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Abstract. Some probabilistic properties of decision algorithms com-
posed of “if . . . , then. . . ” decision rules are considered. With every de-
cision rule three probabilities are associated: the strength, the certainty
and the coverage factors of the rule. It has been shown previously that
the certainty and the coverage factors are linked by Bayes’ theorem.
Bayes’ theorem has also been presented in a simple form employing the
strength of decision rules. In this paper, we relax some conditions on
the decision algorithm, in particular, a condition on mutual exclusion of
decision rules, and show that the former properties still hold. We also
show how the total probability theorem is related with modus ponens
and modus tollens inference rules when decision rules are true in some
degree of the certainty factor. Moreover, we show that under the relaxed
condition, with every decision algorithm a flow graph can be associated,
giving a useful interpretation of decision algorithms.

1 Introduction

We are considering some probabilistic properties of decision algorithms being
finite sets of “if . . . , then. . . ” decision rules. The rules are induced from a data
table where a finite set of objects is described by a finite set of condition and
decision attributes. With every decision rule three probabilities are associated:
the strength, the certainty and the coverage factors of the rule. Pawlak (2002a)
has shown that the certainty and the coverage factors are linked by Bayes’ the-
orem. Moreover, Bayes’ theorem in the proposed setting can be presented in
a simple form employing the strength of decision rules. These properties have
been derived under specific conditions imposed on decision rules, in particular,
a mutual exclusion (or independence) condition. In this paper we relax these
conditions and show that the former properties still hold. We also show how
the total probability theorem is related with modus ponens and modus tollens
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inference rules when decision rules are true in degree of the certainty factor and
the decision algorithm satisfies the relaxed conditions.

Moreover, we show that under the relaxed conditions, with every decision
algorithm a flow graph can be associated. The through-flow in the graph is
related to above-mentioned probabilities and is ruled by the total probability
theorem and Bayes’ theorem. The flow graph satisfies the usual properties of
network flows, i.e. conservation of flow in each node and in the whole network.
Simple tutorial examples illustrate the interest of the flow graph for practical
interpretation of decision algorithms.

2 Decision Rules and Decision Algorithms

Let S = (U, A) be an information system, where U and A are finite, non-empty
sets called the universe and the set of attributes, respectively. If in the set A
two disjoint classes of attributes, called condition and decision attributes, are
distinguished, then the system is called a decision table and is denoted by S = (U,
C, D), where C and D are sets of condition and decision attributes, respectively.
With every subset of attributes, one can associate a formal language of formulas
L defined in a standard way and called the decision language. Formulas for a
subset B⊆A are build up from attribute-value pairs (a, v), where a∈B and v∈Va

(set Va is domain of a), by means of logical connectives ∧ (and), ∨ (or), ¬
(not). We assume that the set of all formula sets in L is partitioned into two
classes, called condition and decision formulas, involving condition and decision
attributes, respectively.

A decision rule induced from S and expressed in L is an implication Φ → Ψ ,
read “if Φ, then Ψ”, where Φ and Ψ are condition and decision formulas in L,
respectively.

Let ||Φ|| denote the set of all objects from universe U, having the property
Φ in S.

If Φ → Ψ is a decision rule, then suppS(Φ,Ψ) = card(||Φ ∧ Ψ ||) will be called
the support of the decision rule and σS(Φ,Ψ) =

suppS(Φ,Ψ)
card(U)

will be referred to as
the strength of the decision rule.

With every decision rule Φ → Ψ we associate a certainty factor cerS(Φ,Ψ) =
suppS(Φ,Ψ)
card(‖Φ‖) and a coverage factor covS(Φ,Ψ) =

suppS(Φ,Ψ)
card(‖Ψ‖) .

If cerS(Φ,Ψ)=1, then the decision rule Φ → Ψ will be called certain, otherwise
the decision rule will be referred to as uncertain.

A set of decision rules covering all objects of the universe U creates a decision
algorithm in S. Pawlak (2002a) points out that every decision algorithm associ-
ated with S displays well-known probabilistic properties, in particular it satisfies
the total probability theorem and Bayes’ theorem. As a decision algorithm can
also be interpreted in terms of the rough set concept, these properties give a new
look on Bayes’ theorem from the rough set perspective. In consequence, one can
draw conclusions from data without referring to prior and posterior probabilities,
inherently associated with Bayesian reasoning. The revealed relationship can be
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used to invert decision rules, i.e., giving reasons (explanations) for decisions,
which is useful in decision analysis.

The relationship revealed by Pawlak (2002a) uses, however, some restrictive
assumptions that we want to relax in the present study.

3 Some Properties of Decision Algorithms

Pawlak (2002a) defines the decision algorithm as a set of decision rules
DecS(Φ,Ψ) = {Φi → Ψi}i=1,...,m, m≥2, associated with a decision table
S = (U, C, D), satisfying the following conditions:

1. Mutual exclusion (independence):
for every Φi → Ψi and Φj → Ψj ∈ DecS(Φ,Ψ), Φi = Φj or ||Φi ∧ Φj || = ∅,
and Ψi = Ψj or ||Ψi ∧ Ψj || = ∅,

2. Admissibility : suppS(Φ,Ψ) �= ∅ for any Φ → Ψ ∈DecS(Φ,Ψ),

3. Covering :
m⋃

i=1
‖Φi‖=U and

m⋃
i=1

‖Ψi‖=U.

Under these conditions, the following properties of decision algorithms hold:

∑

Ψ ′∈D(Φ)

cerS(Φ, Ψ ′) =
∑

Ψ ′∈D(Φ)

card(‖Φ ∧ Ψ ′‖)
card(‖Φ‖) = 1, (1)

∑

Φ′∈C(Ψ)

covS(Φ′, Ψ) =
∑

Φ′∈C(Ψ)

card(‖Φ′ ∧ Ψ‖)
card(‖Ψ‖) = 1, (2)

πS(Ψ) =
∑

Φ′∈C(Ψ)

cerS(Φ′, Ψ)πS(Φ′) =
∑

Φ′∈C(Ψ)

σS(Φ′, Ψ), (3)

πS(Φ) =
∑

Ψ ′∈D(Φ)

covS (Φ, Ψ ′)πS(Ψ ′) =
∑

Ψ ′∈D(Φ)

σS (Φ, Ψ ′), (4)

cerS(Φ, Ψ) = σS(Φ, Ψ)/πS(Φ), (5)

covS(Φ, Ψ) = σS(Φ, Ψ)/πS(Ψ) , (6)

where πS(Φ) =
card(‖Φ‖)
card(U)

, πS(Ψ) =
card(‖Ψ‖)
card(U)

, while
D(Φ) = {Ψ : Φ → Ψ ∈ DecS(Φ, Ψ)} and C(Ψ) = {Φ: Φ → Ψ ∈ DecS(Φ,Ψ)} denote
the set of all decisions of Φ and the set of all conditions of Ψ in DecS(Φ,Ψ),
respectively.

It can be observed that (3) and (4) refer to the total probability theorem,
whereas (5) and (6) refer to Bayes’ theorem, without using prior and posterior
probabilities. In other words, if we know the ratio of ΦS in Ψ , thanks to Bayes’
theorem we can compute the ratio of ΨS in Φ.
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We want to generalize formulae (1)–(6) to the case where condi-
tion 1) on mutual exclusion (independence) of the decision rules in
the decision algorithm is not satisfied. This relaxation means that there
may exist at least two decision rules Φ’→ Ψ ’ and Φ”→ Ψ”∈Dec(Φ,Ψ) such that
||Φ’∧Φ”|| �= ∅ or ||Ψ ’∧Ψ”|| �= ∅.
We claim that if the independence condition does not hold with respect to deci-
sions (i.e. if there exist at least two decisions ψ’ and ψ” such that ||ψ’∧ψ”|| �= ∅),
formula (1) becomes:∑
Ψ ′∈D(Φ)

cerS(Φ, Ψ ′) − ∑
Ψ ′,Ψ ′′∈D(Φ)

cerS(Φ, Ψ ′ ∧ Ψ ′′) +

+
∑

Ψ ′,Ψ ′′,Ψ ′′′∈D(Φ)
cerS(Φ, Ψ ′ ∧ Ψ ′′ ∧ Ψ ′′′) + ... =

=
∑

Ψ ′∈D(Φ)

card(‖Φ∧Ψ ′‖)
card(‖Φ‖) − ∑

Ψ ′′,Ψ ′∈D(Φ)

card(‖Φ∧Ψ ′∧Ψ ′′‖)
card(‖Φ‖) +

+
∑

Ψ ′′′,Ψ ′′,Ψ ′∈D(Φ)

card(‖Φ∧Ψ ′∧Ψ ′′∧Ψ ′′′‖)
card(‖Φ‖) . . . = 1. (1’)

Analogously, if independence condition does not hold with respect to conditions
(i.e. if there exist at least two conditions Φ’ and Φ” such that ||Φ’∧Φ”|| �= ∅),
formula (2) becomes:∑
Φ′∈C(Ψ)

covS (Φ′, Ψ) − ∑
Φ′,Φ′′∈C(Ψ)

covS (Φ′ ∧ Φ′′, Ψ) +

+
∑

Φ′,Φ′′,Φ′′′∈C(Ψ)
covS (Φ′ ∧ Φ′′ ∧ Φ′′′, Ψ) ... =

=
∑

Φ′∈C(Ψ)

card(‖Φ′∧Ψ‖)
card(‖Ψ‖) − ∑

Φ′,Φ′′∈C(Ψ)

card(‖Φ′∧Φ′′∧Ψ‖)
card(‖Ψ‖) +

+
∑

Φ′,Φ′′,Φ′′′∈C(Ψ)

card(‖Φ′∧Φ′′∧Φ′′′∧Ψ‖)
card(‖Ψ‖) ... = 1 (2’)

Similar transformation can be performed on formula (3):
πS(Ψ) =

∑
Φ′∈C(Ψ)

cerS(Φ′, Ψ)πS(Φ′) − ∑
Φ′,Φ′′∈C(Ψ)

cerS(Φ′ ∧ Φ′′, Ψ)πS(Φ′ ∧ Φ′′) +

+
∑

Φ′,Φ′′,Φ′′′∈C(Ψ)
cerS(Φ′ ∧ Φ′′ ∧ Φ′′′, Ψ)πS(Φ′ ∧ Φ′′ ∧ Φ′′′)... =

=
∑

Φ′∈C(Ψ)
σS(Φ′, Ψ) − ∑

Φ′,Φ′′∈C(Ψ)
σS(Φ′ ∧ Φ′′, Ψ) +

+
∑

Φ′,Φ′′,Φ′′′∈C(Ψ)
σS(Φ′ ∧ Φ′′ ∧ Φ′′′, Ψ)... (3’)

and on formula (4)
πS(Φ) =

∑
Ψ ′∈D(Φ)

covS(Φ, Ψ ′)πS(Ψ ′)− ∑
Ψ ′,Ψ ′′∈D(Φ)

covS(Φ, Ψ ′ ∧ Ψ ′′)πS(Ψ ′ ∧ Ψ ′′) +

+
∑

Ψ ′,Ψ ′′∈D(Φ)
covS(Φ, Ψ ′ ∧ Ψ ′′ ∧ Ψ ′′′)πS(Ψ ′ ∧ Ψ ′′ ∧ Ψ ′′′) ... =

=
∑

Ψ ′∈D(Φ)
σS(Φ, Ψ ′) − ∑

Ψ ′,Ψ ′′∈D(Φ)
σS(Φ, Ψ ′ ∧ Ψ ′′) +

+
∑

Ψ ′,Ψ ′′,Ψ ′′′∈D(Φ)
σS(Φ, Ψ ′ ∧ Ψ ′′ ∧ Ψ ′′′) + ... (4’)
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4 Total Probability Theorems and Rough Inference Rules

Remark that formulae (3’) and (4’) referring to total probability theorems are
closely related with modus ponens (MP) and modus tollens (MT) inference rules
in some specific way.

Classically, MP has the following form:

if Φ → ψ is true
and Φ is true
then ψ is true

If we replace truth values by corresponding probabilities, we can generalize
the inference rule as rough modus ponens (RMP):

if Φ → ψ is true with probability cerS(Φ,ψ)
and Φ is true with probability πS(Φ)
then ψ is true with probability πS(Ψ) given by (3’).

RMP enables us to calculate the probability of conclusion ψ of a decision
rule Φ → ψ in terms of strengths of all decision rules in the form Φ’→ ψ,
Φ’∧Φ”→ ψ, Φ’∧Φ”∧Φ”’→ ψ and so on. In comparison with the rough modus
ponens of Pawlak (2002a), the above RMP handles a set of rules suggesting the
same decision and such that the intersection of supports of their condition parts
can be non-empty.

Classically, MT has the following form:

if Φ → ψ is true
and ¬ψ is true
then ¬Φ is true

If we replace truth values by corresponding probabilities, we can generalize
the inference rule as rough modus tollens (RMT):

if Φ → ψ is true with probability cerS(Φ,ψ)
and ψ is true with probability πS(ψ)
then Φ is true with probability πS(Φ) given by (4’).

RMT enables us to calculate the probability of condition Φ of a decision
rule Φ → ψ in terms of strengths of all decision rules in the form Φ → ψ’,
Φ → ψ’∧ψ”, Φ → ψ’∧ψ”∧ψ”’ and so on. Again, in comparison with the rough
modus tollens of Pawlak (2002a), the above RMT handles a set of rules having
the same condition and such that the intersection of supports of their decision
parts can be non-empty.

5 Decision Algorithms and Flow Graphs

Pawlak (2002b, 2002c) has shown recently that a decision algorithm (decision
table) can be represented by a flow graph in which the flow is ruled by the total
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probability theorem and by the Bayes’ theorem. The graph is acyclic, directed
and connected; there are two layers of nodes – input nodes, corresponding to
particular conditions of decision rules, and output nodes, corresponding to deci-
sions of particular decision rules. To every decision rule Φ → ψ there is assigned
an arc connecting the input node Φ and the output node ψ. Strength of the
decision rule represents the through-flow of the corresponding arc. The through-
flow of the graph is governed by formulas (1)-(6) that can be considered as flow
conservation equations. In particular, formula (3) states that the outflow of the
output node amounts to the sum of its inflows, whereas formula (4) says that
the sum of outflows of the input node equals to its inflow. Moreover, formulas
(5) and (6) reveal how through-flow in the flow graph is distributed between its
inputs and outputs.

In this section we propose an interpretation of the decision table in terms of
the flow graph when the independence condition does not hold.

The generalized flow graph will be explained using two simple examples in-
spired by Berthold and Hand (1999) and Pawlak (2002b).

Table 1. Statistical summary of a sample of cases

Fact T1 T2 D Number of cases
1 - - - 9320
2 - - + 200
3 + - - 150
4 + - + 20
5 - + - 5
6 - + + 140
7 + + - 5
8 + + + 300

Example 1. Consider two physician’s diagnostic tests T1 and T2, for presence
of disease D. Table 1 presents the results of the tests and the presence or absence
of the disease on a sample of 10140 cases (660 with and 9480 without disease
D). Table 1 represents decision table S.

One can induce from Table 1 a set of decision rules relating results of the
tests with the presence of disease D. The rules are presented in Table 2 using
the following notation: 1 means positive and -1 means negative result of the
corresponding test, and 0 means that the corresponding test is not considered.
For example, rule #2 can be read as: “in 97.8% of cases in which test T2 is
positive, disease D is present”. Analogously, rule #5 can be read as: “in 11.8%
of cases in which test T1 is positive and test T2 is negative, disease D is present”.

As the ratio of the number of cases with disease D to the total number
of cases in the sample is 0.065, there is also a “default” rule #0 having the
following interpretation: “without considering any test, in 6.5% of cases disease
D is present”. Another decision rule is also interesting for interpretation in terms
of flow graph:
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Rule #6: “in 74.2% of cases in which test T1 or test T2 is positive, disease D is
present” (coverage=0.697, support=460, strength=.045).

Table 2. Decision rules concluding the presence of disease D, induced from Table 1

Rule T1 T2 D Certainty factor Coverage Support Strength
Rule #1 1 0 + .674 .485 320 .032
Rule #2 0 1 + .978 .667 440 .043
Rule #3 1 1 + .983 .454 300 .030
Rule #4 1 -1 + .118 .061 20 .002
Rule #5 -1 1 + .966 .212 140 .014

The flow graph corresponding to decision algorithm composed of the six
decision rules is presented in Figure 1. The graph is composed of three input
nodes, corresponding to performed tests (T1 alone, T2 alone, T1 and T2 together)
and of one output node corresponding to the presence of disease D. The input and
the output nodes have circular shapes in the flow graph, while the rectangular
boxes on the arcs include information on the through-flow of the arcs. Let us
remark that the through-flows of the arcs in Figure 1 represent the strength of
the corresponding decision rules. In other words, the flow graph can be seen as
a decomposition of the output flow, equal to probability πS(D)=card(‖D‖)

card(U)
of

disease D in S, into subsets of patients supporting particular decision rules. This
decomposition is as follows.

The flow leaving node T1 and entering node D is equal to the strength of
Rule #1:

σ(#1) = σ(T1, D) = card(‖T1∧D‖)
card(U)

.

It represents the contribution to πS(D) of a subset of patients having positive
result of test T1 (with no regard to test T2 that may give positive or negative
result). Analogously, the flow leaving node T2 and entering node D is equal to
the strength of Rule #2:

σ(#2) = σ(T2,D) = card(‖T2∧D‖)
card(U)

.

It represents the contribution to πS(D) of a subset of patients having positive
result of test T2 (with no regard to test T1 that may give positive or negative
result).

Since the subset of patients having simultaneously positive result of T1 and
T2 is included in both σ(#1) and σ(#2), to obtain πS(D) its contribution must
be subtracted from the sum of σ(#1) and σ(#2). The subtraction is represented
by the flow leaving node D and entering node (T1,T2), having strength of Rule
#3:

σ(#3) = σ(T1∧T2,D) = card(‖T1∧T2∧D‖)
card(U)

,

It represents the contribution to πS(D) of a subset of patients having simul-
taneously positive result of T1 and T2.
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Thus, the algebraic sum σ(#1)+σ(#2)–σ(#3) is equal to the probability
πS(D) corresponding to the output flow. Remark that the output flow is equal
to the strength of the most general decision rule in S, i.e. Rule #6:

σ(#6) = σ(T1∨T2,D) = card(‖T1∨T2∧D‖)
card(U)

.

The output flow is returned to the input nodes of the graph, giving another
decomposition of the probability πS(D). In fact, the output flow is split among:

– the input node T1, in amount equal to the strength of Rule #4:

σ(#4) = σ(T1 ∧ ¬T2,D) = card(‖T1∧¬T2∧D‖)
card(U)

;
it represents the contribution to πS(D) of a subset of patients having positive
result of T1 and negative result of T2;

– the input node T2, in amount equal to the strength of Rule #5:

σ(#5) = σ(¬T1∧T2,D) = card(‖¬T1∧T2∧D‖)
card(U)

;
it represents the contribution to πS(D) of a subset of patients having negative
result of T1 and positive result of T2;

– the input node (T1,T2), in amount equal to the strength of Rule #3, repre-
senting the contribution to πS(D) of a subset of patients having simultane-
ously positive result of T1 and T2.

The balance of flows in the input node T1 can be interpreted as follows.
The contribution to πS(D) of a subset of patients with positive result of T1 and
negative result of T2 is equal to the difference between flow σ(#1) from node T1
to node D, representing the contribution to πS(D) of a subset of patients with
positive result of T1, and flow σ(#3) from node (T1,T2) to node D, representing
the contribution to πS(D) of a subset of patients having simultaneously positive
result of T1 and T2. This follows from the observation that ||T1|| – ||T1∧T2|| =
||T1 ∧ ¬T2||.

Analogously, the contribution to πS(D) of a subset of patients with positive
result of T2 and negative result of T1 is equal to the difference between flow
σ(#2) from node T2 to node D, representing the contribution to πS(D) of a
subset of patients with positive result of T2, and flow σ(#3) from node (T1,T2)
to node D, representing the contribution to πS(D) of a subset of patients having
simultaneously positive result of T1 and T2. This follows from the observation
that ||T2|| – ||T1∧T2|| = ||¬T1∧T2||.

The flow graphs representing the coverage and the support of the rules have
the same structure and the through-flows of the arcs are proportional to those in
Figure 1. Indeed, given rule Φ → Ψ , coverage cov(Φ,Ψ) and support supp(Φ,Ψ)
can be calculated from the strength by a linear transformation:

cov(Φ,Ψ) = σ(Φ,Ψ)πS(Ψ) and supp(Φ,Ψ) = σ(Φ,Ψ)card(U).

Let us remark that the graph presented in Figure 1 satisfies two important
properties of the flow graphs: (i) at each node of the flow graph there is a zero
algebraic sum of the inflow and the outflow; (ii) the sum of flows entering the
input nodes is equal to the sum of flows leaving the output node.
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T1

T ,T1 2

T2

D

�(#4)=.002

(#1)=.032� (#6)=.045�(#2)=.043�

(#3)=.030�

(#3)=.030� (#5)=.013�

(#3)=.030� (#3)=.030�

Fig. 1. The flow graph of the decision algorithm representing a decomposition of the
output flow, equal to probability πS(D), in terms of the strength of particular decision
rules.

Example 2. While in Example 1 we considered strength, coverage and support
of decision rules, the present example underlines the interest of the flow graph
in representation of the certainty factor.

Consider one physician’s diagnostic test T, for presence of two diseases D1
and D2. Table 3 presents the results of the test and the presence or absence of
the diseases on a sample of 3850 cases (all with positive result of test T). Table
3 represents decision table S.

Table 3. Statistical summary of a sample of cases

Fact T D1 D2 Number of cases
1 + - - 200
2 + + - 400
3 + - + 250
4 + + + 3000

One can induce from Table 3 a set of decision rules relating results of the test
with the presence or absence of disease D1 and/or D2. The rules are presented
in Table 4 using the following notation: 1 means presence and -1 means absence
of the corresponding disease, and 0 means that the corresponding disease is not
considered. For example, rule #1 can be read as: “in 88.3% of cases in which the
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result of test T is positive, disease D1 is present”. Analogously, rule #5 can be
read as: “in 6.5% of cases in which the result of test T is positive, disease D1 is
present while disease D2 is absent”.

Table 4. Decision rules

Rule T D1 D2 Certainty factor
Rule #1 + 1 0 .883
Rule #2 + 0 1 .844
Rule #3 + 1 1 .779
Rule #4 + -1 1 .104
Rule #5 + 1 -1 .065

Another decision rule is also interesting for interpretation in terms of flow
graph:

Rule #6: “in 94.8% of cases in which test T is positive, one of the diseases
is present”.

The flow graph corresponding to decision algorithm composed of the six
decision rules is presented in Figure 2. The graph is composed of one input
node, corresponding to test T, and of three output nodes corresponding to the
presence of diseases (D1 alone, D2 alone, and D1 and D2 together). The input
and the output nodes have again circular shapes in the flow graph, while the
rectangular boxes on the arcs include information on the through-flow of the
arcs. Let us remark that the through-flows of the arcs in Figure 2 represent the
certainty factors of the corresponding decision rules. In other words, the flow
graph can be seen as a decomposition of the input flow, equal to certainty factor
of the most general decision rule in S, i.e. Rule #6. This decomposition is as
follows.

The input flow equal to certainty of Rule #6,

cerS(#6) = cerS(T,D1∨D2) =
card(‖T∧(D1∨D2)‖)

card(‖T‖)

is a sum of output flows corresponding to certainties of Rule #3, Rule #4 and
Rule #5, respectively, i.e.

cerS(T,D1∨D2) = cerS(T,D1∧D2) + cerS(T,D1 ∧ ¬D2) + cerS(T,¬D1∧D2).

This is based on the observation that ||T∧(D1∨D2)|| = ||T∧D1∧D2|| ∪
||T∧D1 ∧ ¬D2|| ∪ ||T∧¬D1∧D2||.

The graph shows also another decomposition of the input flow and, therefore,
of the certainty of Rule #6. This new decomposition is as follows.

The input flow, equal to certainty of Rule #6, is a sum of flows leaving node
D, i.e. certainties of Rule #1 and Rule #2, minus flows entering node D, i.e.
certainty of Rule #3:

cerS(T,D1∨D2) = cerS(T,D1) + cerS(T, D2) - cerS(T,D1∧D2).
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T

D ,D1 2

D1 D2

cer(#1)=.883

cer(#3)=.779

cer(#2)=.844 cer(#6)=.948

cer(#3)=.779 cer(#3)=.779

cer(#5)=.065cer(#3)=.779cer(#4)=.104

Fig. 2. The flow graph of the decision algorithm representing a decomposition of the
input flow in terms of the certainty factor of particular decision rules.

This is based on the observation that ||T∧(D1∨D2)||=(||T∧D1||∪||T∧D2||)−
||T∧¬D1∧D2||.

Moreover, in the output node D1, the certainty factor of Rule #4:

cerS(#4) = cerS(T,D1 ∧ ¬D2) =
card(‖T∧D1∧¬D2‖)

card(‖T‖)

is equal to the difference between flow

cerS(#1) = cerS(T,D1) =
card(‖T∧D1‖)
card(‖T‖) ,

leaving node T and entering node D1 (Rule #1), and flow

cerS(#3) = cerS(T,D1∧D2) =
card(‖T∧D1∧D2‖)

card(‖T‖) ,

leaving node D1 and entering node (D1,D2) (Rule #3). This is based on the
observation that ||T∧D1|| – ||T∧D1∧D2|| = ||T∧D1 ∧ ¬D2||.

Analogously, in the output node D2, the certainty factor of Rule #5:

cerS(#5) = cerS(T,¬D1∧D2) =
card(‖T∧¬D1∧D2‖)

card(‖T‖)

is equal to the difference between flow

cerS(#2) = cerS(T,D2) =
card(‖T∧D2‖)
card(‖T‖) ,

leaving node T and entering node D2 (Rule #2), and flow
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cerS(#3) = card(‖T∧D1∧D2‖)
card(‖T‖) ,

leaving node D1 and entering in node (D1,D2) (Rule #3). This is based on the
observation that ||T∧D2|| – ||T∧D1∧D2|| = ||T∧¬D1∧D2||.

Finally, let us remark that the flow graph presented in Figure 2 also satisfies
the properties 1) and 2) of the flow graph from Figure 1.

6 Conclusions

This paper shows some interesting probabilistic features of decision rules in-
ferred from data tables. It extends some previous results in this field by relaxing
the assumption of mutual exclusion (independence) of decision rules. Due to
some interesting theoretical developments, this relaxation enables interpretation
of decision rules encountered in real-life applications where the independence
property of a decision algorithm is often violated.

The interpretation of the probabilistic features in terms of flow graphs gives
an interesting representation of the relations between the strength, support, cov-
erage and certainty of decision rules induced from one data table. This permits
the user to have a deeper comprehension of the fundamental relations in the
data.
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