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Representing Local Logics
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process being used. A token c of C connects some particular situation a = d(c)
in D and an idealized token or model b = p(c¢) in P, often some mathematical
object. This channel C is itself a model of the use of the idealized domain P to
reason about the reality D in terms of moving the natural logic Log(P) on P to
D along this channel. This prompts the following definition.

Definition 14.1. Given a binary channel C from P to D, the local logic on D
induced by C is the logic

Logc (D) = d~'[p[Log(P)11.

The concept of a local logic gives us the wherewithal to capture the struc-
ture of reasoning by means of idealizations. The logic Log. (D) on D is not
guaranteed to be complete; that assurance is lost by taking the image under
p. Neither is it guaranteed to be sound; that assurance is lost by taking the
inverse image under d. The constraints of Log. (D) are those that come from
the idealization process from some law that holds in the idealized domain. The
normal tokens of Log. (D) are those real-world tokens that are “appropriately
connected” to some idealized token. The better the scientific model is, the
better this logic is, better in the sense of having fewer exceptional tokens and
more constraints.

As a theory of idealization, scientific modeling, and the efficacy of applied
mathematics this sketch is at best highly programmatic. Some further thoughts
related to this sketch are presented in Lecture 20. Its purpose here is to introduce
the definition of the logic induced by a binary channel. We can characterize this
induced logic in the following way.

Proposition 14.2. Let C be a binary channel from P to D as depicted above.

1. A partition (I, A) of typ(D) is consistent in Loge(D) if and only if
(p~ AT, p~'[d[A])) is the state description of some b € tok(P).

2. A token a € tok(D) is normal in Log.(D) if and only if it is connected to a
token of P.

roof. This characterization is obtained by applying the definitions of images
and inverse images in Definitions 13.1 and 13.2. 0

Example 14.3. Recall that for any logic £ on any classification A, the sound
completion SC(£L) is the logic that is obtained by throwing away exceptional
tokens and adding in idealized tokens for the consistent partitions that are not
realized. This is clearly some kind of idealization process. Let.us see that it fits
the above picture.




176 Lecture 14. Representing Local Logics

Because SC(L) is sound and complete, it is a natural logic. In other words,
if we let P be the classification of SC(£), then SC(L) = Log(P). Recalling
the inclusion infomorphisms tg © = Snd(£) and Ksnd(e) :SC(L) < Snd(£),

we have the following channel C:

cla(Snd(£))

Ksnd(£) e

cla(SC(L)) A

With this channel, we have £ = Logc(A).
We can summarize this discussion as follows.

Theorem 14.4. Every local logic L£ona classification A is of the formLogc A
for a binary channel C linking A to the classification of the sound completion

of £.

This shows that all focal logics are induced by binary channels. The sound
is not well behaved with regard to infomorphisms, however.
That is, logic infomorphisms do not give us the right kind of morphisms between
their associated channels when one uses the sound completion as an idealization.
There is a closely related idealization associated with the local logic £ that

works out better.

completion of £

Definition 14.5. Givena local logic £, the idealization of £isthe classification
1d1(£) with the same types as £, whose tokens are the consistent partitions of
£, and such that ([, A) Frae) & ifand only if @ € r (equivalently, ifandonly . . _

ifad A).
" We have seen this classification earlier in-various guises.--

Proposition 14.6. For any logic £,

1. 1dI(E) = Cla(th(£)), and
2. (L) = Sep(cla(SC(Q))). 3 . 7 )

Proof. The firstpart is clear from the definitions of the two sides. For the second
part,letg: de) = cla(SC(L)) be the type-identical infomorphism such that

————————————
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féa: hls the state description of a in cla(SC(£)), which is a consistent partition

y the soundfless of SC(£)) and so is in tok(Id1(£)). This is clearly a bijecti

on tokens. It is easy to check that g is an infomorphism g
. m]

Definiti . .
efinition 14.7. Given a local logic £, the channel representing £ is the

binary channel Cha(£)=(h
= (hetacey, Praisy) from cla(g) to IdI(L) wi
cla(Snd(£)) and type-identical infomorphisms given by) (%) with core

1. hcaey(a) = a, and
2. hae(a) = stateg(a)

for each token a € tok(Snd(£)).

Justi . . .
fg:;ﬁcit-mn These are indeed infomorphisms: Ag,(g) is just the inclusion in-
. orphism teysnacey) from Proposition 13.10, and Ay (g, is-an infomorphis
ecause the state description of every token of Snd(£) is consistent andrp i "
token of 1d1(£), by the soundness of Snd(£) e
. a

Theorem 14.8. Eve 1
. 8. ry local logic £ on a classificati ] i [
of its associated channel; that is, Logcp,gy(4) f— ffl:lon A i the dertved fosic

Proof. Let B=cla(SC(£)). B iti
‘ 5 . By Proposition 14.6, there is an is i
£ :1d1(£) = Sep(B). Thus we have the following diagram: emorphis

ha hi
A—t cla(Snd(£)) 22 141(2)

KSnd(£) f

B

Sep(B)

The di .
_The diagram commutes, by Exercise 4.5, because all the infomorphisms are

type ldelltlcal and SO the image of LO Idl 2 uIldCI h £ 18 the same as its
? g

hiaiey [Log(Id1(£))] = ksadcey[ta{ f[Log(Id1(£))]]]
by Proposition 13.13. Note that

1. flLog(dl(£))] =Log(Sep(B)) because f is an isomorphism, and
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2. rB[Log(Sep(B))'] =Log(B) because 1 is surjective on tokens, by Propo-
sition 13.12,

and SO hldKQ)[LOg(Idl(S»]=Ksnd(g)[LOg(B)]. But then Log(Cha(S)) is
5 Kesnace [Log(B)1], which is just £. o

Corollary 14.9. Every sound local logic £ is the image of its idealization
1d1(L) under the infomorphism hidi(e)-

Proof. If £ is sound, then the other half of the channel Cha(£) is the identity.
a

14.2 Channel Infomorphisms

We have associated an information channel Cha(£) with each local logic £.
If this association is natural, there should be a correspondence between logic
infomorphisms and channel infomorphisms. We have not defined the latter
notion, though it is in some sense implicit in our notion of a refinement between
channels. We define this notion now in order to show that logic infomorphisms
do indeed naturally correspond to channel infomorphisms. The material in this
section will not be needed in for the following lectures.

Definition 14.10. Given channels

C=1{hi:A & Cha

and
C' =k . V= Clia

on anindex set I, achannel infomorphism f :C & €' consists of infomorphisms
f:Cc=Cand fit Ai & A/, such that for each i € I the following diagram
commutes:

_ [ ,,,f - ,,,,_,C;, N e
hi hi
A; f: A]

Thus a channel refinement is essentially a channel infomorphism f : C = C',

where A; = A} and f; = 14, foreachi € I.
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Proposi'tion 14.11. Suppose we have a channel infomorphism f: C = C’ be-
tween binary channels as depicted by the following diagram:

A fe B

Ja . o /s
5N
A B’
ITO};’eZs f}; cir:gzzjez:z;i ;_s E (?;Z{)(:f) .logics, is a logic infomorphism of the induced

Proof. l:“irst’ v&fe show t.hat Jfa on types is a regular theory interpretation. Sup-
Pose (lF , A" ISI a consistent partition of Log..(A"). By Proposition 14.2, there
is a b’ € tok(B’ whose state description is (h,;,l [ha [T1], h;,l [ha:{ATD) ’Then

fg(b') has state description ( f l[l’l ] ha I ! hg [ha A From the
r ’ l
; ’ o B B [ yal ]]],fB [ BI[ el ]]]) t

—1p—1 -1 p—
fg hp ha = hBlfC 1h.4’ = h;lhAfA—l.

Thus fa(b) has state description (hg' Thal £ TN R TR £ TATD- A
plying F’roposntion 14.2 again, ( fA‘l[F’], fA‘l[A’]) is consistent/:md SO - ‘P'
theory interpretation, as required. Jatee
" Let us check that if a’ is a normal token of Log. (A"), then fy(a’) i
normal token of Log.(A). By Proposition 14.2, if @’ is z; normalAtok N i
Log (A"), then there is a connection ¢’ of ' connecting a’ to some tokenelrvl/ zf

————B~But then fc{e")-is-a connectiomof € -connecting 4 (a’) to f3(b'). Hence by

Proposition 14.2, f4(a’) is a normal token of Log(A4). n|

. fThe preceding result shows that channel infomorphisms give rise to logic
in . L.

i tc;ll.norphlsms. We now prove that every logic infomorphism can be obtained
in this way when we restrict attention to channels that represent logics

?ropositio'n 14.12. Given a logic infomorphism f : £ 2 &/, there are unique
infomorphisms fspa(ey : cla(Snd(L)) = cla(Snd(£")) and Siae MdI(L) =

S rii
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1dI(L) such that the following diagram commutes:

cla(g) —==, Jea®) 1 snd(g)) SAE. haw g0

f Ssnde) Suae)

cla(g) =1 haa) cla(Snd(£)) ——= Mo 112

Proof. To satisfy the conditions of the proposition, fsndey and fiacey must
satisfy the following:

1. fsnacey(@) = f(@) for each @ € typ(Snd(£)),

2. fsnay(b) = f(b) foreach b € tok(Snd(£")),

3. fiae (@) = f(a) for each o € typ(Idl(£)), and

4. fas (T, A) = (7' f~ I[A]) for each (T, A} € tok(IdI(£)).

But these amount to a definition of fsnagy and fuaice), 8O ensuring the existence
and uniqueness of these infomorphisms. a]

Definition 14.13. Given a logic infomorphism f : L2 let
Cha(f) : Cha(£) = Cha(£")

be the channel infomorphism given by f ccla() 2 cla(L), fsna :cla(Snd
(£)) = cla(Snd£"), and fiace) SIdI(2) = [dIe).

Justification. This is a channel infomorphism by Proposition 14.12. o

Proposition 14.14. For any logic infomorphism f: £ = £
Log(Cha(f)) = f.

Proof. This is immediate from the definitions. o

~“We take these results to show that we have the “right” information-theoretic ...

definition of morphism between channels, but we do not pursue this topic further
here.

Exercises

14.1. Show that the identity function from the types of th(£) to the types of
Th(cla(Snd(£))) is a theory interpretation and that the infomorphism
hiaie) in Definition 14.7 is its image under Cla.

Exercises 181

(1) Call a binary channel C from A to B special if there is a function

S :typ(A) — typ(B) such that hp f =h,.

1. Show that for any special channel C and logic infomorphism

. ond H 1

f:£ & Loge(A), there is a unique channel infomorphism f*:
Cha(£) <2 C such that Log(f*) = f.

2. Use (1) to show that Cha is left adjoint to the functor Log restricted
to special channels.

3. What is the counit of this adjoint pair?




Lecture 15

Distributed Logics

The view of information put forward here associate§ informa.tion flow w“ih
distributed systems. Such a system A, we rec'all, con§lsts of an.mdexed fla.ml Sy
cla(A) = {Ai}ies of classifications together with flS(.:t inf(A) of m'fomorp 1srt1: ;
all of which have both a domain and a codomjam in cla(A). With any suc N
system we want to associate a systemwide logxc. Log(A) on the surr;dzi e lthé
of the classifications in the system. The constraints of Log(.A) shou luse; ;
lawlike regularities represented by the system as a wholfa. The norma .tot zr;e
of Log(.A) model those indexed families of tokens to which the constraints
guaranteed to apply, by virtue of the structure of the system. -
If we consider a given component classification A; of A4, Fhere are at ez;ls
two sensible logics on A; that we might want to incorporate into Log(A), the
a priori logic AP(A;) and the natural logic L(?g(A;). The fom;er alisutm'c\:z
we are given no information about the constraints ?f A; except for the T\t
ial constraints. The latter assumes perfect information about the. constraints
of A;. There is typically quite a difference. But really these a‘re ]USt.[WO e:)t(t-1
- tremes in our ordering of sound local logics on A;. After all, m. dealfng wi .
a distributed system, we may have not just the component clasmﬁca‘txons. an
their informorphisms, but also local logics on the component classifications.

o We want the systemwide logic to incorporate these local logics. To this end,

we generalize the notion of a distributed system to that of an information

system.

15.1 Information Systems

Definition 15.1. An information system L consists of an inde)_(ec.l family
log(L) = {Li}ier of local logics together with a set inf(£) of logic infomor-
phisms, all of which have both a domain and a codomain in log(L).

182
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We associate with any information system £ a systemwide logic Log(L),
one that is the “limit” of the logics of the system and the way they fit together.

Before defining this logic, it is worthwhile to remind ourselves that once we
have a logic on asum )", A;, we get an associated logic on any smaller sum
Zi el A;, for Iy C I,asinExample 13.8, by simply restricting the constraints to
those of the smaller sum and taking as normal tokens those that are projections
of normal tokens in the larger sum. We will often be interested in some such
restricted logic of the system.

Definition 15.2. Let £ be an information system, that is, an indexed fam-
ily log(L) = {£:}:es of local logics together with a set inf(£) of logic info-
morphisms, all of which have both a domain and a codomain in log(L). Let
A; = cla(£;), and let A be the associated distributed system with the same
set of infomorphisms. Let C = lim A be the limit of this distributed system;
write this channel as an indexed family {g; : 4; 2 C}ier- There is a least logic
£ on C such that each g; is a logic infomorphism. Namely, £ =1 |,, g€
The logic Log(£) has classification A = Zie, A;. Ifweletg = Zie, gi
where we think of these as classification infomorphisms, then g:AZ=Cisan
infomorphism. We define Log(£) = g~![L]; that is, it is the largest logic on A
that makes g a logic infomorphism. In summary, then, the distributed logic of
the information system L is the local logic on > ics A given by

Log(£) = (Zg.-) ) [(_l g,-[;:i]}.

iel iel
This definition gives us a way to state our basic proposal for an understandin g
of information flow in a distributed system.
Basic Proposal

In modeling information flow in a distributed system, the system itself is to
be modeled as a information system £. The constraints of the distributed logic
Log(£) model the available regularities of the system. The normal tokens of

-Log(L) model the instances of the system to which the constraintsare guaran-"

teed to apply by virtue of the structure of the system.

It is difficult to say anything very informative about the theory of Log(L) in
general, because the various logics can interact in complicated ways. We can,
however, describe the normal tokens of the logic.

Proposition 15.3. A token {c;};c; of Log(L) is normal if and only if each c; is
a normal token of £; and ¢; = f(c;) whenever there is an informorphism of
the system of the form f: A; = A ;.
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Proof. Using the notation of Definition 15.2, we first note that the no@al tokens
of £ consist of those tokens ¢ of C such that g; (¢) € Ng, foreach i. From the
definition of limit, the tokens of C are those {c; lier suchthatc; = f(c;) foreach
infomorphism f:A; &2 A; of the system. But the normal tokens of Log(L)
consist of the tokens {c;}ies € tok(A) of the form g”(c) such that ¢ € Ng and
g" is the identity on the tokens of C. )

In applying this definition to a distributed syst.em, we typically have a single
logic on either the core of a channel or on one of 1t.s components. In Sl'lch acase,
we use the a priori logics on the other classifications of t.he system in order to
be able to consider the distributed system as an informauo.n system. (One carf
think of the logic Log(D), studied in Lecture 14, as a sgecxal case of the latter;
use Log(P) together with AP(D) and AP(C) to get a logic on the sum, and then
restrict the result to the classification D.)

15.2 File Copying: An Example

| If Judith copies a file, say, adventure.tex, from the Macintosh in ber office
to the one at home, using Apple Remote Access, §he expects the copied file to
have many of the same properties as the file copied. It should have the same
contents, the same time stamp, the same icon, and so forth. Ott'le.r pr.opemes
will be different, like where it is in memory or what color of label it is given. Of
course sometimes things go wrong and file copying does .not.work 2.15 expect‘ed.
Our goal in this section is to show how we can look a.t [hlS. kmd. of information
flow in terms of distributed logics. We will greatly simplify things, of course,

illustrative example. .

® 13[(?hﬁetSdzilgtxl“illl:xst'ed system .?E)Co (“FC” for “file copying”) that interests us 1s
depicted as follows:

m/ out__

M M

The tokens of M are instances of files on computers spread .around the campus
network. The tokens of C are events of successfully copying a file from one
computer to another. The types of M consist of three type?% a, B, and y, the
first two of which are supposed to represent typical properties of files such as
contents, time stamp, icon type, the kinds of things one wants preserved from a
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file to any copy of the file. We assume that o and g are independent properties
of file tokens, things like contents and time stamp. The type y is the type of
being protected. Protected files should be prevented from being copied. The
types of C include o™, a*, g, B, y'*, y°“, as well as some other types,
typified by the type §, that are not definable as properties of the input or output.
These classifications are specified below, along with their infomorphisms. (We
should really have a lot more tokens around to get the full flavor of the idea.
Also, having more tokens around would help alleviate another problem that
will come up. But having hundreds, thousands, or millions of tokens would
make the classification tables hard to print, let alone read, so we ask the reader
to imagine a lot more tokens in both classifications.)

Fula B v

ny (1) : (1) |=C a in Qo 13 in ﬂ out y in y out S
ZZ Lol o]t T T T T T
mft 11 @[l 10 0 1 1o
4 : ‘
mill 0o 1 ©I1 0 1 1 1 11
Mg 0 1 1

transaction c | file copied (=in"(c)) | resulting file (=out*(c))

[43] my my
€2 mgy ms
3 nmy meg

The infomorphisms in and out are as suggested by the names we have
given the types. It is clear from examination of these tables that these func-
tions are indeed infomorphisms, and so the result is a channel. We think
of it as a channel from the M on the left to that on the right, though we
could equally well use it as a channel in the opposite direction. The table
of connections (transactions) shows that the file token my is a copy of my,

_ms is a copy of m3, and mg is a copy. of m4. Notice also that the protected

file token m, is not connected to anything, so is not copied nor is it a copy
of any other file. One would have to unprotect it, thereby getting a differ-
ent file token, before it could be copied. Notice also that the transaction c3
was not totally successful; it produced the file ms, but the property o of the

copied file m4 does not hold of mg. We want to be able to account for facts
like ’

my =y B carries the information that my =y 8.




186 Lecture 15. Distributed Logics

. .- fa
i i 1d be possible to explain in terms O
ding to our proposal, this shou : N
i\:::;icalglogic on M + M such that {my, ma) is 2 normal token of the logic
i i int of the logic.!

d g +- B°* is a constraint 0 . "
" G‘iven tﬁis channel, we can distribute any logic £ (?n C to';hglsutm 1IIV: —l—h M.
i i ly two obvious logics available to Us,

this point, though, there are on . ble °
pArt*iorli I(I:gic AP(C) and the natural logic Log(C). Let us examine in turn W
happens if we distribute these logics.

Example 15.4. Distributing the a priori logic AP(C) d(.)es1 x:glt(eg;:et ht:ep :i:
sired results. The resulting logicon M + M ha§ as normz_1 ons e PR
y, m3, ms), and (mg4, me). Because the 1nf0morph1§ms 1(: nd ows >
E:‘;;;:e;n have disjoint ranges in typ(C), the theory ofi nﬂ;sﬁ iglg;z 1; ; s the
smallest regular theory on the types of M + M ..Hence B e
Ep B carrying the information about its copy my that m4¥=m P,
gf‘::e':;y of the more subtle results we are after.

Example 15.5 Distributing the sound and complete Log(C) ltlo Aﬂ/{ +M .1s rxrllll(l)cr;:1
Th before, but the theory 18
1. The normal tokens are the same as ;
S}li(l:erssglecalling that the rows of the classification table for A can F)e thoug::
ﬂ: az ;pecifying its set of consistent partitions, we see that this logic contat
0
the following constraints:

ﬁin '_C ﬂom, ﬂoul "—C ﬁi", *_C }/i", '—C yaut.

i i information
Consequently. relative to this logic we dohave ma Em B carq;mg th:, mfi)hat on

, i ation

i and we get for free the inform
that ma =y B (and vice versa),
ns are of type v. . . o
tOk’(;'here are tZlome disturbing features of the logic obtained by .dlstrlbut;:)rgl
Log(C) however, features that come from assuming comPlepg mf'cl);maa 10 or
abfut th,é classification C. First, because of the faulty transaction Cfi , :‘ f(:i o t(;
is)i i Far o, and thus
the (mis)information that me¢ Fpm @,

so ma Ey o does not carry is)ir fails o
reflect a_mistake that users may justifiably make. Worse, we also do
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the information that m; = o2, which seems wrong. This information is carried
by m4 Fp o but surely not by m; Fp 8; look at m;. The problem, of course,
is that although we said that « and g were independent properties of files,

there are no tokens in the classification of transactions that bear witness to this
independence.

To rectify these problems, we can modify our distributed system FCy, either
by postulating a third logic on C or by adding classifications and infomorphisms

to the system. We pursue the latter approach first. Expand FCy to a larger system
FC by adding two classifications A and B as depicted below.

A

M M

The classification A is the same as C except it throws out the faulty connec-
tion c3:

Ea | ait g ﬂin ﬁr)ul v in ,yaut $
c |1 1 1 1 1 1 0
il 1 0 0 1 1 1

Here f is the identity on types and on the tokens of A. Before describing B, let
us see what happens if we distribute Log(A).

that m; =y o carries the informatiOfl that m4 H‘? o. Y,Js;_ng ﬂ:lz Illofic;; e;/j:no;er
exceptional transaction out of millions san wreck informati nfow

ful transactions. This is just the kind of_ result we wan? 0 : . ;
Succes? t sort of problem comes from accidental generalizations capture
by i:;fg?nlior example, looking at the classification table, we see that as

it happens B Fc . This would imply, for -example, that m, Ea B carries

; i lation of
| We are here using the same potation g™ for the copy 9f B in the sum and for the translaf B
into the types of C. This should not cause any confusion.

Example 15.6. If we distribute Log(A), the normal tokens are vghgt we want:
(i3, my) and (i3, ms). Also, looking at the classification table, we see that

o in I_A aout

so that relative to this logic, m, F o carries the information that msFypa, as
desired. Moreover, having this constraint does not mean that my Fpyp o carries
the information that mg Fps @ because (my4, n16) is not a normal token. However,

distributing Log(A) still makes the false claim concerning information flow that
m3 Fp B carries the information that m. ky ov.
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——-get-just the intuitively valid constraints; the normal tokens.consist of the pairs
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To take care of the overgeneration due to accidental generalizations, we add
idealized tokens in the classification B defined below:

s i in out
l=B o in aout ﬂ in ﬂou{ y b4

(4] 1 1 1 1 1 1
il 1 0 0 1 1
ni0 0 1 1 1 1
ny 0 0 0 0 1 1

The tokens n; and ny are idealized tokens used to represent unactuaiized
possibilities embodied in our claim of the independence of « and 8. The info-
morphism g is the identity on types of B and on tokens of A.

Example 15.7. Consider the logicon M +M obtaineci })y distnb;tmg;?i(ilsi)é
We compute this logic in two steps. First, let £ = f~'[glLog( 31]]. et
local logic on C with normal tokens ¢ and.cz. Because bc.)th f an 517 c]osﬁre
identical, the theory of £ is Th(B). We claim that Th(B) is the regular

of the following six constraints:

L. in
ol o oo, e rea”, ey’

ﬁin ‘—C ﬁout, ﬁoul I—C ﬁi", l_C ,yaul'

To see this, we apply Proposition 9.18. First note that each of these constramnts
is valid in B. Next, note that any row of Os and 1s that disagrees with those Pre-
sent in the classification table for B invalidates at least one of these constraints.

For example, the Tow

Pg‘ai" o™ ﬁiu ﬂom‘ yin yout
ajl 1 1 0 1 1

violates the constraint 8™ g B°*. 1f we now distribute LoverM+ M, we
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15.3 The Distributed Logic of a Distributed System

We now turn from our little example to some special cases of the general
construction. We begin with the pure case, where we have a distributed system
A with no logics on any of the classifications. Put in terms of information

systems, we are assuming that we have an information system where each
classification has its a priori logic.

Propeosition 15.8. Ler A be a distributed system with classifications cla(A) =

{A:}ics and infomorphisms inf(A). The systemwide logic Log(.A) can be char-
acterized as follows.

1. The classification of the logic is 3, ., A;.

2. The theory of the logic is the regular closure of the set of constraints of the
forms

al fle) and fla)lFa

foreach f: A; 2 A; of the system and each o € typ(4;).

3. The normal tokens are Just those indexed families ¢ = {c;};e; of tokens
that correspond to a global choice of a token from each component so
that the pieces respect the whole-part relationships of the system. That

is, ¢ € Ng ifand only if whenever f : A; & Ajandc;j € tok(A)), then c; =
flep.

Proof. In stating this result we have tacitly assumed that the types of the
various component classifications are disjoint. If not, they need to be replaced
by their disjoint copies. We continue to make this notationally simplifying
assumption in the remainder of this lecture. The proof is just a matter of

unwinding our earlier definition where all the component logics are a priori

logics. a]

(m2, m4) and {m3, ms).

We see that there are two ways to get at what see.ms like the naturai ir;form;;
tion-theoretic logic on M + M. One is by distrlbutmg .the natura_lllogllci cg() )
overthe system FC. The otherisby distributing the logic.): (=f ng[ doip o
over FCo. This corresponds to a information system with 2,- on ;ln Ahan
on each copy of M. These approaches give u.s the s.ame logic 01;1 +M,
they give us somewhat different ways of looking at information flow.

Let us depict the limit lim .A of our distributed system A as follows:

C

gir__




—
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Using the fundamental property of sums, we

obtain the following commuting

diagram, where we write o; for aa, and g for S ker 8k

C

8i g

8j

A DA

Oi kel

J

. . . it
Using this notation, we can now explicate the relationship between the lim
S td

and the systemwide logic.

Theorem 15.9. Let Abea distributed system as above and let £ = AP(C) on

the core of lim A.

1. £= Lind(Log(A))-

2. Ift: Log(A) & Lind(Log(A)) is the quotient logic infomorphism, then for

each i, gi = t0i-
3. Log(A) = g L)

Proof. The proofs of (1) and (2) are clear by examining the c;eﬁ;ition of (tg;:
it i indenbaum logic in Lecture 12. To prove (3),
Jimit in Lecture 6 and of the Lin gic | rove O
\:vn; first recall that g 'Ll the largest logic £ on A such t,ll?t 8: £ ;—- s
is a logic infornorphism. However, it is clear that g :Log(A) = £ is al0g

infomorphism, sO Log(A) © g~ '[£]. Thus

we need only show that g LIt

Log(A) Because £1s sound, the condition on tokens is trivial. So v;;e ne:d or:l}é
. . Assu
show that if ' Fg-12) A, then T Frogcty B for all T, A C typ(4). AS

ey A Then g} Fe giAl. Thus there are types @ € B e
g—l .

such that F(&) = F(B), because ¢ is the a priori logic on C. But this means

that [alr = [B1g, where R is the relation

~~<onstruction of C- But thenan inductive proof (or the Jength of a chain of types . -

used in taking the quotient in the

from « to B using R and R~!) shows that @ FLoga) B 88 desired. =]

15.4 Distributing a Logic Along a Channel

Suppose we are given an information channél C = (fi : Ai 2 Cliex and a logic

& on the core classification C. We want

to define a local logic on the sum

Sier Ai that represents the reasoning about relations among the components
iel “7
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justified by the logic £ on the core. We call this the distributed logic of C
generated by £ and denote it by DLog¢ ).

To define this logic, recall the diagram of the channel together with the
canonical embedding of the sum into the core of the channel.

C
fi F fi
Ai Ay Aj
i ; oj !

We can characterize this logic in terms of our previous construction by consid-
ering the whole channel as a distributed system. However, this gives us a logic
on Y . Ak + C, whereas what we want is a logic on Y_,; Ax. Of course we
can easily extract a logic on the first summand from that on the sum. We can
characterize the logic directly as F -11.2], where F is as above.

If the logic € on the core of a channel C is complete, then the distributed
logic DLog.(£) is complete, simply because taking inverse images preserves
completeness. Note, though, that DLog.(£) is not in general a sound logic,
even if £ is sound. It is only guaranteed to be sound on the range F~, that is,
on those tokens of the sum that are sequences of projections of a normal token
of €. In other words, the normal tokens of the distributed logic DLog(£)

consist of those sequences of components that are connected together by some
normal token of the whole system.

15.5 The Distributed Logic of a State-Space System

In Lecture 3, we investigated an example of an information channel whose
core was the event classification of a state space S. There we were using the
state-space logic Log(S). This is frequently a very convenient tool. In this
section, we explore what it means to distribute this logic over a state-space

" system.

Suppose we are given a state-space system S ={fi:S3Si});e;- Wewantto
define alocal logic on the sum S el Evt(S;) that captures the way we can infer
partial information about the state of some components given partial information
about the state of some other components and the fact that they are connected

by some token of the system. We call this the distributed logic generated by S,
and denote it by DLog¢(S). :
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We already have one logic on the sum el Evt(S;) Qf course, namely, the

sum of the logics generated by the component state spaces, thatis, 3 ‘E I tI;og S ; 3-
i ici ions furnished by the core state space 5, nowever.

This logic ignores the connections ' cor '

To takeg advantage of this state space, we simply distribute the logic Log(S) to

S~ ep Evt(S;) by means of a natural infomorphism. Recall from Lecture 8 Fhe
folileolwing c'onstruction. Start with the system S depicted by the following

S
7N
S; Si

Applying the operator Evt to this diagram and using the fundamental prc;iert);
of sums, we obtained the following commuting diagram, where for the sake 0
readability, we write o; for ews) and F for 3¢, Evt(fi):

diagram:

Evt(S)

Evt(f) FoONERUD
Evi(S;) —= Y Evi(S) +—— Bvi(S))
% el 4

The infomorphism F allows us to pull back any logic £ on Evt(S) to a logic
F-1[£] on the classification 3¢, EVt(Si)-

Deﬁmtlon1510 Gwen a state-space system S={ f,‘.: S =38i}ics» the dis-
tributed logic DLog(S) of Sis F -1[Log(S)], where F is as above.

Notice that if the core state space-.g of S is complete, then this logic is com-

lete, simply because taking inverse images preserves completeness. When
Esinf; any state space the presumption is that it is complete; hence the presump-
. . s ic DLog(S).
carties over to the distributed logic . . '
tlmll\lote also, though, that DLog(S) is not in general a sound logic. It is only
guraran'treéd" tg be sound on the range of F~, that is, on those tokens Zf Dtkog(S)
jecti f a token of S. In other words, the nor-
that are sequences of projections O _
mal tokens of the distributed logic DLog(S) consist of those sequences of
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components that are connected together by some token of the whole system.
These tokens satisfy all the constraints of the logic for principled reasons: they
have to by virtue of the state-space logic on their connections. There might be
other tokens around that satisfy the constraint of the logic, but if so, they do so
by accident.

There is a simple, explicit characterization of the consequence relation of
DLog(S). To make it easier to read, we adopt the following notation. Given

any set I' of types in our logic, write ', = {X e T"|X € typ(Evt(Sy))}, a set
of types in Evt(Sy). Thus I' = { J,, T'k. '

Theorem 15.11. LetS = {f; : $ =3 S;};¢; be a state-space system. For any sets
', A of types of the distributed logic DLog(S), the following are equivalent:

]. F I.—DLOg(S) A, .
2. For each state o of the core of S and each k € I, Ty, { fi(o)} FLogs) Ak

3. For each state o of the core of S and each k € I, if fi(0) € N\Tk, then
fk(a) € LJZXb

The normal tokens of DLog(S) consist of those sequences of components that

are connected by some token c of the the core S of S. The logic is complete if
the state space S is complete.

Proof. To prove the first claim, note that the following are equivalent:

I FpLogsy A.
F[T'] Frogesy FIAL
{FXD|X €T} Frogsy (F(Y) Y € A).

UIFQO1X € Tl broges JIFOD 1Y € AL
kel kel

e 7,U {fMx11x € T} Frogs U{fk_l[Y]IYE,Ak}-,,, .

kel kel

For each state o of the core of S and each k € I, if fi(o) € M T, then
filo) e U A
For each state o of the core of S and each k € 1, Iy, { fi (o)} FrLog(sy) Ak-

Each item in our theorem is in this list. The final two sentences merely sum-

marize the earlier discussion. |




—
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i that information
. The fundamental dogma of molecular biology asserts rmat .
15.1 flows from DNA to RNA to protein but not in the reverse direction. Loglcs and State Spaces

Model this information flow as an information system and explain a
sense in which information flow is one directional.

15.2 Using the results on moving logics, generalize the results on' limits of
distributed systems to information systems. The first stejp is to gen-
eralize our previous notions from classifications (essentially natural

logics) to arbitrary local logics.

In Lecture 8 we saw how to construct state spaces from classifications and vice
versa. In Lecture 12 we saw how to associate a canonical logic Log(S) with
any state space S. In this lecture we study the relation between logics and state
spaces in more detail. Our aim is to try to understand how the phenomena of
incompleteness and unsoundness get reflected in the state-space framework.

We will put our analysis to work by exploring the problem of nonmonotonicity
in Lecture 19.

16.1 Subspaces of State Spaces

Our first goal is to show that there is a natural correspondence between the
subspaces of a state space S and logics on the event classification of S. We
develop this correspondence in the next few results.

Definition 16.1. Let S be a state space. An S-logic is a logic £ on the event
- classification Evt(S) such that Log(S) C £.

The basic intuition here is that an S-logic should build in at least the theory
R implicit in the state-space structure of S. We call a state o of § £-consistent if
{o}F¢ and let Qg be the set of £-consistent states.

Proposition 16.2. If S is a state space and £ is an S-logic, thent-¢ Qg¢. Indeed,
Qg is the smallest set of states such that =g Qg.

i ‘ ’ C Proof. To prove the first claim, let {I", A) be any partition of the types of Evt(S)
with Q¢ € A. We need to see that I' ¢ A. Because Log(8) C £, we need
only check that every state o that is in every X €T is in some X € A. If not,

- . 195

e ————————————




N O L e i

st it b Vb

| 196 " Lecture I6. Logics and State Spaces

then o ¢ Qg, because Q¢ € A. Hence o is inc?nsistent in £. But {0} de 1; Pe—
cause it cannot be in A, so I' g A by Weakening. To p,)rove the .secodr; c auz;
suppose that g '. We want to prove that Q¢ & €. Sl?pposmg 1; 1s-n p
the case, let 0 € Q¢ — Q. If we can prove {¢} g, we w11¥ Flave f)ur es1r?
contradiction. We want to use Partition, so let (", A)‘ be apartitionwith {o} €T.
We want to show that I' g A. Because g €, it suffices, by Cut, ’to prove
that T', @ k¢ A. Because £ is an S-logic, it suffices to shc?vsf lj‘, Q I—Logs(zs,)
A. But this is obvious, because I" contains an element disjoint from E;
namely {o}.

Definition 16.3. Let S be a state space and let £ be an S-logic. The subspace

Sg of S determined by £ has Qg for its set of states and has as tokens the set
£

Ng of normal tokens of £.

Justification. We need to check that the state of each normal token of £ is ;
member of Q¢. This follows from ¢ Qg.

Proposition 16.4. Let S be a state space and let £ be an S-logic. ThenT t-g A
ifand only if T, Qg FLog(s) A

Proof. The direction from right to left follows from Proposition 16.2 z:.hnd Finite
Cut. To prove the converse, suppose that I ¢ A. We need to prove that every
state 0 € Qg,if o € X forevery X €', theno €Y for.somelY eA. Suppf)s? c
is a counterexample. We want to show that o is inconsistent m £, cc?ntradlctxrlxqg,
the fact that it is in €. To prove this, let (I, A’} be a partition with {o'} €
such that " ¥ ¢ A’. From this it is easy to see that

I ={X|oeX}
AN ={X]|o¢X}

Butthen T € I'Mand A € A’, so [" ¢ A’ by Weakening. u]
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is almost as obvious. If ¢ € Qg,, then o Kg,.

But by our assumption, o Kg,,
and so o € Qg,.

Now assume Sg, C Sg,. Again, the inclusion of normal tokens is trivial,
so we need only verify the inclusion of constraints. Suppose I't-g, A. By the
previous result, T, Qg, Frogsy A. Hence [\ N Q¢, € UA. ButQg, C

§2g, by assumption, so (\I' N Q2¢, < |JA. Hence T, Qg, Frogs) A, and so
r i—gz A. [m]

Theorem 16.6. Let S be any state space. The mapping
£ - S Fy]

is an order inverting bijection between the Jfamily of all S-logics and the Jamily
of all subspaces of S.

Proof. Given Proposition 16.5, all we need establish is that every subspace S,
of § is of the form Sg for some logic extending Log(S). Let the normal tokens
of £ be the tokens of Sy. Define a consequence relation on Evt(S) by I' g A

if and only if T, typ(So) Frogsy A. This is easily seen to be regular. All we

need do is to check that for any state o of S, o ¢ ifand only if o & typ(Sp).
This is routine.

O

These results show that the state-space analog of a logic on a classification
is that of a subspace of the given state space. The tokens of the subspace
correspond to normal tokens of the logic, the states of the subspace correspond
to the constraints of the logic. Here is another way in which this analogy holds.

Definition 16.7. Let S be a state space, Sp a subspace of S. Sy is sound in S if
tok(So) = tok(S).

Proposition 16.8. Let S be a state space. An S-logic £ is sound if and only if
the associated state space Sg is sound.

Proposition 16.5. If S is a state space and £1, £, are S-logics, then L8
if and only if Sg, € Sg,. Hence £, = £, if and only ifSe¢, =Sg,.

i e
Proof. The second claim clearly follows from the first. To prove the first, assum

£, C £,. Because Sg, and S g, are both subspaces of S, all we need to check is

that the tokens of the latter are a subset of the tokens of the fonner. a{ld r.hat.the
states of the latter are a subset of the states of the former. The first is 1mmedla}te
from the assumption and the definitions of these spaces. As for states, the claim

"Proof. 'We leave this as an exercise.

a

The following shows that the concepts of completeness and soundness for
state spaces behave as one would expect, given the above correspondence.

Proposition 16.9. Let f :S= S be a staté-space Projection.

1. If So is a complete subspace of S, then fISol is a complete subspace of §'.
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2. IfSyisa sound subspace of S, then f -118,] is a sound subspace of S.

. . . g
Proof. The proof is a routine verification.

16.2 From Local Logics to State Spaces

We now complete the correspondence between local lggics and state spsace(s’é))y
showing how any local logic £ gives rise to a canonical state spa(.:g f;; nA.
Recall (from Lecture 8) the state space Ssp(A) genftrated by ‘a f:lass1fc§ 1t es.‘
This space has the same tokens as A; states. ar.e arbitrary partitions of the typ
of A. The state of a token is its state description.

Definition 16.10. Let £bea local logic on a classification A.

1. The state space Ssp(£) generated by £ is the subspace of Ssp(4) \&.'hose
. tokens are the normal tokens of € and whose types are the £-consistent

artitions.
2 Ié‘xiven a logic infomorphism f:£ 2L, let Ssp( i) b‘e the state-space
‘ projection from Ssp(£3) to Ssp(£) that is the restriction of Cla(f) to

SSp(Qz)

Justification. Because every normal token has a consistent state descript.ion,
this does indeed define a subspace of Ssp(A). It is easy to check that thngs]
work properly on maps.

Proposition 16.11. Let £ be alocal logicon a classification A.

1. £ is sound if and only if Ssp(L) is a sound subspace of Ssp(A).
2. € is complete if and only if Ssp(£) is a complete state space.

We have the following analog of Theorem 16.6.

Theorem 16.12. Let A be any classification and let S = Ssp(A) be its associ-
- ated statespace-Themapping -~ — —— == s n s e

£ > Ssp(£)

is an order inverting bijection between the set of logics on A and the set of
subspaces of S.

Proof. The proof is very similar to the proof of Theorem 16.6 and is entirely
' 0
straightforward. )

16.1.

16.2.
16.3.
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Exercises

By Theorem 16.6, different subspaces correspond to different logics.
This raises a question as to the relationship between images and
inverse images of subspaces, on the one hand, and logics, on the
other. Let f :S =35’ be a projection, and let S; and S, be subspaces
of S and §', respectively. Recall that Evt(f) : Evt(S") 2 Evt(S) is an
infomorphism. Hence the image under Evt( f) of a logic on Evt(S")
is a logic on Evt(S) and the inverse image of a logic on Evt(S) is
a logic on Evt(S’). Prove the following identities, where we write

Log(§)) for the S-logic . that corresponds to S, under the bijection
of Theorem 16.6: '
1.

Log(f[S1]) = Evt(f)~'[Log(S1)].

Log(f~'[S2]) = Evt(f)[Log(S)].

Prove Proposition 16.11.

Let f : A< B be an infomorphism. By Theorem 16.12, subspaces of
these state spaces correspond to logics on A and B, respectively. This
raises a question as to the relationship between images and inverse
tmages of subspaces, on the one hand, and logics, on the other. Recall
that Ssp(f) : Ssp(B) =3 Ssp(A) is a state-space projection. Hence the
image under Ssp(f) of a subspace of Ssp(B) is a subspace of Ssp(A)
and the inverse image of a subspace of Ssp(A4) is a subspace of Ssp(B).

Let £ and £, belogics on A and B, respectively. Prove the following
identities:

Ssp(fL£1]) = Ssp(f) ' [Ssp(L1)].

Ssp(f ! [£2]) = Ssp(f) ! [Ssp(£)1.
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Lecture 17

Speech Acts

In this lecture we want to give a simple application of classifications and info-
morphisms to analyze J. L. Austin’s four-way distinction in “How to talk: Some
simple ways” (Austin, 1961). The material in this lecture follows Lecture 4
and is not needed elsewhere in the book.

17.1 Truth-Conditional Semantics and Speech Acts

The theory of speech acts owes its origins to Austin’s (1961) work. This theory
is challenging in a couple of ways. First, Austin’s paper is one of his more
difficult. It is just hard to figure out what he is saying. Second, the theory
of speech acts poses a challenge to certain kinds of semantic theories, and the
types of speech acts discussed by Austin in his paper illustrate the challenge
very clearly. Austin is saying that there are at least four distinct things a person
can be doing with a true utterance as simple as “Figure 4 is a triangle.” One
might say that he is arguing that such an utterance can have at least four distinct
types of content. The difference is not reflected in the truth conditions of the
utterance, but in something else entirely. If this is right, it seems to pose a special
problem for semantic theories that try to explicate sentence meaning in terms
of truth conditions. . . . B
Austin’s paper has a special relevance to our project, as well. This work grew
out of attempting to flesh out ideas about constraints presented in Situations and
Attitudes (Barwise and Perry, 1983), a book that owes much to Austin’s general
approach to language. It thus seems appropriate to try to bring our insights back
to bear on Austin’s theory.
Our hope, then, is to do two things in this lecture. One is to try to repay a
debt to Austin by using the theory of classifications and infomorphisms to shed
some light on his difficult paper. More importantly, though, we hope to suggest
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initial directions for how channel theory might be used to csmtribute toa logicz.il
approach to speech acts. We emphasize that this lecture, like all of Part I.II, is
intended to be thought provoking and highly tentative and not anything like a
full theory of speech acts.

17.2 Austin’s Model

In order to elucidate the distinctions he wants to make, Austin begins w1t?1 a
very simplified model of language in use, what he calls ‘th_e m0('1e1 So. Hav;r:,g
made the distinctions, he goes on to complicate the model 1{1 various ways. We
will stick to Austin’s Sp model. Austin assumes the following setup.

The Described Situation

On the world side of the his language/world model, Austifl assumes there 1.s a
set of items and that each item is of a unique type. .Austm uses tf)vo runmlng
examples to illustrate his observations, one whfere items are particular color
patches and types are colors, the other wher§ 1tems' are drawn figures c;)n a
page and the types are geometric shapes like circle, triangle, square, rhombus,
and so on. We will restrict our attention to the l.atter example_._ Thl:ls, fr(fm ou‘;
perspective, Austin assumes that the world consists of a classification Fig, an
his items are our tokens.

Language

Austin uses a very simple language to illustrate the ways we can talk about the
described situation. In particular, in the S model, Austin allows only sentences
S of the form

tisa N,

where ¢ is a term that refers to some item and N is a word whose sense is
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circle and that the function sense assigns these nouns their usual geometric
senses. We assume that the set of sentences consists of the expressions

Figurenisa N,

where n is a numeral and N is any of the above nouns.

17.3 Austin’s Four Speech Acts

In Austin’s theory, utterances are more fundamental than sentences. In Situa-
tions and Attitudes (Barwise and Perry, 1983) this distinction was exploited to
handle matters like tense, indexicals, who is being referred to by a given name,
what sense of a noun is being used, which described situation is intended, and
the like. In Austin’s S, though, all such matters have been avoided, so one
might think that we could deal simply with sentences. But this is not possible.
Austin’s model shows that even without the intrusion of these complexities, it
is still possible to do more than one thing with a given sentence, necessitating
the classification of utterances into different types of speech acts.

We thus suppose that there is another classification U of utterances. Each
token is, intuitively, an utterance. The types of U are of two kinds, sentence
types and speech-act types. The sentence types consist of all sentences of the
displayed form, where ¢ € Names and N € Nouns. It is assumed that each token
u is of a unique type. The speech-act types consist of four types: placing,
stating, instancing, and casting. (That is all we need here, though for more
sophisticated analyses one would add types to pick out the speaker, addressee,
and so on.) Our aim here is to associate with each of these four types something
it would be reasonabile to call the “content” of a given utterance of that type.

Statings and Castings

We begin with the simplest of Austin’s distinctions, statings versus castings.

set Nouns, a reference function ref: Names — tok(Fig), and a sense function
sense : Nouns — typ(Fig). An object may have r.nore’than one name, and ﬁ
type may be the sense of more than one noun, but in this mo.del, at least, eacl

name refers to a unique item in Fig and each noun has a unique sense, a type

of Fig.

form Figure n for some numeral n. We assume that the set of nouns contains
the expressions triangle, square, rhombus, pentagon, hexagon, septagon, and

3 S —

To make things a little more definite, we assume that every name has the

Statings
If the sentence type of u is

tisa N,
we write £, for the name and N, for the noun used in the utterance. At first

sight, it would seem that an utterance u of “¢ is a N”’ could make only a single
claim: that the item ref(t,) referred to is of the type sense(N,) in the world



“ref(t,) Frig sé’ﬁs’e’(N,, Y if and only if sense(N,) i=F,~ér ref(ty); T T
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Fig, that is, that
ref(t,) Frig sense(N,).

Austin calls utterances that make this sort of claim statings, reasonably enough.
Such a stating u is true if and only if ref(t,) Frig sense(N,). What other sorts
of utterances could there be?

Austin discusses utterances in which names and nouns are misused, names
to refer to items that they do not name, or nouns to connote a sense they do
not have. But he discusses this only to set it aside as not being relevant to the
four-way distinction he is after.

Castings

There are two ways of thinking of classifications. One may think of tokens as
somehow more firmly anchored in the physical world and types as more ab-
stract. But the tokens of a classification can be thought of as the givens, the
things that need classifying. Types are the things we use to classify the tokens.
Often these two notions march in step because it is more typical for the given
to be given physically, but sometimes they do not. For example, if a classi-
fication A has physical tokens and abstract types, then the dual classification
Al (where types and tokens are interchanged) has physical types and abstract
tokens.

Austin’s notion of a casting is one where the tokens are more abstract. The
basic idea of a casting is that one is given a type and is trying to “cast” it,asina
play; that is, one is looking for a token of that type. As Austin puts it, “To cast
we have to find a sample to match this pattern to.” If we think of the tokens of
a classification as the givens, then this amounts to using the dual classification
Fig". That is, an utterance u is a casting if it asserts that

sense(N,) Egige ref(t).

Note that
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granted, whereas in the former pair it is not. The difference is most easily seen
with examples of error. We look first at placings.

Placings
Suppose Tom says “Figure 3 is a square.” One sort of error (misstating) is
that Tom has gotten the shape of Figure 3 wrong, perhaps by misperceiving it.
If Tom misstates that Figure 3 is a square, then he has mistaken the shape of

Figure 3. By contrast, he misplaces Figure 3 in saying “Figure 3 is a square” if
he has mistaken what one means by “square.”

An easy way to capture this distinction is to use an induced classification.
Consider the following diagram:

» Nouns senss typ(Fig)

= rig

tok(Fig)

From these ingredients we obtain an induced classification Fig, (the “s” to

remind us that it is induced by Fig and the function sense) of the items by
nouns as follows:

aFrg N iff akFpgsense(N)

This says that a figure is called an N if it has the shape sense(N). This can be
pictured as follows:

Nouns X typ(Fig)

E ':Fig
Fig,

so there is no difference of truth between a stating and a casting that use the
same names and nouns. There is a difference in what the speaker is doing.

Placings and Instancings

Placings and instancings are like statings and castings, respectively, except in
one key regard. In the latter pair, Austin says, the sense of the noun is taken for

tok(Fig)

Another way of putting this is to require that sense (paired with the identity
function on items) be an infomorphism sense: Fig, = Fig.

Using this classification, we say that an utterance u is a placing if it asserts
that ’

ref(t,) leig, Ny. -
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Again, the difference between this placing and the corresponding stating is not
one of truth, because ref(t,) Frig, N, if and only if ref(t,) Frig sense(N,,), but
of what the speaker is doing.

Instancing

Given the resources at hand, one possibility is left open to us, namely, using the

dual Fig* of the induced classification. We would hope that Austin’s fourth
5

type of assertion would assert

N, FpgL ref(t).

Of the four, instancing is the speech act to which Austin pays least attention.
He says merely that to instance is to cite  as an instance of N.

Is This What Austin Had in Mind?

Using the framework of classifications and infomorphisms, we have come up
with four possible things one can do with a sentence of the form “r isa N. Let
us summarize these by means of the following diagram:

ref(t,) tzFig, N, — ref(t,) *=Fig sense(N,)

N, Epygs ref(,) — sense(Nu) Fpgr ref(t,)

Each corner of the square represents a distinct possible content for an utterance
u of

tisa N,

on its type as a speech act. The four contents are true or false together, but
informationally they represent four distinct claims. ' ‘
On the left side of this diagram, we are dealing with the classification Fig;
and its dual, relating items in the world and nouns in the 'langu'flge. On the
right side, we are dealing with the classiﬁgqtiqn Fzg rglgtix'}g 1tems' in .the .world
with their types. The top row of the diggram has to do with cl.as31fyn.1g 1.tems,
either by nouns or by their senses. The bottom row has to d'o with finding items
that are examples of nouns or their senses. Our diagram is put forward as an

.. - depending on just what the speaker is doing with the utterance, thatis, depending |
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explication of the following diagram from Austin:

placing

stating

instancing —— casting

If this analysis is correct, it seems we could say, in a bit clearer way, just
what the four speech acts are:

® In placing, one says what an object is called.
® In stating, one says what an object is.

* In instancing, one gives an example to which a given noun applies.
e In casting, one gives an example of a given type.

Let us stress once more that all four speech acts have equivalent truth condi-

tions; where they differ is in what things they are classifying and what they are
classifying these things with.

It is not clear from Austin’s account why he treats names and noun phrases
50 asymmetrically. We could use the diagram

typ(Fig)

Frig

Names — tok(Fig)
re

f

to induce a different classification W,, namely, of names by the types of Fig.

typ(Fig)

. Frig

Names —— tok(Fi
ref (Fig)
If we use this classification, two more possibilities arise, corresponding to a dif-
ferent kind of information; information about the reference of names. Perhaps
Austin used numerals for names just to avoid adding this sort of complication




i
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H

210 Lecture 17. Speech Acts

to his already complicated picture. But surely there are times when this is just
what one is after. One is thus tempted to add two more assertive speech acts,
let us call them identifying and naming.

e In identifying, one tells what kind of thing a name denotes: ¢ Fw, sense(N ).

e Innaming, one gives aname of something of agivenkind: sense(N)Fw , 1.

There is yet another induced classification C, namely, of‘ names by nouns,
given by tF¢ N if and only if ref(t) Frig sense(N ). This brings up two more
theoretical possibilities. Here the world does not really enter a_lt all, except by
the back door, so it is hard to see the point of using language in the tv)/o ways
suggested by this classification and its dual. But with ‘language use, it s.eems
that anything that is possible is realized somewhere, so it would not surprise us
to find real examples of this sort.

What are Propositions?

We have not used the notion of a proposition in this book. There are many
different things one might mean by a proposition. If one wants to develop
a theory of speech act contents, the above analysis sn.lgges.ts that one model a
proposition as atriple p = (4, a, @)}, where A is aclassification, a e tol'c(A), and
o e typ(A). Then p would be true if a E4 «. What we have seen in this lf:ct.ure
is that, with this understanding of a proposition, there can be m.any distinct
propositions associated with an utterance u, propositions‘ t‘hat are ln.lked to one
another in systematic ways and have the same truth conditions. Which of tk.xes.e
propositions should be assigned to u depends on us speech act ty;?e. This is
far from a worked out theory of speech acts and how. they would fitin a t‘heory
of information flow. But it shows, at least, that taking classifications seriously

gives one the tools to make some distinctions that nqed to be developed for such

a theory.

Lecture 18

Vagueness

A standard objection to classical logic has been its failure to come to grips with
vague predicates and their associated problems and paradoxes. An analysis of
the vague predicates “low,” “medium,”and “high” (as applied to brightness of
light bulbs) was implicit in Lecture 3. In this lecture we want to make the idea
behind this treatment more explicit, thereby suggesting an information-theoretic
line of research into vagueness. At best, this line of development would allow
the information-flow perspective to contribute to the study of vagueness. At
the very least, it should show that vagueness is not an insurmountable problem
to the perspective offered in this book.

In this lecture we explore a different family of related vague predicates,
“short,” “medium,” “tall,” “taller,” and “same height as.” This family is simple

enough to treat in some detail but complicated enough to exhibit three problems
that are typical of vague predicates.

Information Flow Between Perspectives

The first problem is that different people, with differing circumstances, often
have different standards in regard to what counts as being short or tall. In spite of
the lack of any absolute standard, though, information flow is possible between
__people using these predicates. If Jane informs me that Mary is_of medium
height while she, Jane, is short, and if I consider Jane to be tall, then I know
that I would consider Mary as tall as well. How is such reliable information

flow possible between people with quite different standards of what counts as
being tall?
The Logic of Vague Predicates

The second problem takes place within a fixed perspective. A given person
may use vague predicates and know that certain cases are indeterminate. For a
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given person on the tallish side, Judith may not ch90§e to decide whether that
person is tail or of medium height. Thus she is not willing to. grant that everyone
is either short, medium, or tall. Thus it might seem that it would be 1}ard to
reason with vague predicates, but this does not seem to.be the case. Judith, for
example, maintains that the following are unproblematic:

If x is short then x is not tall.

If x is tall and y is taller than x then y is tall.

If x is of medium height and y is tall then y is taller than x.

If x is taller than y and y is taller than z then x is taller than z.

How can one give a principled semantic account of vague predicates that re-
spects these intuitions?

The Sorites Paradox

The third problem, known as the sorites paradox, goes more (%irectly to the
heart of vagueness. One version of it, having to do with ou.r .p}'edlcates,.runs as
follows. Given the physical limits of human perceptual abilities, t[llere is some
positive number € so that if the heights of two people x and y dlffer by less
than ¢, then x and y will of necessity be judged to be the same height by any
accurate human observer. But now consider Billy, who was short but grew ta.ll
over the last year. Divide this year up into intervals #; < --+ < ty, where #; is
the start of the year and ty its end and where the intervals are chosen S(? that
Billy’s growth from #; to #;4 was less than €. Then B .illy would of neces.sny b_e
judged to be the same height at #;,) as at#; foreach i < N. But sure?y if h? is
short at #; and the same height at ;4 he is short at #;,.;. But then by induction
it follows that Billy is short at each # and so is short at the end of the year.

18.1 Height Classifications

In this section, we propose that the vague predicates under discussion have
a family of reasonable classifications, what we call “height” classifications.

Withiit this framework, we wilt addressthe three problems raised above. ———=——F -

In order to be able to express interesting constraints, let = consist of the
propositional formulas built up from

SHORT(X), MEDIUM(X), TALL(X), TALLER(X, Y), SAMEHT(X, Y),

using the usual propositional operators, where X, Y, . . . are variables in‘ some set
Var of variables. Let B be some fixed set of instantaneous physncalvobjects.. We
will usually be interested in the case where B is finite. Let A = B consist of
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all variable assignments taking values in B. We are interested in classifications

A with typ(A) = X and tok(4) = A. We will call such a classification finite if
the set B is finite.! Intuitively,

a4 TALL(X) A TALLER(Y, X)

if and only if the object a(X) assigned to X is classified as tall in A but the object
a(Y) is even taller.

Let Ht be a state space that has as tokens the elements of B. The states of
Ht consist of all nonnegative real numbers. We write 4t (b) = stateg,(b) and
call ht (b) the height of b. We take this state space to model the heights of the
objects in B using some standard unit of measurement.

Let § = Ht'’. In other words, § is the product [T,., Ht;, where I = Varis
the set of variables and H; = Ht for every i. Thus the tokens of § are functions
from Var into B. This is the set of variable assignments taking values in B,
that is, elements of A. The states are variable assignments taking values in the
nonnegative real numbers.-

We define what we mean by a height classification in terms of the notion
of a “(height) regimentation,” the idea being that any reasonable classification
using these predicates must be compatible with one or more regimentations.

Definition 18.1. A (height) regimentation consists of a 4-tupler = (e, I, I, I)
satisfying the following conditions:

1. € > Ois a real number in the set I, called the tolerance of r;

2. I, I,, and I, are mutually disjoint intervals of nonnegative real numbers
such that I; is closed upward, and I, is closed downward;

3.iffrrel,r,el,,andr, I,thenr, —r, >eandr, —r, > e.

The intervals I, I,, and I, of the regimentation r are the heights that are
considered short, medium, and tall, respectively, under this regimentation. The
tolerance of r is the least amount such that if ht(by) is more than e greater than

ht(b2), then by is considered taller than b. We allow for the possibility that

€ = 0, but we do not insist on it The following result is obvious.

Proposition 18.2. For any regimentation r, there is a unique token-identical
contravariant pair of maps f, : A 2 Evi(S) satisfying the Jollowing condition.
(Here o ranges over the states of S.)

! Although Barwise is assumes responsibility for the explorations in Part TI, he acknowledges
Seligman’s help in stressing the importance of finite classifications in response to an earlier
version of this lecture.
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f(SHORT(X)) = {0 | 0(X) € I}
fr(MEDIUM(X)) = {0 | 0(X) € In}
f(TALLX)) = {0 | 0(X) € I}
f(TALLER(X,Y)) = {0 | o (X) —o(Y) > €}
f-(SAMEHT(X,Y)) = {0 | |6 (X) — o (V)| <€}
frlon )= fr@N ()

. eV = f @ U f,(¥)

. fr(_'(P) = _fr(c/’)

Moreover, distinct regimentations give rise to distinct contravariant pairs.

o NS LA W N~

Definition 18.3. A classification A with types and tokens as above is a height
classification if there exists a regimentation r such that f, : A& Evt(S) is an
infomorphism. In this case, we say that r is a regimentation of A.

We suggest that height classifications and their associated logics are good
models of the way we use the vague predicates in question.

The first thing to notice is that a height classification classifies things accord-

ing to their heights in the following precise sense. For variable assignments
ay, az € A, define a; = a; if for each variable X, ht(a; (X)) = ht(a2(X)).

Proposition 18.4. If a| = a, then a; and ay are indistinguishable in every
height classification. If a is an assignment assigning individuals of the same
height to the variables X and Y, then

aF4 SHORT(X) iff aF4 SHORT(Y)

for every height classification A, and with parallel biconditionals for the other
predicates.

In order for A to be a height classification, it must have at least one regimen-
tation. But importantly, it will typically have many different regimentations.
For example, we have the following proposition.
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This result shows that we do not need to assume a specific regimentation
in order to have a height classification. Rather, we can think of there being

a nonempty class of regimentations implicit in any height classification. The
same proof shows the following corollary.

Corollary 18.6. Every finite height classification has a regimentation with tole-
rance € > 0.

18.2 Information Flow

We can now address the first problem mentioned, that of information fow
between different height classifications. Suppose A; and A, are both height
classifications over our fixed set B of tokens. Although A, and A, may well
show disagreement on how different objects are classified, there will typically
be information flow between them because they are related by a channel as
depicted below. Here ry and r, are any regimentations of A; and A,.

Evi(S)

1 Ay

Just exactly what information flow exists between A1 and A; will depend on the
properties of the channel, hence on what regimentations are compatible with
each of the classifications. But no matter what regimentations are used it is
easy to see the following (where we write A — B for —A V B as usual):

f1 (SHORT(X) A MEDIUM(Y)) FLog(s) f2(TALL(X) — TALL(Y)).

Consequently, a =4, SHORT(X) A MEDIUM(Y) carries the information that a Fa,
TALL(X).—> TALL(Y).-Hence —— ...

“ Pmposmon 18 5 Let A be a hetght classzﬁcazzon If A is finite, then A has

uncountably many distinct regimentations.

Proof. Given an interval I of real numbers and finitely many distinct real ’num—
bers Ay, . .., hy, there are uncountably many intervals I such that h; e. I if and
only if h; € I’, foreach i = 1,...,n. From this it follows that given ar?y
regimentation r, we can adjust the lpwer endpoint of the up;?er range of /; in
uncountably many ways and end up with the same classification. m]

akF4, SHORT(X) A MEDIUM(Y) and a F4, TALL(X)

carry the information that

a E4, TALL(Y).

This is just one of infinitely many examples that could be given.
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18.3 An Intensional Logic

What logic should we consider to be “given” with the height classification A?
One possibility, of course, is to take Log(A); this is sound and complete. This
logic is a kind of extensionally given logic, extensional in that its constraints
are entirely determined by the extensions of the types of A, regardless of what
they mean.

A second possibility, one that is more intensional, is to take Log(4) =
£ {Log(8)] for some particular regimentation r. By calling Log?(A) “inten-
sional,” we mean that the constraints of Log; (A) are determined by the meaning
of the types rather than by what their extension in A happens to be. This logic
is also sound, being the inverse image of a sound logic under a token surjective
infomorphism.

As we have seen, however, there are typically infinitely many different reg-
imentations compatible with a given height classification. A particular regi-
mentation r may well have properties that result in some constraints holding in
Log;(A) that would not hold in some other Log..(A). A more canonical choice
is to take the meet (i.e., greatest lower bound) of these logics.

Definition 18.7. Let A be a height classification. The extensional height logic
of A is just Log(A). The intensional logic of Ais

Log°(A) =[ | {LogZ(A) | r a regimentation of Al

We write -3 for the consequence relation of Log®(A). Being the meet of sound
logics, this logic is also sound.

Proposition 18.8. Forany height classification A, the following are constraints
of Log®(A). (Because Log°(A) T Log(A), they are a fortiori constraints of the
latter.)

SHORT(X) F§ —TALL(X)
. TALL(X), TALLER(Y, X) b3 TALL(Y)
MEDIUM(X), TALL(Y) F§ TALLER(Y, X)
TALLER(X, Y) A TALLER(Y, Z) t-3 TALLER(X, Z)

Proof. Each of these is easily verified to hold in each Log®(A), hence in their
meet Log°®(4). u}

The constraints listed in the above propositions are, of course, just a small,
representative sample. More interestingly, let us turn to some of the differences
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between the intensional and extensional logics. We call a height classification

A determinate if each object b is classified as one of short, medium, or tall
inA. ,

Proposition 18.9. Let A be a height classification.
1. If A is determinate, then

4 SHORT(X) V MEDIUM(X) V TALL(X).

2. IfA is finite, then
¥ SHORT(X) V MEDIUM(X) V TALL(X).

Proof. Here (1) is practically a restatement of the definition of determinate.
For (2), we note that if A is finite, then it will always have a regimentation r of
A where the intervals of the regimentation do not exhaust the nonnegative real

numbers. Then f, (SHORT(X) V MEDIUM(X) V TALL(X)) does not exhaust the set
of states so

FLog2(4)SHORT(X) V MEDIUM(X) V TALL(X).

But Log®(4) C Log?(A4), so the result follows. ]

Corollary 18.10. IfA isfinite and determinate, then the logic Log® (A) is strictly
weaker than the logic Log(A).

This proposition gives a rigorous form to the intuition that even if it happens
to be the case that everything we are classifying is clearly one of the three

sizes, short, medium, or tall, there could have been borderline cases too close
to call. B

18.4 The Sorites Paradox

We now turn to the third and final problem about vague predicates raised earlier,

the sor.ites para'dox. We start with a divergence between the intensional and
extet?sufnal logics that is clearly relevant to this paradox. Call a classification A
precise if a4 SAMEHT(X,Y) implies ht (a(X)) = ht(a(Y)), foralla € A. (The

converse is automatic.) It is clear that A is precise if it has a regimentation with
zero tolerance. : ‘

Proposition 18.11. Let A be a height assignment.
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1. IfA is precise, then

SAMEHT(X, Y) A SAMEHT(Y, Z) -4 SAMEHT(X, Z).

2. IfA is finite, then

SAMEHT(X, Y) A SAMEHT(Y, Z) ¥ SAMEHT(X, Z).

Proof. The proof of (1) is clear. To prove (2), note that because A is finite,
it has a regimentation r with tolerance € > 0 by Corollary 18.6. Let o bfa any
state with o (Y) =0 (X) + .6¢ and o(Z) =0 (Y) + .6e. Such stjates will be
in f, of the left-hand side but not in f, of the right-hand side because
c(@)—oX)=12€ > €. O

The relationship to the sorites paradox should be evident. The intensi(.)nal
logic does not provide us with the constraint telling us that.bemg the. same height
is transitive, even if our classification happens to be precise. (Not1f:e that thejre
will be many imprecise height classifications A that also have this constraint
in their extensional logic.) Let us make the connection with the paradox more
transparent by means of the following result.

Theorem 18.12. Let A be a height classification.
1. IfA is precise, then for all integers N > 2:
SHORT(X)) A SAMEHT(X{, X2) A - - - A SAMEHT(Xy—1, Xn) Fa SHORT(Xw),

and so

SHORT(X;) A SAMEHT(X}, X2) A - - - A SAMEHT(Xy—1, Xn) F4 —TALL(Xy).

2. Whether or not A is precise, if it is finite then for sufficiently large inte-

gers N,

SHORT(X{) A SAMEHT (X}, X2) A - -+ A SAMEHT(Xy_1, Xn) ¥4 “TALL(Xn)

Proof. Again, the first statement is trivial. For the second, pick.a regimentation
r of A with tolerance € > 0and I, nonempty. Let K be the least integer such that
Ke/2 e I,; such a K mustexist because I, is nonempty and closed upward. Let
o be any state satisfying the following: o (x)) =€/2and o (X;4+1) =0 (X;) +€/2
forevery i. Then

o(Xy) =Ne/2 2 Ke/2
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forevery N > K. Hence o (Xy) € I, because K ¢ /2 € Iy and I, is closed upward.
Consequently, o is in the translation via f, of the type on the left of the sequent
but not of the type on the right. o

Definition 18.13. Let A be a height classification. The sorites number of a
regimentation r is the least integer N such that

SHORT(X) A SAMEHT(X1, X2) A - - - A SAMEHT(Xy—1, Xy) A TALL(Xy)

is consistent in Log;(A), if it exists. The sorites number of A is the least N
such that the above is consistent in Log®(A), if it exists.

The theorem says every finite classification has a sorites number. (We show
how to calculate this number in Exercise 18.5 .) What this means is that it would
be entirely possible to have a chain of individuals, by, ..., by, where N is the
sorites number of A, such that b, is classified as short, each b; is classified as
being the same height as b;,y, for i < N, and yet for by to be tall, even if this
does not happen in the classification A.

Let us go back and analyze the argument in the sorites paradox. The first
step is to assert there is a number € > 0 so that the sequent

SHORT(X) A SAMEHT(X,Y) SHORT(Y)

holds of all tokens a with |Af(a(X)) ~ ht(a(Y))| < €. This is possible as
long as the height classification A is finite (and for many infinite classifica-
tions as well). But the conclusion of the argument deals not just with this
classification but with what would happen if we were to use the fixed regi-
mentation and add N new tokens to the classification, where N is the sorites
number of A. This would result in a different classification and in that classifi-

cation the above sequent would fail to hold for many tokens a with |kt (a(X))
—ht(a(Y))| <e.

" 777 "Non-Archimedian Regimentations =~
We have required that our regimentations live in the field of real numbers. An
alternative suggestion would allow them to live in non-Archimedian fields, like
the fields of nonstandard real numbers. One could then allow the tolerance to
be infinitesimal, and sorites numbers could be infinite. This goes along with

the discovery in recent years that nonstandard analysis often gives an elegant
way to model the differences between the very small and the very large.




220

18.1.

18.2.
18.3.
18.4.

18.5.

Lecture 18. Vagueness

Exercises

Is it consistent with the framework presented here for a short office
building be taller than a tall person? _ .

The exercises below all assume the following setup. In a s.lxth
grade gym class having twenty students, the coach has classified
students by height before dividing them up into basketball te@s SO
that she can put the same number of short, medium, and tall g.lrls, 0;1
each of the four teams. The shortest student is 3’8", the tallest is 5’6",
and the smallest difference in heights between students of different
heights is .25”. The coach classified all the girls less Fhan four feet
tall as short, those five feet or over as tall, and those in betwec?n‘ as
medium height. The coach used measuring tools that have a precision
of .1".

Assuming a unit of measure of 1”, describe a regimentation of A.
Is the classification determinate? Is it precise?
Give an upper bound for the sorites number of A.

Determine the sorites numbers exact value assuming that the sk%orte‘st
girl of medium height is 4'1” and the tallest girl of medium height is
4'10.5".

Lecture 19

Commonsense Reasoning

Among the problems that have beset the field of artificial intelligence, or Al,
two have a particularly logical flavor. One is the problem of nonmonotonicity
referred to in Part I. The other is the so-called frame problem. In this lecture,
we suggest that ideas from the theory presented here, combined with ideas and

techniques routinely used in state-space modeling in the sciences, suggest a
new approach to these problems.

Nonmeonotonicity

The rule of Weakening implies what is often called monotonicity:

IfC'+ AthenT,a - A.

The problem of nonmonotonicity, we recall, has to do with cases where one is
disinclined to accept a constraint of the form I, o - A even though one accepts

as a constraint I' = A. The following is an example we will discuss in this
lecture.

Example 19.1. Judith has a certain commonsense understanding of her home’s

keep her house warm. Her understanding gives rise to inferences like the
following.

(a1) The thermostat is set betweeh sixty-five and seventy degrees.
(ar2) The room temperature is fifty-eight degrees.
~ (B) Hot air is coming out of the vents.

It seems that &, ; - B is a constraint that Judith uses quite regularly and
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~ heating system = the furnace, thermostat, vents; and the way they functionto ~~
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unproblematically in reasoning about her heating system. However, during a
recent blizzard she was forced to add the premise

(or3) The power is off.

Monotonicity (Weakening) seems to fail, because surely
oy, 0, d}y ﬁ
In fact, we would expect Judith to realize that

ay, a2, 03 B —p.

The problem of nonmonotonicity has been a major area of research 'in Al
since the late 1970s. Because nonmonotonicity clearly violates the clas.smally
valid law of Weakening, a property of all local logics, the problem might be
seen as a major one for our account. It seems, though, to be closely }'elatfcd
to a problem we have already addressed in this book,‘ that' O.f éccoummg 01;
exceptions to lawlike regularities. This suggests that implicit in our afcounf
of exceptionality is some sort of proposal about how' to solv'? the prob ejm. o
nonmonotonicity. In this lecture, we propose a solution that m\‘/ol.ves shifting
between local logics, which is, as we have seen, equivalent to shifting between
information channels.

The Frame Problem

The “frame” problem has to do with inferring the consequences of a change in
a system. We can get a feeling for the problem by means of an example.

Example 19.2. Suppose the temperature at Judith’s thermostat is sAeventg/-tw.o
degrees and the thermostat is set at sixty-eight degrees. Thus there is no ?t fe‘ur
coming out. Now the temperature drops to sixty-five degrees. We wa}nt toin <‘er
that the furnace comes on and hot air comes out of the vents. The difficulty in
obtaining this inference stems from the fact that one cflange (the temperature
____dropping) produces other changes, like the furnace coming on, but leaves many
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it is not feasible to state an explicit axiom that says that a drop in the room’s

temperature does not cause the furnace to explode or the stock market to crash,
and so on.

19.1 The Dimension of a State Space

In Lecture 1, we reviewed the standard scientific practice of treating the state
of any system as determined by the values taken on by various attributes, the
so-called observables of the system. These values are typically taken to be
measurable quantities and so take on values in the set R of real numbers. Con-
sequently, the total state of the system is modeled by a vectoro & R” for some 7,
the “dimension” of the state space. We saw in Lecture § that projections, the nat-
ural morphisms that go with state spaces, are covariant and that, consequently,
products play the information-theoretic role in state spaces that sums play in
classifications. This shows that the traditional use of product spaces as the set
of possible states of a system goes with the turf — it is not an accident of history.

Definition 19.3. A real-valued state space is a state space S such that Q C R,
for some natural number n, called the dimension of the space.! The setn =
{0,1,...,n — 1} is called the set of observables and the projection function
7;(0) = oy, the ith coordinate of o, is called the ith observation Sunction of
the system. If o is the state of 5, then o; is called the value of the ith observable
on s. We assume that the set of observables is partitioned into two sets:

Observables = J U O,

where J is the set of input observables and O is the set of output observables.
Each output observable o € O is assumed to be of the form

O = Fo(gj)

for some function F, of the input observables & .

other things unaffected. For example, the temperature dropping does not cause
the thermostat setting to drop. If it did, the heat would not come on after all.

People are reasonably good at inferring the immediate conseql.lences ?f
basic actions, what other things will change, and how, and vsfhat V\?ll reme.nn
unaffected. In trying to model this sort of inference using ‘axxomauc.th.eom?s
and logical inference, Al researchers have found it very difficult to mimic this
performance. The problem is not so much in stating what other (fhanges f.ollow
from some basic action, like a drop in the temperature. The difficulty is that

ST PN 3

We are taﬁght t(i)itrhiir'lk'of thé world as being three or four dimensional, but sci-
entific practice shows this to be a vast oversimplification. The spatial-temporal

! An interesting and useful introduction to real-valued state spaces can be found in the first chapter
of Casti (1992). It is worth distinguishing two decisions implicit in the definition of a real-valued
state space. One is to be cognizant of the product structure of the set of states of the system. The
other is to restrict to those observables whose values are determined by magnitude, and so nicely
modeled by real numbers. For the purposes of this lecture, the first decision is the important one.
At the cost of being a bit more wordy, we could generalize everything we do here to a setting
where we allowed each observable i to take values in a set Vi. This would probably be important
in areas like linguistics where the structure of the state has much more to it than mere magnitude.
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location of an object is a region in four-space, but its total state typically has
more degrees of freedom. We saw, for example, that the Newtonian stat.e of a
system consisting of n bodies is classically modeled by a state space of dn.nen-
sion 6n. In Lecture 3, we modeled the light circuit with a four-dimensional
state space, completely setting aside issues of time and space. We then mod-
eled actions on the light circuit with an eight-dimensional state space. Hfare
we suggest ways of exploiting the dimensionality of state spaces for addressing
nonmonotonicity and the frame problem.

Example 19.4. We use Judith’s heating system as a running example ax.ld. S0
start by building a real-valued state space Sns of dimension .7 for descnbmg
this system. For tokens, take some set of objects without additional mathemz‘m-
cal structure. Intuitively, these are to be instances of Judith’s complete heating
system at various times, including the vents, the thermostat, the furnace, the
ambient air in the room where the thermostat is located, and so forth. We
assume that each state is determined by a combination of the following seven
“observables” of the system:

Thermostat setting: some real oy between 55 and 80;

Room temperature: (in Fahrenheit) a real o, between 20 and 1 10;
Power: o3 = 1 (on) or 0 (off);

Exhaust vents: o4 = 0 (blocked) or 1 (clear);

Operating condition: g5 = —1 (cooling), 0 (off), or 1 (heating);
Running: c¢ = 1 (on) or 0 (not on);

Output air temperature: a real o7 between 20 and 110.

7
Thus for states we let Q be the set of vectors B = {oy,...,07) € R'. Wetake
o1, ..., 0s as inputs and o and g7 as outputs. We restrict the states to those

satisfying the following equations:
o6 = pos(os - 58(01 — 02)) - 03 * 04

55 if0'5 c 0 = -1
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We let S consist of these tokens and states, with some total function state
mapping the tokens into the states.

The types used in our nonmonotonicity example are represented in
Evt(Sks) by

(xk={G€Qh:l65§O’1§70}

ay = {0 € Qs | 02 = 58}

a3 = {o € Qs | 03 =0}

B = {o € Qs | 06 = 12and o7 > 0r}.

It is usually assumed that the input observables are independent in that the
observer can vary the inputs independently. This amounts to the following
requirement: if o is some state, i € J is some input observable, and r is a value
of o for some state o, then there is a state ¢” such that o}’ = r and 0} = 0;
for all j # i. One might think of this as a precondition as to what it would
mean for an observable to be an input to the system.

This assumption is clearly related to the frame problem. When we make a
change to a system, we typically change one of the inputs, with concommitant
changes in output observables; we do not expect a change in one input to
produce a change in any other inputs. We will make this idea more explicit later
in the lecture. We will not assume that the input observables are independent,
preferring to state explicitly where the assumption plays a role in our proposals.

When working with a state-space model, it is customary to partition the
inputs into two, J = I U P. The input observables in I are called the explicit
inputs of the system and those in P the parameters of the system. Intuitively,
the parameters are those inputs that are held fixed in any given computation
or discussion. We will not make a permanent division into explicit inputs and

parameters, but will instead build it into our notion of a background condition
in the next section.

Example 19.5. In our heating system example Sy;, it is natural to take to take
o1, 07 as explicit inputs, and 03, 04, and o5 as parameters. The inputs are clearly

o7 =14 80 ifos-os=+1"
oy otherwise,

where
+1 ifr=2
sg(r) =4 0 ifirj<2
-1 ifr<-2
(1 ifr>0
1""‘(’)={0 ifr <0.

independent.

19.2 Nonmonotonicity

The proposal made here was inspired by the following claim:

“...error or surprise always involves a discrepancy between the objects [tokens] open to
interaction and the abstractions [states] closed to those same interactions. In principle,
the remedy for closing this gap is equally clear: augment the description by including
more observables to account for the unmodeled interactions (Casti, 1992, p. 25).”
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