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Modeling Background Conditions
Definition 19.6.

1. A background condition B is a function with-domain some set P of input
observables, taking real numbers as values. It is required that B(i) be a
number in the range of the ith observation function of the state space. The
domain P is called the set of parameters of B.

2. A state o satisfies B if o; = B(i) foreachi € P. A token s satisfies B if
state(s) satisfies B.

3. The set of background conditions is partially ordered by inclusion: B; < B;
if and only if the domain of B, is a subset of that of B; and the two functions
agree on this domain.

Every nonempty set of background conditions has a greatest lower bound
under the ordering <. Also, if a state or token satisfies B, then it clearly satisfies
every By < B. Theempty function is the least background condition: Itimposes
no conditions on states.

In working with a given state space, one assumes one has a fixed background
condition B, that one is only concerned with tokens that satisfy this background
condition, and hence that all computations and inferences take place relative to
that background condition. We can make this precise as follows:

Given a set Q of input observables, define 0 =g o’ if 0; = o/ foralli ¢ Q.
This is an equivalence relation on states. We say that a type o« C 2 is silent on
Qifforallstates o, 0’ € Q,if o =p o’ and o € ¢, then o’ € . We say that «
is silent on an input observable i if it is silent on {i}. Finally, a type « is silent
on B if « is silent on the set P of parameters of B. If one is given a premise or
purported conclusion that is nor silent on an observable i, it is safe to assume
i is not a parameter of the system. Put another other way, if we are reasoning
about an observable i, then i must be either an explicit input or output of the
system.

Example 19.7. In our heating system example Sy, the types o, o2, and 8 are

silent on the parameters, as can be seen from their definitions. The type o3, by
contrast, says that o3 = 0 and so is not silent on o3. The natural background
condition B in the winter is 03 = 04 = o5 = 1, representing the case where
the power switch is on, the vents are not blocked, and the setting is on “heat.”
(This is our informal way of indicating the baékground condition B with domain
{3, 4, 5} and constant value 1.) In the summer the default background condition
iso3 =04 =1andos = —1.

-Hence if-B is-{o3 = 04 = 05- =klr},-themWeakeninngbyfaygives—BF ag-=
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Definition 19.8. Given a background condition B and a set I" of types, the
weakening of B by T", written BT is the greatest lower bound (in the < ordering)
of all By < B such that every type « € T is silent on By.

. V.V'hen' I' = {a}, we write Bla for B|T". The function Bfa models the
Intuitive idea of dropping background assumptions of B on the parameters that
are critical to the content of the type . If the input observables of our state

space are independent, then this definition is guaranteed to behave the way one
would hope.

Theorem 19.9. Let " be a set of types. Assume the input observables of the
state space S are independent. Then each type in T is silent on BT, and this
is the greatest such background condition < B.

Proof. This follows easily from the following lemma, of independent use in
computing BT, I o

Lemma 19.10. [f the input observables of the state space S are independent,
then a type « is silent on Q if and only if it is silent on each i € Q. Hence,
under these conditions, there is a largest set Q of input observables such that
a is silent on Q.

Proof. The left to right half of the first claim is trivial. The converse claim is
proved by induction on the size of Q. The second claim follows from the first by
taking Q to consist of all the input observables i such that « is silentoni. O

Given a background condition B with parameters P, the lemma tells us that
Bla is simply the restriction of B to the set of input observables i € P such

that p is silent on i.

Example 19.11. The inputs of our example Sy, are independent so the lemma
and theorem apply. The type a3 is silent on each observable except for 3.

{0’4 =05 = 1}

Relativizing to a Background Condition

Each background condition B determines a subspace S C S as follows.

Definition 19.12. Let B be a background condition for the state space S. The
relativization Sg of S to B is the subspace of S whose states are those states o
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of S that satisfy the background condition B and whose tokens are the tokens
that satisfy B.

By relativizing, the output equations are simplified because the parameters
become constants in the equations in Sg.

Example 19.13. In our example, the output equations simplify to

= pos(sg(oy — 02))
{ 80 ifog = +1,
ar = .
o, otherwise.

Recall the correspondence between subspaces of S and S-logics from Lec-
ture 16. Because Sp C S, this gives us a Log(Ss) with Log(S) T Log(S3).
We call this the local logic Log(S g) supported by the background condition B.

Proposition 19.14. For each background condition B, the local logic Log(Sg)
supported by B is the logic on Evt(S) given by the following:

1. The Log(Sp)-consistent states ¢ are those satisfying B.

2. If T, A are sets of types of S, then T g A if and only if for every state
satisfying B, ifo € p forall p € T, then o € q for some q € A.

3. The normal tokens are those tokens satisfying B.

Proof. The proof of (1) follows immediately from the definition and (2) and
(3) follow from (1) and Theorem 16.6. 0

Because Log(S) = Log(Sg), we know that Log(Sp) typically has more
constraints but fewer normal tokens than Log(S), as one would expect. The
logic Log(Sp) is not in general sound, because there may well be tokens not
satisfying the background condition B. Indeed, Log(Sp) is sound if and only
if every token satisfies B. Log(Sp) is complete if and only if every state that
satisfies-B-is-the-state of some token. e C e e

Example 19.15. In our running example, the sequent ¢, or; - B is a constraint
in the logic Log(Ss,=c,=0s=1) With background condition 63 = 04 = 05 = 1.
(To see this we need only show that if o is a state with 65 < o7 < 70 and
o2 = 58, then 05 = 1 and 07 > 03. Using the state equations for Sq,—g,=qs=1
displayed above, we calculate that oy — 02 > 2 so sg(oy — 02) = 1. Hence
o = 1 and o7 = 80, in which case 07 > 07, as desired.) On the other hand this
constraint does not hold in the full logic Log(S,;), as can be seen by looking

- yy{itten }" =z A, 1f _th_e f?!‘9!"i‘,‘,8 four conditions hold:
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at, say, the state o = (67,58, 0, 1, 1, 0, 58). This state satisfies the defining
equations of our large space; it satisfies ) and &, but not B.

The following shows that as the background conditions increase in restric-
tiveness, so do the associated logics.

Corollary 19.16. If By < B,, then Log(S3,) T Log(Sg,).

Putting this the other way around, if the background conditions decrease in
strength, so do the associated logics. As remarked earlier, in reasoning about
a system we expect to be given information that is silent on the parameters
of the system, because when we are given information that is not silent on
some input observable, it is no longer a parameter but an explicit input of the
system. In particular, if we are given explicit information about the value of
some observable, these observables cannot be parameters, which means that the
background is weakened according to the new information. But weakening the
background weakens the logic. Thus additional information that is not silent
on the parameters weakens the logic.

Example 19.17. The information in «3 is about the observable a3, the power
to the system. Not only is o3 not silent on the background condition B of the
first sequent, it directly conflicts with it. Thus the natural understanding of the
claim that oy, a2, o3 8 is as being relative to the weakened B 3. Relative to
the local logic Log(S14, ), this is not a valid constraint. Indeed, in this logic a
routine calculation similar to the above shows that ¢, o3, 3 - —f, as desired.

We summarize the above discussion by putting forward a pragmatic model
of the way people intuitively reason against background conditions. First we
present the following definition.

Definition 19.18. I strictly entails A relative to the background condition B,

1. T *—Log(Sg) AO;

2. all typesin I' U A are silent on B;
3.Nr #0;

4. YA #Q;

The first two conditions have been extensively discussed above. The third and
fourth are not important for this discussion, but we include them for the sake of
completeness because they do capture intuitions about the way people reason.
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The third condition is that the information in the sequent is consistent in that
there should be some possible state of the system compatible with everything
in I". The last condition is that the information in sequent is nonvacuous in that
not every possible state of the system should satisfy A.

Our observations can now be put as follows:

1. The consequence relation I' =p A is a better model of human reasoning
against the background condition B thanis " 5 A.

2. The relation I' =5 A is monotonic in I' and A, but only as long as you
weaken using types that are silent on B and do not make the sequent hold
for trivial reasons.

3. If one is given a type « that is not silent on B, the natural thing to do is to
weaken the background condition B by «, thereby obtaining B«.

4. ButT" =p A does notentail I', @ =>pj, Aor ' =5}, A, .

Logic Infomorphisms and Nonmonotonicity

A reasonable objection to our presentation so far would be to point out that
we have systematically exploited an ambiguity by using “ay, @, e3” and “B”
for both symbolic expressions (like the English sentences where they were
introduced at the start of this lecture) as well as for the “corresponding” state
space types, which are, after all, sets of states, not exactly the sort of thing
people reason with in ordinary life. We need to discuss this relationship between
the symbolic expressions and said types.

The solution, of course, is our notion of a logic infomorphism. To see what
this has to do with our problem, let us return to our example and set up a
symbolic Boolean classification A. The types of A are symbolic expressions
o, ¥, n,...,ecitherthe English expressions used in the introduction and Boolean
combinations of them or some sort of more formal counterparts of the sort used
in an elementary logic course. We use @1, ¢2, @3, and ¢ for the premises and
conclusions of our classification. The tokens of A are instances of Judith’s

space S as above. The map ¢; — «;, and ¥ — B, extended in the natural way
to the Boolean combinations, defines a map f~ from the types of A to the types
of Log(S), whereas the identity map on tokens can be thought of as a map of
the tokens of Log(S). This gives us a classification infomorphism from A to
the classification Evt(S),

f:A=B T

. heating system._Let B be the classification Evt(S) associated with the state_
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We know that any infomorphism f : A = B and local logic £ on B gives
rise to a C-largest local logic £~![£]on A such that f is alogic infomorphism
from this logic to £. This gives us a host of logics on the classification A.
There is the logic f “[Log(S)], but also, for each subspace of S, there is the
inverse image of the logic associated with this subspace. In particular, for each
background condition B, there is a local logic f ‘I[Log_(SB)]. Let us write
these logics as £ and £, respectively, and write I' - A and T Fg A for their
entailment relations.?

The logic £ is sound, that is, all its tokens are normal. The constraints of
this logic are just those sequents of A whose validity is insured by our state-
space model. The logics of the form £, however, are not sound; the normal
tokens of £ are those that satisfy the background condition B. For example,
the normal tokens of Lo,=g4=0,=1 are those in which the power is on, vents are
unblocked, and the controls are in heating mode.

The Ineffability Principle

In the model given in the previous section, a background condition B could be
packaged into a type yg, namely,

v = {0 € Q| o satisfies B}.

This type could, in principle, be made explicit as an additional premise of
an inference. But this type will typically lie outside of the range of f°. Put
differently, there is in general no way to capture the background condition B
by a symbolic rype of A. We call this the “ineffability principle” because it
seems to model the fact that it is seldom, if ever, possible to say exactly what
background assumptions are in force when we reason in ordinary life.

Turtles All the Way Down

Having seen the relationship between state spaces, local logics, and nonmono-
tonicity, let us return to state spaces.

As a start, Iet us note that'if Sis a real-valued state space of dimension
n and B is a background condition on k parameters, then Sp is isomorphic
to a real-valued state space S} of dimension m = n — k. The isomor-
phism is the identity on types whereas on tokens it projects (g;, 6}, G,) to
(67, J,). (In our example, the new space would have as states those 4-tuples
{01, 02, 03, 04} such that (09,02, 1,1, 1, 03, 04) € .) The move from the

2 We would actually propose combining this proposal with the ideas in Lecture 18 in a full
development.
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n-dimensional S to the m-dimensional S} results from setting & parameters as
dictated by B.

Now let us look at it the other way around. Suppose we had begun with
an m-dimensional state space S and later learned of k additional parameters
that we had not taken into account. Letting n = m + k, we would then see
our space S as projecting onto a subspace S” of an n-dimensional state space
S’. Because 8" C §', taking the associated local logics and recalling the order
reversal that takes place, we have Log(S') © Log(S”). That is, the logic
associated with the new state space is weaker, in that it has fewer constraints,
but more reliable, in that it has more normal tokens, which is just what we have
seen.

Example 19.19. Suppose instead of the information 3, we had been faced
with the following new information:

(ts) The gas line has been broken and there is no gas getting to the furnace.

We would like to get a;, @z, &4 F —B, but we do not. In fact, the type a4 does
not even make sense in our state space, because the gas pressure and gas line
have not been taken into account in our seven-dimensional state space Sis. To
take these into account, we would need to see S as isomorphic to a subspace
of a nine-dimensional state space S’, one where the additional observables are
the state of the gas line and the gas pressure. Then as we have seen, we would
have Log(S") T Log(S).

One should not think that there is ever an “ultimate” completely perfect state
space. In general, it seems it is almost always possible in real-life systems to
further refine a state-space model of some system by introducing more observ-
ables. That, of course, is what we mean by saying it is turtles all the way
down. A '

The example makes an additional point, though. Once we introduce the new
‘observables, we have also implicitly changed the set of tokens under consid-
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end to this. As we reason in greater detail, there seems no end to the richness
that may have to be considered.’

19.3 The Frame Problem

We view the frame problem as the problem of specifying the immediate conse-
quences of a basic action a taken by an agent, what changes and what doesn’t
change. Given a state space S as above, following the example in Lecture 3, we
define a new state space Sa.. Its tokens consist of basic actions. We assume
that for each such act a there are two tokens init(a) and final(a) of S. We take
as states the pairs (o, o2) of states of S. We say that a token of S, has state
{01, 02) if init(a) has state o) and final(a) has state o,. Now any sort of change
to the circuit can be modeled in Evt(S).

The frame problem and the problem of nonmonotonicity interact with one
another, so one would hope that the machinery developed here would help with
the frame problem. Suppose that the temperature is seventy-two degrees and
the thermostat is set at sixty-eight degrees, so no hot air is coming out of the
vents. But now suppose we are told that the temperature drops to sixty-eight
degrees. It scems we want to conclude that the furnace comes on and hot
air comes out of the vents. But of course this would not be valid if, in the
meantime, the setting was changed to the summer setting. Our proposal for
handling the frame problem in this context is quite simple: described actions
only involve changes to output observables and to input observables about which
the descriptions are not silent. Otherwise one has to weaken the background as
before.

19.4 Conclusions

In'spite of their ubiquity in science and applied mathematics, state spaces as
models for human reasoning have been largely ignored. But there are a couple
of reasons why such a move might prove fruitful.

eration. Our tokens were just instances of Judith’s heating system, something
Jocated entirely in Judith’s house. But the gas lines run from the house out
under the streets of Bloomington. Qur tokens have greatly expanded. Each
of our old tokens s is part of a token s’ = f™(s) in §’. In other words, our
isomorphism is no longer the identity on tokens. When we look at this in

terms of the associated classifications Evt(S’) and Evt(S), what we have is an

infomorphism f : Evt(S") & Evt(S) that is not the identity on tokens. Rather,
it takes each token to a richer token. And again, there typically seems to be no

Feasibility
In those applications where the equations
o, = F o(&} )

3 This is not a new observation, it has been known to those working in nonmonotonic logic for a
decade or so. The point here is just to see how this realization fits into the picture presented here.

~,4(<," E
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really can be computed, the state-space/local-logic approach might give us an
interesting alternative to traditional theorem-proving methods, one where fixed
numerical calculations could be used in place of more symbolic approaches.
This is the antithesis of Pat Hayes’ thesis in his famous manifesto (Hayes,
1985). The proposal here is to exploit the sciences in modeling commonsense
reasoning rather than replace it with a parallel symbolic framework.

In this regard, Tarski’s decision procedure for the real numbers suggests
itself as potentially a useful tool.* As long as the output functions F,, the types
inT, A, and the background condition B are first-order definable over the field
of real numbers, as they are in our example, Tarski’s decision procedure gives
us a mechanical way to determine whetherornot I" -3 A.

Logic and Cognition

Much more speculatively, the proposal made here suggests a way out of the box
that logic has been put into by some of its detractors. Within the recentcognitive-
science literature, logic is often seen as irrevocably wed to what is perceived
to be an outdated symbol-processing model of cognition. From there, it is but
a short step to the conclusion that the study of logic is irrelevant for cognitive
science. This step is often taken in spite of the fact that human reasoning is a
cognitive activity and so must be part of cognitive science. Perhaps the use of
state spaces might allow a marriage of logic with continuous methods like those
used in dynamical systems and so provide a toehold for those who envision a
distinctively different model of human reasoning (see Chapter 10 of Barwise
and Perry (1983), for example). The (admittedly wild) idea is that the input and
output of reasoning could be symbolic, at least sometimes, whereas reasoning
itself might be better modeled by state-space equations, with the two linked
together by means of something like infomorphisms.

4 See Rabin (1974) for a brief exposition of Paul Cohen’s improved proof of Tarski’s theorem.

Lecture 20

Representation

The concepts of information and representation are, of course, closely related.
Indeed, Jerry Fodor feels that they are so closely related as to justify the slogan
“No information without representation.” Though we do no go that far, we do
think of the two as intimately connected, as should be clear from our account.
In this lecture, we sketch the beginnings of a theory of representation within the
framework presented in Part II. We have three motives for doing so. One is to
sugggst what we think such a theory might look like. The second is to explain
some interesting recent work on inference by Shimojima. The third is to show
that Shimojima’s work has a natural setting in the theory presented here.!

20.1 Modeling Representational Systems

When we think of information flow involving humans, some sort of representa-
ti.onal system is typically, if not always, involved: Spoken or written language,
pictures, maps, diagrams, and the like are all examples of representations. So
representations should fit into our general picture of information flow.

. A theory of representation must be compatible with the fact that representa-
tion is not always veridical. People often misrepresent things, inadvertently or

__otherwise. For this reason, we model representation systems as certain special .

kinds of information systems where unsound logics can appear. We begin with
our model of a representational system.

Definition 20.1.

L. A representation system R = (C, £) consists of a binary channel C = { f:

1 - . .
Representation is such a big and important topic that it surely deserves a book of its own. We
hope one of our readers will write a book that further develops the ideas sketched here.

235
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A 2 C,g: B = C}, with one of the classifications designated as source
(say A) and the other as farget, together with a local logic £ on the core C
of this channel.

2. The representations of R are the tokens of A. Ifa € tok(A) and b € tok(B),
a is a representation of b, written a ~+r b, if @ and b are connected by some
¢ € C. The token a is an accurate representation of b if a and b are connected
by some normal token, that is, some ¢ € Ng.

3. A set of types I" of the source classification indicates a type § of the target
classification, written I’ = B, if the translations of the types into the core
gives us a constraint of the logic £, thatis, if f['] F¢ g(B8). The content of
a token a is the set of all types indicated by its type set. The representation a
represents b as being of type f if a represents b and B is in the content ofa.

We can depict a representational system as follows:

£

A B

Representations Targets

The connections between the representations and their targets model the par-
ticular spatial-temporal process whereby the representation comes to represent
what it does. The constraints of the logic model the various sort of constraints
on this process. When dealing with conventional representation systems like
writing or map making, the constraints will typically involve a wide variety of
constraints of different types, from conventional to physically necessary, all the
way to logic constraints. In this sketch, we simply group them all together.
With our definition, not every representation of R is a representation of

———some tokem inr the target.~ (Novels-are representations, but-not necessarily of

anything real.) Also note that a representation may be a representation of more
than one token. For example, the picture of Ben taken on his third birthday
represents him as he was then, but it also represents the Ben of today, two years
later, though not as accurately as it represents the younger Ben.

Example 20.2. Let us see how we can view the practice of mapmaking as a
representation system under this definition. The source classification A is a
classification of maps (the tokens) by means of their syntactic types, that is,
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types that classify maps according to what is printed or drawn on them. The
target classification consists of regions classified by pfoperties of and relations
between the things in the regions. Thus a typical source type might be something
roughly like “a school icon labeled ‘Harmony’ is next to road line labeled
‘2nd’ ” and a target type might be “Harmony School is located on 2nd street.”
The core of this classification models the actual practice of mapmaking. The
connections are causal links between maps and what they are maps of. The
types are ways of classifying these links. The logic on this classification models
the understanding of users of these maps. Thus the constraints of the system
represent the assumptions users of the maps make about the links between maps
and what they are maps of. The normal tokens of the logic are the normal links,
which must satisfy the constraints. Note, however, that there may be links that
do not satisfy all of the constraints of the logic.

‘ Assume the map a is a representation of Mt. Ateb. Suppose that looking at
a we observe that I' C typ(a), that is, that a of every type in . If ' = 8,
we would be justified in saying that the map a represents Mt. Ateb as being of
type B, whether or not Mt. Ateb is of type 8.

The next result shows that our definition of an accurate representation
behaves properly.

Proposition 20.3. Ifa is an accurate representation of b and a represents b as
being of type B, then bkg B.

Proof. Because a is an accurate representation of b, there is a normal connec-
tion ¢ between a and b, so f(c) = a and g(c) = b. Because a represents b as
being of type 8, fltyp(a)] -¢ g(B). Because f is an infomorphism, ¢ F¢ f ()
foreach a € typ(a). Because c is normal, ¢ satisfies all constraints of the logic,
so ¢ F¢ g(B). Because g is an infomorphism, b Fg 8. n]

__ 202 Imperfect Representations

In this section, we sketch our solution to a potentially troublesome fact about
information and representation. Suppose we have a map of Mt. Ateb but the
mountain has changed in small ways since the map was produced. Maybe a
portion of a path has been obliterated by a landslide. There is clearly a sense
in which the map is no longer accurate. After all, it represents the existence
of a path where there is in fact none. Still, the map does carry a lot of valid
information about the mountain. Any informational theory of representation
should be compatible with this commonplace phenomenon.
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Recall that our tokens in the target classifications are really regions at times,
not just regions outside of time. Let us suppose that the original connection co
between the map and the mountain was normal, and connected the map a to
mo. Thus a was a representation of mo. But when the path was destroyed, this
changed mg to m; and, as a result, the connection co between a and mg gave
rise to a new connection ¢ between a and m,. Thus a represents both mg and
my. The new connection supports most of the constraints of the representation
system but not all of them. In particular, it fails to support the constraint that
says that a path icon at location / indicates a path at position p.

Whether or not a representation a is an accurate representation of b depends
on the connections and the representation system in question; in particular, it
depends on the local logic € at the core of the system. It may be inaccurate
with respect to a logic £ but accurate with respect to a slightly weaker logic
£0 C £. The connection ¢ between a and b is not normal with respect to £
but is normal with respect to a slightly weaker logic £o. Relative to this logic,
and the associated representation system, a is accurate.

20.3 Shimojima’s Thesis

‘When we use representations to reason about some domain, the nature of the
representations can greatly affect the form of the reasoning. The choice of a
good representation system for the problem at hand can make the reasoning
much easier. Conversely, the choice of a poor representation system can make
the reasoning more difficult or even impossible.

There have been many attempts made to explain the various properties of
different kinds of representation systems. One common intuition is that the
better a fit there is between the representing domain and the represented domain,
the better the representational system is. Atsushi Shimojima (1996) has used the
basic notions of classification and constraint to give a rigorous formulation of
this basic intuition, and has used it to investigate a wide range of representational
phenomena. With various case studies, Shiomjima makes a strong case for the

folli)_\;ing:

Shimojima’s Constraint Thesis

The inferential advantages and disadvantages between representation systems
with a common target classification can be understood in terms of the kinds of
constraints that the system projects from représentations to targets.?

2 Shimojima never goes quite so far as to call this a thesis. Rather, he calls it an hypothesis. We
think his dissertation makes such a strong case, however, that we promote it to a thesis here.
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In this section, we give a brief introduction to Shimojima’s (1996) work after
first setting it in the framework of representation systems as modeled in this
chapter.

For a rigorous treatment of the thesis, Shimojima must first give an analysis
of what it means for one constraint to project to another constraint.> Recall
we have a representation system R with source classification A and target
classification B. For sets ' C typ(A) and © C typ(B), we say that R projects
I' to ©, and write T’ =" O, if every B € O is indicated by some & € I' and
every « € I' indicates some 8 € ©. Here are some simple properties of this
rejlatlon. Recall that a =4 T means that a F4 o forevery o € T, and dually for
disjunction. The following is easy to verify.

Proposition 20.4. Let a be an accurate representation of b and assume that R
projects T to ©.

1. IfabE T, then bl g ©.
2. Ifa .=VA T, thenb#vg (OX
3. '=@ifandonly if ® = 0.

Furthermore, if ' = {a} and © = (B}, then T =* © ifand only if« =7, .

Deﬁn.ition 20.5. Let S=(I', A) and §' =(©, ¥) be sequents of A and B, re-
spectively. We say that R projects Sto §'if [ =* @ and A =* V. If S is

a cc?nstraint of A, then this relationship is said to be an instance of constraint
projection.

Let a be an accurate representation of b and assume that R projects S to S’
One might be tempted to think that if a satisfies the sequent S, then b satisﬁes.
the sequent S’. A moment’s thought shows that this is not in general the case
.Indeed, part of Shimojima’s argument in favor of his thesis comes from exp]or—l
ing f:ases where projected constraints are not in fact satisfied. We give a hint as
to his argument by examining three cases of projection: where the consequent

of § is empty, where it is a singleton, and where it has more than one element.

Free Rides

Shimojima defines a free ride to be any case of constraint projection § => S’
where both S and S’ have a single type in the succedent of the sequent. That s,

3 . ..
Actually, Shimojima did not use the framework of chani TY. i
v g ! nel theory, but instead i
of signaling and indicating as primitives. e used the notions
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S is of the form (T, {e}) and S’ = (©, {B}). In other words, a free ride occurs
fI' =*0, k4 o,andaFgr 8.

Suppose we want to represent the information (or misinformation) © about
some b by means of a representation a whose type set includes I'. Any such
representation will represent its target b as being of all the types in ®. Note,
however, that because I't-4 a, a will also be of type «. But then because
a =g B, a will also represent b as being of type 8. In other words, any attempt
to represent b as satisfying all the types in ® by means of a representation
satisfying I' will automatically represent b as being of type 8. This can be a
good or a bad thing.

Positive Free Rides

If © g B, then this is called a positive free ride, because the conclusion 8
automatically generated by creating a representation satisfying I’ is in fact war-
ranted. One of the advantages of various forms of diagrammatic representations
is that one gets various forms of positive free rides.

Example 20.6. Letus go back to the example of maps. The cartographer places
the line /| representing Atwater Street above the line [, representing Second
Street so the map represents Atwater as being north of Second. The cartographer
similarly places the line I3 representing University Street below I, so the map
represents University as being south of Second. By virtue of placing /; above [,
and /3 below [,, the cartographer also places /; above I3, by virtue of a constraint
S of A. As aresult, the map automatically represents Atwater as being north
of University. This is a legitimate piece of information because the constraint
S projects to a matching constraint §’ on B.

Negative Free Rides

- If ® ¥4 B, then this is called a negative free ride, because the conclusion S gen-
erated automatically by creating a representation satisfying I" is not warranted.
The mismatch between distances between points on a planar map of a curved

~surface (like the earth) and the distances between-the-points-they represent gives———4

rise to examples of this.

Overdetermined Alternatives

By a case of overdetermined alternatives Shimojima means any case of con-
straint projection § => §’ where both § and §’ have more than one type in the
succedent, say § = ([, A) and S’ = {©, W), where W has more than one element
but where foreach 8 € ¥, © Vg 8.
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Suppose we were to represent b as satisfying all the types in © by means of
a representation a satisfying all types in I". Because S is a constraint, g must
satisfy some @ € A. But then by Proposition 20.4.2, there would be some Bevw
such that a represents b as being of type 8. But because © ¥p B, our repre-
sentation would have represented b as being of some type that does not follow
from the information ® from which we started. That s, any representation a we
choose that represents b as satisfying all the types in © by means of I' has the

unfortunate effect of representing b as satisfying some B that does not follow
from ©. '

Example 20.7. Suppose the cartographer knows there is new high school being
planned for south of town and that the school will be built quite soon. Thus
he or she would like to indicate it on the map. However, if he places a school
icon at any particular place on the map, it will indicate that the school is at a
particular location. Although one of the locations is the right one, which one
does not follow from the information ® at the cartographer’s command, that
there will be a school south of town.

As with the case of free rides, there are two subcases to consider, depending
on whether or not §” is a constraint of B. If §" is not a constraint of B, then
overdetermined alternatives are a potential source of serious error when using
the representation system. However, if §" is a constraint, there is a way to get
around the problem.

Cases Exhaustive

If §’ is a constraint, that is, if ® =g W, then one can work around the diffi-
culty by using multiple representations in a disjunctive fashion. To simplify the
discussion, let us suppose that A = {o], a5} has two types. Suppose that we

" find representations a; and a, of b satisfying all types in " with a, &, ; and

ayFa az. These will be called a set of exhaustive alternatives for § =* §'.
Because each type in W is indicated by at least one of these two, and because

— both possibilities in A are covered, between them they legitimately represent -

b as satisfying at least one type in A without representing b as being of any
particular type in A.

Example 20.8. Cases exhaustive is one of the main methods of reasoning with
simple diagrammatic systems, where one has to break a piece of reasoning into a
number of distinct cases. Suppose, for example, we were given a representation

G| [m] []
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representing a seating arrangement involving Greg, Mary, Bill, Ann, and Toni
and we were given the information that Ann was seated next to Mary. If we
place an A in the first empty box, it will represent one alternative and represent
Ann as sitting next to Greg, in the second a different alternative will represent
Ann as sitting next to Bill. We need to break into two exhaustive cases, from
which it will follow that Ann is next to either Greg or Bill. For further discussion
of the importance of this rule, see the discussion of the Hyperproof system’s
rule of Cases Exhaustive in Barwise and Etchemendy (1995).

The validity of the method of cases exhaustive depends crucially on the
validity of the projected constraint, as Shimojima’s analysis makes clear.

Autoconsistent Systems

One of the advantages of certain kinds of representations is that it is difficult,
sometimes impossible, to use them to represent inconsistent information. This
means that one can demonstrate consistency of some purported information
simply by producing a representation of it in such a system. For example, a
drawing might be used to show that a certain placement of furniture in the room
is possible.

The system R is said to be autoconsistent if whenever R projects a sequent
S of the form ([, @) to some sequent §' = (®, @), if S’ is a constraint, so is S.

Example 20.9. The representation system employed in Hyperproof is auto-
consistent. The standard Euler circle system is also autoconsistent.

Proposition 20.10. Suppose R is autoconsistent. For every a € tok(4), the
content of a holds for some token b € tok(B).

Proof. Let T #typ(a) and © be the conteht of a. By definition of content,
I' =* . If © hoids for no token of B, then ® 5. By autoconsistency, I' k4,
. which contradicts the fact that a satisfies every type in T". o

Lecture 21

Quantum Logic

Quantum theory is well known for having a nonclassical and somewhat peculiar
logic. One approach to trying to make this logic comprehensible is by means
of what is called a “manual of experiments.” This is the approach taken, for
example, in the book An Introduction to Hilbert Space and Quantum Logic
(Cohen, 1989), which we use as our main reference. A manual is thought of as
describing a variety of different tests of a system, but where the making of one
test may, for some reason, preclude the making of some other test of the same
system at the same time. Still, it can happen that from performing one kind of
experiment we may get information about what the outcome would have been
had we performed another kind of experiment.

Example 21.1. Here is an example taken from 17). Imagine a firefly trapped
inside a box, and two kinds of experiments, FRONT and SIDE, one can perform
when observing this box at a given instant. In a FRONT experiment one looks
in the box from the front, whereas in SIDE one looks from the right-hand side.
In FRONT there are three possible outcomes: one may see the firefly light lit up
on the right (R), lit up on the left (L), or not lit up at all (N). Similarly, in SIDE
there are three possible outcomes: one may see the firefly light at the front (F),
at the back (B), or not at all (N). Suppose an observer examines the box using

Shimojima (1996) goes into these ideas in much greater depth and with many
more examples. He also has an interesting discussion of the roles that different
types of constraints, say nomic versus conventional, play in different kinds of
representational systems. We recommend it to the reader.

FRONT and observes an outcome of L. Then the firefly was lit, so if the observer
had performed the experiment SIDE, one would have obtained an outcome in

the set {F, B}. Thus we have a constraint L - F, B, and associated information
flow.

We want to see how this kind of information flow fits into the picture pre-
sented in this book. We also want to see how well the framework of this book
fits with that of quantum logic.
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21.1 The Theory of a Manual

Definition 21.2. A manual of experiments is an indexed family M = {Qg}ges
of sets. Each E €& is called an experiment (or kind of experiment). The set
Q is called the set of possible outcomes of E.

Cohen calls this a “quasi-manual.” What he calls a manual we will call a
standard manual (Definition 21.17). Each set Qg can be thought of as the set
of states of a state-space Sg. To make things canonical, we take Sg to be the
ideal state space with Q¢ as states. Thus Qg is the set of types and the set of
tokens of Sg, and each token is its own type. In this way, each E gives rise to
a theory, namely, the Th(Sg). The types of this theory are arbitrary subsets of
Qg and T s,y A if and only if (T € | A.

We want to associate a sound and complete local logic Log(M) with any
manual M. We start with the manual’s theory Th(#f), which has an obvious
natural definition. From that, we work toward a definition of a classification
Cla(M) associated with M and then show that Th(M) is the theory of the
classification Cla(M).

Definition 21.3. For any manual M = {Qg}zee, Th(M) is the theory whose
set of types is

Ty = Upowﬂg
Ee€

and whose consequence relation is the smallest regular consequence relation
containing the consequence relation ks, of Log(Sg), foreach E € £.

Example 21.4. In the firefly manual M, the set £ of experiments is {FRONT,
SIDE}, Qmont = {L, R, N} and Qgpe = {F, B, N}. Zy consists of all subsets of
either of these sets. Itdoes notcontainasetlike {F, L}. Because {L}, {N} Fszonr

and Fsgpe (N}, {F}, {B}, both sequents hold in Th(M). Hence by Cut and
Weakening, we obtain the constraint . _

{L} e {F), (B}
as desired.
We want to show that the theory Th(M) of a manual M is the complete

theory of a classification naturally associated with M. To motivate the choice
of tokens, we first present some definitions from quantum logic.
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Operationally Perspective Types

Let M be a manual and let Ty be the associated set of types. A pair of types
a, B are said to be comeasurable if there is an experiment E of the manual so
that @ U 8 C Qg. That is, they are comeasurable if you can test for them both
with a single experiment E. In the firefly example, {L} and {R} are comeasurable
but not consistent. On the other hand, {L, N} and {B, N} are not comeasurable,
even though they could both hold in a given situation.

Types « and 8 are orthogonal, written oo L B, if they are comeasurable
and disjoint. In the firefly example, {L, R} L {N}. Types & and B are orthogonal
compliments, written & oc $, provided they are orthogonal and their union is an
g, that is, if the two events partition the set Q¢ of possible outcomes of some
experiment £ € £. Intuitively, this means that exactly one of the two events
would be seen to hold were we to perform an experiment of type E. (In the
firefly example, {L, R} and {N} are orthogonal compliments.)

Types o and o are operationally perspective, o) op ay, if there is a type B
such that @ oc B and ; oc 8. Intuitively, operationally perspective types are
equivalent, because they have a common compliment. (In the firefly example,
{L, R} op {F, B} because they are both orthogonal complements of {N}.)

In the approach to quantum logic using manuals, it is assumed that oper-
ationally perspective types are equivalent. We adopt this assumption and see
where it leads us in our search for a classification to go along with the theory
Th(M). First, though, note the following resulit.

Proposition 21.5. Let M be a manual and let Th(M) = (X4, ) be its theory.
Foralla,B € Zy:

L. Ifa L B, thena, B 1.

2. IfaocB, thena, B+ and - a, B.
3. Ifaop B, thena - Band B - a.

Proof. To prove (1), assume L 8. Then e, 8 are disjoint but are both subsets
we prove (3). Because op is a symmetric relation, it suffices to prove one of the
two conclusions. Assume that o op B. Let 8 be such that & oc 8 and § oc 8.

By (2), 2,6 + and I 6, 8. But then by Finite Cut, we have « - 8. =]

Let

A =) Evi(Sp)

Eef
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and let
£=7 Log(Se)
EeE

the corresponding sum of logics. Being a sum of sound and complete logics,
¢ is a sound and complete logic on A. The tokens are functions ¢ that as-
sign to each E some element cg € Qg. We can think. of such a token as
representing the possible outcomes of performing the different expenr.nents
in £:cg is the outcome one would get were one to perform an e)fpenment
of kind E. The types are the disjoint union of the types of the various state
spaces. .

Recall that typ(4) is the disjoint union of pow Qg, for E € E.Butifx €
pow Qf and B € pow 2F, they are already distinct objects unless they are
identical, in which case they are subsets of Qg N Q. But these are exactliy
the types that give rise to op relationships; that is, if « = B, then Qg — 18
operationally perspective to Qr — B. So in this case we do not really want to
make « and B distinct. ’

We need, then, to undo the disjointness caused by taking the sum. This
is easily accomplished by taking the appropriate (dual) quotient. Define a dual
invariant J = (C, R) on A as follows. The relation R relates exactly those types
that are copies of the same set. The set C consists of those tokens of A that
respect the relation R.

Lemma 21.6. A foken of A respects R if and only if for all types E, F € €, if
cg € QF thencg = CF.

With this in mind, we make the following important definition.

Definition 21.7. An idealized token of M is an element ¢ € tok(4) such that
for all experiments E, F € E,if cg € QF thencg =cF.

fication A/ J.
Proof. This is an immediate consequence of Corollary 12.34. O

Classification A/J has the idealized tokens for tokens. Its_ types are (up to
isomorphism) just the types Xu of Th(M). This suggests that Th(M) is the
theory of the sound and complete logic with idealized tokens as tokens and Xy

as types.

Proposition-21.8. The logic £/ J is a sound and complete logic on the classi- .
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. Definition 21.9. Given a manual M, the classification Cla(M) of M is the

classification whose types are the set X7, whose tokens are the M-idealized
tokens, and whose classification relation is given by ¢ F « if and only if cg € «
for some (hence every) E such that o € Q.

Justification. The classification relation is well defined by the definition of
idealized tokens.

[}
Theorem 21.10. For any manual M, the theory Th(M) is the sound and com-
plete theory of Cla(M). Thus, for any sequent (', A) of Ty, Tl A if
and only if every idealized token satisfies (I, A).

Proof. Let f:Cla(M) = A/ J be the obvious token-identical infomorphism. It
is clear that this is also a theory infomorphism taking Th(#) into the theory of
£/J. Thus Th(M) © f~'[Th(£/J)}]. To prove they are equal, we need only
check that if (I, A) is a consistent partition of Th(4f), then there is an idealized
token that is a counterexample to it. Define cg to be the unique @ € Qg such that
{a} € T. Itis easy to verify that if cg € Qr, then cg = cF, because otherwise
the restriction of the sequent to 2 would not be consistent in Log(Sr). O

This theorem shows that the theory Th(M) is sound as long as it is used with
tokens that give rise to idealized tokens. It will be complete as long as every
idealized token corresponds to a real token of the classification.

The theory Th(M) does not in general have a disjunction or a conjunction,
as the firefly example shows. It does have a negation, however.

Corollary 21.11. Suppose thata isbothan E-type andan F-type. Then Qg — «
"—Th(M) QF — « and QF — ‘_Th(M) QE — .

Proof. See Exercise 21.2. m]

We can use this corollary to show that the theory Th(M) has a negation.. .___ .

Define —a to be Qg — « for some E such that « is an E-type. By 21.11, itdoes
not matter which E we choose, they will all be equivalent. The theory obeys the
usual rules for negation. This negation is usually called the “orthocomplement”
in quantum logic.

Finally, we note the following disquieting possibility. Recall that a logic £
is coherent if not every sequent is a constraint, which is equivalent to saying

that the empty sequent is not a constraint. If a logic has even a single normal
token, then it is coherent.
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Corollary 21.12. Let M be a manual. There are idealized tokens for M if and
only if the theory Th(M) is coherent.

This corollary implies that if there are no idealized tokens for M, then
the least logic obtained from putting together the state-space logics from the
individual experiments is incoherent! We will see that there are manuals of use
in quantum mechanics where this happens.

21.2 A Comparison with Quantum Logic

We have used our general framework to define a notion of consequenc.:e between
the types in a manual and established an understanding of this logic ‘m terms of
idealized tokens. The usual notion of consequence from quantum logic proceeds
rather differently. We review this development here and then compare it with
that from above.

Definition 21.13. Given a manual M, o, is said to M-entail a3, written ¢} <p
a5, if and only if there is some § such thata; L B and o U B op as.

Proposition 21.14. Let M be a manual. If @) <y o, then oy Fm) O2.

Proof. Assumea; L fanday U B op . Because @ L B, 0 U B € QE, for
some E € &, so we have o} Frogse) @1 U B, and hence o) Fman @1 U B. But
because oy U B op a», we have oy U 8 Fran @2, by Proposition 21.5.3. We
obtain o) Fm o2 by Cut. A o

Two-Experiment Manuals

The following result shows that in the case of a manual with two experiments,
the notion of entailment from quantum logic coincides with that in the logic of
the manual. We will turn to the more general question in the next section.

_Theorem 21.15. Suppose the manual M_has only two experiments, E and F.

Ifa © Qg and B S QF are types ina, thena <y B ifand only ifa = B.
Proof. We will show the following are equivalent:

L a<ub;

2. at B; e . :

3. eithera € fora NQp € P and QF C BUQE.

We have already established (1) impiies (2), so we need only show (2) implies
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(3) and (3) implies (1). Let us first establish the latter implication. Because
(3) is a disjunction, there are two cases to consider. If @ € 8 € Qp, then let
6 =p—aandy = Qr—p. Theno L fander UO op Bbecausea UG = Band
B oc y. The other case to consider is when a N Qr € Band QF € B U k.
In this case, let y = Qf — B so that y is an orthogonal complement of 8.
Notice that y C Qg because Qr € SUQx. Now let 4 consist of those states in
Qg thatare in neither & nor y. Clearly, @ L 6. We want to show thata U6 op 8
by showing that y is an orthogonal complement to o U8 (as well as to 8, as we
saw). Notice that y Na = P because a N Qr C B. Hence Qr —y =a UG as
desired.

Now assume (2). We show thatae € Borthatae NQr € Band Qr C U Q.

It is convenient to split the proof into two cases, depending on whether or not
Qr S BUQE.

Case 1. Qr € BU Q. We prove that e N Qr € B (and hence (3)). Suppose
this is not the case. Let 0 e N Qp, o ¢ B. Notice o is an outcome in both
E and F, because 0 € @ C §2¢. Hence there is an idealized token ¢ that

assigns o to both E and F. But this token is of type o and not of type 8, which
contradicts (2).

Case 2. Qr & BUQ. In this case we want to show that C 8. Suppose this
were not the case. Leto e « — Bandlett € Qr — (BUQE). If o € QpF, then
consider the idealized token ¢ that assigns ¢ to both E and F. This shows that
a Fmun B. If o & QF, then consider the idealized token ¢ that assigns ¢ to E
and 7 to F. This idealized token shows that o Fmsr) 8. O

More Than Two Experiments

In Theorem 21.15, the assumption that the manual have only two experiments
is crucial, as the following example shows.

Example 21.16. Here is a simple example with four experiments, each with
two possible outcomes, where <,s is weaker than . Let E have outcomes
{1, 2}, F have outcomes {2, 3}, G have outcomes {3, 4}, and H have outcomes
{4, 5}. Then {1}} {5} because the only idealized token that has cg = 1 must
also have cr = 3 50 cg = 3 50 cy = 5. But it is also clear that {1} £,, {5}.
This example also shows that the ordering <, is not even transitive, because
{1} <m {3} and {3} =<y {5}.

This example shows that, in general, the quantum logic relation ¢ <, 8 is
too weak to be reasonable, it is not even transitive. Hence it does not satisfy
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even Finite Cut. One approach would be to close the logic under such rules.
However, a different approach is taken in the quantum logic literature, where it
is standard practice to postulate additional structure on the manual.

Definition 21.17. A manual M is standard if it satisfies the following condi-
tions:

1. fE,Fe E,and Qg € QF, then Qp = Qrf.

2. If &) OC 0rg, 0 OC @3, and &3 OC 04, then o L a4.

3.Ifx Ly yLzandz L x,then the set {x, y, z} is a type, that is, it is a
subset of Qg forsome E € £.

The manual of Example 21.16 does not satisfy condition (2) so itis not standard.

The first condition seems reasonable enough. After all, why have F in your
manual if in fact some of its outcomes are impossible and can be eliminated
by E?!

Why (2) is reasonable from an intuitive point of view is not at all obvious. It
requires that we be able to combine experiments in a certain way. In particular,
it rules out a manual of the kind described in Example 21.16, a manual that
seems perfectly reasonable from an intuitive point of view. Here is what Cohen
(1989, p. 23) has to say by way of justification. Read oy, o2, @3, and ¢4 for A,
B, C, and D, respectively.

Suppose we test for event A by performing experiment E, and A occurs. Then we know
that B did not occur. Thus, if we had performed experiment F [an experiment with both
B and C as events] then C would have occurred; so, if we had performed experiment
G [an experiment with both C and D as events] then D would not have occurred. In
summary, if we test for A, and A occurs, then testing for D would result in D not
occurring.. [The reverse is then observed.] Hence A and D are events that bear a special
relationship to each other through E, F, and G, and it is not unnatural to require that
there be a single experiment H that contains both A and D sothat A L Din M.
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Example 21.18. A coin ¢ stands on its edge on a table. We can perform two
experiments on this coin. We can pick it up and flip it, with the outcomes of
heads or tails: Qg = {H, T}. Or we can bang the tabletop to see which way
the coin falls: Qgang = {H, T}. (With a U.S. penny, the probability of an H in
the second experiment is close to 1.) Notice that this is a standard manual.
Let A = {T} = C and B = {H}. Thus A op C, but clearly there is no reason
to suppose that just because A occurred in an experiment of kind FLIP, that C
would have occurred under BANG. So even though we have a standard manual

M , its theory is completely inappropriate for understanding information flow
with regard to this system.

This example shows that if the outcome of an experimental event is partially
determined by the event itself, rather than being completely determined by
the state of the system, then op types do not bear a special relationship to
one another. To put it the other way around, making operationally perspective
types equivalent presupposes that the instantaneous state of the system can be
adequately modeled by an idealized token.

A secondary point is that even if the physicist is in a context where the
firgument up to the final step (*...it is not unnatural to require...”) seems
justified, that is, where the system can be modeled by an idealized token, the
final step seems unmotivated. It seems likely that the real motivation is that the
condition is needed to guarantee the transitivity of the entailment relation <y,
something we can achieve more gracefully by means of regular theories. -

Condition (3), the so-called “ortho-coherence condition,” asserts that given
any three pairwise incompatible mutual outcomes, each of which can be tested
against the others, there is a single experiment that can decide among all three.
This seems even less natural than the second condition. (Cohen remarks that
this condition is not always assumed.)

These requirements on standard manuals, unnatural as they may appear in
general, do hold in the manual naturally associated with a Hilbert space.
Given a Hilbert space H, an orthonormal base of H is a maximal ortho-

""T'he"ﬁ"r;c:f"s'tépB'f‘fﬁé"éfgﬁﬁiéﬁf'érésﬂy'&s‘sﬁfﬁagthﬁfifﬁ-qn—c-aﬁrrA—owwd
under E, then C would have occurred under F, that is, that A and C are
. equivalent. It is this condition that led to our notion of an idealized token.
The assumption is basically that the outcome of an experiment is completely
determined by the state of the system, not other factors of the experimental event
itself. For a case where this does not hold, consider the following example.

1 Of course it could be that E is much more expensive in time or effort than F. That is why we
have book reviews.

gonal set E of unit vectors. An orthonormal basis.E is the set of eigenstates
of a commuting set of Hermitian operators where these operators are used to
model experiments. We can think of the total state of a particle as modeled
by a unit vector § € H. Given an orthonormal basis E, § = ) . ryv for
some choice of scalars whose sum is 1. Performing the experiment mode-
led by E yields one of these vectors vg € E; intuitively, the outcome de-

pends on the weights: the larger the weight, the more likely that vector is the
outcome.
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Definition 21.19. Let H be a Hilbert space. The frame manual of H, written
F(H), is the manual defined as follows. The experiments E of F(H) consist
of the maximal orthonormal subsets of H. The possible outcomes of E consist
of the elements of E.

Proposition 21.20. For any separable Hilbert space (which includes all finite-
dimensional Hilbert spaces), the frame manual F(H) is standard.

Proof. This is a standard result; see Example 3.4A of 17). |

The natural question to ask, in view of this result, is whether the consequence
relation of Th(M) agrees with the entailment relation <, for standard manuals
M. That is, can Theorem 21.15 be extended to arbitrary standard manuals? A
very strong negative answer to this question was obtained by Kenneth Kunen.
Michael Dickson observed that this is equivalent to the famous Kochen—Specker
Theorem (29).

Theorem 21.21. If H is a (real or complex) Hilbert space of dimension at least
three, then the frame manual F(H) has no idealized tokens. In other words,
for any function g such that g(E) € E for each orthonormal base E, there are
two orthonormal bases E, F with g(E) € F but g(E) # g(F).

Proof. Because the theorem for complex Hilbert spaces easily follows from
the theorem for real Hilbert spaces, we assume that H is a real Hilbert space.
Suppose we had such an idealized token g. Let £ be the set of all g(E) such that
E is an orthonormal base (the set of chosen vectors). Note that no two vectors
in € are orthogonal and E N € is a singleton for each orthonormal base E.

Let Z(¥, w) denote the angle between two nonzero vectors, v, w. Because
the unit sphere is connected, let ; and w, be unit vectors such that w; € € and
31 & € and L(¥, ;) < 1°. Now, £ contains some, but not all, unit vectors in
the complementary space Ui, so again by connectedness, choose unit vectors D73
- -and i, both orthogonal to vy, such that i, €-€ and U, ¢ € and £(Tz,.W2) <.1°.

21.2. A Comparison with Quantum Logic 253

' As§uming the lemma, we b’havev a contradiction, because g(E) and some w);
will yield two orthogonal vectors in .

- To prove the lemma, note that it is sufficient to prove the lemma for three-
dimensional Euclidian space (whence E will have size three), because in the
genefal case, we can produce three orthogonal vectors in the linear span of
tlle Wi and extend them arbitrarily to an orthonormal base. Now E will be
{P1, P2, P3}.

) Before obtaining E, we fix an orthonormal base, {¢, &,, 3} “close to” to
{wy, w2, W3} as follows. Choose ¢, parallel to i,. Obtain s, L ¢; inthe (w,, W)

glane3by rotating i, by <1°, s0 (i, &;) < 1°. Then, obtain 2; by rotating w3
y <3°.

Because the lengths of the if); are irrelevant here, we may assume that
W = e,
17)2 = a-é[ + -éz,
w3 = bey + céy + €3,

where |al, |b], |c| < tan(3°) < 0.1. Let E = {py, p2, P3}, where

p1 =08 + cos(8) &, + sin(6) &s,
P2 = sin(p) é; — cos(p) sin(f) &; + cos(p) cos(8) €3,
P3 = cos(p) €, + sin(p) sin(8) &, — sin(g) cos(8) &3,

where 6 and ¢ will be determined so that each pi L w;. Notethatifa = b =
¢ = 0, then we may take 6 = ¢ = 0, whence p, = &,, p, = &; and D3 = €.
In the general case, the fact that a, b, ¢ are small means that we may find small
0, ¢ that work.

For any values of 6, ¢, our E is an orthonormal base and p; L i, so we
must choose 8, ¢ to satisfy

B a sin(p) — cos(p) sin(@) =0

Finally, because ), ¥, are orthogonal and not in £, there is a unit vector w3
orthogonal to them both and in €. So the w; are allin € (i = 1,2,3), and
89° < L(iy, Wj) < 91° wheneveri # j. n}

Lemma 21.22. If H is a real Hilbert space, the W; are all nonzero vectors
(i =1,2,3), and 89° < L(W;, W;) < 91° whenever i # j, then there is an
orthonormal base E for H such that each vector in E is orthogonal to at least
one of the W;.

b cos(p) + ¢ sin(p) sin(9) — sin(p) cos(d) = 0

If a = 0, set & = 0 and choose ¢ so that tan(p) = b. Ifa # 0, choose 6 so
that —45° < 6 < 45° and f(8) = ab + ¢ sin®*(®) — sin(@) cos(@) = O; this is
possible because f (—45°_) > 0 > f(45°). Then choose ¢ such thatq sin(p) —
cos(p) sin(6) =0 (i.e., tan(p) = sin(8)/a). So, 0= £(8) cos(p)/a =b cos(yp)

+ ¢ sin(p) sin(9) —sin(p) cos(d). Forsmall a, b, ¢, we have (inradians)f = ab
and ¢ = b. ' '
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Corollary 21.23. If H is a Hilbert space of dimension > 3, then the local logic
Th(F(H)) of the frame manual is incoherent.

Proof This is an immediate consequence of the theorem and Corollary 21.12.
In particular, o - g for all @, B whereas there are o, B suchthat o £p . O

This result shows that the Hilbert-space model of quantum mechanics is,
in general, incompatible with the view of experiments as represented in our
notion of the theory of a manual. Notice that the conflict has nothing at all to
do with the meaning of any logical connectives. It has instead to do with two
interacting decisions: the decision to have operationally perspective types be
equivalent, and the decision to look at only regular theories, thereby building
in the principle of Global Cut.

For lack of a better name, let us call a system deterministic with respect to a
manual M if a token of the system partitions each set of types into those types
the token is of and those types it is not of, and if which way a type common to
more than one experiment falls is independent of the experiment performed. If
we reexamine the proof of soundness of Global Cut in the present context, we
see that it depends strongly on the assumption that the system is deterministic
in this sense. Our example of the two-experiment manual involving a penny
should make this clear. Using this terminology, we see that we cannot think
of the set of all orthonormal bases of a Hilbert space (of dimension >3) as a
manual for any deterministic system at all. Hence if the manual of a Hilbert
space is a good model of the space of states of fundamental particles, then these
particles are not deterministic.

Example 21.24. Recall the manual M for flipping and banging pennies. We
can think of a penny c as having a state & (c), something that characterizes the
distribution of copper in the penny. If we perform either experiment, FLIP or
BANG, the outcome will be strongly affected by &(c). But it will also be effected
by many other factors, like how hard we flip the coin, or at what rate it spins,
or how hard we bang the table. These experiments can give us evidence about
the state £(c) but the outcome of these experiments neither determines nor is
completely determined by §(c).

Conclusion

It seems like the notion of operationally perspective types is basic to the project
of using manuals to give an intuitive account of the logic of quantum mechanics.
But it also seems that this notion presupposes that the system under investigation
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is deterministic in the sense defined above: that its total state can be modeled
by an idealized token. For deterministic systems, we have characterized the
resulting logic in two different ways, and everything seems quite sensible. But
we have also seen that the family of orthonormal bases of a Hilbert space (of
dimension >3) cannot be the manual of a deterministic system.

Exercises

21.1. What are the idealized tokens of the firefly manual and the penny

manual?

21.2. Prove Corollary 21.11.




4.1.

4.2

4.3.

Answers to Selected Exercises

Lecture 4
The three classifications are discussed in turn.

4.4. In this example typ(a) = the sets of which a is a member,
tok(a) = «, extensional and separated.

4.5. In this example typ(a) = { f (@)}, tok(b) = f ~!{b}, extensional
if f is surjective (or almost surjective: B — mg(f) is a sin-
gleton), separated if f is injective.

4.6. Finally, typ(M) = truths of L in M, tok(¢) = models mak-
ing ¢ true. This is never extensional only because ¢ A ¢ is
coextensive with but not identical to ¢ and never separated
because isomorphic structures are indistinguishable.

For each type a of A, f(b) E4 « if and only if bFp f(a), by the info-
morphism condition, if and only if ' Eg f (), by indistinguishability,
if and only if f(¥") E4 «, again by the infomorphism condition.

The condition s thatforevery type @ € typ(A) thereisatype B € typ(B)
such that tok(e) = g [tok(8)].

4.5,

4.7.

5.1.

infomorphism condition, and so f () = g(b), because A is separated.

Let 1 be a classification with a single type and no tokens. Then for
every A there is a unique infomorphism f:A & 1.

Lecture 5

The isomorphism between A + o and A is the identity on types. On
tokens it takes {a, u) to a, where u is the unique token of A. The

. 256

For any tokén b € tok(B), f (b) and g(b) have the same types, by the -

5.2

5.3.
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isomorphism between A + B and B + A is defined on types by taking
{0, @) to {1, @) and {1, B) to (0, B). On tokens it takes (a, b) to (b, a).
It is easy to see that this is an isomorphism. Associativity is similar, if
notationally messy.

Note that if A is separated, then the identity infomorphism on A re-
spects the invariant (typ(A), ~4). Thus, by Proposition 5.18, thereis a
unique infomorphism f’: A &2 Sep(A) making the following diagram
commute:

TA
Sep(4)

A
1

!

A

' Ia

1

A

But that implies that f' is the inverse of 74, and so 74 is an isomor-
phism. The converse is obvious.

Suppose that a; F4 @ and Rfg(ai, a;) and @ € Asg. Then there is a
token b such that f(b) = a; and g(b) = a3, and so bFp f (@) by the
infomorphism condition on f. But f(a)=g(a) because @ € A, and
SO a; F4 @, by the infomorphism condition on g. Hence Iy, is an
invariant of A.

Toshow thath : C = A respects (A, Ry,)ifandonlyif fh = gh,
note the following equivalences:

L. h(y)e Ay, iff f (") =g (" (¥)
iff  fh(y) = gh(y).
2. Ryglai,a) iff 3bfb)=a and gb)=a
iff 3b fh(b) =h"(f (b)) =h"(a;) and
ghb) = h™(g"(b)) = h™(az).

-If fh=gh, then by (1) h(y) € Ay, for all ¥ etyp(C); and if Ry -

(a1, a2), then h(a,) = h(ay) by (2), as required. If, on the other hand
fh # gh, then either there is a y € typ(C) such that f"(h"(y)) #
g (h"(y)) and so by (1) h(y) # Ajg, or there is a b € tok(B) such
that fh(b) # gh(b),sothath™(f7 (b)) # h™(g"(b)); but Ry, (f~(b),
g~ (b)) by definition of Ry, and so k does not respect (A g, Ryg).
To show that 77, is the equalizer of f and g, we must show
that for every infomorphism A : C— A for which fh = gh there is
a unique infomorphism k' : C 2 A /I, making the following diagram
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commute:

T
Aflj, —2 A

Given the equivalence just proved, this is just a restatement of
Proposition 5.18.

Finally, for any invariant I = (X, R) of a classification A, we can
define a classification B and infomorphisms fo:4A = Band f,:A—B
such that 7 is the equalizer of fp and f;. First,let A" = {({, @) | i €
{0, 1}, & € typ(A) — A} be the disjoint union of typ(4) — A with itself.
Now define B to be the classification whose types are members of
A U A’, whose tokens are the pairs {ao, a;) for which R(ao, a1), and
such that

1. for « € A, {(ag, a) Fa « if and only if apF4 o, and
2. for {i, ) € A’, (a0, a1) Far (i, @) if and only if a; F4 a.

Define f; :A =B by fi{ap, a1) = a; and

o ifae A

fi(a)z{(i,a) ifagA”

Itiseasy toseethat As r, = Aand Rg, ; = R.

Lecture 6

Hint: In the first section we showed how to take a sequential com-
position of channels. The limit construction can also be used to take

a parallel composition-of-channels.—Suppose-we-have -two-separate ———+}- -

channels connecting A; and A,, say C; = {fi: Ai @B }icn 2y and
C, ={gi :Ai 2 B2}ie1.2)- This can be seen as a distributed system
with four classifications and four infomorphisms. Determine its min-
imal cover. Simplify it by obtaining an isomorphic structure that
has less redundant structure. Interpret this cover in informational
terms.

7.1.

8.1.

8.2.
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Lecture 7

Suppose A is Boolean and that X is closed under indistinguishability.
Show that X is represented by the type

o= \/ /\typ(a).

aeX

Clearly, every a € X is of type a. For the converse, suppose that
a'E4 «. Then there is some a € X such thata’ 4 A typ(a). We show
that @’ is indistinguishable from a and so is in X, because X is closed
under indistinguishability. Clearly, every type of a is a type of a’.
Suppose a’ F4 o’. Then a’ ¥y —a’, s0 aFy —qa'. Hence a4 . Thus
a is indistinguishable from a’.

For the converse, suppose that for every set X closed under indis-
tinguishablity there is a type « such that X = typ(e). We show that
A has a conjunction, disjunction, and negation. Let us start by show-
ing negation. Let B € typ(A) be arbitrary. The set tok(4) — tok(B)
is closed under indistinguishablity so it is definable by some type.
Choose one and let that be the negation of B. This clearly has the
desired properties. Now suppose that © is an arbitrary set of types.
Let X = Uﬂe@ tok(B). Clearly, X is closed under indistinguishablity.
Hence it is definable by some type . Pick such an & and let that be
the disjunction of ©. Conjunction is similar or can be defined in terms
of disjunction and negation.

Lecture 8

Let A = B = Evt(Spna), and let C be the restriction of Evt(Spns) to
those tokens that have successfully split. Let f :A=Candb:B2C
be type-identical infomorphisms that on tokens are defined so that
£(c) is one of ¢’s offspring and g(c) is the other. The infomorphism
condition on ¢ is the condition that the spliitihg is normal, that is, that
no mutation takes place.

If f:8, =S, is an isomorphism, then (£, f ~—1} is a projection satis-
fying the above conditions. Conversely, if f:S1 =35, is a projection
and both f* and f~ are bijections, we show that (f~, £1yis an iso-
morphism. The only thing that needs to be checked is that it is an
infomorphism. Let b € tok(S2) and o € typ(S1). The following are
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8.4.

9.1.

9.3.

94.
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equivalent:

fb)FEs,a iff states, (f(B)) =a (by definition of states,)
iff  f(states,(b)) =a (because f is a projection)
iff stateg, () = f ~Ha) (because f" is a bijection)
iff bEs, fHa) (by definition of states, )

Here f is the identity on types and is f(s) = stateg(s) on tokens s.

Lecture 9

The direction from left to right is immediate; if T is inconsistent, then
I' 7 A for all sequents. The other direction follows from the fact that
regular theories satisfy Weakening.

The reflexivity of <r follows from Identity. The transitivity follows
from Finite Cut. Saying that T is algebraic is equivalent to

ifatr fand B athena = 8.

If T = Th(A), then this is equivalent to

tok(ar) € tok(B) and tok(8) C tok(e) implies @ = 8.
But this is equivalent to

tok(ar) = tok(B) implies @ = 8,

which is the definition of extensionality.

Define ' -7 A ifand only ifa < Bforsomew € I"and some 8 € A.
Verify that this theory is regular.
(1) The consequence relation is given by

9.5.

9.8.

9.9.

9.10.
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Let states (@) = (T'q, A4). The following are equivalent:

a is a counterexample to ([, A)
rcro,putAnlr,=4¢
FCTl,and A C A,

(T, A < ([g, Ad)

(defn. satisfaction)
(T, A,) a partition)
(defn. <)

The direction from left to right is immediate. For the converse, sup-
pose i is closed under Identity, Weakening, and Finite Cut. Show
that the relation satisfies Partition and hence Global Cut. To show
Partition, show that every consistent sequent can be extended to a
consistent partition. Suppose that (I, A) is consistent. Let X be the
set of consistent extensions of (I', A). By compactness, (X, <) is
closed under unions of chains, so, by Zorn’s Lemma, it has a maxi-
mal element, say ([, A’). This sequent must be a consistent partition
extending (I, A). To see this, note that I'" N A’ = @ by Identity. To
see that I’ U A’ = X, suppose @ € & bute ¢ I'" U A’. By maximal-
ity, the sequents (", AU {a}) and ({a}UI", A') are constraints. In
other words, " A’, « and I, & - A’. Then by Finite Cut, I - A/,
contradicting the consistency of (I'', A').

It is straightforward to check that - satisfies Identity, Weakening,
and Finite Cut. To prove that it is not regular, let I' = A = . Notice
that every partition of £ extending (I', A) is a constraint of i-. By
Partition, I' - A. But this violates the definition of I-.

Part (1) follows easily using Partition. For Part (2), suppose r'T"EA
and for each ¢ eI, TFA,a but T¥A. Then TN A = @ and
[ U A has an infinite complement. Thus either I’ contains infinite
many types not in I' U A or it contains an element g € A. The latter
can’t be true because I'+ A, op and the right side of this is just A.
But if the former is the case, pick some such o €I”. Then ' -
A, . But this cannot be because both sides are disjoint but the

THA iff TNA#2

for all sequents (I', A) of X. Check that this is a regular theory. It
is clearly contained in every such theory. Its ordering <r is the iden-
tity relation on X, which is a partial ordering, so the theory is al-
gebraic. (2) The largest regular consequence relation is simply the

set of all sequents. It is not algebraic if there is more than one type
in Z.

9.12.

9.15.

complement of their union is still infinite. Part (3) follows immediately
from parts (1) and (2) and the fact that this consequence relation is not
regular.

This is an easy consequence of the observation that o Zr g if and only
if there is a consistent partition (F, A) witha e T'and B € A.

Define f*~ = f and f**(a) = (f~'[Ta], f~'[Ad]) where (Ta, Ad)
is state description of a in A.
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10.1.

1L.1.

11.4.

12.1.
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Lecture 10

(1) If A T B, then typ(A) C typ(B). Also, if (I", A} is a sequent of
typ(4) and T ¥p A, then (T, A) has a counterexample b € tok(B),
so b must also be a counterexample to {I’, A) in A because A T B;
hence T'¥4 A. (2) If the converse of (1) holds, then A = B if and
only if Th(4) = Th(B). But that can’t be. Just take some nontrival
classification A and a similar classification with an additional token
that is indistinguishable from some token of A. They have the same
theories.

Lecture 11

Let f be type identical and on tokens be defined by
FUr,A)=(A,T).
It is easy to check that this is an isomorphism.

These results are easy consequences of the rules for the connectives.
For negation, what follows is that -~ = « and that @ <r B if and
only if =8 <r —a.

Lecture 12

(1) It is clear that every normal token of £|© satisfies every con-
straint of £]©. We also need to check that the theory of £|® is
regular. Weakening is clear. To show Partition, suppose I'¥gje A.
Then T, ®Fg A. Let (I, A’) be a consistent partition of typ(£)
extending (I' U ©, A). Then (I" — ©, A’) is an extension of (I', A)
that is a consistent partition in £ ®. (3) Let § be a new type not in
typ(£) and let A be the classification that is just like cla(£) except
that A has the additional type 8 with typ(§) = Ng. Our sound local

- logic will-have A for its classification. ‘Because the logic is to be -

sound, we need only specify its theory. Let I" g/ A if and only if
one of the following conditions hold:

1. 6glandTNA#GD.
2. 6eTTNA.
3. el —AandT' - {f} ¢ A.

Clearly every token of A satisfies all these constraints; they satisfy
the constraints in (3) because £ is a local logic and typ(6) = Ng. So

12.2.

124
12.3

12.7.

12.9.
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we need only verify that this is indeed a regular theory. We check
Partition, leaving Weakening to the reader. Suppose I' ¢ A. There
are two cases to consider. If@ ¢ T',then TNA = @by (1). LetI"=T
and A’ =typ(£') —T'. Then (I, A’) is a consistent partition extend-
ing (I", A). Sosuppose§ € T'. Then8 & Aby (2)andT" — {B}Fa A
by (3). Because th(£) is regular, there is aconsistent partition (I'", A")
of £ extending (I" — {6}, A). But then (I’ U {8}, A’) is a consistent
partition of £ extending (I", A). Hence every consistent sequent of
£ has a consistent partition extending it. It is easy to check that
£ = £]16.

Let us write [' - A if and only if one of the conditions (a)—(c) holds.
We first check that this is a regular consequence relation. Itclearly sat-
isfies Weakening. To see that it satisfies Partition, suppose that " ¥ A.
We want to find a consistent partition (I'’, A’) extending (I", A), that
is, such that " ¥ A’. By (a), I" and A are disjoint. By (b), I" contains
at most one state. There are now two cases to consider, depending on
whether I is empty or a singleton. If ' = {o}, then we let I’ =
and let A’ = Q — {0}, and we have our desired consistent partition.
If I' = @, then we apply (c) to find some o & A and let [ = {0}
and let A’ = © — {0}, again finding a consistent partition. This
shows that - is a regular consequence relation. It is clear that every
token satisfies every constraint of this relation, so we have a sound
logic. Hence the logic it must contain the logic Triv(S). On the other
hand, by Weakening, each of the sequents above is a constraint of
Triv(S).

The logic 1 is Log(1), where 1 = o+,

In each case the bijection between Hom-sets is obvious. For the left
adjointness, one just needs to check that an infomorphism f:A=
cla( ) preserves constraints and so becomes a logic infomorphism
from Log(A) to £; this uses the completeness of £. For the right

“ adjointness, we need to know that the pair of identity functions on i

tok(£) and typ(L) preserves normal tokens and so is a logic info-
morphism from £ to Log(cla{.£)); this uses the soundness of £.

The direction from left to right is immediate. That from right to left
is almost as immediate. It is basically the proof of Proposition 10.3.

First prove that if By € B, then typ(B;) & typ(Bo). Use this, plus
Exercise 1, to prove the resuit.
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12.10.

12.12.

13.1.

15.1.

Answers to Exercises

Let £ be a local logic on a classification A of types and let J be an

invariant on A.

1. The logic £/1 is the largest logic on A/ such that the function
7 is a logic infomorphism.

2. Let f: £=2£ bealogic infomorphism that respects /. Thereisa
unique logic infomorphism f '+ ' £/ 1 such that the following
diagram commutes:

e/1 2

£

f! f
SI

This is just definition unwinding.

Lecture 13

Let f be the unque infomorphism from o toA. Then AP(4) = f[o],
where this o is the zero logic.

Lecture 15

Sketch: The information system has the same shape as that used
to illustrate the Xerox principle in Lecture 6. We need five clas-
sifications, three for classifying molecules and two for classifying
processes. First, we need the classification Evt(Spna) introduced in
Example 8.16 We need a second classification for RNA molecules
and a third for classifying protein molecules. As for the process clas-
sifications, we need one to classify events where a piece of DNA gives
rise to a molecule of messenger RNA (notice the informational vo-

-———cabulary) and one to classify the process whereby an RNA molecule

gives rise to a protein. We can turn this into an information system
by imposing a logic on each of these classifications, namely, the log-
ics that represent our current understanding of these classifications.
Taking the distributed logic of the system gives us a theory of in-
_ formation flow linking all five. As for the one-way flow posulated
by the fundamental dogma, we can see that complete information
about the strand of DNA gives rise to complete information about the
molecule of RNA but that the converse is not the case and similarly,

15.2.
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complete information about the molecule of RNA gives rise to com-
plete information about the protein, but the converse is not the case.

Definition A.1. A logic channel C is an indexed family {h{: £i &
core(C)}ies of logic infomorphisms with a common codomain, called
the core of C.

Definition A.2.

1. Given an index set I and logic channels C = {h;: £i2L}ier and
¢ = {h}: ;2L )ier, a logic channel infomorphism f Hor=1¢4
consists of logic infomorphisms f:ee and fit £,=L; such
that for each i € I, the following diagram commutes:

eI g
hi %
e — I . g

If ¢ = £ and fi = lg foreach i € I, then f is called 2 logic
refinement infomorphism and C is said to be a logic refinement
of C'.

2. A logic channel C = {h;: £i=2L}ier covers an information sys
tem £ if log(L) = {Lilier and for each i, j€l and each

infomorphism f : £,2L8;in inf(L), the following diagram com

mutes:

£
X

- ”;7__2.‘ T

f 7

C is a minimal cover of L if it covers £ and for every other
channel D covering L there is a unique logic refinement info-
morphism from C to D.

g

Theorem A.3.  Every information system has a minimal cover. It '
is unique up to isomorphism. :

[

i
3




266

16.2.
16.3.

18.1.
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To prove this, let £ be an information system with the indexed family
log(£) = {Li}iet of local logics together with the set inf(L) of logic
infomorphisms. From it, extract the obvious distributed system with
classifications cla(£); and infomorphisms Cla(f), for f € inf(L).
Let C = {h¢:cla(£);=C)ier be the information channel that is the
minimal cover of this system. We turn this into a logic channel by
taking £ = | |;¢; BF[L:1i. By earlier results, this is the smallest logic
on C making all of the infomorphisms Af into logic infomorphisms.
It is easy to verify that this is the minimal cover of the information
system. Uniqueness is routine.

Lecture 16
This proof is just definition unwinding.

We prove (1) and leave (2) to the reader. Both state spaces are sub-
spaces of Ssp(4), so we need only check that they have the same sets
of tokens and same states. It is clear that both state spaces have as
sets of tokens the set f “[Ng,], so we need only check that they have
the same set of states. The states of Ssp(f ~1[£,]) consist of those
partitions of typ(A) that are consistent in f~'[£,]. These are exactly
the set of partitions of the form (f'l[Fz], F~'[A,]) for some con-
sistent partition (I'2, Az) of £,. These, in turn, are exactly the states
of Ssp(f)[Ssp(£2)].

Lecture 18

The answer is “No” if the building and person are both tokens of
the the same height classification and the building is taller than the
person. However, if we allow that the classification of buildings by

height is a different classification than that of people by height, then

18.2.

18.3.

184.

there is no problem.

Letr ={.1, [0, 48), [48, 60), [60, +-00)). This is the most natural reg-
imentation for A, given the way the problem was stated.

The classification is determinate, because .1 < .25, and it is precise
because these three intervals exhaust the positive real numbers.

The sorites number of Log;(A) is (1)~ x (60 —48) + 1 =121, s0
this provides a natural upper bound for the Sorites number of A.

18.5.

21.1.

21.2.
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The sorites number of A depends only on the resulting classifica-
tion, not on any particular regimentation. Another regimentation
that would yield the same classification, the one with the largest
possible tolerance, is r' = (.25, [0, 48), [48, 60), [60, +00)). The
sorites number of Log2(4) is (.25)~" x (60 — 48) + 1 =49. To
find the Sorites number of A we must minimize the distance be-
tween the upper endpoint of /s and the lower endpoint of I;, while
making the tolerance as large as possible. Let h and hy be the
heights of the shortest and tallest students of medium height. Thus
h, > 48 and h, <60. This results in a third regimentation r” =
(.25, [0, hy), [h1, h2l, (ha, +00)). For this logic the number is the
least integer N > (.25)'l x (hy — hy). Thus, given the information
about the shortest and tallest girls of medium height, the sorites num-
ber of the classificationis 4 x (58.5 —49) +1= 39.

Lecture 21

The idealized tokens of the fire fly manual and the penny manual
correspond to the rows of the following tables, respectively:

FRONT SIDE FLIP BANG

L F H H
T T

B
F
B
N

== s

This is a consequence of Theorem 21.10 Let ¢ be an idealized token
of type Qg — o and not of type QF —o. In other words, cr €0
but cg & o. However, this contradicts the fact that c is an idealized
token, because o is a subset of both 2 and QFf.
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Glossary of Notation

AP(A): The a priori logic on the
classification A.

Boole(4): The Boolean closure of the
classification A.

Cha(£): The binary channel representing the
local fogic £, a channel relating the
classification cla(€) with the idealization
Idl(£) of €.

cla(A): The classifications of the distributed
system A.

cla(£): The classification of the local logic £.

Cla(7T): The classification generated by the
regular theory T.

Cla(f): The infomorphism associated with
the theory interpretation f.

Cmp(£): The completion of the local logic £.

core(C): The core classification of a channel
C.

DLoge (£): The logic obtained by
distributing the logic £ on the core of the
channel C to its component classifications.

DLog(S): The logic obtained by distributing
the logic on the core of the state space Sto
its projected state spaces.

Evt(S): The event classifications generated by
the state space S.

Evt(f): The infomorphism on event-- - -
classifications corresponding to a projection
f of the generating state spaces.

Id1(£): The idealization classification of the
local logic £.

inf(A): The infomorphisms of the distributed
system A.

lim A: The limit channel of the distributed
system A. .

Lind(£): The Lindenbaum logic of £.

Log(L): The systemwide logic of an
information system.

Log(A): The local logic generated by the
classification A.

Log. (D): The local logic on the distal
classification D generated by the binary
channel C.

Log(f): The logic infomorphism naturally
associated with an infomorphism,
projection, or interpretation f.

Log(L): The systemwide logic of an
information system L.

Log(S): The local logic generated by the state
space S.

Log(T): The local logic generated by the
regular theory T.

SC(£): The sound completion the local logic
£.

Sep(A): The separated quotient of A, obtained
by identifying indistinguishable tokens.

Snd(£): The sound part of the local logic £.

Ssp(A): The free state space generated by a
classification A.

Ssp(f): The state-space projection generated
by the infomorphism f.

Ssp(£): The state space generated by the
logic €.

stateg (a): The state of the object a in the state

— space §. - - R

statey (a): The state descri]
classification A.

Th(A): The theory of the classification A.

Th(f): The interpretation associated with an
infomorphism f or a projection.

tok(A): The set of tokens of the classification
A

Triv(S): The trivial logic on a state space.

typ(A): The set of types of the classification
A

ption of a in the

" E4: The classification relation of A.
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f:AT2B: f is a contravariant pair of
functions, typically an infomorphism.

f": The type part of an informorphistmn or
projection.

f: The token part of an infomorphism or
projection.

14: The identity infomorphism of the
classification A.

hf: The ith infomorphism of the channel C.

AL: The flip dual of the classification A,
obtained by interchanging types and tokens.

f+: The flip dual of the infomorphism f.

A + B: The sum of the classifications A and
B.

o4 The infomorphism ox: AT2A + B from
the classification A into the sum A + B.

A/I: The quotient of A by the invariant I.
The notation A /J is likewise used for the
dual notion when J is a dual invariant.

A | £: The restriction of the classification A
to the types in Z.

;. The canonical quotient infomorphism
AJIEA.

VA: The disjunctive power classification of
the classification A.

AA: The conjunctive power classification of
the classification A.

n‘j{ . The natural embedding infomorphism of
A into its disjunctive power VA.

n5: The natural embedding infomorphism of
A into its conjunctive power AA.

—A: The negation of the classification A.

Vf: The lifting of f:AT2B to Vf: VA VB.

A f: The lifting of f:AB to
Af:AMAE AB.

~f: The lifting of f:A==B to
—f:-AT-B.

f:81=3S,: A covariant pair of functions f
from one state space to another, usually 2

" projection.

Si x S,: The product of state spaces S, and
S2.

s, : The projection from a product state space
onto its i th factor.

T+ T': The sum of theories T and T".

C: The inclusion ordering on theories.

T | =: The restriction of the theory T to the
set T of types.

T/R: The quotient of the theory T by the
relation R.

-1 [T}: The inverse image of the theory T
under the function f.

f[TT: The image of the theory T under the
function f.

v T: The disjunctive power of the theory T.

AT: The conjunctive power the theory T

—T: The negation of the theory T.

tg: The consequence relation of the local
logic £. . B

Ng: The set of normal tokens of the local
logic £.

£ ©: The conditionalization of the local
logic £ on the set © of types.

£, + £5: The sum of local logics.

£/1: The quotient of the local logic £ by the
invariant or dual invariant [

£ C £5: The information ordering on local
logics.

£, U £5: The join of local logics.

£, 1 £;: The meet of local logics.

f{£]: Animage of alocal logic.

-V [£]: Aninverse image of a local logic.

S¢: The subspace of the state space S
determined by the £.




Index of Deﬁnitions

channel: 4.14

core of: 4.14
classification: 4.1

Boolean closure of: 7.9

conjunctive power: 7.1

disjunctive power: 7.1

dual of a: 4.18

event: 8.15

flip of a: 4.18
connection: 4.14
consequence relation: 9.1
constraint:

exception to: 12.1

of a theory: 9.1

of alogic: 12.1
core of a channel: 4.14
counterexample to a sequent: 9.4

distributed system: 6.1
limit of: 6.9
minimal cover of: 6.4
distributed logic of: 15.2
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event classification: 8.15
exception to a constraint: 12.1

~ Finite Cut rule: 9.8 T

Global Cut rule: 9.5

idealization of a local logic 14.5
Identity rule: 9.5
image of a

local logic: 13.1

theory: 10.14
indistinguishability relation: 5.11
information ordering: 12.24
information system: 6.1

invariant: 5.7
infomorphism: 4.8
channel infomorphism: 14.10
logic infomorphism: 12.16
quotient: 5.15
refinement: 4.15
token identical: 5.19
token surjective: p. 77
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interpretation, regular theory: 9.28
inverse image of a
local logic: 13.2
theory: 10.12

locat logic: 12.1
a priori: 12.27
complete: 12.2
natural: 12.3
normal token of: 12.1
of a classification: 12.3
of a state space: 12.4
postmodern: 12.27
sound: 12.2

local logics: 12.1
join of: 12.25.

. meetof: 1225

negation
of a classification: 7.3
of a theory: 11.5
normal tokens: 12.1

partition: 7.8
Partition rule: 9.8
realized: 9.16
spurious: 9.16

projection: 8.7
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quotient
of a classification: 5.9
of a local logic: 12.31
of a theory: 10.8
separated: 5.12

refinement: 4.15

sequent: p. 117
consistent: 9.10
constraint: 9.4
counterexample to: 9.4

state description: 7.8

state space: 8.1
complete: 8.1
of a classification: 8.19
subspace of: 16.3

state spaces: 8.1
product of: 8.11

Index of Definitions

sum
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of local logics: 12.21
of theories: 10.1

theory: 9.1
compact: 9.20
conjunctive power: 11.5
disjunctive power: 11.5
consistent: 9.10
interpretation: 9.28
negation of: 11.5
of classification: 9.4
of state space: 9.27
regular closure of: 9.7
regular: 9.6

Weakening rule: 9.5
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