conditions are
satisfied. In other words each row of the decision table specifies a decision rule
which determines decisions in terms of conditions.

Let us describe decision rules more exactly.
Let S = (U, C, D) be a decision table. Every x ∈ U determines a sequence

c1 (x) , . . . , cn (x) , d1 (x) , . . . , dm (x) where {c1, . . . , cn} = C and {d1, . . . , dm} =
D.

The sequence will be called a decision rule induced by x (in S) and denoted
by c1 (x) , . . . , cn (x) → d1 (x) , . . . , dm (x) or in short C →x D.

The number suppx (C, D) = |C (x) ∩ D (x) | will be called a support of the
decision rule C →x D and the number

σx (C, D) =
suppx (C, D)

|U | ,

will be referred to as the strength of the decision rule C →x D. With every
decision rule C →x D we associate the certainty factor of the decision rule,
denoted cerx (C, D) and defined as follows:

cerx (C, D) =
|C (x) ∩ D (x) |

|C (x) | =
suppx (C, D)

|C (x) | =
σx (C, D)
π (C (x))

,

where π (C (x)) = |C(x)|
|U | .

The certainty factor may be interpreted as a conditional probability that y
belongs to D (x) given y belongs to C (x), symbolically πx (D|C) .

If cerx (C, D) = 1, then C →x D will be called a certain decision rule in S; if
0 < cerx (C, D) < 1 the decision rule will be referred to as an uncertain decision
rule in S.
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Besides, we will also use a coverage factor of the decision rule, denoted
covx (C, D) defined as

covx (C, D) =
|C (x) ∩ D (x) |

|D (x) | =
suppx (C, D)

|D (x) | =

=
σx (C, D)
π (D (x))

,

where π (D (x)) = |D(x)|
|U | .

Similarly
covx (C, D) = πx (C|D) .

If C →x D is a decision rule then D →x C will be called an inverse decision
rule. The inverse decision rules can be used to give explanations (reasons) for
decisions.

Let us observe that

cerx (C, D) = µC
D(x) (x) and covx (C, D) = µD

C(x) (x) .

That means that the certainty factor expresses the degree of membership of x
to the decision class D (x), given C, whereas the coverage factor expresses the
degree of membership of x to condition class C (x), given D.

Decision rules are often represented in a form of “if ... then ...” implications.
Thus any decision table can be transformed in a set of “if ... then ...” rules,
called a decision algorithm.

Generation of minimal decision algorithms from decision tables is a complex
task and we will not discuss this issue here. The interested reader is advised to
consult the references.

5 Probabilistic Properties of Decision Tables

Decision tables have important probabilistic properties which are discussed next.
Let C →x D be a decision rule in S and let Γ = C (x) and let ∆ = D (x) .

Then the following properties are valid:
∑

y∈Γ

cery (C, D) = 1 (1)

∑

y∈∆

covy (C, D) = 1 (2)

π (D (x)) =
∑

y∈Γ

cery (C, D) · π (C (y)) = (3)

=
∑

y∈Γ

σy (C, D)
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π (C (x)) =
∑

y∈∆

covy (C, D) · π (D (y)) = (4)

=
∑

y∈∆

σy (C, D)

cerx (C, D) =
covx (C, D) · π (D (x))∑

y∈∆

covy (C, D) · π (D (y))
= (5)

=
σx (C, D)
π (C (x))

covx (C, D) =
cerx (C, D) · π (C (x))∑

y∈Γ

cery (C, D) · π (C (y))
= (6)

=
σx (C, D)
π (D (x))

That is, any decision table, satisfies (1),...,(6). Observe that (3) and (4) refer
to the well known total probability theorem, whereas (5) and (6) refer to Bayes’
theorem.

Thus in order to compute the certainty and coverage factors of decision rules
according to formula (5) and (6) it is enough to know the strength (support) of
all decision rules only. The strength of decision rules can be computed from data
or can be a subjective assessment.

6 Decision Tables and Flow Graphs

With every decision table we associate a flow graph, i.e., a directed, connected,
acyclic graph defined as follows: to every decision rule C →x D we assign a
directed branch x connecting the input node C (x) and the output node D (x) .
Strength of the decision rule represents a throughflow of the corresponding
branch. The throughflow of the graph is governed by formulas (1),...,(6).

Formulas (1) and (2) say that an outflow of an input node or an output
node is equal to their inflows. Formula (3) states that the outflow of the output
node amounts to the sum of its inflows, whereas formula (4) says that the sum
of outflows of the input node equals to its inflow. Finally, formulas (5) and (6)
reveal how throughflow in the flow graph is distributed between its inputs and
outputs.

7 Illustrative Examples

Now we will illustrate the ideas considered in the previous sections by simple
tutorial examples. These examples intend to show clearly the difference between
“classical” Bayesian approach and that proposed by the rough set philosophy.
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Example 1. This example will clearly show the different role of Bayes’ theorem
in classical statistical inference and that in rough set based data analysis.

Let us consider the data table shown in Table 1.

Table 1. Data table

T+ T −

D 95 5
D 1998 97902

In Table 1 the number of patients belonging to the corresponding classes
is given. Thus we start from the original data (not probabilities) representing
outcome of the test.

Now from Table 1 we create a decision table and compute strength of decision
rules. The results are shown in Table 2.

Table 2. Decision table

fact D T support strength
1 + + 95 0.00095
2 − + 1998 0.01998
3 + − 5 0.00005
4 − − 97902 0.97902

In Table 2 D is the condition attribute, wheras T is the decision attribute.
The decision table is meant to represent a “cause–effect” relation between the
disease and result of the test. That is, we expect that the disease causes positive
test result and lack of the disease results in negative test result.

The decision algorithm is given below:

1’) if (disease, yes) then (test, positive)
2’) if (disease, no) then (test, positive)
3’) if (disease, yes) then (test, negative)
4’) if (disease, no) then (test, negative)

The certainty and coverage factors of the decision rules for the above decision
algorithm are given is Table 3.

The decision algorithm and the certainty factors lead to the following con-
clusions:

– 95% persons suffering from the disease have positive test results
– 2% healthy persons have positive test results
– 5% persons suffering from the disease have negative test result
– 98% healthy persons have negative test result
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Table 3. Certainty and coverage

rule strength certainty coverage
1 0.00095 0.95 0.04500
2 0.01998 0.02 0.95500
3 0.00005 0.05 0.00005
4 0.97902 0.98 0.99995

That is to say that if a person has the disease most probably the test result will be
positive and if a person is healthy the test result will be most probably negative.
In other words, in view of the data there is a causal relationship between the
disease and the test result.

The inverse decision algorithm is the following:

1) if (test, positive) then (disease, yes)
2) if (test, positive) then (disease, no)
3) if (test, negative) then (disease, yes)
4) if (test, negative) then (disease, no)

From the coverage factors we can conclude the following:

– 4.5% persons with positive test result are suffering from the disease
– 95.5% persons with positive test result are not suffering from the disease
– 0.005% persons with negative test results are suffering from the disease
– 99.995% persons with negative test results are not suffering from the disease

That means that if the test result is positive it does not necessarily indicate the
disease but negative test results most probably (almost for certain) does indicate
lack of the disease.

That is to say that the negative test result almost exactly identifies healthy
patients.

For the remaining rules the accuracy is much smaller and consequently test
results are not indicating the presence or absence of the disease. 	


Example 2. Let us now consider a little more sophisticated example, shown in
Table 4.

Attributes disease, age and sex are condition attributes, wheras test is the
decision attribute.

The strength, certainty and coverage factors for decision table are shown in
Table 5.

Below a decision algorithm associated with Table 5 is presented.

1) if (disease, yes) and (age, old) then (test, +)
2) if (disease, yes) and (age, middle) then (test, +)
3) if (disease, no) then (test, −)
4) if (disease, yes) and (age, old) then (test, −)
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Table 4. Decision table

fact disease age sex test support
1 yes old man + 400
2 yes middle woman + 80
3 no old man − 100
4 yes old man − 40
5 no young woman − 220
6 yes middle woman − 60

Table 5. Certainty and coverage

fact strength certainty coverage
1 0.44 0.92 0.83
2 0.09 0.56 0.17
3 0.11 1.00 0.23
4 0.04 0.08 0.09
5 0.24 1.00 0.51
6 0.07 0.44 0.15

5) if (disease, yes) and (age, middle) then (test, −)

The flow graph for the decision algorithm is presented in Fig. 1.
The certainty and coverage factors for the above algorithm are given in Ta-

ble 6

Table 6. Certainty and coverage factors

rule strength certainty coverage
1 0.44 0.92 0.83
2 0.09 0.56 0.17
3 0.36 1.00 0.76
4 0.04 0.08 0.09
5 0.07 0.44 0.15

The certainty factors of the decision rules lead the following conclusions:

– 92% ill and old patients have positive test result
– 56% ill and middle age patients have positive test result
– all healthy patients have negative test result
– 8% ill and old patients have negative test result
– 44% ill and old patients have negative test result

In other words:
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Fig. 1. Flow graf

– ill and old patients most probably have positive test result (probability =
0.92)

– ill and middle age patients most probably have positive test result (proba-
bility = 0.56)

– healthy patients have certainly negative test result (probability = 1.00)

Now let us examine the inverse decision algorithm, which is given below:

1’) if (test, +) then (disease, yes) and (age, old)
2’) if (test, +) then (disease, yes) and (age, middle)
3’) if (test, −) then (disease, no)
4’) if (test, −) then (disease, yes) and (age, old)
5’) if (test, −) then (disease, yes) and (age, middle)

Employing the inverse decision algorithm and the coverage factor we get the
following explanation of test results:

– reasons for positive test results are most probably disease and old age (prob-
ability = 0.83)

– reason for negative test result is most probably lack of the disease (proba-
bility = 0.76) 	


If is clearly seen from examples 1 and 2 the difference between Bayesian data
analysis and the rough set approach. In the Bayesian inference the data is used
to update prior knowledge (probability) into a posterior probability, whereas
rough sets are used to understand what the data are telling us.
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8 Conclusion

Bayesian inference consists in updating prior probabilities by means of data to
posterior probabilities, which is rather subjective.

In the rough set approach Bayes’ theorem reveals data patterns, which are
used next to draw conclusions from data, in form of decision rules, which is
objective and refers to objective probabilities computed from the data.
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