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those states. Another way to put it is that the following theory is implicit in the
use of a state-space model.

Definition 9.27. The regular theory Th(S) associated with a state space S has
the same types as Evt(S), that s, arbitrary sets X, Y, . . . of states of S, interpreted
disjunctively. The theory is given by

Fems A iff (| A

Justification. We need to check that this theory is regular. It suffices to show
that it satisfies Partition because it clearly satisfies Weakening. Suppose that
FPmes A andlet o e (N — JA). Let IV = {X Ctyp(S) | o € X} and
A" = {X C typ(S)o| € X}. Then (I'", A’} is a partition, (I', A) < (I, A",
and r"}‘ms) A a

9.4 Theory Interpretations

Just as classifications have infomorphisms and state spaces have projec-
tions, theories have their notion of map or morphism. We call it “theory inter-
pretation.”

Given a theory T, we write typ(T') for its set of types and r for its conse-
quence relation.

Definition 9.28. A (regular theory) interpretation f :T\ — T, is a function
from typ(77) to typ(77) such that foreach I, A C typ(T})

if T Fr, A, then f[T]br, AL

The following is sometimes useful for checking that a function is a theory
interpretation. ‘

9.5. Representing Regular Theories 129

Definition 9.30. Given an infomorphism f :A = B, we define
Th(f): Th(A) — Th(B)

to be the interpretation given by Th(f)(x) = f ().

Justification. In other words, Th(f) just forgets the action of f on tokens. If
b is a counterexample to {f[I'], f[A]) in B, then f(b) is a counterexample
to (', A) in A. So, taking contrapositives, I' -4 A entails fIr] Fg fUlA]l
Hence Th(f) is a interpretation. 0

There is a similar operation that turns any state-space projection into a theory

interpretation of the corresponding theories. Notice, however, the reversal of
arrows.

Definition 9.31. Given a state-space projection f : §; =2 S,, let
Th(f) : Th(S2) - Th(S;)

be the interpretation defined by
Th(/)(X) =

for each set X of states of S,.

X

Justification. We need to verify thatif £ : S, =S, isa projection, then Th(f) :

Th(Sz) — Th(S)) is an interpretation. Assume that I'; Fnes,) Az Let Dy =
{f~YX)| X € I';} and define A, similarly. We need to prove that Iy b))
A . Assume that this is not the case. Then thereisa o, € (Nri—-yay. But
then f(o1) € (M2 — J Ay), contradicting I', FThesy) Aa- u]

9.5 Representing Regular Theories

We have seen how any classification A gives rise to a regular theory Th(A).
This theory is, of course, very dependent on just what tokens are present in

Proposmon 9 29 leen regular theorzes Tx and Tz, a ﬁmctwn f: typ(Tl) —
typ(Z3) is an interpretation if and only if for every consistent partition (I'', A')
of Tr, (f~'[IM1, £~1[A")) is consistent in T;.

Proof. The routine proof is left as Exercise 9.11. u|

Let us see how theory interpretations arise from infomorphisms and from
state-space projections.

the classification A. The following result shows that any regular theory can be
seen as the theory arising from some classification. (We also establish the anal-

ogous result for theory interpretations, that they all arise from infomorphisms
of classifications.)

Definition 9.32.

1. Given a regular theory 7, the classification Cla(T’) generated by T is the
classification whose




[
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(a) tokens are the consistent partitions (I", A) of typ(T),

(b) types are the types of T, such that

() (T, A) Eciaqry @ if and only if @ € T (equivalently, if and only ifa & A).
2. Given an interpretation f: T — T’, we define an infomorphism

Cla(f): Cla(T) = Cla(T")

by

(a) Cla(f) (@) = f(a) for e € typ(T), and

(b) Cla(f)y (T, A)) = (f~'[T'1, f~'{A)) for any token (T, A) of Cla(T").

Justification. We need to verify that Cla(f) : Cla(T') & Cla(7") and that it is an
infomorphism. If (', A) is a token of Cla(7"), then it is a consistent partition
of typ(T"). But then (f~!(I'], f![A]) is a partition of typ(T'); it is consistent
because f is an interpretation. Hence (f~'[T'], f~'[A]) is a token of Cla(T),
as desired. To see that Cla(f) is an infomorphism, we need to verify that
(T, A) Eciaery f (@) if and only if { £ ~![T'], f~'[A]) Eclacr) @. But this is clear
because the former is equivalent to f(a) € I' and the latter is equivalent to
ae fUrl. O

Theorem 9.33 (Representation Theorem). For any regular theory T, T =
Th(Cla(T)). Similarly, for any interpretation f, f = Th(Cla(f)).

Proof. Clearly both regular theories have the same set of types. Suppose
I" 7 A. We need to see that this is satisfied by every token in Cla(T). Suchato-
ken is a partition (I, A’) of typ(T') such that " ¥+ A’. Suppose token (I'", A')
does not satisfy sequent ([, A). Then ' € I” but ANT' = @. But then
(T, A) < (I'", A’) because the latter is a partition, but this contradicts Weaken-
ing. For the converse, suppose IV ¥ A’. Then by Partition there is a partition
(I, A"y of typ(T) extending (I, A) such that I"¥r A’. But then (I'", A} is a

" counterexample to {I", A) in Cla(T’). The second statement is similar. - o

The following is an immediate consequence of this representation theorem.

“~The first sentence of itis-equivalent to a theorem proved in-Chapter 6-of Dunn--

and Hardegree’s (1993) manuscript.

Corollary 9.34 (Abstract Completeness Theorem). Every regular theory is
Th(A) for some classification A. Every interpretation is Th(f) for some info-
morphism f.

We now investigate a related question: Which classifications are isomor-
phic to those arising from regular theories? It turns out that only very special
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classifications are of this form, namely, those that are separated, that is, have
no indistinguishable tokens.

' Recall the definition of the separated quotient Sep(A) of a classification A
givenin Example 5.12. It is obtained by keeping all types of A while identifying
tokens that are indistinguishable from one another.

Proposition 9.35. Forany classificationA, Sep(A) is isomorphic to Cla(Th(4A)).

Proof. The isomorphism is the type identical infomorphism that maps the in-
distinguishability class of each token to its state description. O

Corollary 9.36. A classification A is isomorphic to Cla(T) Jfor some regular
theory T if and only if A is separated.

Proof. The direction from left to right is immediate from Proposition 9.35.
For the converse, suppose A is separated. Let T =Th(A). Then by

Proposition 9.35, Cla(T) is isomorphic to Sep(A), that is, isomorphic to A
if A is separated. ]

Exercises

9.11. Prove Proposition 9.29.

9.12. Show that a regular theory T is algebraic if and only if Cla(T) is
extensional.

9.13. (1) Show that the sum of regular theories is the coproduct in the
category of regular theories and interpretations.

- 9,14; -+ Prove that

Cla(T + T') = Cla(T) + Cla(T").

(The sum of theories is defined in 10.1)

9.15. (T)' Let f:T — Th(A) be an interpretation. Show that there is a
unique infomorphism f*: Cla(T) = A such that f = Th(f*). This
shows that the functor Cla is the left adjoint of the functor Th, with
the identity as the unit of the adjunction. Because functors that are

left adjoints are known to preserve colimits, this result can be viewed
as a generalization of Exercise 9.14.
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Operations on Theories

All of the operations on classifications defined earlier have counterparts on local
logics. With an eye toward defining these operations, we first explain how the
operations work on theories.

10.1 Sums of Theories

Definition 10.1. The sum T + T’ of regular theories T and 7" is the regular
theory whose types are the disjoint union of typ(T) and typ(T’) and whose
consequence relation is such that for 'y, Ay Ctyp(T)and 'y, A2 & typ(T"),

Ty, Tobrar A By iff Tibr Ay or Dok Ag.

Justification. We need to check that this theory is regular. To simplify notation,
let’s assume the types of T and T are disjoint. Identity and Weakening are
clear. We check Partition, or rather, its contrapositive. Suppose I't, Ay &
typ(T) and I'z, A, < typ(T”), and that Ty, To¥rar Ay, Az. We want to show
" there is a partition (I", A) of the disjoint union of typ(T) and typ(T") extending
(Fl U Fz, Al U Az) such that l"}‘“_p A. By the definition of |"1'+T', Flyr Al
__and ', ¥+ A,. Hence, by Partition for each of the theories T and T”, there are
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The sum of theories is a rather trivial operation. For example, if T} is a
theory of flashlight switches and T3 is a theory of flashlight bulbs, then 7 + T
is a theory of both but without any interactions because there would be nc2>
constraints in this theory relating bulbs and switches in any nontrivial manner.

Proposition 10.3. Given classifications A and B,
Th(A + B) = Th(A) + Th(B).

P‘roof. Without loss of generality we assume the types of the classifications are
disjoint. Let 7 = Th(A + B), and let 7’ = Th(A) + Th(B). It is immediate
that every constraint of T’ is a constraint of T. To go the other direction, we
prove the contrapositive. Suppose that TFp A, Let Ty = ' N typ(A)’and
define A4, I'p, and Ag similarly. Then 'y ¥y A and g Fm@y Ap. Hence
gxere;h are counterexamples to these sequents, say a € tok(A) and b ¢ tok(B)
ut then (a, b} € tok(A + B) andisac in
PO g ' ) ounterexample to the sequent (T, A) 1;1

10.2 A Partial Order on Theories

Definition 10.4. Let X be fixed. A natural partial order on regular theories on

Efis defined by T} C T; if and only if each constraint of 1, is also a constraint
o |“T2 . ’

This 'can also be expressed by saying that the inclusion map typ(T;) <
typ(T3) is a theory interpretation. B

Proposition 10.5. Let Ti and T, be regular theories on X. The least upper
bound of T\ and T; is the theory (I, V), where V- is the smallest regular con-
sequence relation containing t-1, and ‘-r, . The greatest lower bound of T,
and T, in the T-order is the theory (X, ) such that l

partitions ('}, A}) of typ(T) and extending (T's, A,) and a partition {I'}, A%)
of typ(T”) and extending (I'2, Az) such that T ¥ A and [, ¥7- Ay. Butthen
(I} U T, A} U Aj) is a consistent partition of the sum that extends the original
sequent. o
Proposition 10.2. The functions ot : T — T + T and o : T'— T + T’ that
take types to their copies in the disjoint union are both interpretations.

Proof. The proof is obvious. a.
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A iff Thr, A and T g A
Proof. The proof is straightforward. a]

. We write the least upper bound of T and T, as T; U 75, and also call this the
join of T and T5. ‘

The existence of least upper bounds and greatest lower bounds generalizes
to show that the set of theories on a fixed set £ of types is a complete lattice.

e f
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10.3 Quotients of Theories

The operation on theories corresponding to quotients of classifications is that
of restriction.

Definition 10.6. Let T be a theory on a set T of types and let o S ¥. Then
T [ Xg is the theory on Lo whose consequence relation is that of T restricted to
2p-sequents. )

We leave the following proposition to the reader to check. It is entirely
routine.

Proposition 10.7. Let T be a theory on a set ¥ of types and let Tp € X.

1. If T is regular, so is T | Zo.
2. TIXy is the largest theory on X such that the identity map of Lo info T is

a theory interpretation.
3. If T = Th(A), then T|Zo = Th(A[X0).

Corresponding to dual invariants on classifications, we have the following
operation on theories.

Definition 10.8. Let T = (X, ) be a theory and let R be a binary relation

on X. The (dual) quotient of T by R, written T/R, is the theory defined as
follows. Its setof types is the set £ /R of equivalence classes [a]g fora € . Its
consistent partitions are those partitions (I, A"y of /R such that the following
is T-consistent: A

feeT|lelrelL{BellBlre A'Y).
Justification. We are usi;ig here the fact that we can specify a regular theory by
specifying its set of consistent partitions. n]

Examplé 10.9. Let T bea theory with types @, By, B2, v and suppose o by fy ————4= ==

and B, 1 y. If B1RBy, then in the theory T/R we will have [elz F [¥]k-
(Prove this.)

Example 10.10. Given aregular theory T, leta RB if and only ifa -7 B. Then
[¢]z = [B]r if and only ifabr Band B +r o. The quotient T/R is called
the Lindenbaum theory associated with T and is written Lind(T). This theory
identifies types that are equivalent in T. Tt is an algebraic theory (in the sense
of Exercise 9.2).

Vil r o
——
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We leave the following result as an exercise for the reader, because its parts
are very similar to (and simpler than) things we have done earlier.

Proposition 10.11. Let T = (X, ) be a theory on a set X of types and let R
be a binary relation on X.

1. The theory T /R is the least regular theory on /R such that the function
o +> [a]g is a theory interpretation.

2. If J = ({typ(A), R) is a dual invariant on A and T = Th(A), then T/R =

Th(A/J).

Let f:T — T’ be a theory interpretation that respects R in the sense that

f(@) = f(B) whenever a RB. There is a unique theory interpretation

f":T/R—> T’ suchthat f(a) = f'(Ielg) foreacha € X.

Exercises

10.1. Let A and B be classifications. We say that A is an informational
subclassification of B, written A C B, if typ(4) C typ(B), tok(B) C
.Fok(A), and the classification relations agree on the types and token_s
in common to both. '
1. Prove thatif A T B, then Th(4) = Th(B).
2. Does the converse of (1) hold?

10.4 Moving Theories

A major theme of this book is the idea of reasoning at a distance, that is, using a
theory of one or more parts of a distributed system to reason about other parts.

'.l“his was foreshadowed by our discussion of the rules of f-Intro and f-Elim
in Lecture 2. We turn to these rules now, beginning with f-Elim.

Definition 10.12. Let 7' = (¥’, 7} be a regular theoryand let f: £ — ¥'.

The inverse image of T' under f, written f~1[T"], is the theory with types
and consequence relation given by

THA iff f[T]kp fIAL

Proposition 10.13. Let T' = (X', 1) be a regular theory and let f : £ — %/
be a function. Let T be the inverse image of T' under f. Then T is a regular

theory. Indeed, it is the largest regular theory on T such that f : T — T' is an
interpretation. ‘ ’

Proof. LetT = (X, }). We first show that |- satisfies Weakening and Partition.
The former is obvious. To prove the latter, suppose I', A C typ(T) and T ¥ A.
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We need to show that there is a partition (['”, A"} = (T, A) such that " ¥ A",
By the definition of I-, f[T']¥r f[A]. Hence, by Partition in 7', there is a
partition (I, A’) = ('], fIA]) such that T'¥¢ A/, LetT" = £~} and
A" = f~YA'] Itis clear that (I'”, A"} is a partition, that (I'", A”) > (T, A),
and that T ¥ A”. Ttis clear that this is the largest theory that makes f: T — T’
an interpretation. ‘ m]

Images of theories under maps are introduced similarly, but the definition is
complicated by the absence of a result analogous to Proposition 10.13. Given
a function f : typ(T) — X', there is no guarantee that the consequence relation
on T’ defined by ‘

A it U £7AY)

is regular. For example, if @ € &’ is a type outside the range of f, then this
definition would have o ¥ . What we want is the smallest regular consequence
relation containing the one just defined. Another way to get at the same thing
is as follows.

Definition 10.14. Let 7' = (X, 7 ) be a regular theory and let f: ¥ — ¥}
we define the image of T under f, f[T] as follows. Its types are the elements
of X’. The theory is given by specifying its consistent partitions as follows:
a partition (I", A) of X' is f[T]-consistent if and only if (f~'ry, FUAD is
T-consistent.

Proposition 10.15. Let T be a regular theory and let f :typ(T) — X'. f[T]
is the smallest regular theory T' on X' such that f :typ{T) — T' is an inter-
pretation.

" Proof. Let T’ be any regular theory on £’ such that f : typ(T) — T" isan inter-
pretation. Assume I b g7} A’. We need to prove I -+ A’. By Partition, it
suffices to prove I' ¢ A” forevery partition {I'”, A”) extending (I”/, A'). Fix

such a partitior. By Weakening; we have I'” + 477 A”. Hence, by the definition
of fIT], f~'{I"1+r f~'[A"]. Because f :typ(T)— T is an interpretation,
FUFHD N B FLFHAL But fIF7' T S T and fIfTHA] € A7,
so we get the desired T 7+ A” by Weakening. o

10.5 Families of Theories

Science develops partial theories about different phenomena, with the hope
that these theories will one day be part of, or interpretable in, some grand,

10.5. Families of Theories 137

unified theory of everything. In the introduction, we raised the question of how
theories fit together. In this section we apply our earlier results to show that
there is a sense in which it is always possible to put them together in an optimal

manner, as long as the theories are regular. (Every theory has a regular closure,
of course.)

Definition 10.16. A family of theories T consists of an indexed family th(7) =

{T}ies of regular theories together with a set inter(7") of interpretations, all of

which have both domain and codomain in the family th(7).
Using some of the results obtained earlier, we can prove the following.

Theorem 10.17. Every family T of theories has a “limit,” that is a weakest
regular theory in which each T; can be interpreted so as to respect whatever
interpretations f : T; — T; are present in the family. This theory is unique up
to theory isomorphism.

It turns out to be easier to prove the theorem than to state the definitions
needed to make it precise. Because we will not be using the result in what
follows, we simply sketch the proof of the result, leaving it to the reader to fill
in the details.

Given the family 7 of regular theories, we use the operation Cla to turn it
into a distributed system. The classifications of the system consist of those
classifications of the form Cla(T;) for T; € th(7). The infomorphisms of
the distributed system consist of the infomorphisms of the form Cla(f) for
f € inter(7). As we have seen, f:T; — T; is an interpretation if and only
if Cla(f) :Cla(T;) =2 Cla(7;) is an infomorphism, so this turns our family of
theories into a distributed system. The limit of this system consists of a classifi-
cation C and infomorphisms g; : Cla(T;) = C. The limit of our family consists
of the theory Th(C), together with the interpretations Th(g;) fori € I.



Lecture 11

~——Th(~A)of its two-power-classifications:

Boolean Operations and Theories

In Lecture 7 we discussed the relationship between classifications and the
Boolean operations. In this lecture, we study the corresponding relationship
for theories. In particular, we discuss Boolean operations that take theories to
theories, as well as what it would mean for operations to be Boolean operations
in the context of a particular theory. In this way, we begin to see how the tradi-
tional rules of inference emerge from an informational perspective. The topic is
a natural one but it is not central to the main development so this lecture could

be skipped.

11.1 Boolean Operations on Theories

Given a regular theory T = (X, ), one may define a consequence relation on
the set pow(XZ) of subsets of X in one of two natural ways, depending on
whether one thinks of the sets of types disjunctively or conjunctively. This
produces two new theories, VT and AT, respectively.

These operations should fit with the corresponding power operations VA and
AA on classifications A; we want VTh(A) to be the same-as the theory Th(vA),
for example. Thus, to motivate our definitions, we begin by investigating the
relationship of the theory Th(4) of a classification to the theories Th(VA) and

Definition 11.1. Given a set I' of subsets of X, a set Y is a choice set on rif
XNY #@foreachX eT.

Proposition 11.2. Let A be a classification, let a ctok(A), and let T', A be
subsets of pow(typ(A)): ' ’

1. a satisfies the VA-sequent (T, A} if and-ghlly if forevery choice set Y onT,
a satisfies the A-sequent (Y, | J A);

o a %38 e e - e e e

rgi ‘ O B I
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2. asatisfies the AA-sequent (T, A) if and only if for every choice set Y on A
a satisfies the A-sequent (| JT, Y). ’

Similarly, if T', A are subsets of typ(A), then a sati j
’ B tisfies (I', A -4 I
only if a satisfies (A, T) in A. ies ¢ YA Y and

Proof. We prove the contrapositive version of (1). Note that a is a counterex-
ample to the sequent (I', A} in VA if and only if

(a) foreach X €T, ak,4 X, and
(b) foreach X e A, a4 X.

The clause (a) is equivalent to the statement that for each X € I there is a t e
o € X such that a4 o, which is just to say that there is a choice set ¥ fo};pl"
such that a k4 « foreach @ € Y. Clause (b) is equivalent to the statement that
foreach X € A and each type « '€ X, a4 o, which is just to say that a 4 « for

each @ € |JA. Thus a is a counterexam i i
: ple to (I", A) if and only if i
choice set Y for I" such that i tereisa

(') aF4 aforeachw € Y, and
(d) aFyaforeacha € |JA.

ms just saysthata isa counterexamplé to the sequent (Y, | A) in A. Part (2)
is proved similarly, and part (3) is straightforward. ]

As an immediate consequence, we obtain the following corollary.

Corollary 11.3. Let A be a classification and let ', A be subsets of pow(typ(4))

1. T Fva Aifand only if for each choice set Y onT, Y |4 UA.

2 ThaaA if and only if for each choice set Y on A, Urksv.

Similarly, if T, A are subsets of typ(A), then " _4 A ifandonly if A4 T

. Observing that the right-hand side of each of these equivalences deals only -
with the theory of the classification A, the following is immediate.

Corollary 11.4. Let A and B be classifications that have the same theory,

that iS, Th(A) = Th(B) Fbr any Boolean operati - I h 15, A =
pe ation B \/, /\, y =

. Recall .that the Representation Theorem (Theorem 9.33) associated a canon-
ical classification Cla(T") with any theory 7. Using this and the preceding
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corollary, we have a convenient way to get at canonical Boolean operations on
theories.

Definition 11.5. For any regular theory T, define the theories VT, AT, and =T
as follows:

1. vT = Th(vCla(T));
2. AT = Th(ACla(T));
3. =T = Th(—=Cla(T)).

We unwind this definition as follows.

Corollary 11.6. Let T = (X, ) be a regular theory. The disjunctive power
vT = (pow(X), ) and conjunctive power AT = (pow(XZ),FA) of T are
those regular theories on pow(Z) such that for each T', A C pow(X)

1. T+ A if and only if for each choice setY onT', Y I UA, and
2. T A ifand only if for each choice set Y on A, | JT F Y.

The negation =T = (X, ) is the regular theory on ¥ such that for each
ACE T'.Aifandonlyif A+ T.

The following shows that these definitions behave properly with respect to
the Boolean operations on classifications.

Corollary 11.7. For any classification A and any Boolean operation B B
(Th(A)) = Th(B(A)).

Proof. By the Representation Theorem,
Th(A) = Th(Cla(Th(A))).
Hence, by Corollary 11.4,

_ Th(B(4)) = Th(B(Cla(Th(A))))-
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11.2, Investigate the relationship between the disjunctive classifications
VCla(T) and Cla(vT) and similarly for conjunction.

11.2 Boolean Operations in Theories

We now turn to the question of what it would mean for a theory T to have a
conjunction, negation, or disjunction. Because it is in some ways the simplest,
we begin with negation to get our bearings.

Negation

To determine what the correct notion of a Boolean connective in a theory should
be, we again start the discussion with theories that arise from classifications.
Our aim is to find out how Boolean operations behave on such theories and then
generalize this to arbitrary regular theories.

Proposition 11.8. Ler A be a classification with a negation -. The conse-
quence relation 4 generated by A has the following properties:

—-Left: [fT 4 A, o then T, —~a 4 A.
—-Right: If T, b4 AthenT 4 A, —a.

Proof. These are both rather obvious. » 0

The rules of —-Left and —-Right are, of course, simply the standard rules
for negation in a classical, Gentzen approach to classical validity.

Definition 11.9. Let T = (X, i) be a regular theory. A function = : & — X
is a negation on T if and only if T satisfies the following closure conditions:

But the right-hand side of this equation is the definition of B(Th(A)). 0

Exercises

11.1. Let T be any regular theory. It follows from the definition of =T
and Proposition 9.35 that Cla(—T)=—Cla(T). Find a natural
isomorphism.

I‘I—-T A,a

—~Left ——T2:@
S Sy

- Fabr A
—~Right: =2 T4
Sl vy —

We have stated this in the rule format that is standard for Gentzen system; they
should be read as “if ... then ...,” as in the statement of Proposition 11.8.

We have stated this definition only for regular theories on purpose. With-
out the structural properties insured by regularity, the traditional rules simply
do not guarantee that — behaves anything like a negation. For example, in
the theory defined in Example 9.23, the identity function satisfies —-Left and
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—-Right. However, for regular theories —-Left and —-Right are ail that are
needed to ensure that a function behaves like a negation. This is shown in our
Theorem 11.12, the abstract completeness theorem for negation. The following
definition provides the key to this result.

Definition 11.10. Let T be a regular theory on ¥ and —: T — I. Apartition
(T, A) treats ~asa negation if for all types @, —~a € [ if and only if @ € A.

If A is a classification with a negation —, then any realized partition of the
types of A musttreat —as anegation. Put the other way around, partitions thatdo
not respect — are spurious. Consequently, they should not be relevant in using
the rule Partition. The following result shows that closure under the negation
rules allows us to ignore these spurious partitions in applying Partition.

Proposition 11.11. Ler T be any regular theory on T and let—: % — X. Then
T satisfies— -Leftand — -Rightifandonlyif T satisfies the following condition:

— -Partition: If T’ - A’ for every partition {I"’, A"y = (T, A) that treats
— as a negation, then T 1 A.

Proof. Assume that T is a regular theory on & satisfying —-Left and —-Right.
Let us show that it satisfies —-Partition. Suppose that I'' k7 A’ for every
partition that both treats = as a negation and extends (I", A). We need to prove
that I +7 A. To do this, we use Partition. Thus let (I', A’) be any partition
extending (I, A). We need to prove that T 7 A/, If {T', A') treats —as a
negation, we are done by our assumption. So we need only consider the case
where it does not treat — as a negation. There are two cases to consider.

Case 1. Thereisa—a €T’ such that.o ¢ A, Buttheno € . Then we have
our desired I 7 A’ as follows: ’

_abre
_ Ubkrdie
I br A

The first step is an Identity, the second is by Weakening, the third is by —-Left.
The final step is simply the third step rewrittep,“i_n view of the fact that ~« € T,

Case 2. There is a —a ¢ I" such that ¢ € A’. But then (—a) € A’. The
conclusion follows as before, using —-Right.
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Toward the converse, let u
X s show —-Left, the other case bein i
, S
Thus we want to show B symmetne:

F}‘T A,C!
. l",ﬂa '_T A.

Assumel” 7 A, abutT', —~a ¥r A. Then thereis apartition (I, A’) extending
(C'U{—a}, A) such that IV ¥ A" and such (I, A’) treats — as a negation. But

thena € A’ sowe have I'" -7 A’ from I" -7 A, o by Weakening. o

. 'This proposition allows us to prove the promised result, justifying the defi-
nition of a theory negation for regular theories.

Theorem 11.12 (Abstract Completeness for Negation). Let T = (£,}+) bea
regular theory and let —: ¥ — X. The following are equivalent:

1. —isanegationonT;
2. there is a classification A and a negation i
gation infomorphism n:—A 2
that T = Th(A) and —~ =n"; " " o ek
3. let A = Cla(T) and n: —~A & A be the token identical contravariant pair

g § . -
t ypD — A S egation
lhal agree, Wllh - on es. Zhen n "A isan g lﬂfomorphlsm

f"roof? ‘The implication from (3) to (2) is trivial. That from (2) to (1) follows
immediately from Proposition 11.8. To prove that (1) implies (3), assume (1)
Recall t}}at the types of A are those of T’ whereas the tokens of A a;e the consis:
tent partitions of T. By Proposition 11.11, we know that all consistent partitions
treat — as a negation. To establish that n is a negation, we need to prove that fo

?my such consistent partition (I', A) and any type «, (I, A) F_4 « if and onl .
if (', A) E4 —a. This is a consequence of the following chain of equivalence:s)f

(T,A)E_aa iff (T, A)Eqa

T

iff eeA
iff —-axel
iff (T, AYF4 —a. |

Corolli?ry 11.13. If — is a negation on the regular theory T, then it is a regular
theory interpretation from =T to T. )

Proof. This is an immediate consequence of the previous result. O
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One might be tempted to define a negation to be any interpretation from
—T to T. This, however, is far too weak. In other words, the converse of
Corollary 11.13 does not hold.

Example 11.14. It does not follow from the fact that — is an interpretation
from —T to T that a type and its negation are incompatible or that together they
exhaust the possibilities. In other words, neither

a,—~a b7 nor bFro,o

is a consequence of — being a interpretation from —T to T. To see this, let
be any set containing at least two types, say & and B, and let T = Triv(X)
be the least regular theory on X as characterized in Exercise 9.4. As we saw
there, I 7 A if and only if ' N A # @. Hence this consequence relation is
symmetric so =T = T. Consequently, any permutation of ¥ isa interpretation
from —T to T. For example, simply switching & and B is such an interpretation.
However, clearly «r, ¥ and Fra, B.

Corollary 11.15. If T is a regular theory with a negation — then

Converse of ~-Left: T 7 A, e if T, —~a Fr A.
Converse of =-Right: T',a -7 Aif TFr A, —a.

Proof. Any negation on a classification with negation — has these proper-
ties. |
Disjunction and Conjunction

We now proceed to the parallel considerations for disjunction and conjunction.
We will not be as verbose in our discussion, because the main points have
already been made with negation.

Proposition 11.16. LetA be a classification. If A has a disjunction V, then its

theory Th(A) satisﬁes the foll&ﬁihig-}

v-Left: If T, a 4 A for eacha € ® thenT, VO Fa A,
v-Right: if T4 A, © thenT -4 A, VO.

If A has a conjunction A, then its theory Th(A) satisfies the following:

A-Left: FT, © 4 A, then T, A® 4 A.
A-Right: IfT k4 A, foreacho € O, thenT -4 A, NO.

o 4wt
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Proof. These are all easily proved. O

Definition 11.17. Let T = (X, I-) be a regular theory. A function V : pow(X)
— ¥ is adisjunction on T if and only if T satisfies

INat A foreacha € ©

v-Left:
rLvor A
v-Right: L'___A.ﬁ.
'-A,vO

Similarly, a function A : pow(%) — X is a conjunction on T if and only if
T satisfies

I'A,a¢ foreacha e ®

A-Right:
I'EA,AG®
ALeft: OF4
LAOK A

Just as with negation, when we have an operation on types that is a disjunction
(or conjunction), certain partitions of the types become spurious.

Definition 11.18. Let T be any regular theory on X. A partition (I', A) is said
to treat Vv as a disjunction if for all sets © of types, vO € A if and only if
© C A. The partition (T, A) treats A as a conjunction if for all sets © of types,
A@eTlifandonlyif ® CT.

Proposition 11.19. Let T be any regular theory on L.

1. If V:pow(Z) — X, then T satisfies V-Left and v-Right if and only if it
satisfies the following condition:

v-Partition: If I Fr A’ for every partition (I, A’) > ([, A) that treats
V as a disjunction, then T’ 1 A.

2. Similarly, if A:pow(Z) — X, then T -satisfies N-Left and -A-Right-if and - - —

only if it satisfies the following condition:

A-Partition: If T b7 A’ for every partition (I, A’y > (T, A) that treats
A as a conjunction, then T Fr A.

Proof. We prove that if T is a regular theory on X satisfying Vv-Left and
v-Right, then it satisfies V-Partition, and leave the rest to the reader. Sup-
pose that T" -7 A for every partition that treats V as a disjunction and extends
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(T', A). We need to prove that I' =7 A. To do this, we use partition. Thus let
(I, A’) be any partition extending (I", A). We need to prove that TV 7 A, If
(I, A) treats V as a disjunction, we are done. So we need only consider the
case where it does not treat Vv as a disjunction. There are two ways in which
this might happen.

Case 1. ThereisaVv® € A’ suchthat ®  A’. Butthenthereissomea € NI
Then we have our desired I’ ¢ A’ by Identity, Weakening, and v-Right.

Case 2. There is a VO & A’ such that ® € A’. Because ® C A’, we have
« Fr A’ for each @ € ©. But then by v-Left, v@ Fr A’. Butif vO ¢ A,
then vO € I, so I A’ by Weakening. O

We obtain abstract completeness results for disjunction and conjunction
parallel to that for negation. We will only state the one for disjunction.

Theorem 11.20 (Abstract Completeness for Disjunction). Let T = (X, F)
be a regular theory and let v : pow(Z) — . The following are equivalent:

1. Vv isadisjunctiononT.

2. There is a classification A and a disjunction infomorphism d VA 2 A such
that T =Th(A)and v = d".

3. Let A = Cla(T) and d : VA & A be the token identical contravariant pair
that agrees with v on types. Thend : VA= Aisa disjunction infomorphism
onA.

Proof. The proof is similar to the result for negation. (]

Corollary 11. 21 If T isa regular theory with a dzs;unctzon V (or conjunction
A) then

Converse of Vv-Left: T', o 7 A for each o € ©, provided F Ve I—T A.

Converse of V-Right: I'Fr A @ if T'Fr &, vO - ,
In the case of conjunction, T has the following properties:

Converse of A-Left: T, ® 7 AifT, A@ 1 Al
Converse of A-Right: ' Fr A, « foreach o € ©, provided T b1 A, AO.

Proof. Any consequence relation on a classification with disjunction (conjunc-
tion) has these properties. (]
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Definition 11.22. A regular theory T is Boolean if it has a disjunction, con-
junction, and negation.

Corollary 11.23. Let T be a regular theory. The following are equivalent:

1. T is a Boolean theory.
2. T is the theory of a Boolean classification.
3. Cla(T) is a Boolean classification.

Proof. This is an immediate consequence of Theorems 11.12, 11.20, our ab-
stract completeness theorems for negation, disjunction, and conjunction. O

Exercises

11.3. Let T be a regular theory with a negation —. Show the following
infinitary version of —-Left: for any sets ', A, ®, if " 7 A, ®
then I, =[®] k7 A (—[®] is the image of @ under —; note that if
© is finite, this result follows from a finite number of applications of
—-Left, but this strategy will not work if ® is infinite). There is a
corresponding infinitary version of —-Right.

114. Let T be an algebraic theory with a disjunction v. Show that for any
set " of types, VT is the least upper bound of I" in the partial ordering
<r. Prove the analogous result for conjunction. What can you prove
about =? Show that if 7 is a Boolean, algebraic theory, then it is in
fact a Boolean algebra under the same operations.

11.5. Give a direct proof of Corollary 11.13, that is, one that does not go
through the abstract completeness theorem, 11.12.

11.3 Boolean Inference in State Spaces

Let S be a state space with set of states 2. Recall from Definition 9.27 the

theory Th(S) associated with S. This theory depends only on the set Q2 of states
of the state space and captures the idea that these states are exhaustive and

mutually incompatible. By Proposition 8.18, Th(S) is a Boolean theory with
union, intersection, and complement acting as disjunction, conjunction, and
negation, respectively. Furthermore, I Q.

We now show that Th(S) is the smallest such regular theory. Thus Th(S) is
the closure of the “axiom” - 2 under the classical rules of inference associated
with disjunction, conjunction, and negation along with Identity, Weakening,
and Global Cut.
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Theorem 11.24. Let § be a state space with set of states Q. Th(S) is the
smallest regular theory on pow(S2) satisfying the following conditions:

FQ,

the operation © + | © is a disjunction,

the operation © +> (] © is a conjunction, and
the operation X +> Q — X is a negation.

BN~

Proof. Lett be the smallest consequence relation on pow(S2) such that (1)-(4)
hold. Suppose I, A € pow(2) and I' sy A. We need to prove that I" = A,
By assumption, we have (1" & {J A. Hence|J AU—(T) = Q. By (), then,
F{JAU~(T). By the converse of V-Right, we have - {J A, Q ~ (O T).
By — -Left, (\ " - |J A. By the converse of Vv-Right, we obtain (JI" - A; and
by the converse of A-Left, we obtain the desired conclusion I' + A. O

H {
{ H

e

R
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Lecture 12

Local Logics

With the groundwork laid in the preceding lectures, we come to the central
material of the book, the idea of a local logic, which will take up the remainder
of Part II. In this lecture we introduce local logics and proceed in the lectures that
follow to show how local logics are related to channels and so to information
flow.

If one is reasoning about a distributed system with components of very
different kinds, the components will typically be classified in quite different
ways, that is, with quite different types. Along with these different types, it is
natural to think of each of the components as having its own logic, expressed
in its own system of types. In this way, the distributed system gives rise to a
distributed system of local logics. The interactions of the local logics reflect the
behavior of the system as a whole.

In order to capture this idea, we introduce and study the notions of “local
logic” and “local logic infomorphism” in this lecture. The main notions are
introduced in the first two sections and studied throughout this lecture. The

_important idea of moving a logic along an infomorphism is studied in Lecture 13.

In Lecture 14, we show that every local logic can be represented in terms of
moving natural logics along binary channels. The idea of moving logics is put

to_another use in Lecture 15 to define the distributed logic of an information

system. It is in this chapter that our picture of information flow is most fully A
articulated. Finally, in Lecture 16, we explore the relationship between local
logics and state spaces in some detail.

12.1 Local Logics Defined

The notion of a local logic puts the idea of a classification together with that
of a regular theory, but with an important added twist. In order to model

149
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reasonable but unsound inference, we introduce the notion of a “normal
token” of a logic.

Definition 12.1. A local logic £ = (tok(£), typ(£), Fe, kg, Ng) consists
of

1. aclassification cla(£) = (tok(£L), typ(£), Fg),

2. aregular theory th(£) = ({typ(£), Fg ), and

3. asubset Ng C tok(£), called the normal tokens of £, which satisfy all the
constraints of th(£).

Atoken a € tok(£) that fails to satisfy some constraint " -¢ A of £ is said
to be an exception to this constraint. Part of the definition of a local logic insures
that normal tokens are not exceptions to any constraints of the logic. Notice,
however, that we do not assume that every nonnormal token is an exception to
some constraint of the logic. It sometimes happens that a token satisfies all the
constraints of a logic, but “by accident” as it were; the tokens in Ng model the
set of tokens that satisfy all the constraints for principled reasons.

Definition 12.2. A logic £ is sound if every token of tok(£) is normal. .€ is
complete if every sequent satisfied by every normal token is a constraint of the
logic.

When we come to moving logics via infomorphisms, we will see that there
are two natural ways to move logics. One preserves soundness, the other pre-
serves completeness. Both, however, correspond to natural methods of reason-
ing about distributed systems.

S. ystemaﬁc Examples
We give three important examples of ways in which local logics arise. We will
- -study- these-logics-in- detail in- what follows. —--——. . ——- -

Exercises 151

Justification. To see that Log(8) is a local logic, we need to verify that every

token of Evt(S), that is, every token of S, satisfies every constraint of Th(S).
This is obvious. . O

Definition 12.5. Let T be a regular theory. The local logic generated by T,
written Log(T), has classification Cla(T), regular theory T, and all its tokens
are normal. A logic is formal if it is generated by some regular theory.

Proposition 12.6. Every formal logic is natural. Every natural logic Log(A)
on a separated classification A is isomorphic to a formal logic.

Proof. The first follows from Log(T) = Log(Cla(T)). The second holds be-
cause if A is separated, then A = Cla(Th(A)), by Proposition 9.35. O

All of the examples of local logics given so far have been sound. Our main
source of unsound local logics arises from moving logics via infomorphisms, a
topic we take up in the next chapter. Butit is easy enough to give other examples
of unsound local logics. One example is given in Exercise 12.1. Others will be
given in Lecture 19.

Exercises

12.1. Let £ be alocal logic and let ® C typ(£) be a set of types. Suppose
that in reasoning about the tokens in £ we have, in the course of
a great deal of experience, never encountered any token that is not
of all types in ®. It might not be unreasonable to conclude that all
tokens are of all the types in ® and so ignore © in our reasoning. The
conditionalization of £ on © is the logic £ | © defined as follows.
The classification of £]© is the same as that of £. The theory of
£ © is given by ' '

TheoA iff T,0kgA.

Definition 12.3. Let A be a classification. The local logic generated by A,
written Log(A), has classification A, regular theory Th(A), and all its tokens
are normal. A logic is natural if it is generated by some classification.

Definition 12.4. Let S be a state space. The ) Togic generdted by S, written
Log(8), has classification Evt(S), regular theory Th(S), and all its tokens are
normal.

The normal tokens of £|® consist of those normal tokens of £

that are of all types in ©. If ® = {@} is a singleton, we write this

conditionalized logic as £ | 6.

1. Show that £ © is indeed a local logic.

2. Give an everyday example of a sound local logic £ and a type 6
such that £ |6 is not sound. -

3. Prove that for every local logic . there is a sound local logic £/
and a type 8 € typ(£") such that £ = £'|4.

Sl !
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12.2.  Let S b&4 state space with set Q of types. The trivial logic on S,
written Triv{S), is the sound local logic with the classification S and
with the consequence relation thatis the smallest regular consequence
relation such that Frevsy $ and, for all distinct states 01,02 € €,
a1, 02 Frvs)-

1. Justify this definition.
2. Show that for any sets T', A € typ(S), I’ FTrivesy A if and only if
one of the following three conditions holds:

(a) TNA#D,
(b) T has at least two elements, or
) A=Q.

12.2 Soundness and Completeness

In this section we make some simple remarks about sound and complete local
logics. Note, though, that most interesting local logics are neither sound nor
complete. '

Proposition 12.7. For any local logic £ on a classification A, the following
are equivalent:

1. £ is natural.
2. £ is sound and complete.
3. £ =Log(A).

Proof. For any classification A, Log(A) is the unique sound and complete local
logic with classification A. , N (n]

Proposition 12.8. Let S be a state space. The logic Log(S) is sound. It is
complete if and only if S is complete.

Proof. This is obvious from the definitions. 8]

We turn any logic into one that is sound, complete, or both, as follows.

Definition 12.9. For any local logic £, the sound part of £, written Snd(£),
is the local logic obtained by throwing away all the abnormal tokens of £
and restricting the classification relation accordingly. Everything else is left
unchanged.
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Example 12.10. Recall the theory of light bulbs from Example 9.17. The
consistent partitions were given by the rows of the following truth table:

Lit Unlit Live

1 0 1
0 1 1
0 1 0

The theory was characterized in terms of sequents in Example 9.19. Let us tumn
this into a local logic £ by specifying the classification as follows:

Lit Unlit Live
by |0 1 1

bl 0 1
O 1
bs|0 O 1

The set of normal tokens of our logic consists of all the tokens that satisfy the
constraints, that is, by, b», and b3. Token b, violates the constraint - LIT, UNLIT.
(Perhaps b, is burning but extremely dimly.) The sound part Snd(£) is the same
logie, except on the classification corresponding to the first three rows of the
above table, that is, the token by is thrown out.

Definition 12.11. For any local logic . the completion of £, written Cmp(£L),
is the local logic obtained by adding a new normal token nr ay for each con-
sistent partition (", A} that is not the state description of a normal token of
£.! The new token n(ra is classified by type « of £ if and only if & € T'.
Everything else is left unchanged.

Example 12.12. Returning to the logic .€ of Example 12.10, the completion
Cmp(£) is obtained by adding a normal token n to correspond to the one
unrealized consistent partition, as follows:

Lit Unlit Live
N b0 1 1
by | 1 0 1
b3 |0 1 1
by | O 0 1
n|0 1 0

! Under normal circumstances, the most sensible way to do this would be to add the consistent
partition {T', A) itself as this new token. This could only be a problem if by some quirk this pair
were already a token of the classification.
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Someone using the logic £ is implicitly assuming that tokens like n are possible
even if they do not happen to be realized.

Proposition 12.13. Let £ bea local logic.

1. Snd(£) is sound; it is complete if and only if £ is complete.
2. £ is sound if and only if Snd(£) = £.

3. Cmp(L) is complete; it is sound if and only if £ is sound.
4. £ is complete if and only if Cmp(£) = £

Proof. See Exercise 12.3. o
Proposition 12.14. Snd(Cmp(£)) = Cmp(Snd(£))
Proof. See Exercise 12.3. a

Definition 12.15. For any local logic £, the sound completion of £, written
SC(£), is Snd(Cmp(L)).

The sound completion of a local logic £ throws away the nonnormal tokens
and adds in tokens to make the logic complete. Itis thus a sound and complete
logic, one with the same constraints as the original logic. Thus SC(£) represents
an idealization of the logic £, how the world would work if the logic were
perfect. We will see that there is an important relationship between £ and
SC(£) in Lecture 14. For now we simply note that £ is sound and complete if
and only if SC(£) = £.

Exercise

123.  Give proofs of Propositions 12.13 and 12.14.

123 Logic Infomorphisms

Suppose we have classifications A and C, representing the possible behaviors of
some distributed system C and its components A. The part-whole relationship
is modeled by means of an infomorphism f:A2C. If we have local logics
on A and C, respectively, we need to ask ourselves under what conditions f
* respects these logics. A o

The basic intuition is that if an instance ¢ of the whole system is normal
with respect to its logic, then the component £ (c) should be normal. Similarly,
any constraint that holds of normal components must translate into something
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that holds of normal instances of the whole system. This is formalized in the
following definition.

Definition 12.16. A logic infomorphism f : £17=£, consists of a contravariant
pair f = (f" f~) of functions such that

1. f:cla(£;)=cla(£,) is an infomorphism of classifications,
2. f*th(€;) — th(£,) is a theory interpretation, and
3. f'[Ng,] € Ng,.

We have seen how to associate a local logic with any classification, state
space, or regular theory. The various morphisms between these structures (in-
fomorphisms, projections, and interpretations, respectively) all give rise to logic
infomorphisms, as we now show. First, though, we state a lemma that we will
use several times.

Lemma 12.17. Let f : A = B be an infomorphism, let ', A be sets of types of
A, and let b € tok(B). Then f(b) satisfies (I', A) in A if and only if b satisfies
(fITY, flAD) inB.

Proof. Assume that f(b) satisfies (I', A) in A. To show that b satisfies { f[I'],
fIA]) in B, assume that b satisfies every B € fIT). Then, because f is an
infomorphism, f (b) satisfiesevery @ € I'. Butthen f (b) satisfies somea’ € A,
so b satisfies f(a'), an element of f[A], as desired. The converse is similar.

O

Definition 12.18. Forany (classification) infomorphism f :4 &= B,letLog(f):
Log(A) = Log(B) be the logic infomorphism that is the same as f as a pair
of functions, but taken to have as domain and codomain the logics, rather than
their underlying classification.

Justification. By Lemma 12.17, itis clear that if T Froga) Athen f T'l FrLoga
fILA]. Because these logics are sound, the condition on normal tokens is

trivial. I E

Definition 12.19. For any state space projection f :S,=25; let Log(f) be the
logic infomorphism Log(f) : Log(S2) &= Log(S)) that, as a pair of functions, is
the same as Evt(f); that is, Log(f) is the identity on tokens and takes inverse
images of sets of states.

Justification. To see that Log( f) is a logic infomorphism, we need to check that
if T Frogesy Az, andif Iy ={f"'[X]| X ez}, and A = {(fHX11 X € Ag),
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then T’y Frogs,y Ar. But T Frogs;) Ai just means that every state of §; that
is in every X e T is in some ¥ € A;, so the implication follows from general
properties of inverse images of functions. a

Definition 12.20. For any regular theory interpretation f : Ty — T2, letLog(f)
be the logic infomorphism Log(f) : Log(T1) = Log(73) defined as follows. On
types, Log( f) isjust f.On tokens, Log( f) maps any consistent partition (I", A)
of Ty to (f~'[T], F~'[A]).

Justification. To see that Log(f) is a logic infomorphism, we need to check that
if (I", A) is a consistent partition of 73, then (f~'[I'], f~'[A]) is a consistent
partition of 7;. That it is a partition follows just from set-theoretic properties of

.functions. That it is-consistent follows from the fact that f is a regular theory

interpretation. a

Exercises

124.  Let o be the unique sound local logic on the zero classification
(cf. Exercise 3). Show that for every local logic .£ there is a unique
logic infomorphism f:0 = .£. Find a local logic 1 such that for
every local logic € there is a unique logic infomorphism f: £ 1.

12.5. (1) Let cla be the forgetful functor from the category of local logics
to the category of classifications, taking éach logic £ to its classifi-
cation cla(€) and each logic infomorphism f to the infomorphism
f constituted by the same pair of functions. Show that Log is left
adjoint to the restriction of cla to complete logics, and right adjoint
to the restriction of cla to sound logics.

124 Operations on Logics

We have already seen ways of combining classifications and regular theories.

It is but a small step from that to combining local logics.

Sums of Logics
Definition 12.21. The sum £, + £, of local logics £, and £, is the local
logic with S

1. classification cla(£;) + cla(£,),
2. regular theory th(£;) + th(£,), and
3. N£I+£2 = Ngl X Ngz
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The canonical logic infomorphisms og,: £,2£, + £; and 0g,: £,28, +
£, are defined as follows:

1. foreach a € typ(£;), og, (@) = ouacen(@);
2. for each pair ¢ € tok(£; + £3), og,(¢) = Tiacey) (©).

Justification. Toseethat £y + £, isalocal logic, we need to see that every token
(a, b) € Ng, x Ng, satisfies every constraint of th(£)+th(£;). Butthisis clear
from the definitions. To see that og, ; £,2£, + £; and 0g, : £,2L£, + £
are indeed logic infomorphisms, there are three things to check, as follows:

1. og, is an infomorphism because it is identical to e,y On classifications;
2. og/is a theory interpretation because it is identical to om(g;) on regular
theories; and '

3. if b={a;,a) € Ng,+g,, then og (b)=a;, which is a normal token
of £;. 0

The above definition extends from the sum of two local logics to the sum of
any indexed families of local logics without incident.

Proposition 12.22. For any classifications A and B,
Log(A + B) = Log(A) + Log(B).

The same holds for arbitrary indexed families of classifications.

Proof. The only part that is not obvious is that the two logics have the same
theories. But this is the content of Proposition 10.3. o

Proposition 12.23. Let £ be the sum Y _;.; £: of an indexed family {£:}ie; of
local logics. Given a family { f; : £:72£'}ies of logic infomorphisms, the sum

Y it fi : £2L is a logic infomorphism.

Proof. Suppose c is a normal token of £'. Then f;(c¢) is a normal token of

A, foreachi€l, and so (3, fi){(c) is a normal token of £." Suppose that’

I' ¢ A. We can write (I", A) as

(T, A) = <Uas,.lr,~1, U%[Ai]>,

iel iel

where (T, A;) is a sequent of £; for each i € I. Because £ = 3 ;, £;, it
follows that I'; g, A; for some i € I. But f; is a logic infomorphism, so
filTil kg filA:], and so by Weakening (3, f)[C1Fe (i, fOIAL. O
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Exercises
12.6. Show that £, + £, is sound if and only if £, and £, are both sound.

12.7. Show that £, + £, is complete if and only if £, and £, are both
complete.

Joins of Logics

Definition 12.24. We define a partial order on local logics on a fixed classifi-
cation A as follows:

L, L, iff th(£,) Cth(L;) and Ngz C Ng‘.

Note the difference in the direction of the two inclusions. Stronger logics have
more constraints but fewer normal tokens. This “contravariance” is something
we have seen repeatedly. This is closely related to the problem of nonmono-
tonicity. A hint of this is given in Exercise 2.

Definition 12.25. The join £, U £, of logics £, and £; on A is the local logic
with regular theory th(£;) LUth(£,;) and normal tokens Ng, N Ng,. The meet
of local logics is defined dually.

Justification. We need to check that £, U £, is the least upper bound of logics
£ and £, in the C-ordering on logics. This follows from the corresponding
properties of classifications and regular theories. Greatest lower bounds are
justified similarly. a

A straightforward generalization of the justification of joins and meets gives
the following. :

Proposition 12.26. The ordering T on logics on A is a complete lattice.

U
2
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3. Given any theory T on typ(A), there is a smallest logic . for which all the
constraints of T are constraints of £. Its theory is the regular closure of T
and its normal tokens are the set of all tokens satisfying all the constraints
of T.

Proposition 12.28. Let f : £, = £, be a logic infomorphism, and let £, and
£ be logics with the same classifications as £, and £,, respectively. If
£ C £ and £, C £, then f is also a logic infomorphism from £ to £,

Proof. The proof is routine. i

Proposition 12.29. Let £, and £, be logics on the classification A. If
f:£2L and f:£,22L are logic infomorphisms, then f is also a logic
infomorphism from £ U £, to £.

Proof. Recall that the consequence relation of £, Li £, is not just the union of
the consequence relations of the individual logics but is the result of closing
the union under Weakening. So suppose I' F¢ ¢, A. Then for some i = 1,2
and some IV C T, A’ C A such that I g, A’. Because f: £,2£ is a logic
infomorphism, f[I'] k¢ f[A’] and so f[I'] k¢ f[A], by Weakening in £.
The condition on normal tokens is clear. @]

Quotients of Logics

Just as we had quotients and dual quotient of classifications and theories, so
too do we have them for logics.

Definition 12.30. Let £ be alocal logic on a classificationA and let ] = (¥, R)
be an invariant on A. The quotient logic of £ by I, written £/1, is the logic
“that has

1. classificationA//,

 Example 12.27." Let A be"a classification. Here are some™ srmple applications———f - ——2:-theory-th(£)| X, and. - - - U

of Proposition 12 26. AR

1. There is a smallest local logic £ on A. Its theory is givenby I' ¢ A if
andonly if T N A # @. £ is sound. We call £ the a priori logic on A and
denote it by AP(A). This logic looks trivial, but it is of some use.

2. There is a largest local logic on A. Its théSy consists of all sequents, and

so is inconsistent. It has an empty set of normal tokens. It is tempting to call -

this the postmodern logic on A.

3. the set of normal tokens {[a]z |a € N;:}

Justification. We must verify that if a € Ng, then [alg satisfies all the
constraints of th(£) ] . This follows from the fact that 7;:A/I <A is an
infomorphism. O

This construction is not as important for our purposes as the dual, so we
leave some of its properties to the exercises.
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Definition 12.31. Let £ be a local logic on a classification A and let J =

Proof. Because a logic is natural if and only if it is sound and complete, this
(A, R) be adual invariant on A. The quorient logic of £ by J, written £/7,1s

resuit follows immediately from Proposition 12.33.

m]
the logic that has " .
) Proposition 12.35. Let £ be a local logicon a classification A and let J be a
1. classification A/J, dual invariant on A.
2. theory th(£)/R, and

3. the set of normal tokens Ne N A.

1. The logic £/17 is the least logic on A /J such that the function t; is a logic
Justification. We must verify that if aeNg N A, then g satisfies all the infomorphism.

constraints of th(£)/R. Equivalently, it suffices to show that if (I', A) is the 2. Let f: £ = & be a logic infomorphism that respects J. There is a unique
state description ofainA/J,andTo =1 ;"ML Ag=T ;~1[A], then a satis- logic infomorphism f':£/J & £’ such that the following diagram com-
fies (o, Ao) inA. This follows from the fact that 7, :A=A/J is an infomor- mutes:

phism. d

. £ L2 e/
Example 12.32. Given a local logic £, let aRB if and only if & Fr ;8.‘ .Let )
J = (Ng, R). Thisis clearly a dual invariant, because all normal tokens satisfy
" all constraints and hence respect R. The quotient £/J is called the Lz’nder.zbaum f e
logic of £andis written Lind (£). This logic identifies types that are equwalex}t ,
in €. Notice that it is always a sound logic. It is complete if and only if £ is e
- complete.

We say that a partition (T, AY of T respects the relation R on X if for all Proof. Statement (1) follows easily from Proposition 10.11. Statement (2)
a, Bes,if aRB, then o € Cifandonlyif peT. This is equivalent to saying follows directly from Propositions 5.21 and 10.11.

m]
thatif @ € T, then [olr & r.

Proposition 12.33. Let £ be a local logic on A andlet J = (A, R) be a dual Exercises
imvariant on & 12.8. Recall the definition of the conditionalization £ © of a logic to a

1. £/7 is sound if and only if A © Ng. Hence if £ is sound, then £/ is set of types given in Exercise 12.1. Let € be a local logic and let

sound. @) th ®p € ©) C typ(£). Show that £ |0 & £10;.
i ‘ i i -consistent partition o, that

> iﬁ;e;sczﬁilj:e {tz::l ;e';lg’rg;;:no'fiome a e Apﬁ Ne. H);ZE, ifLis 12.9. Let £ be alocal logic on aclassiﬁ_cation(A. For'?.ny set B g.tok(A),v
lete and Ng C A, then £/17 is complete. Ietbtyp(B) = (\pep typ(b). Thatis, @ e.typ(B) if and onl)-r if for all
comp L= a € B, akaa. Suppose that B consists of all tokens in £ ever
TP T ——————observed i th and-suppose-we-are-willing to reason on the
Proof. Statement (1) is an immediate conscf;l'lencc of the defisition. Statement assumption th:t?;::;ling thgtp has always held gue of past tokens
(2) is almost immediate, given the rule Partition. e will hold true of some future token. We can model this form of
From this we obtain the following simple but useful characterization of a reasoning by considering the logic £ | typ(B). The normal tokens
dual quotient as a natural logic. of this logic consist of the set of all tokens that satisfy all the types
that hold. of tokens in B. Prove the following antimonotonicity

Corollary 12.34. A logic of the form £/J, where J = (A,R) is a dual

result: if By € By, then £|typ(B1) C £ typ(Bo).
invariant on cla(£), is a natural logic if and only if A C Ng and every £-

consistent partition that respects R is the state description of some a € A. 12.10. Dualize Proposition 12.35.
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12.5 Boolean Operations and Logics

Our discussion of Boolean operations, classifications, and theories was
prompted by the natural desire to relate Boolean operations and local logics.
Readers who have skipped the chapters on Boolean operations will wantto skip
this section as well.

Again, we break the discussion into two parts. We first discuss Boolean
operations on logics and then discuss what it means for an operation on the
types of a single logic to be a disjunetion, conjunction, or negation. We have
done most of the work already, so the discussion will be rather brief.

Boolean Operations on Logics

We have laid the groundwork for the following definition in preceding chapters.

Definition 12.36. Let £ be a local logic on a classification A with theory T
and set N of normal tokens. We define the disjunctive power logic V£, the
conjunctive power logic AL, and the negation ~.£ of £ as follows:

1. v£ is the local logic with classification VA, theory VT, and normal tokens
N;

2. AL is the local logic with classification A A, theory AT, and normal tokens
N;and

3. -8 is the local logic with classification —A, theory =T, and normal tokens
N.

Justification. We need to see that every token in N satisfies the constraints of
vT, AT, and —T in the classifications VA, AA, and —A, respectively. This
follows immediately from Proposition 11.2. a

Proposition 12.37. For any local logic £, £ is sound if and only if VL€ is
sound, if and only if AL is sound, and if and only if ~£ is sound. Similarly, £

“is complete if and only if V£ is complete; if and only if AL is complete, and 7 A S

and only if ~£ is complete. : e

Proof. Soundness is trivial. Letus show that £ is complete iff v £ is complete.
First, suppose that £ is not complete. Thus there is a consistent sequent (", A)
with no normal counterexample in A. Let I" = {{o}|a € T},andlet A" = {A}.
Then (T, A’) has no normal counterexample in VA. We claim that (r’, A’ is
consistent in VA. Suppose this is not the case. Then for every choice set ¥
for IV, Y g |JA. ButT"issucha choice set and | JA" = A, s0 T g A,
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contradicting the assumption that (T, A) is consistent. Now let us prove the
converse. Suppose (I, A’) is consistent in VA. Then there is a choice set ¥
for T such that Y ¥g | J A’. If £ is complete, then this sequent has a normal
counterexample a. But then, by Proposition 11.2, a is a normal counterexample
to (', A’} in VA. s}

Proposition 12.38. For any Boolean operation B and any classification A,
B(Log(A)) = Log(B(A)).

Proof. The two logics clearly have the same classification and normal tokens.
But they also have the same constraints by Corollary 11.4. a

Boolean Operations in Local Logics

We can define what it means for an operation on types to be a disjunction,
conjunction, or negation on a local logic.

Definition 12.39. Let £ be a local logic on a classification A.

1. A function Vv : pow(typ(A)) — typ(A) is a disjunction on £ if V is a dis-
junction on A and on th(£).

2. A function A:pow(typ(4)) — typ(A) is a conjunction on £ if A is a
conjunction on A and on th(£).

3. A function —:typ(A) — typ(A) is a negation on £ if — is a negation on A
and on th(£).

Exercises

12.11. Show that if — is a negation on the regular theory T, then itis also a
negation on the sound local logic Log(T). Prove parallel statements
for disjunction and conjunction.

12.12. 7 Let S'be an ideal state space, that is, one where the tokens and types
are identical and the identity function is the state function. Prove
that Log(S) = Log(Evt(S)).

12.13. Let S be a state space and its associated trivial logic Triv(S) from
Exercise 2.
1. Show that

Log(S) = Vv Triv(S).
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12.14.

Lecture 12. Local Logics

2. Prove that the natural embedding 7%y, : Triv(S)—Log(S) is a
logic infornorphism.

In order to state the following succinctly, let us use the following
notation. If A and B are classifications with the same set of tokens
and f:typ(4) — typ(B), letus write f, for the unique token identi-
cal, contravariant pair fy:A = B with f = f2 Let £beacomplete
local logic. Prove the following results: .
1. A function v : pow(typ(4)) — typ(4) is a disjunction on £ if
and only if v, : vE€2 L is an infomorphism. '
2. A function A : pow(typ(A)) — typ(A) is a conjunction on £ if
and only if A, : ALE2Lis an infomorphism.
3. A function —:typ(4) — typ(4) isa negation on £ if and only
if =, ; —~£ = £ is an infomorphism.
Give an example to show that the assumption of completeness is
needed.

Lecture 13

Reasoning at a Distance

Suppose we are given an infomorphism f : A = B. In Lecture 2, we discussed
how we often implicitly use a logic on one of these classifications to reason
about tokens in the other. There we expressed the idea in terms of inference
rules we called f-Intro and f-Elim. In Section 10.4 we explored the idea in
terms of regular theories. In this chapter, we amplify on this by showing how
to move local logics. Most of the work has already been done in the discussion
of theories.

The rule f-Intro corresponds to moving a logic £ from A to B via f; we
call the new logic f[£]. The rule f-Elim corresponds to moving a logic £
from B to A via f~!; we call the new logic f~'[£].

13.1 Moving Logics

We define both of the above logics here and then study them in turn in the
subsections that follow. The rules mentioned above are used for motivation.
The actual definition is phrased differently.

Definition 13.1. Given an infomorphism f : A & B and a local logic £ on A,

—-the-image of £ under f,denoted-f[£]; is the local logic on the classificaton -~ - - -

B with theory f[th(£)] and with normal tokens
{b € tok(B) | f(b) € Ng}.

Justification. We have seen in Proposition 10.15 that f{th(£)] is a regular
theory. We need to verify that every normal token satisfies every constraint
of this theory. Recall that this theory was specified by giving its consistent
partitions. Because closure under Partition is valid, it suffices to show that for

165
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each partition (T, A) of typ(B) if f(b) satisfies f-UT] kg f7'(A), then b
satisfies " ey A- This follows from Lemma 12.17. a

We define the inverse image of a logic in a parallel manner.

Definition 13.2. Given an infomorphism f: A& B

the inverse image of £ under f,denoted f —1{ £}, is the local logic on A with

theory f~'[th(£)] and with normal tokens

{a e tok(A) |a= £ (b) for some b € Ng}.

Justification. We need only check that every normal token satisfies every con-

straint, but this is clear.

13.2 Images of Logics

We begin with the following result showing us that our definition gives us whfﬁ
we want, at least as far as the consequence relation is concerned. By “least” m
the following, we mean with respect to the C-partial ordering on local logics.

Theorem 13.3. Let £ be a local logic on A and

morphism. The image of £ is the least logic £ on B such that f is a logic

infomorphism from £ to £

Proof. To show that f is alogic infomorphism from £ to f£1, suppose that
Fbke A If (l’", A} is a partition of typ(£) extending (fIT], f[_Al]),,then
(f—-l 1, f-l[A']) is a partition of typ(A) extending (T, A). lTh(/m f_l[l" ’] |':c
£1[A"] by Weakening, and so I’ gy A’ because (U, FHAD s

a partition. Hence by Partition, fICT f [AJ.
" tokens is clearly satisfied. : :

Now assume that f is a logic infomorphism from £ to £'. To show Fhat
fig1c ! we recall that f is already known to be a theory interpretation.

because f is a logic infomorphism, and so b isa
definition. Hence Ngr © Nyiey-

be an infomorphism.

So suppose that b is a normal token of £ . Then f(b) is #fiormat tokenof £ —

We now tumn to the soundness and completeness of the f-Intro rule. Recall
that a pair f = {(f" f~)istoken surjective if f7 is surjective.

Proposition 13.4. Let £ be alocallogicona classification A and let f:AeB

and a local logic £ on B,

a

let f:A=B bean info-

The condition for normal

normal foken of fL£]}, by
o
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1. If & is sound, then f[£]is sound.
2. If f is token surjective and £ is complete, then f[£] is complete.

Proof. For (1), suppose £ is sound. Then for each token b of B, f(b) is normal
in £, and so b is normal in f[£]. For (2), suppose Lis compiete and f7is
surjective. Any consistent sequent (T, A) of f[£]is extendable to a consistent
partition (I, A"), by Partition, and so {f~'[I"], f —1[A’]) is a consistent parti-
tion of £. By the completeness of £, there is a normal token a of £ with state
description (f~[I"], f -1[A’]). By the surjectivity of f~, thereisa token b of
B with f(b) = a, and so b has state description (I, A’). Moreover, because a
is a normal token of £, b is a normal token of the image fLLl o

The restriction in the second part of Proposition 13.4 is crucial: If the info-
morphism is not surjective on tokens, then the image of a complete logic is not
necessarily complete. Indeed, we have the foliowing.

Proposition 13.5. Any logic £ is the image of the complete logic Cmp(£)
under the type-identical inclusion infomorphism kg : cla(Cmp(£)) =cla(£).

Proof. That k¢ is an infomorphism and Cmp(£) is complete are immediate
given their construction. That £ is xe[Cmp(£)] follows directly from our
characterization of the image of a logic. 0

Corollary 13.6. A local logic is sound if and only if it is an image of a natural
logic.

Proof. By Proposition 12.7, every natural logic is sound and complete, so by
Proposition 13.4, its image is sound. Conversely, if £ is sound then Cmp(£)
is both sound and complete, by Proposition 12.13, and so is natural by Propo-
sition 12.7 again. Moreover, by Proposition 13.5, £ is an image of Cmp(£),
and so we are done. o

N 133 Inverse Images of Logics
We now explore the same set of issues with respect to inverse images of logics,
or, if you like, the f _Elim rule. In some ways, this operation is better behaved,

in other ways worse. First we have the following characterization of the inverse
image of a logic.

Theorem 13.7. Let f : A2 B be an infomorphism and let &£ be a logic on B.
The inverse image of £ under f is the largest logic £ on A such that f is a
logic infomorphism from £ to £
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Proof. First, f is a logic infomorphism from gt ).;‘,’ becausz ' f 1:;
regular theory interpretation, by Proposition 10.13, and again the condition
normal tokens is clearly satisfied. -

Assume that f is a logic infomorphism from £ Ito £ To shovs./ that £ ;1
f£~'[£], suppose that a is a normal token of f~'[£']. Then there is a normf
token b of & such that a = f(b), and soa is a normal token of £ because !
is a logic infomorphism from £ to €. Hence N f._u[.,y] C N, e- M(;reow:,el', :o
I g A, then f[I'] g fIA] because f is a logic mfomorphislm /rom -
£/, and then T k- ¢-1;ey A, by Proposition 10.13. Hence £ C f~[£], an WD
are done.

Example 13.8. A simple application is the relationship between a ‘lo(fl;w 1(51 zn
a sum A + B of classifications and the logics on the summand A induce :1
£ and the canonical embedding o4 : A=A + Bof A intoA + B. The n(;(r(r; )
tokens of this logic are those a € tok(A) such that for some b eft; Sucﬁ
(a,b) € Ng. The constraints of the logic are those sequents (r, 1A)'o A s
that o4[['] F¢ 0a[A]. (The reason is simply thz?t both of these ogx;:: iy
largest logic on A making o4 a logic infomorphism.) If the types.f :

are disjoint, this is simply the restriction of g to the sequents of A.

Proposition 13.9. Let £ be alocal logicorna classification Bandlet f : A2 B
be an infomorphism.

i ey lete.
1. If £ is complete, then f~ [£] is comp ) .
2. If f is token surjective and £ is sound, then [ £] is sound.

in f! ould
Proof. For (1), note that a counterexample to completeness in f [E]fv;'lows
give rise, via f, to a counterexample in £. The second statement 10 s
directly from the definition of inverse images. .

s . C ective
The restriction in (2) is again crucial: if the infomorphism is not '?llljecl:; "
----- on. tokens, then the inverse image of a sound logic is not necessarily sounc.
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Proof. By Proposition 12.7, every natural logic is sound and complete, so by
Proposition 13.9, its inverse image is complete. Conversely, if £ is complete,
then Snd(£) is both sound and complete, by Proposition 12.13, and so is natural

by Proposition 12.7 again. Moreover, by Proposition 13.10, £ is an inverse

image of Snd(£) and so we are done. ]

Corollary 13.12. If f:A2B is a idken surjective infomorphism, then,
f'[Log(B)] = Log(A) and f[Log(A)] = Log(B).

Proof. Log(B) is sound and complete. Completeness is preserved underinverse
images and soundness is preserved for token-surjective infomorphisms, so its
inverse image is also sound and complete. But by Proposition 12.7, Log(A)

is the only sound and complete logic on A. The second part follows similarly

from Proposition 13.4. o

Analytic Truth

To illustrate these notions, let us work out a simple example having to do with
the notion of analytic truth, that is, truth by virture of meaning.

We are going to set up two propositional languages as classifications A
and B. The language A has as types arbitrary sentences built up from the
atomic sentences MOTHER, FATHER, and BACHELOR. For tokens, we take ar-
bitrary truth assignments to these atomic sentences, with a ¥4 o defined in the
usual way. Thus the logic Log(A) is just the usual classical propositional logic
on this set of atomic sentences. The constraints of this logic are those that are
classically valid, which, by the completeness theorem for proposition logic,

are those derivable in the classical Gentzen calculus. As a schematic example,
we have

o= —(BAY),a B Froguy Y,

Indeed, we have the following result.

Proposition 13.10. Any local logic & is the inverse image of the sound local
logic Snd(L) under the type identical inclusion 1o :cla(£) & cla(Snd(£)).

Proof.. The proof is derived from the definition of inverse images. : u}

Proposition 13.11. A locallogicis complete if and only if it is an inverse image
of a natural logic.

where o, B-and-y are arbitrary sentences. . = e
The language B is similar, but its atomic sentences are FEMALE, MARRIED,
PARENT, where the last is intended to connote the property of being a parent.

Again, we take all truth assignments as tokens, and the constraints are those
derivable in the classical calculus.

There is an important difference between these two classifications. Some of
the truth assignments (tokens)-of A represent spurious possibilities, things that
could not really happen. For example, an assignment that assigned true (1) to
both MOTHER and BACHELOR does not represent a real possibility (ignoring the
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possibility of sex-change operations). Asa result, some seeming analytic truths
are not constraints in the theory of A. For example, we note that

MOTHER ¥4 “BACHELOR

By contrast, every truth assignment of B represents 2 genuine possibility,
because the atomic types of this classification are independent. Hence every
analytic truth that can be expressed in this language is a constraint of B.

We can-use B to see what is wrong with A. There is a natural infomorphism
f:A=B. Define f on atomic sentences as follows:

o f(@)
MOTHER PARENT A FEMALE
FATHER PARENT A —FEMALE

BACHELOR —(FEMALE V MARRIED)

Here f is defined on complex sentences so as to commute with the various
logical operations.

On tokens, we define f in the natural way. Thus, given an assignment s for
B, we define the assignment s’ = f(s) by means of the following:

s"(MOTHER) = | iff s EPARENT A FEMALE
s’ (FATHER) = 1 iff sEPARENT A —FEMALE
s’ (BACHELOR) = 1 iff skE—(FEMALE V MARRIED)

‘We can use the infomorphism f to move the natural logic Log(A) to B or
to move the natural logic Log(B) to A. By our general results, we see that
flLog(A)]is sound on B and f ~![Log(B)] is a complete logic on A.

The infomorphism f is not token surjective, however, because if a is one
of the spurious truth assignments mentioned above, it is not in the range of f.
Consequeﬁtly, we do not expect f [Log(A)] to be complete. And, indeed, we
see that :

T F(MOTHER) ¥ fioguy) J (FBACHELOR), — ~— —— —F

whereas
f (MOTHER) FLog®) f (—~BACHELOR).

Similarly, because f is not token surjective, we know that f~![Log(B)] cannot
be sound, because the normal tokens of this logic are just those in the range
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of f. Note, however, that these are exactly the nonspurious truth assignments.

In other words, the normal tokens of f ~![Log(B)] are just those tokens that
represent genuine possibilities.

13.4 More About Moving Logics

In this section we collect together some simple but useful observations about
the operations of taking images and inverse images of local logics.

Proposition 13.13. Let f : A2 B and g : B = C be infomorphisms.

1. For any logic £on A, gf[£] = g[f[£]].
2. For any logic £on C, (¢f)~'(€1= f~'[g"'[£]L

Proof. The proof is immediate from the definitions. o

Proposition 13.14. The operations of taking images and inverse images of
logics are both order-preserving (with respect to ).

Proof. Let f: A = B be an infomorphism. We need to show the following:

1. Forlogics £ and £, on A, if £, C £, then f[£]1C f[£2].
2. For logics £ and £, on B, if £, C £, then f~![£,]1 C el

For (1), note that by Theorem 13.7, f isalogic infomorphism from £, to f[.£,]
and so is also a logic infomorphism from £, to f[£2] by Proposition 12.28. By
Theorem 13.7 again, f[£,]is the smallest logic making f alogic infomorphism
from £, and so f[€1] € Fi£2]. Part (2) is proved similarly. 8]

Proposition 13.15. The operations of taking images and inverse images of
logics preserves joins in the C ordering.

1. If £, and £, are both logics on A, then f[.€; L £,] = FLLiIU FIL,].
2. If ,ltl and £, are both logics on B, then f~'[£, U Ll= e u
FIL

For (1), first note that by Corollary 13.14, f[£,]1 £ f[£i U £,] and f[£2] E
FL€1 U £5]. Therefore f[£111 FLE] E fL£€ u £5]. Forthe other direction,
1.10te that by Theorem 13.7, f is a logic infomorphism from £; to fI£;], for
i = 1,2, and so also from .£; to f[£1]u f[£,], by Proposition 12.28. Thus by

Fr’ooﬁ*l:ef’f’:ﬁB‘be*an—infomb’rphism.— e iieed to show the following: ™ =
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Proposition 1229, f is alogic infomorphism from £ U £ to fleu fiLal,
and so by Theorem 13.7 again, fl£, U &1C flelu flel The proof of
(2) is similar. O

Corollary 13.16. Let f: A 2 B be an infomorphism.

1. Foranylogic SonA, £C FoUren
2. For any logic Lon B, fIfenc L

Proof. For (1), by Theorem 137, f —1{ f[£1} is the largest logic on A such that
fisalogic infomorphism from f =l f1£1]to f£]. But also by Theorem 13.7,
fisa logic infomorphism from £to f1£], andso the result follows. The proof
of (2) is similar. |

Corollary 1317. &1+ & = 0’31[2.1] Uog, [£2].

Proof. By Theorem 13.7, og, [£11CE £, + £, and 0g,[£2] T £1 + £, be-
cause og, 1 £12 £+ £, and og, (L= L)+ £y are logic infomorphisms.
Thus o¢, [£11U 08, [ €21 E £1 + £3.

For the other inequality, we must check that every normal token of og,[£4]
U op.[L2] is 2 normal token of £+£, and that if T Fe.+e, A, then
T Fag, (21]u0s,(22] A. This is sufficient, because the classification of both sides
is just cla(£1) + cla(£,).

Suppose (a, b) is normal in og, [£,]U og,[£2]. Then it is normal in both
og, [£1]and og,[£2),50ais normal in £ and b is normalin £,. But Ng +e, =
Ng, X Ng,, and so (a, b) is normal in £, + L.

Now suppose that ' Fe 42, A. We can write (T, A) uniquely as

<O'£|F1 Uog, M, 0g, AU 6£2A2>,
w'here'r"[; Al g’{yp’(’:’l) and Fz ,' Azgvtyp(ﬁ‘z) SO énhérl"ll— ;‘;x A] orT‘z i- ,c;
A, by the definition of £ +£,. Thusog, 't l__gcl (2.1 %¢ Ajorog,I'y ‘_61‘4[32]
og, 2. In either case, T g, (£1uog, (221 A by weakening. nl

Corollary 13.18. Given an indexed family { fi : £ & Lhier of logic infomor-
phisms, o '

> 5 {Zéi} =| | fiteal.

iel iel iel
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Proof. This is a straightforward computation given the above results:

(; f,-> [;S} = (Eﬁ; fs) LLEJIU}:,.[&]} (Cor. 13.17)

= (Z f,~) [og,[&]]  (Cor 13.15)
iel \ iel
=U (Z fi)ai.‘,;[f/i] (Prop. 13.13)
iel \ iel
= Al
iel )
The final identity follows from the definition of 3 ;¢ fi- o
Proposition 13.19.
-1
(Z ﬁ) e1=">_ (£7'1e).
iel iel
Proof. The proof is similar to that of 13.18. o

Exercises

13.1. Characterize the a priori logic AP(A) on A by moving the logic o of
Exercise 12.4.

13.2. Given an infomorphism f : A = Band alocal logic £ onA, show that
if f is surjective on types, then for all sequents (T, A)of B,T' ko) A
if and only if f~![T}Fe f -1A. Give an example showing that the
surjectivity condition is necessary.






