
CHAPTER 11 PCP theorem and hardness of approximation:
An introduction

[M]ost problem reductions do not create or preserve such gaps.… To create such a gap in the
generic reduction (cf. Cook) … also seems doubtful. The intuitive reason is that computation is
an inherently unstable, non-robust mathematical object, in the the sense that it can be turned
from non-accepting to accepting by changes that would be insignificant in any reasonable metric.

– Papadimitriou and Yannakakis [PY88]

The contribution of this paper is two-fold. First, a connection is shown between approximating
the size of the largest clique in a graph and multiprover interactive proofs. Second, an efficient
multiprover interactive proof for NP languages is constructed, where the verifier uses very few
random bits and communication bits.

– Feige, Goldwasser, Lovász, Safra, and Szegedy [FGL+91]

We give a new characterization of NP: it contains exactly those languages L for which membership
proofs can be verified probabilistically in polynomial time using logarithmic number of random
bits, and by reading a sub logarithmic number of bits from the proof.

– Arora and Safra [AS92]

This chapter describes the PCP Theorem, a surprising discovery of complexity theory,
with many implications to algorithm design. Since the discovery of NP-completeness
in 1972 researchers had mulled over the issue of whether we can efficiently compute
approximate solutions to NP-hard optimization problems. They failed to design such
approximation algorithms for most problems (see Section 11.1 for an introduction
to approximation algorithms). They then tried to show that computing approximate
solutions is also hard, but apart from a few isolated successes this effort also stalled.
Researchers slowly began to realize that the Cook-Levin-Karp-style reductions do not
suffice to prove any limits on approximation algorithms (see the quote at the beginning
of the chapters from an influential Papadimitriou-Yannakakis paper that appeared a
few years before the discoveries described in this chapter). The PCP Theorem, dis-
covered in 1992, gave a new definition of NP and provided a new starting point for
reductions. It was considered very surprising at the time (see the note at the end of
Section 11.2.2).

As we discuss in Section 11.2, there are two ways to view the PCP theorem. One
view of the PCP Theorem is that it constructs locally testable proof systems: The

237



238 PCP theorem and hardness of approximation: An introduction

PCP Theorem gives a way to transform every mathematical proof into a form that
is checkable by only looking at very few (probabilistically chosen) symbols of the proof.
(The acronym “PCP” stands for Probabilistically Checkable Proofs.) Another view of
the PCP Theorem is that it is a result about hardness of approximation: The PCP the-
orem shows that for many NP-complete optimization problems, computing an approx-
imate solution is as hard as computing the exact solution (and hence cannot be done
efficiently unless P = NP). We show the equivalence of these two views in Section 11.3.

In Section 11.4 we demonstrate the usefulness of the PCP Theorem by using
it to derive a very strong hardness of approximation result for the INDSET and
MIN-VERTEX-COVER problems.

Although only one result is known as the PCP Theorem (Theorem 11.5), several
related “PCP theorems” have been discovered, differing in various setting of param-
eters. In this chapter we prove such a theorem (Theorem 11.19 in Section 11.5) giving
a weaker—but still useful—result than the full-fledged PCP Theorem. Another moti-
vation for showing Theorem 11.19 is that it will play a part in the proof of the PCP
Theorem, which appears in full in Chapter 22.

The various PCP theorems have revolutionized our understanding of the approx-
imability of NP-hard problems. Chapter 22 will surveys several of these theorems.

11.1 MOTIVATION: APPROXIMATE SOLUTIONS TO NP-HARD
OPTIMIZATION PROBLEMS

As mentioned in Chapter 2, one of the main motivations for the theory of NP-
completeness was to understand the computational complexity of computing optimum
solutions to combinatorial problems such as TSP or INDSET. Since P �= NP implies that
thousands of NP-hard optimization problems do not have efficient algorithms, attention
then focused on whether or not they have efficient approximation algorithms. In many
practical settings, obtaining an approximate solution to a problem may be almost as
good as solving it exactly and could be a lot easier. Researchers are therefore interested
in finding the best possible approximation algorithms for NP-hard optimization prob-
lems. For instance, it would be good to understand whether or not we could approximate
interesting NP-problems within an arbitrary precision: If we could, then P �= NP would
not be such a a big deal in practice. Many researchers suspected that there are inherent
limits to approximation, and proving such limits was the main motivation behind the
discovery of the PCP theorem.

In this section we illustrate the notion of approximation algorithms with an example.
Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula ϕ as input,
an assignment that maximizes the number of satisfied clauses. This problem is of course
NP-hard, because the corresponding decision problem, 3SAT, is NP-complete. We
define an approximation algorithm for MAX-3SAT in the following way.

Definition 11.1 (Approximation of MAX-3SAT) For every 3CNF formula ϕ, the value
of ϕ, denoted by val(ϕ), is the maximum fraction of clauses that can be satisfied by
any assignment to ϕ’s variables. In particular, ϕ is satisfiable iff val(ϕ) = 1.



11.1. Motivation: Approximate Solutions to NP-Hard Optimization Problems 239

For every ρ ≤ 1, an algorithm A is a ρ-approximation algorithm for MAX-3SAT
if for every 3CNF formula ϕ with m clauses, A(ϕ) outputs an assignment satisfying at
least ρ · val(ϕ)m of ϕ’s clauses.

Now we give two simple examples of approximation algorithms; see the Chapter
notes for references to more nontrivial algorithms.

EXAMPLE 11.2 (1/2-Approximation for MAX-3SAT)

We describe a polynomial-time algorithm that computes a 1/2-approximation for
MAX-3SAT. The algorithm assigns values to the variables one by one in a greedy fashion,
whereby the ith variable is assigned the value that results in satisfying at least 1/2 the
clauses in which it appears. Any clause that gets satisfied is removed and not considered
in assigning values to the remaining variables. Clearly, the final assignment will satisfy at
least 1/2 of all clauses, which is certainly at least half of the maximum that the optimum
assignment could satisfy.

Using semidefinite programming one can also design a polynomial-time (7/8− ε)-
approximation algorithm for every ε > 0 (see chapter notes). Obtaining such a ratio
is trivial if we restrict ourselves to 3CNF formulae with three distinct variables in each
clause. Then a random assignment has probability 7/8 to satisfy each clause. Linearity
of expectations (Claim A.3) implies that a random assignment is expected to satisfy a
7/8 fraction of the clauses. This observation can be turned into a simple probabilistic
or even deterministic 7/8-approximation algorithm (see Exercise 11.3).

For a few problems, one can even design (1−ε)-approximation algorithms for every
ε > 0. Exercise 11.12 asks you to show this for the NP-complete knapsack problem.

EXAMPLE 11.3 (1/2-Approximation for MIN-VERTEX-COVER)

The decision problem VERTEX-COVER was introduced in Example 2.15 in Chapter 2.
The optimization version is MIN-VERTEX-COVER, in which we are given a graph and
wish to determine the size of the minimum vertex cover (which, recall, is a set of vertices
such that every graph edge contains one these vertices). For ρ ≤ 1, a ρ-approximation
algorithm for MIN-VERTEX-COVER is an algorithm that on input a graph G outputs a
vertex cover whose size is at most 1/ρ times the size of the minimum vertex cover.1 We
now show a 1/2-approximation algorithm for MIN-VERTEX-COVER:

Start with S ← ∅. Pick any edge in the graph e1, and add both its endpoints to S.
Delete these two vertices from the graph as well as all edges adjacent to them. Iterate
this process, picking edges e2, e3, . . . and adding their endpoints to S until the graph
becomes empty.

Clearly, the set S at the end is such that every graph edge has an endpoint in S. Thus
S is a vertex cover. Furthermore, the sequence of edges e1, e2, . . . used to build up S are
pairwise disjoint; in other words, they form a matching. The cardinality of S is twice
the number of edges in this matching. Furthermore, the minimum vertex cover must by

1 Many texts call such an algorithm a 1/ρ-approximation algorithm instead.



240 PCP theorem and hardness of approximation: An introduction

definition include at least one endpoint of each matching edge. Thus the cardinality of
S is at most twice the cardinality of the minimum vertex cover.

11.2 TWO VIEWS OF THE PCP THEOREM

The PCP Theorem can be viewed in two alternative ways, and internalizing both these
ways is crucial to understanding both the theorem and its proof. One view of this
theorem is that it talks about new, extremely robust proof systems. The other is that it
talks about approximating combinatorial optimization problems.

11.2.1 PCP Theorem and locally testable proofs

The first view of the PCP Theorem (and the reason for its name) is as providing a new
kind of proof systems. Suppose someone wants to convince you that a Boolean formula
is satisfiable. He could present the usual certificate, namely, a satisfying assignment,
which you could then check by substituting back into the formula. However, doing
this requires reading the entire certificate. The PCP Theorem shows an interesting
alternative: This person can easily rewrite his certificate so you can verify it by proba-
bilistically selecting a constant number of locations—as low as 3 bits—to examine in it.
Furthermore, this probabilistic verification has the following properties: (1) A correct
certificate will never fail to convince you (i.e., no choice of your random coins will make
you reject it) and (2) if the formula is unsatisfiable, then you are guaranteed to reject
every claimed certificate with high probability.

Of course, since Boolean satisfiability is NP-complete, every other NP language
can be deterministically and efficiently reduced to it. Thus the PCP Theorem applies
to every NP language. We mention one counterintuitive consequence. Let A be any
one of the usual axiomatic systems of mathematics for which proofs can be verified by
a deterministic TM in time that is polynomial in the length of the proof. Recall the
following language is in NP:

L = {〈ϕ, 1n〉 : ϕ has a proof in A of length ≤ n
}

The PCP Theorem asserts that L has probabilistically checkable certificates. Such
certificate can be viewed as an alternative notion of “proof” for mathematical statements
that is just as valid as the usual notion. However, unlike standard mathematical proofs,
where every line of the proof has to be checked to verify its validity, this new notion
guarantees that proofs are probabilistically checkable by examining only a constant
number of bits in them.2

We now make a more formal definition. Recall that a language L is in NP if there
is a poly-time Turing machine V (“verifier”) that, given input x, checks certificates (or

2 One newspaper article about the discovery of the PCP Theorem carried the headline “New shortcut found for
long math proofs!”



11.2. Two Views of the PCP Theorem 241

membership proofs) to the effect that x ∈ L (see Definition 2.1). In other words,

x ∈ L ⇒ ∃π s.t. Vπ (x) = 1

x /∈ L ⇒ ∀π Vπ (x) = 0

where Vπ denotes “a verifier with access to certificate π .”
The class PCP is a generalization of this notion, with the following changes. First,

the verifier is probabilistic. Second, the verifier has random access to the proof string
�. This means that each bit of the proof string can be independently queried by the
verifier via a special address tape: If the verifier desires say the ith bit in the proof string,
it writes i on the address tape and then receives the bit π [i].3 The definition of PCP
treats queries to the proof as a precious resource to be used sparingly. Note also that
since the address size is logarithmic in the proof size, this model in principle allows a
polynomial-time verifier to check membership proofs of exponential size.

Verifiers can be adaptive or nonadaptive. A nonadaptive verifier selects its queries
based only on its input and random tape. In other words, no query depends upon the
responses to any of the prior queries. By contrast, an adaptive verifier can rely upon
bits it has already queried in π to select its next queries. We restrict verifiers to be
nonadaptive, since most PCP Theorems can be proved using nonadaptive verifiers, but
Exercise 11.2 explores the power of adaptive queries.

Definition 11.4 (PCP verifier) Let L be a language and q, r : N → N. We say that L
has an (r(n), q(n))-PCP verifier if there’s a polynomial-time probabilistic algorithm V
satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to a string π ∈ {0, 1}∗
of length at most q(n)2r(n) (which we call the proof ), V uses at most r(n) random coins
and makes at most q(n) nonadaptive queries to locations of π (see Figure 11.1). Then
it outputs “1”(for “accept”) or “0” (for “reject”). We let Vπ (x) denote the random
variable representing V ’s output on input x and with random access to π .

Completeness: If x ∈ L, then there exists a proof π ∈ {0, 1}∗ such that Pr[Vπ (x) =
1] = 1. We call this string π the correct proof for x.

Soundness: If x �∈ L then for every proof π ∈ {0, 1}∗, Pr[Vπ (x) = 1] ≤ 1/2.

We say that a language L is in PCP(r(n), q(n)) if there are some constants c, d > 0
such that L has a (c · r(n), d · q(n))-PCP verifier.

The PCP Theorem says that every NP language has a highly efficient PCP verifier.

Theorem 11.5 (The PCP Theorem [AS92, ALM+92]) NP = PCP(log n, 1).

3 For a precise formalization, see Exercise 1.9 discussing RAM Turing machines or Section 5.5 discussing oracle
Turing machines.



242 PCP theorem and hardness of approximation: An introduction

Verifier
Input: x in {0, 1}n

r(n) coins 

q(n) queries

proof: π 

Figure 11.1. A PCP verifier for a language L gets an input x and has random access to a string π . If x ∈ L,
then there exists a string π that makes the verifier accepts, while if x �∈ L, then the verifier rejects every proof
π with probability at least 1/2.

Remark 11.6 Some notes are in order:

1. The soundness condition stipulates that if x �∈ L then the verifier has to reject every
proof with probability at least 1/2. Establishing this is the most difficult part of the
proof.

2. The restriction that proofs checkable by an (r, q)-verifier are of length at most q2r is
inconsequential, since such a verifier can look on at most this number of locations with
nonzero probability over all 2r choices for its random string.

3. Note that PCP(r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)) since a nondeterministic machine
could guess the proof in 2O(r(n))q(n) time and verify it deterministically by running the
verifier for all 2O(r(n)) possible choices of its random coin tosses. If the verifier accepts
for all these possible coin tosses, then the nondeterministic machine accepts.
As a special case, PCP(log n, 1) ⊆ NTIME(2O(log n)) = NP: this is the trivial direction
of the PCP Theorem.

4. The statement of the PCP Theorem allows verifiers for different NP languages to use
a different number of query bits (so long as this number is constant). However, since
every NP language is polynomial-time reducible to SAT, all these numbers can be upper
bounded by a universal constant, namely, the number of query bits required by a verifier
for SAT.

5. The constant 1/2 in the soundness requirement of Definition 11.4 is arbitrary, in the
sense that changing it to any other positive constant smaller than 1 will not change the
class of languages defined. Indeed, a PCP verifier with soundness 1/2 that uses r coins
and makes q queries can be converted into a PCP verifier using cr coins and cq queries
with soundness 2−c by just repeating its execution c times (see Exercise 11.1).

EXAMPLE 11.7

To get a better sense for what a PCP proof system looks like, we sketch two nontrivial
PCP systems:
1. The language GNI of pairs of nonisomorphic graphs is in PCP(poly(n), 1). Say the

input forGNI is 〈G0, G1〉, where G0, G1 have both n nodes. The verifier expectsπ to
contain, for each labeled graph H with n nodes, a bit π [H] ∈ {0, 1} corresponding
to whether H ≡ G0 or H ≡ G1 (π [H] can be arbitrary if neither case holds). In
other words, π is an (exponentially long) array of bits indexed by the (adjacency
matrix representations of) all possible n-vertex graphs.



11.2. Two Views of the PCP Theorem 243

The verifier picks b ∈ {0, 1} at random and a random permutation. She applies
the permutation to the vertices of Gb to obtain an isomorphic graph, H. She queries
the corresponding bit of π and accepts iff the bit is b.

If G0 �≡ G1, then clearly a proof π that makes the verifier accept with proba-
bility 1 can be constructed. If G1 ≡ G2, then the probability that any π makes the
verifier accept is at most 1/2.

2. The protocols in Chapter 8 can be used (see Exercise 11.7) to show that the perma-
nent has PCP proof system with polynomial randomness and queries. Once again,
the length of the proof will be exponential.

In fact, both of these results are a special case of the following theorem.

Theorem 11.8 (Scaled-up PCP, [BFLS91, ALM+92, AS92]) PCP(poly(n), 1) = NEXP

Above we use PCP(poly(n), 1) to denote the class ∪c≥1PCP(nc, 1). Theorem 11.8 can
be thought of as a “scaled-up” version of the PCP Theorem. We omit the proof, which
uses similar techniques to the original proof of the PCP Theorem and Theorem 8.19
(IP = PSPACE). #

11.2.2 PCP and hardness of approximation

Another view of the PCP Theorem is that it shows that for many NP optimization
problems, computing approximate solutions is no easier than computing exact solutions.

For concreteness, we focus for now on MAX-3SAT. Until 1992, we did not know
whether or not MAX-3SAT has a polynomial-time ρ-approximation algorithm for every
ρ < 1. It turns out that the PCP Theorem means that the answer is NO (unless P = NP).
The reason is that it can be equivalently stated as follows.

Theorem 11.9 (PCP Theorem: Hardness of approximation view) There exists ρ < 1
such that for every L ∈ NP there is a polynomial-time function f mapping strings to
(representations of) 3CNF formulas such that

x ∈ L ⇒ val(f (x)) = 1 (11.1)

x �∈ L ⇒ val(f (x)) < ρ (11.2)

This immediately implies the following corollary.

Corollary 11.10 There exists some constant ρ < 1 such that if there is a polynomial-time
ρ-approximation algorithm for MAX-3SAT then P = NP. #

Indeed, Theorem 11.9 shows for every L ∈ NP, a way to convert a ρ-approximation
algorithm A forMAX-3SAT into an algorithm deciding L, since (11.1) and (11.2) together
imply that x ∈ L iff A(f (x)) yields an assignment satisfying at least a ρ fraction of f (x)’s
clauses.

Later, in Chapter 22, we show a stronger PCP Theorem by Håstad, which implies
that for every ε > 0, if there is a polynomial-time (7/8+ε)-approximation algorithm
for MAX-3SAT, then P = NP. Hence the approximation algorithm for this problem



244 PCP theorem and hardness of approximation: An introduction

mentioned in Example 11.2 is very likely optimal. The PCP Theorem (and the other
PCP theorems that followed it) imply a host of such hardness of approximation results
for many important problems, often showing that known approximation algorithms are
optimal unless P = NP.

Why doesn’t the Cook-Levin reduction suffice to prove Theorem 11.9?
The first idea one would try to prove Theorem 11.9 is the reduction from any NP lan-
guage to 3SAT in the Cook-Levin Theorem (Theorem 2.10). Unfortunately, it doesn’t
yield such an f because it does not satisfy property (11.2): Exercise 11.11 asks you to
show that one can always satisfy almost all of the clauses in the formulae produced by
the reduction. (This is what Papadimitriou and Yannakakis referred to in their quote
at the start of this chapter.) Hence val(·) is almost 1 for these formulas, whereas
Theorem 11.9 requires that val(·) < ρ in one case.

11.3 EQUIVALENCE OF THE TWO VIEWS

We now show the equivalence of the “proof view” and the “hardness of approximation
view” of the PCP Theorem. That is, we show that Theorem 11.5 is equivalent to The-
orem 11.9. To do so we introduce the notion of constraint satisfaction problems (CSP).
This is a generalization of 3SAT that turns up in many applications and also plays an
important role in the proof of the PCP Theorem. A CSP problem generalizes 3SAT
by allowing clauses of arbitrary form (instead of just OR of literals), including those
depending upon more than 3 variables.

Definition 11.11 (Constraint satisfaction problems (CSP)) If q is a natural number,
then a qCSP instance ϕ is a collection of functions ϕ1, . . . ,ϕm (called constraints) from
{0, 1}n to {0, 1} such that each function ϕi depends on at most q of its input locations.
That is, for every i ∈ [m] there exist j1, . . . , jq ∈ [n] and f : {0, 1}q → {0, 1} such that
ϕi(u) = f (uj1 , . . . , ujq) for every u ∈ {0, 1}n.

We say that an assignment u ∈ {0, 1}n satisfies constraint ϕi if ϕi(u) = 1. The frac-

tion of constraints satisfied by u is
∑m

i=1 ϕi(u)
m , and we let val(ϕ) denote the maximum

of this value over all u ∈ {0, 1}n. We say that ϕ is satisfiable if val(ϕ) = 1. We call q
the arity of ϕ.

EXAMPLE 11.12

3SAT is the subcase of qCSP where q = 3, and the constraints are OR’s of the involved
literals.

Notes

1. We define the size of a qCSP-instance ϕ to be m, the number of constraints it has.
Because variables not used by any constraints are redundant, we always assume n ≤ qm.
Note that a qCSP instance over n variables with m constraints can be described using
O(mq log n2q)) bits. (In all cases we are interested in, q will be a constant independent
of n, m.)



11.3. Equivalence of the Two Views 245

2. The simple greedy approximation algorithm for 3SAT can be generalized for the
MAX qCSP problem of maximizing the number of satisfied constraints in a given qCSP
instance. For any qCSP instance ϕ with m constraints, this algorithm will output an
assignment satisfying val(ϕ)

2q m constraints.

11.3.1 Equivalence of Theorems 11.5 and 11.9

We now show the equivalence of the two formulations of the PCP Theorem (Theo-
rems 11.5 and 11.9) by showing that they are both equivalent to the NP-hardness of a
certain gap version of qCSP.

Definition 11.13 (Gap CSP) For every q ∈ N, ρ ≤ 1, define ρ-GAPqCSP to be the
problem of determining for a given qCSP-instance ϕ whether (1) val(ϕ) = 1 (in
which case we say ϕ is a YES instance of ρ-GAPqCSP) or (2) val(ϕ) < ρ (in which
case we say ϕ is a NO instance of ρ-GAPqCSP) .
We say that ρ-GAPqCSP is NP-hard for every language L in NP if there is a polynomial-
time function f mapping strings to (representations of) qCSP instances satisfying:

Completeness: x ∈ L ⇒ val(f (x)) = 1.

Soundness: x �∈ L ⇒ val(f (x)) < ρ.

Theorem 11.14 There exist constants q ∈ N, ρ ∈ (0, 1) such that ρ-GAPqCSP is
NP-hard. #

We now show that Theorems 11.5, 11.9, and 11.14 are all equivalent to one another.

Theorem 11.5 implies Theorem 11.14
Assume that NP ⊆ PCP(log n, 1). We will show that 1/2-GAPqCSP is NP-hard for some
constant q. It is enough to reduce a single NP-complete language such as 3SAT to
1/2-GAPqCSP for some constant q. Under our assumption, 3SAT has a PCP system in
which the verifier V makes a constant number of queries, which we denote by q, and
uses c log n random coins for some constant c. Given every input x and r ∈ {0, 1}c log n,
define Vx,r to be the function that on input a proof π outputs 1 if the verifier will accept
the proof π on input x and coins r. Note that Vx,r depends on at most q locations. Thus
for every x ∈ {0, 1}n, the collection ϕ = {Vx,r}r∈{0, 1}c log n is a polynomial-sized qCSP
instance. Furthermore, since V runs in polynomial-time, the transformation of x to ϕ

can also be carried out in polynomial-time. By the completeness and soundness of the
PCP system, if x ∈ 3SAT, then ϕ will satisfy val(ϕ) = 1, while if x �∈ 3SAT, then ϕ will
satisfy val(ϕ) ≤ 1/2. �

Theorem 11.14 implies Theorem 11.5
Suppose that ρ-GAPqCSP is NP-hard for some constants q,ρ < 1. Then this easily
translates into a PCP system with q queries, ρ soundness, and logarithmic randomness
for any language L: Given an input x, the verifier will run the reduction f (x) to obtain a
qCSP instance ϕ = {ϕi}mi=1. It will expect the proofπ to be an assignment to the variables
of ϕ, which it will verify by choosing a random i ∈ [m] and checking that ϕi is satisfied
(by making q queries). Clearly, if x ∈ L, then the verifier will accept with probability 1,



246 PCP theorem and hardness of approximation: An introduction

Table 11.1. Two views of the PCP Theorem.

Proof view Hardness of approximation view

PCP verifier (V) ←→ CSP instance (ϕ)
PCP proof (π) ←→ Assignment to variables (u)
Length of proof ←→ Number of variables (n)

Number of queries (q) ←→ Arity of constraints (q)
Number of random bits (r) ←→ Logarithm of number of constraints (log m)

Soundness parameter (typically 1/2) ←→ Maximum of val(ϕ) for a NO instance
Theorem 11.5 (NP ⊆ PCP(log n, 1)) ←→ Theorem 11.14 (ρ-GAPqCSP is NP-hard) ,

Theorem 11.9 (MAX-3SAT is NP-hard to ρ-approximate)

while if x �∈ L, it will accept with probability at most ρ. The soundness can be boosted
to 1/2 at the expense of a constant factor in the randomness and number of queries (see
Exercise 11.1). �

Theorem 11.9 is equivalent to Theorem 11.14
Since 3CNF formulas are a special case of 3CSP instances, Theorem 11.9 implies
Theorem 11.14. We now show the other direction.

Let ε > 0 and q ∈ N be such that by Theorem 11.14, (1− ε)-GAPqCSP is NP-hard.
Let ϕ be a qCSP instance over n variables with m constraints. Each constraint ϕi of ϕ
can be expressed as an AND of at most 2q clauses, where each clause is the OR of at
most q variables or their negations. Let ϕ′ denote the collection of at most m2q clauses
corresponding to all the constraints of ϕ. If ϕ is a YES instance of (1−ε)-GAPqCSP (i.e.,
it is satisfiable), then there exists an assignment satisfying all the clauses of ϕ′. If ϕ is a
NO instance of (1−ε)-GAPqCSP, then every assignment violates at least an ε fraction of
the constraints of ϕ and hence violates at least an ε

2q fraction of the constraints of ϕ′. We
can use the Cook-Levin technique of Chapter 2 (Theorem 2.10), to transform any clause
C on q variables u1, . . . , uq to a set C1, . . . , Cq of clauses over the variables u1, . . . , uq and
additional auxiliary variables y1, . . . , yq such that (1) each clause Ci is the OR of at most
three variables or their negations, (2) if u1, . . . , uq satisfy C then there is an assignment
to y1, . . . , yq such that u1, . . . , uq, y1, . . . , yq simultaneously satisfy C1, . . . , Cq, and (3)
if u1, . . . , uq does not satisfy C then for every assignment to y1, . . . , yq, there is some
clause Ci that is not satisfied by u1, . . . , uq, y1, . . . , yq.

Let ϕ′′ denote the collection of at most qm2q clauses over the n + qm2g variables
obtained in this way from ϕ′. Note that ϕ′′ is a 3SAT formula. Our reduction will map
ϕ to ϕ′′. Completeness holds since if ϕ were satisfiable, then so would be ϕ′ and hence
also ϕ′′. Soundness holds since if every assignment violates at least an ε fraction of the
constraints of ϕ, then every assignment violates at least an ε

2q fraction of the constraints
of ϕ′, and so every assignment violates at least an ε

q2q fraction of the constraints of ϕ′′ �

11.3.2 Review of the two views of the PCP Theorem

It is worthwhile to review this very useful equivalence between the “proof view” and
the “hardness of approximation view” of the PCP Theorem, as outlined in Table 11.1.



11.4. Hardness of Approximation for Vertex Cover and Independent Set 247

11.4 HARDNESS OF APPROXIMATION FOR VERTEX COVER AND
INDEPENDENT SET

The PCP Theorem implies hardness of approximation results for many more problems
than just 3SAT and CSP. As an example we show a hardness of approximation result for
the maximum independent set (MAX-INDSET) problem we encountered in Chapter 2
(Example 2.2) and for theMIN-VERTEX-COVERproblem encountered in Example 11.3.
Note that the inapproximability result for MAX-INDSET is stronger than the result for
MIN-VERTEX-COVER since it rules out ρ-approximation for every ρ < 1.

Theorem 11.15 There is some γ < 1 such that computing a γ -approximation to
MIN-VERTEX-COVER is NP-hard. For every ρ < 1, computing a ρ-approximation to
INDSET is NP-hard. #

Since a vertex cover is a set of vertices touching all edges of the graph, its com-
plement is an an independent set. Thus the two problems are trivially equivalent with
respect to exact solution: The largest independent set is simply the complement of the
smallest vertex cover. However, this does not imply that they are equivalent with respect
to approximation. Denoting the size of the minimum vertex cover by VC and the size
of the largest independent set by IS, we see that VC = n− IS. Thus a ρ-approximation
for INDSET would produce an independent set of size ρ · IS, and if we wish to use this
to compute an approximation to MIN-VERTEX-COVER, then we obtain a vertex cover
of size n−ρ · IS. This yields an approximation ratio of n−IS

n−ρIS for MIN-VERTEX-COVER,
which could be arbitrarily small if IS is close to n. In fact, Theorem 11.15 shows that
if P �= NP, then the approximability of the two problems is inherently different: We
already saw that MIN-VERTEX-COVER has a polynomial-time 1/2-approximation algo-
rithm (Example 2.2) whereas if P �= NP, thenINDSET does not have a ρ-approximation
algorithm for every ρ < 1.

We first show using the PCP Theorem that there is some constant ρ < 1 such that
both problems cannot be ρ-approximated in polynomial-time (unless P = NP). We
then show how to “amplify” the approximation gap and make ρ as small as desired in
case of INDSET.

Lemma 11.16 There exist a polynomial-time computable transformation f from 3CNF
formulas to graphs such that for every 3CNF formula ϕ, f (ϕ) is an n-vertex graph whose
largest independent set has size val(ϕ)n

7 . #

Proof Sketch: We apply the “normal” NP-completeness reduction for INDSET (see
proof of Theorem 2.15) on this 3CNF formula, and observe that it satisfies the desired
property. We leave verifying the details as Exercise 11.5. �

The following corollary is immediate.

Corollary 11.17 If P �= NP, then there are some constants ρ < 1, ρ′ < 1 such
that the problem INDSET cannot be ρ-approximated in polynomial time and
MIN-VERTEX-COVER cannot be ρ′-approximated. #



248 PCP theorem and hardness of approximation: An introduction

Proof: Let L be any NP language. Theorem 11.9 implies that the decision problem for
L can be reduced to approximating MAX-3SAT. Specifically, the reduction produces a
3CNF formula ϕ that is either satisfiable or satisfies val(ϕ) < ρ, where ρ < 1 is some
constant. Then we can apply the reduction of Lemma 11.16 on this 3CNF formula and
conclude that a ρ-approximation to INDSET would allow us to do a ρ-approximation
to MAX-3SAT on ϕ. Thus it follows that ρ-approximation to INDSET is NP-hard.

The result for MIN-VERTEX-COVER follows from the observation that the mini-
mum vertex cover in the graph resulting from the reduction of the previous paragraph
has size n − val(ϕ)n

7 . It follows that if MIN-VERTEX-COVER had a ρ′-approximation
for ρ′ = 6/(7 − ρ), then it would allow us to find a vertex cover of size 1

ρ′ (n − n
7 ) in

the case val(ϕ) = 1, and this size is at most n − ρn/7. Thus we conclude that such an
approximation would allow us to distinguish the cases val(ϕ) = 1 and val(ϕ) < ρ,
which by Theorem 11.9 is NP-hard. �

To complete the proof of Theorem 11.15, we need to amplify this approximation gap
for INDSET. Such amplification is possible for many combinatorial problems thanks to
a certain “self-improvement” property. In case of INDSET, a simple self-improvement
is possible using a graph product.

Proof: (Of Theorem 11.15) For any n-vertex graph G, define Gk to be a graph on
(n

k

)
vertices whose vertices correspond to all subsets of vertices of G of size k Two subsets
S1, S2 are adjacent if S1 ∪ S2 is an independent set in G. It is easily checked that the
largest independent of Gk corresponds to all k-size subsets of the largest independent
set in G and therefore has size

(IS
k

)
, where IS is the size of the largest independent set

in G. Thus if we take the graph produced by the reduction of Corollary 11.17 and take
its k-wise product, then the ratio of the size of the largest independent set in the two
cases is

(IS
k

)
/
(
ρ·IS

k

)
which is approximately a factor ρk. Choosing k large enough, ρk can

be made smaller than any desired constant. The running time of the reduction becomes
nk, which is polynomial for every fixed k. �

Remark 11.18 (Levin Reductions)
In Chapter 2, we defined L′ to be NP-hard if every L ∈ NP reduces to L′. The reduction
was a polynomial-time function f such that x ∈ L ⇔ f (x) ∈ L′. In all cases, we proved
that x ∈ L ⇒ f (x) ∈ L′ by showing a way to map a certificate for the fact that x ∈ L to
a certificate for the fact that x′ ∈ L′. Although the definition of a Karp reduction does
not require that this mapping between certificates is efficient, this was often the case.
Similarly we proved that f (x) ∈ L′ ⇒ x ∈ L by showing a way to map a certificate for
the fact that x′ ∈ L′ to a certificate for the fact that x ∈ L. Again the proofs typically
yield an efficient way to compute this mapping. We call reductions with these properties
Levin reductions (see the proof of Theorem 2.18). It is worthwhile to observe that the
PCP reductions of this chapter also satisfy this property. For example, the proof of
Theorem 11.16 actually yields a way not just to map, say, a CNF formula ϕ into a graph
G such that ϕ is satisfiable iff G has a “large” independent set, but actually shows how
to efficiently map a satisfying assignment for ϕ into a large independent set in G and a
not-too-small independent set in G into a satisfying assignment for ϕ. This will become
clear from our proof of the PCP Theorem in Chapter 22.



11.5. NP ⊆ PCP(poly(n), 1): PCP from the Walsh-Hadamard Code 249

11.5 NP ⊆ PCP(poly(n), 1): PCP FROM THE WALSH-HADAMARD CODE

We now prove a weaker version of the PCP Theorem, showing that every NP statement
has an exponentially long proof that can be locally tested by only looking at a constant
number of bits. In addition to giving a taste of how one proves PCP theorems, techniques
from this section will be used in the proof of the full-fledged PCP Theorem in Chapter 22.

Theorem 11.19 (Exponential-sized PCP system for NP [ALM+92]) NP ⊆
PCP(poly(n), 1).

We prove this theorem by designing an appropriate verifier for an NP-complete
language. The verifier expects the proof to contain an encoded version of the usual
certificate. The verifier checks such an encoded certificate by simple probabilistic tests.

11.5.1 Tool: Linearity testing and theWalsh-Hadamard code

We use the Walsh-Hadamard code (see also Section 19.2.2, though the treatment here
is self-contained). It is a way to encode bit strings of length n by linear functions in
n variables over GF(2). The encoding function WH : {0, 1}∗ → {0, 1}∗ maps a string
u ∈ {0, 1}n to the truth table of the function x �→ u � x, where for x, y ∈ {0, 1}n we
define x� y =∑n

i=1 xiyi (mod 2). Note that this is a very inefficient encoding method:
An n-bit string u ∈ {0, 1}n is encoded using |WH(u)| = 2n bits. If f ∈ {0, 1}2n

is equal
to WH(u) for some u, then we say that f is a Walsh-Hadamard codeword. Such a string
f ∈ {0, 1}2n

can also be viewed as a function from {0, 1}n to {0, 1}.
Below, we repeatedly use the following fact (see Claim A.31).

RANDOM SUBSUM PRINCIPLE: If u �= v then for 1/2 the choices of x, u� x �= v � x.

The random subsum principle implies that the Walsh-Hadamard code is an error-
correcting code with minimum distance 1/2, by which we mean that for every u �= v ∈
{0, 1}n, the encodings WH(u) and WH(v) differ in at least half the bits. Now we talk about
local tests for the Walsh-Hadamard code (i.e., tests making only O(1) queries).

Local testing of Walsh-Hadamard code
Suppose we are given access to a function f : {0, 1}n → {0, 1} and want to test whether
or not f is actually a codeword of Walsh-Hadamard. Since the Walsh-Hadamard code-
words are precisely the set of all linear functions from {0, 1}n to {0, 1}, we can test f by
checking that

f (x + y) = f (x)+ f (y) (11.3)

for all the 22n pairs x, y ∈ {0, 1}n (where “+” on the left side of (11.3) denotes vector
addition over GF(2)n and on the right side denotes addition over GF(2)). This test
works by definition, but it involves reading all 2n values of f .

Can we test f by reading only a constant number of its values? The natural test
is to choose x, y at random and verify (11.3). Clearly, even such a local test accepts



250 PCP theorem and hardness of approximation: An introduction

a linear function with probability 1. However, now we can no longer guarantee that
every function that is not linear is rejected with high probability! For example, if f is
very close to being a linear function, meaning that f is obtained by modifying a linear
function on a very small fraction of its inputs, then such a local test will encounter the
nonlinear part with very low probability, and thus not be able to distinguish f from a
linear function. So we set our goal less ambitiously: a test that on one hand accepts every
linear function, and on the other hand rejects with high probability every function that
is far from linear. The natural test suffices for this job.

Definition 11.20 Let ρ ∈ [0, 1]. We say that f , g : {0, 1}n → {0, 1} are ρ-close if
Prx∈R {0, 1}n [f (x) = g(x)] ≥ ρ. We say that f is ρ-close to a linear function if there exists a
linear function g such that f and g are ρ-close. #

Theorem 11.21 (Linearity Testing [BLR90]) Let f : {0, 1}n → {0, 1} be such that

Pr
x,y∈R {0, 1}n

[f (x + y) = f (x)+ f (y)] ≥ ρ

for some ρ > 1/2. Then f is ρ-close to a linear function. #

We defer the proof of Theorem 11.21 to Section 22.5 of Chapter 22. For every δ ∈
(0, 1/2), we can obtain a linearity test that rejects with probability at least 1/2 every func-
tion that is not (1− δ)-close to a linear function, by testing Condition (11.3) repeatedly
O(1/δ) times with independent randomness. We call such a test a (1−δ)-linearity test.

Local decoding of Walsh-Hadamard code
Suppose that for δ < 1

4 the function f : {0, 1}n → {0, 1} is (1 − δ)-close to some linear
function f̃ . Because every two linear functions differ on half of their inputs, the function
f̃ is uniquely determined by f . Suppose we are given x ∈ {0, 1}n and random access to
f . Can we obtain the value f̃ (x) using only a constant number of queries? The naive
answer is that since most x’s satisfy f (x) = f̃ (x), we should be able to learn f̃ (x) with
good probability by making only the single query x to f . The problem is that x could
very well be one of the places where f and f̃ differ. Fortunately, there is still a simple
way to learn f̃ (x) while making only two queries to f :

1. Choose x′ ∈
R
{0, 1}n.

2. Set x′′ = x + x′.
3. Let y′ = f (x′) and y′′ = f (x′′).
4. Output y′ + y′′.

Since both x′ and x′′ are individually uniformly distributed (even though they are
dependent), by the union bound with probability at least 1 − 2δ we have y′ = f̃ (x′)
and y′′ = f̃ (x′′). Yet by the linearity of f̃ , f̃ (x) = f̃ (x′ + x′′) = f̃ (x′) + f̃ (x′′), and hence
with at least 1− 2δ probability, f̃ (x) = y′ + y′′. (We use here the fact that over GF(2),
a + b = a − b.) This technique is called local decoding of the Walsh-Hadamard code
since it allows to recover any bit of the correct codeword (the linear function f̃ ) from a
corrupted version (the function f ) while making only a constant number of queries. It
is also known as self correction of the Walsh-Hadamard code.



11.5. NP ⊆ PCP(poly(n), 1): PCP from the Walsh-Hadamard Code 251

WH(u) WH(uOu)x

Figure 11.2. The PCP proof that a set of quadratic equations is satisfiable consists of WH(u) and WH(u ⊗ u)
for some vector u. The verifier first checks that the proof is close to having this form and then uses the local
decoder of the Walsh-Hadamard code to ensure that u is a solution for the quadratic equation instance. The
dotted areas represent corrupted coordinates.

11.5.2 Proof of Theorem 11.19

We will show a (poly(n), 1)-verifier proof system for a particular NP-complete language
L. The result that NP ⊆ PCP(poly(n), 1) follows since every NP language is reducible to
L. The NP-complete language L we use isQUADEQ, the language of systems of quadratic
equations over GF(2) = {0, 1} that are satisfiable.

EXAMPLE 11.22

The following is an instance of QUADEQ over the variables u1, . . . , u5:

u1u2 + u3u4 + u1u5 = 1

u2u3 + u1u4 = 0

u1u4 + u3u5 + u3u4 = 1

This instance is satisfiable since the all-1 assignment satisfies all the equations.

QUADEQ is NP-complete, as can be checked by reducing from the NP-complete
language CKT-SAT of satisfiable Boolean circuits (see Section 6.1.2). The idea is to
have a variable represent the value of each wire in the circuit (including the input wires)
and to express AND and OR using the equivalent quadratic polynomial: x ∨ y = 1 iff
(1− x)(1− y) = 0, and so on. Details are left as Exercise 11.15.

Since ui = (ui)
2 in GF(2), we can assume the equations do not contain terms of the

form ui (i.e., all terms are of degree exactly two). Hence m quadratic equations over
the variables u1, . . . , un can be described by an m× n2 matrix A and an m-dimensional
vector b (both over GF(2)). Indeed, the problem QUADEQ can be phrased as the task,
given such A, b, of finding an n2-dimensional vector U satisfying (1) AU = b and (2) U
is the tensor product u⊗ u of some n-dimensional vector u.4

The PCP verifier
We now describe the PCP system for QUADEQ (see Figure 11.2). Let A, b be an instance
of QUADEQ and suppose that A, b is satisfiable by an assignment u ∈ {0, 1}n. The verifier

V gets access to a proof π ∈ {0, 1}2n+2n2

, which we interpret as a pair of functions
f : {0, 1}n → {0, 1} and g : {0, 1}n2 → {0, 1}. In the correct PCP proof π for A, b, the

4 If x, y are two n-dimensional vectors then their tensor product, denoted x ⊗ y, is the n2-dimensional vector
(or n × n matrix) whose 〈i, j〉th entry is xiyj (identifying [n2] with [n] × [n] in some canonical way). See also
Section 21.3.3.



252 PCP theorem and hardness of approximation: An introduction

function f will be the Walsh-Hadamard encoding for u, and the function g will be the
Walsh-Hadamard encoding for u⊗u. That is, we will design the PCP verifier V in a way
ensuring that it accepts proofs of this form with probability one, hence satisfying the
completeness condition. The analysis repeatedly uses the random subsum principle.

Step 1: Check that f , g are linear functions. As already noted, this isn’t something that the
verifier can check per se using local tests. Instead, the verifier performs a 0.999-linearity
test on both f , g, and rejects the proof at once if either test fails.

Thus, if either of f , g is not 0.999-close to a linear function, then V rejects with high
probability. Therefore for the rest of the procedure we can assume that there exist two
linear functions f̃ : {0, 1}n → {0, 1} and g̃ : {0, 1}n2 → {0, 1} such that f̃ is 0.999-close to
f , and g̃ is 0.999-close to g. (Note: In a correct proof, the tests succeed with probability
1 and f̃ = f and g̃ = g.)

In fact, we will assume that for Steps 2 and 3, the verifier can query f̃ , g̃ at any desired
point. The reason is that local decoding allows the verifier to recover any desired value
of f̃ , g̃ with good probability, and Steps 2 and 3 will only use a small (less than 20)
number of queries to f̃ , g̃. Thus with high probability (say > 0.9) local decoding will
succeed on all these queries.

notation: To simplify notation and in the rest of the procedure we use f , g for f̃ , g̃
respectively. (This is OK since as argued previously, V can query f̃ , g̃ at will.) In par-
ticular we assume both f and g are linear, and thus they must encode some strings

u ∈ {0, 1}n and w ∈ {0, 1}n2
. In other words, f , g are the functions given by f (r) = u� r

and g(z) = w � z.

Step 2: Verify that g encodes u ⊗ u, where u ∈ {0, 1}n is the string encoded by f . The
verifier does the following test ten times using independent random bits: “Choose r, r′
independently at random from {0, 1}n, and if f (r)f (r′) �= g(r⊗ r′) then halt and reject.”

In a correct proof, w = u⊗ u, so

f (r)f (r′) =

∑

i∈[n]
uiri




∑

j∈[n]
ujr′j


 = ∑

i,j∈[n]
uiujrir′j = (u⊗ u)� (r ⊗ r′),

which in the correct proof is equal to g(r⊗ r′). Thus Step 2 never rejects a correct proof.
Suppose now that, unlike the case of the correct proof, w �= u ⊗ u. We claim that

in each of the ten trials V will halt and reject with probability at least 1
4 . (Thus the

probability of rejecting in at least one trial is at least 1 − (3/4)10 > 0.9.) Indeed, let
W be an n × n matrix with the same entries as w, let U be the n × n matrix such
that Ui,j = uiuj , and think of r as a row vector and r′ as a column vector. In this
notation,

g(r ⊗ r′) = w � (r ⊗ r′) =
∑

i,j∈[n]
wi,jrir′j = rWr′

f (r)f (r′) = (u� r)(u� r′) = (

n∑
i=1

uiri)(

n∑
j=1

ujr′j) =
∑

i,j∈[n]
uiujrir′j = rUr′

And V rejects if rWr′ �= rUr′. The random subsum principle implies that if W �= U
then at least 1/2 of all r satisfy rW �= rU . Applying the random subsum principle for



11.5. NP ⊆ PCP(poly(n), 1): PCP from the Walsh-Hadamard Code 253

each such r, we conclude that at least 1/2 the r′ satisfy rWr′ �= rUr′. We conclude that
the trial rejects for at least 1/4 of all pairs r, r′.
Step 3: Verify that g encodes a satisfying assignment. Using all that has been verified
about f , g in the previous two steps, it is easy to check that any particular equation, say
the kth equation of the input, is satisfied by u, namely,

∑
i,j

Ak,(i,j)uiuj = bk (11.4)

Denoting by z the n2 dimensional vector (Ak,(i,j)) (where i, j vary over [1 . . .n]), we
see that the left-hand side is nothing but g(z). Since the verifier knows Ak,(i,j) and bk, it
simply queries g at z and checks that g(z) = bk.

The drawback of this idea is that in order to check that u satisfies the entire system,
the verifier needs to make a query to g for each k = 1, 2, . . . , m, whereas the number
of queries is required to be independent of m. Luckily, we can use the random subsum
principle again! The verifier takes a random subset of the equations and computes their
sum mod 2. (In other words, for k = 1, 2, . . . , m multiply the equation in (11.4) by a
random bit and take the sum.) This sum is a new quadratic equation, and the random
subsum principle implies that if u does not satisfy even one equation in the original
system, then with probability at least 1/2 it will not satisfy this new equation. The
verifier checks that u satisfies this new equation.

Overall, we get a verifier V such that (1) if A, b is satisfiable then V accepts the
correct proof with probability 1 and (2) if A, b is not satisfiable then V accepts every proof
with probability at most 0.8. The probability of accepting a proof for a false statement
can be reduced to 1/2 by simple repetition, completing the proof of Theorem 11.19. �

What have we learned?

• Computing approximate solutions to NP-hard problems is an important research
endeavor. The classical Cook-Levin-Karp reductions did not rule out the existence
of approximation algorithms for many interesting NP-hard problem.

• Nontrivial approximation algorithms can be designed for many NP-hard problems.
• The PCP Theorem gives a new probabilistic characterization of NP, and also shows

that the MAX-3SAT problem cannot be approximated within arbitrary accuracy if
P �= NP. In fact, these two results are equivalent to one another.

• There are many other PCP theorems with different choices of parameters. In this
chapter we saw a simple one where the verifier uses poly(n) random bits and examines
only O(1) bits in the proof.

• Proofs of PCP theorems involve some interesting way to encode a satisfying
assignment to a boolean formula. This is accompanied by procedures that can effi-
ciently check any string that is claimed to be such an encoding. In this chapter we
saw a proof using the Hadamard code (that just consists of linear functions over
GF(2)).



254 PCP theorem and hardness of approximation: An introduction

CHAPTER NOTES AND HISTORY

The notion of approximation algorithms predates the discovery of NP-completeness;
for instance Graham’s 1966 paper [Gra66] already gives an approximation algorithm for
a scheduling problem that was later proven NP-complete. Shortly after the discovery
of NP-completeness, Johnson [Joh74] formalized the issue of computing approximate
solutions, gave some easy approximation algorithms (such as the 1/2-approximation
for MAX-SAT) for a variety of problems and posed the question of whether better
algorithms exist. Over the next 20 years, although a few results were proven regarding
the hardness of computing approximate solutions (such as for general TSP in Sahni
and Gonzalez [SG76]) and a few approximation algorithms were designed, it became
increasingly obvious that we were lacking serious techniques for proving the hardness
of approximation. The main difficulty seemed to be that there were no obvious interre-
ducibilies among problems that preserved approximability. The paper by Papadimitriou
and Yannakakis [PY88] showed such interreducibilities among a large set of problems
they called MAX-SNP, and showed further that MAX-3SAT is complete for this class.
This made MAX-3SAT an attractive problem to study both from the point of view of
algorithm design and for proving hardness results.

Soon after this work, seemingly unrelated developments occurred in the study
of interactive proofs, some of which we studied in Chapter 8. The most relevant for
the topic of this chapter was the result of Babai, Fortnow and Lund [BFL90] that
MIP = NEXP, which was soon made to apply to NP in the paper of Babai, Fortnow,
Levin, and Szegedy [BFLS91]. After this, there were a sequence of swift develop-
ments. In 1991 came a stunning result by Feige, Goldwasser, Lovasz, Safra, and
Szegedy [FGL+91] which showed that if SAT does not have subexponential time algo-
rithms, then the INDSET problem cannot be approximated within a factor 2log1−ε n for
any ε > 0. This was the first paper to connect hardness of approximation with PCP-like
theorems, though at the time many researchers felt (especially because the result did not
prove NP-completeness per se) that this was the “wrong approach” and the result would
ultimately be reproven with no mention of interactive proofs. (Intriguingly, Dinur’s Gap
Amplification Lemma in Chapter 22 brings us closer to that dream.) However, a year
later Arora and Safra [AS92] further refined the ideas of [BFL90] (and introduced
the idea of verifier composition) to prove that approximating INDSET is actually NP-
complete. They also proved a surprising new characterization of NP in terms of PCP,
namely, NP = PCP(log n,

√
log n). At that point it became clear that if the query param-

eter could be sublogarithmic, it might well be made a constant! The subsequent paper of
Arora, Lund, Motwani, Sudan, and Szegedy [ALM+92] took this next step (in the pro-
cess introducing the constant-bit verifier of Section 11.5, as well as other ideas) to prove
NP = PCP(log n, 1), which they showed also implied the NP-hardness of approximat-
ing MAX-3SAT. Since then many other PCP theorems have been proven, as surveyed in
Chapter 22. (Note that in this chapter we derived the hardness result for INDSET from
the result for MAX-3SAT, even though historically the former happened first.)

The overall idea in the AS-ALMSS proof of the PCP Theorem (as indeed the
one in the proof of MIP = NEXP) is similar to the proof of Theorem 11.19. In fact
Theorem 11.19 is the only part of the original proof that still survives in our writeup;
the rest of the proof in Chapter 22 is a more recent proof due to Dinur. However, in



Exercises 255

addition to using encodings based upon the Walsh-Hadamard code, the AS-ALMSS
proof also used encodings based upon low-degree multivariate polynomials. These have
associated procedures analogous to the linearity test and local decoding, though the
proofs of correctness are a fair bit harder. The proof also drew intuition from the topic
of self-testing and self-correcting programs [BLR90, RS92].

The PCP Theorem led to a flurry of results about hardness of approximation. See
Trevisan [Tre05] for a recent survey and Arora-Lund [AL95] for an older one.

The PCP Theorem, as well as its cousin, MIP = NEXP, does not relativize [FRS88].
In this chapter we only talked about some very trivial approximation algorithms,

which are not very representative of the state of the art. See Hochbaum [Hoc97] and
Vazirani [Vaz01] for a good survey of the many ingenious approximation algorithms
that have been developed.

EXERCISES

11.1. Prove that for every two functions r, q : N → N and constant s < 1, changing the
constant in the soundness condition in Definition 11.4 from 1/2 to s will not change
the class PCP(r, q).

11.2. Prove that any language L that has a PCP-verifier using r coins and q adaptive queries
also has a standard (i.e., nonadaptive) verifier using r coins and 2q queries.

11.3. Give a probabilistic polynomial-time algorithm that given a 3CNF formula ϕ with
exactly three distinct variables in each clause, outputs an assignment satisfying at
least a 7/8 fraction of ϕ’s clauses.
H536

11.4. Give a deterministic polynomial-time algorithm with the same approximation guar-
antee as in Exercise 11.3.
H536

11.5. Prove Lemma 11.16.

11.6. Prove that PCP(0, log n) = P. Prove that PCP(0, poly(n)) = NP.

11.7. Let L be the language of pairs 〈A, k〉 such that A is a 0/1 matrix and k ∈ Z satisfying
perm(A) = k (see Section 8.6.2). Prove that L is in PCP(poly(n), poly(n)).

11.8. ([AS92]) Show that if SAT ∈ PCP(r(n), 1) for r(n) = o(log n) then P = NP. This
shows that the PCP Theorem is probably optimal up to constant factors.
H536

11.9. (A simple PCP Theorem using logspace verifiers) Using the fact that a correct tableau
can be verified in logspace, we saw the following exact characterization of NP:

NP = {
L : there is a logspace machine M s.t x ∈ L iff ∃y : M accepts (x, y).

}
Note that M has two-way access to y. Let L-PCP(r(n)) be the class of languages
whose membership proofs can be probabilistically checked by a logspace machine
that uses O(r(n)) random bits but makes only one pass over the proof. (To use the
terminology from above, it has two-way access to x but one-way access to y.) As in



256 PCP theorem and hardness of approximation: An introduction

the PCP setting, “probabilistic checking of membership proofs” means that for x ∈ L
there is a proof y that the machine accepts with probability 1 and if not, the machine
rejects with probability at least 1/2. Show that NP = L-PCP(log n). Don’t assume the
PCP Theorem!
H536

(This simple PCP Theorem is implicit in Lipton [Lip90]. The suggested proof is
due to van Melkebeek.)

11.10. Suppose we define J-PCP(r(n)) similarly to L-PCP(r(n)), except the verifier is only
allowed to read O(r(n)) successive bits in the membership proof. (It can decide which
bits to read.) Then show that J-PCP(log n) ⊆ L.

11.11. This question explores why the reduction used to prove the Cook-Levin Theorem
(Section 2.3) does not suffice to prove the hardness of approximation MAX-3SAT.
Recall that for every NP language L, we defined a reduction f such that if a string
x ∈ L, then f (x) ∈ 3SAT. Prove that there is a x �∈ L such that f (x) is a 3SAT formula
with m constraints having an assignment satisfying more than m(1 − o(1)) of them,
where o(1) denotes a function that tends to 0 with |x|.
H536

11.12. Show a poly(n, 1/ε)-time (1+ε)-approximation algorithm for the knapsack problem.
That is, show an algorithm that given n+1 numbers a1, . . . , an ∈ N (each represented
by at most n bits) and k ∈ [n], finds a set S ⊆ [n]with |S| ≤ k such that

∑
i∈S ai ≥ opt

1+ε
where

opt = max
S⊆[n],|S|≤k

∑
i∈S

ai

H536

11.13. Show a polynomial-time algorithm that given a satisfiable 2CSP-instance ϕ (over
binary alphabet) finds a satisfying assignment for ϕ.

11.14. Show a deterministic poly(n, 2q)-time algorithm that given a qCSP-instance ϕ (over
binary alphabet) with m clauses outputs an assignment satisfying m/2q of these
assignment.
H536

11.15. Prove that QUADEQ is NP-complete.
H536

11.16. Consider the following problem: Given a system of linear equations in n with coeffi-
cients that are rational numbers, determine the largest subset of equations that are
simultaneously satisfiable. Show that there is a constant ρ < 1 such that approximat-
ing the size of this subset is NP-hard.
H536

11.17. Prove the assertion in the previous question when the equations are over GF(2) and
each equation involves only three variables each.




