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In t~e. sam~ wa~, the world is not the sum of all the things that 
are m It. I~ IS the mfin~tely complex network of connections among 
them. As m the meamngs of words, things take on meaning only in 
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Preface 

Infonnation and talk of infonnation is everywhere nowadays. Computers are 
thought of as infonnation technology. Each living thing has a structure deter­
mined by infonnation encoded in its DNA. Governments and companies spend 
vast fortunes to acquire infonnation. People go to prison for the ilIicit use of 
infonnation. In spite of all this, there is no accepted science of infonnation. 
What is infonnation? How is it possible for one thing to carry infonnation 
about another? This book proposes answers to these questions. 

But why does infonnation matter, why is it so important? An obvious an­
swer motivates the direction our theory takes. Living creatures rely on the 
regularity of their environment for almost everything they do. Successful per­
ception, locomotion, reasoning, and planning all depend on the existence of 
a stable relationship between the agents and the world around them, near and 
far. The importance of regularity underlies the view of agents as infonna­
tion processors. The ability to gather infonnation about parts of the world, 
often remote in time and space, and to use that information to plan and act 
successfully, depends on the existence of regularities. If the world were a 
completely chaotic, unpredictable affair, there would be no infonnation to pro­
cess. 

---- Still, the place of infonnation in the natural world of biological and physical 
systems is far from clear. A major problem is the lack of a general theory 
of regularity. In detennining which aspects of the behavior of a system are 
regular, we typically defer to the scientific discipline suited to the task. For 
regularities in the movements of birds across large distances, we consult experts 
in ornithology; but if the movements are of bright lights in the night sky, we'd 
be better off with an astronomer. Each specialist provides an explanation using 
a theory or model suited to the specialty. 

xi 
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xii Preface 

To whom can we tum for questions about information itself? Can there 
be a science of information? We think so and propose to lay its foundations 
in this book. Out of the wide variety of models, theories, and less formal 

modes of explanation used by specialists, we aim to extract what is essential to 
understanding the flow of information. 

How to Read This Book 

This book has several intended audiences, some interested in the big picture 
but not too concerned about the mathematical details, the other of the opposite 
sort. Here is a brief outline of the book, followed by indications of which parts 
various readers will want to read, and in what order. 

Introduction to the Theory. The book has three parts. Part I contains a discus­
sion of the motivations for a model of this kind and surveys some related work 
on information. An overview of our information-channel model is presented, 
and a simple but detailed example is worked out. 

Development of the Theory. The heart of the book is in Part II and consists of 
a detailed elaboration of the mathematical model described in Part 1. Although 
the basic picture presented in Part I is reasonably simple, there is a lot of 
mathematical spadework to be done to fill in the details. The mathematical part 
of the book culminates in a theory of inference and error using "local logics" 
in Lectures 12-16. 

Applications of the Theory. The lectures in Part III explore some ideas for 
an assortment of applications, namely, applications to speech acts, vagueness, 
commonsense reasoning (focusing on monoticity and on the frame problem), 
representation, and quantum logic. Although there is some truth to the old saw 
that to a person with a hammer, everything looks like a nail, a wise person with 

a new tool tests it to see what its strengths and weaknesses are. It is in this spirit 
_ thatwe_offertb~ ~'exptorations" of Part III. We are interested in pounding nails 

but are equally interest~(ii~ explori~g our-new hammer'--~- -- ---- ----

We have written the book so that philosophers and others less patient with 
mathematical detail can read Part I and then have a look through Part III for top­
ics of interest. Mathematicians, logicians, and computer scientists less patient 
with philosophical issues might prefer to start with Lecture 2, and then tum to 
Part II, followed perhaps by poking around in Part III. Researchers in artificial 
intelligence would probably also want to start with Lecture 2 and some of the 
chapters in Part III, followed by a perusal of Parts I and II. 

Preface xiii 

An index of definitions used in Part II, and a glossary of special notation 
used in Part II, can be found at the end of the book. 

Mathematical Prerequisites. Although some familiarity with modem logic 
would be helpful in understanding the motivations for some of the topics we 
cover, the book really only requires familiarity with basic set theory of the sort 
used in most undergraduate mathematics courses. We review here some more 
or less standard notational conventions we follow. 

If a = (x, y) is an ordered pair, then we write pl(a)·= x and 2nd (a) = y. 

Given a function f: X -+ Y, we write f [XoJ = U(x) I x E Xo} (for Xo S; X) 
and f- I 

[YoJ = {x E X I f(x) E Yo} (for Yo S; Y). By the range of f we 
mean f [X]. Given functions f: X -+ Y and g: Y -+ Z, gf is the function 
that results from composing them to get the function gf: X -+ Z defined by 

gf(x) = g(f(x». For any set A, pow A is its power set, that is, the set of all 
its subsets. If X is a set of subsets of A, then 

u X = {x E A I x E X for some X E Xl 

and 

n X = {x E A I x E X for all X E Xl. 

If X is empty, then so is U X but n X = A. 

The appearance of many diagrams may suggest that the book uses category 
theory. This suggestion is both correct and misleading. Category theory arose 
from the realization that the same kinds of diagrams appear in many branches 
of mathematics, so it is not surprising that some of these diagrams appear here. 
We must confess that we have found the basic perspective of category theory to 

be quite helpful as a guide in developing the theory. And, as it turned out, some 

of the category-theoretic notions (coproducts and, more generally, colimits) 
- have an important information-theoretic interpretation_In writing this book we 
have tried to make clear the debt we owe to ideas from category theory, but, at 
the same time, not presuppose any familiarity with category theory, except in 
those exercises marked by a (t). 

In mathematics it is typical practice to call the hard results "theorems" and 
the easier results "propositions." Because none of our results are very hard, 
we use "theorem" to designate the results that are most important to the overall 
theory we are developing. As a result, some of our theorems are simpler than 
some of our propositions. 
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xiv Preface 

World Wide Web Site. We have set up a home page for this book, to facilitate 
the distribution of developments based on the ideas presented here, as well as 
for any corrections that may need to be made. Its URL is 

http://www.phil.indiana.edurbarwise/ifpage.html. 

You can also send us e-mail from this page. 
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Lecture 1 

Information Flow: A Review 

The three lectures in the first part of the book present an infonnal overview of a 
theory whose technical details will be developed and applied later in the book. 
In this lecture we draw the reader's attention to the problems that motivated the 
development of the theory. In Lecture 2 we outline our proposed solution. A 
detailed example is worked out in Lecture 3. 

In the course of the first two lectures we draw attention to four principles of 
infonnation flow. These are the cornerstones of our theory. We do not attempt 
to present a philosophical argument for them. Rather, we illustrate and provide 
circumstantial evidence for the principles and then proceed to -erect a theory on 
them. When the theory is erected, we shall be in a better position to judge them. 
Until that job is done, we present the principles as a means of understanding 
the mathematical model to be presented - not as an analysis of all and sundry 
present day intuitions about infonnation and infonnation flow. 

1.1 The Worldly Commerce of Information 

In recent years, infonnation has become all the rage. The utopian vision of 
an infonnation society has moved from the pages of science fiction novels to 
political manifestos. As the millennium approaches fast on the infonnation 
highway, the ever-lncreaslngspeed and scopeorc-ommtiiiicat1onnetwotksare~-----­
predicted to bring sweeping changes in the structure of the global economy. 
Individuals and companies are discovering that many transactions that used to 
require the movement of people and goods, often at great expense, may now 
be accomplished by the click of a mouse. Information can travel at the speed 
of light; people and goods cannot. I The result is no less than a reshaping of 

1 If information about the future is possible, as it seems to be, then information travels Jaster than 
the speed of light. 

3 



4 Lecture 1. Information Flow: A Review 

our shrinking planet as cultural and commercial boundaries are transformed, 
for better or worse, by the increasing volume of information flow. 

No doubt such future-mongering should be taken with more than a pinch of 
salt, but there can be little doubt that the prospect of life in "cyberspace" has 
caught the imagination of our age. Even in the most sober of society's circles, 
there is a mixture of heady excitement and alarm, a sense of revolution of an 
almost metaphysical sort. 

Once one reflects on the idea of information flowing, it can be seen to flow 
everywhere - not just in computers and along telephone wires but in every hu­
man gesture and fluctuation of the natural world. Information flow is necessary 
for life. It guides every action, molds every thought, and sustains the many 
complex interactions that make up any natural system or social organization. 
Clouds carry information about forthcoming storms; a scent on the breeze car­
ries information to the predator about the location of prey; the rings of a tree 
carry information about its age; a line outside the gas station carries information 
about measures in the national budget; images on a television screen in Taiwan 
can carry information about simultaneous events in Britain; the light from a star 
carries information about the chemical composition of gases on the other side 
of the universe; and the resigned shrug of a loved one may carry information 
about a mental state that could not be conveyed in words. 

With this perspective, the current revolution appears to be primarily techno­
logical, with people discovering new and more efficient ways to transform and 
transmit information. Information is and always was all around us, saturating 
the universe; now there are new ways of mining the raw material, generating 
new products, and shipping them to increasingly hungry markets. 

This book, however, is not concerned with technology. Our primary interest 
is not so much in the ways information is processed but in the very possibility 
of one thing carrying information about another. The metaphor of information 
flow is a slippery one, suggesting the movement of a substance when what 
occurs does not necessarily involve either motion or a substance. The value of the 

_______ !!!~!l~I!~r lies largely in the question it raises: How do remote objects, situations, 
and event;-carry information about one another witlfouranysubstancemoving -

between them? 
The question is not a new one. A variety of answers have been proposed by 

philosophers, mathematicians, and computer scientists. Our starting point was 
the work of Dretske, which will be discussed below. However, before going 
into details it is worth asking what such- an answer is meant to achieve. 

Consider the following story: 

: Judith, a keen but inexperienced mountaineer, embarked on aD. ascent ofMt. Ateb. She 
-.. _ __ ', __ .. _____ , _______ too~_w_itJ:1~h_er_8:~omI?a~~_a fl~~~~~t~_~p.~~!:'hic Illap, and a bar of Lindt bittersweet 
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chocolate. The map was made ten years previously, but she judged that the mountain 
would not have changed too much. Reaching the peak shortly after 2 P.M. she paused 
to eat two squares of chocolate and reflect on the majesty of her surroundings. 

At 2:10 P.M. she set.about the descent. Encouraged by the ease of the day's climb, 
she deCided to take a different route down. It was clearly indicated on the map and 
clearly marked on the upper slopes, but as she descended the helpful little piles of stones 
left by previous hikers petered out. Before long she found herself struggling to make 
sense of comp~s bearings taken from ambiguously positioned rocky outcrops and the 
haphazard tree Ime below. By 4 P.M. Judith was hopelessly lost. 

Scrambling down a scree slope, motivated only by the thought that down was a 
better bet than up, the loose stones betrayed her, and she tumbled a hundred feet before 
breaking her fall against a hardy uplands thorn. Clinging to the bush and wincing at the 
pain in her left leg, she took stock. It would soon be dark. Above her lay the treacherous 
scree, below her were perils as yet unknown. She ate the rest of the chocolate. 

~uddenly, ~h.e remembered the flashlight. It was still working. She began to flash 
out mto the tWIlIght. By a miracle, her signal was seen by another day hiker, who was 
already near the foot of the mountain. Miranda quickly recognized the dots and dashes 
o~ the SOS and hurried ~n to her car w~ere she phoned Mountain Rescue. Only twenty 
mmut~s lat~r ~e searchlIght from a helIcopter scanned the precipitous east face of Mt. 
Ateb, Illununatmg the frightened Judith, stilI clinging to the thorn bush but now waving 
joyously at the aircraft. 

Two previously unacquainted people, Judith and the helicopter pilot, met 
on the side of a mountain for the first time. How did this happen? What is the 
connection between the helicopter flight and Judith's fall, such that the one is 
guided by the location of the other? 

Naturally, common sense provides answers - in broad outline, at least. We 
explain that the helicopter was flying over that part of the mountain because the 

pilot believed that there was someone in danger there. The location had been 
given to the pilot at the Mountain Rescue Center shortly after the telephone 
operator had turned Miranda's description into a range of coordinates. Miranda 
also conveyed the description by telephone, but her information was gained from 
the flashes oflight coming from JUdith's flashlight, which was responding to the 
desperate movements of JUdith's right thumb as she clung to the mountainside. 

This establishesa physical connection between the two events, but a lot is left 
unsaid. ~ost events are connected in one way or another: How i~ tI1is p~icuiar 
connectIon capable of conveying the vital piece of information about Judith's 
location? Consider the nature of the connection. It is made up of a precarious 
thread of thoughts, actions, light, sound, and electricity, What is it about each 
of these parts and the way they are connected that allows the information to 
pass? 

A full explanation would have to account for all the transitions. Some of 
them may be explained using existing scientific knowledge. The way in which 
the switch on Judith's flashlight controlled the flashes, the passage oflight from 
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the flashlight to Miranda's eyes, and the transfonnation of spoken ,:",ords i~to 
electrical signals in telephone wires and radio w~ves may all ~e explamed.usmg 

models derived ultimately from our understandmg of phYSICS. The motIon of 
Judith's thumb muscles and the firing of Miranda's retinal cells, as well as t~e 
many other critical processes making up the human actions i~ this story, reqUire 
physiological explanation. A knowledge of the conventions of map~ak~rs and 
English speakers are needed to explain the link between the ~ombmatlOns of 
words, map coordinates, and the actual location on the mountam. And, fin~lly, 
th chology of the various people in the story must be understood to bndge 
th: ~~~siderable gap between perception and action: between Judit~'s fall and 
her moving the switch, between the light falling on Miranda's retma and her 
mouthing sounds into a cellular phone, between the sounds com~ng, from ~he 
telephone, the scribbled calculations on a message pad, and the pIlot s hurned 

exit from the building. : 
A full explanation would have to include all these steps and ~or.e. It ~s n.o 

wonder that we speak of infonnation, knowledge, and commumcatlOh; hfe IS 
too short to do without them. Yet it is not just the complexity of the explana­
tion that makes the prospect of doing without infonnation-bas~d vocab~lary so 
daunting. Stepping below the casual unifonnity of talk about mfonn.atlon, we 
see a great disunity of theoretical principles and modes of e~pla~attOn. Psy­
chology, physiology, physics, linguistics, and telephone engm:enng are v.ec: 
different disciplines. They use different mathematical models (If any), and It IS 
far from clear how the separate models may be linked to account for the whole 
story. Moreover, at each stage, we must ask why the infonna~ion that some~ne 
is in danger on the east face ofMt. Ateb is carried by the part~cular event b~mg 
modeled. This question is not easily stated in tenns appropnat~ to th: v~ous 
models. To explain why the pattern and frequencyof firings in MIranda s r~tl~as 

. carry this. infonnation, for instance, we need more than a m~del ?f the mSlde 
of her eye; the question cannot even be stated in purely phYSlOlo~lc~1 tenus: 

What are the prospects for a rigorous understanding of the p~nclples ~f l~-
__ fonnationflo¥LVtis .I~ativell'_uncontro~ers~~l that the flow of mfonnatlOn IS 

ultimately detennined by events in the natural wor1danaffi.artne-D~stway of-­
understanding those events is by means of the sciences. But ex~lan~tlons based 
on the transfer of infonnation are not obviouslyreducible to sCIentIfic explana-
tions, and even if they are, the hodgepodge~of models lind th~oretical ~rinciples 
required would quickly obscure the regularities on w~ch the infonnatl~n-based 
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correlations can be explained in a precise way, not by reducing the problem to 
physics or any other science, but by appealing to laws of infonnation flow. This 
book aims to provide such a model. 

1.2 Regularity in Distributed Systems 

In detennining the infonnation carried by Judith's flashlight signal, a spectro­
graph is of little use. Whatever infonnation is carried depends not on intrinsic 
properties of the light but on its relationship to Judith and other objects and 
events. 

It is all too easy to forget this obvious point if one focuses on infonnation 
conveyed by means of spoken or written language. The infonnation in a news­
paper article appears to depend little on the particular copy of the newspaper 
one reads or on the complex mechanism by which the article was researched, 
written, printed, and distril;mted. The words, we say, speak for themselves. The 
natviety of this remark is quickly dispelled by a glance at a newspaper written 
in an unfamiliar language, such as Chinese. There is nothing in the intricate 
fonn of Chinese characters inscribed on a page that conveys anything to the 
foreigner illiterate in Chinese. 

Logical and linguistic investigations into the topic of information give the 
impression that one should be concerned with properties of sentences. Even 
when it is acknowledged that information is not a syntactic property of sentences 
and that some system of interpretation is required to determine the information 
content of a sentence, the role of this system is typically kept firmly in the 
background. In Tarskian model theory, for example, and in the approaches to 
natural language semantics based on it, an interpretation of a language consists 
of an abstract relation between words and sets of entities. No attempt is made 
to model what it is about human language-using communities that makes this 
relation hold.2 

By contrast, when one looks at nonlinguistic fonns of communication, and 
the many other phenomena that we have listed as examples of information flow, 

--'-I~--~-e spatia:fandfemporaI-relation-sfiipsoetweeiq>aits-6filie system carulot be 
ignored. The very term "information flow" presupposes, albeit metaphorically, 
a spatial and temporal separation between the source and the receiver of the 
information. 

explanations depend. The possibility exists that a ngorous model of mfo~a-
tion flow can be given in its own tenns; that such phenomena as the ch~mng '! 

together of infonnation charmels, the relationshi p be~een error and gap~ m the J 

2 The criticism is not that the topic has been ignored, as philosophers of language have had much 
to say about it, but that their proposals have not been incorporated into logico-linguistic theories. 
The relation between a name and its bearer, for example, is taken to be a primitive relation of 
semantic theory; the contingent facts of language use that establish the relation are ignored on 
the grounds that the only semantically relevant feature of a name is its bearer. 

chain, ",d the difference be,:~n ~",liab~ein,:",""'n ,o=e and '''''de~tal ___ l __ 
1'. 
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We draw attention to the importance of examining information flow in the 
context of a system in our first Principle. 

The First Principle of Information Flow: Infonnation flow results from regularities 
in a distributed system. 

Two features of this principle require immediate comment: that the systems 
in whkh information flows are distributed and that the flow results from reg­
ularities in the system. By describing a system in which information flows as 
"distrihuted," we mean that there is some way in which it is divided into parts, 
so that the flow of infonnation is from one part (or parts) to another. For exam­
ple. we may consider Judith's flashlight to be a system in which information 
flows: the lit bulb carries the information that the switch is on and the battery 
is charged and so forth. The flashlight may be divided into the following parts: 

bulb switch 

flashlight 

batteries case 

We do not intend to suggest that this division into parts is unique or comprehen­
sive. Each of the components of the flashlight has parts that are not represented 
(but could be) and there are a host of different ways of decomposing the system 
that would not list any of the parts depicted above. (Indeed, the relativity of this 
decomposition is crucial to the story we will telL) 

The parts of an infonnation system are often spatial or temporal parts but 
they do not need to be. The conception of information flow we develop is very 
broad, encor~pa;sing abstract systems su~h-as !riathematicaIproofsand tax6~­
nomic hierarchies as well as concrete ones like the abo~e. In abstract systems 
the relation of whole to part is also abstract, and the metaphor of "flow" has 
to be interpreted even more loosely. We place no restriction on what kind 
of thing may count as a part, only that the choice of parts detennines the 
way in which we understand what it is for information to flow from one part 
to another. 

The first principle of information flow also states that infonnation flow results 
from regularities in the system. It is the presence of regularities that links 
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the parts of a system together in a way that permits the flow of information. 
The fact that the components of Judith's flashlight are more or less adjacent 
in space a~d have overlapping temporal extents is not sufficient to explain 
the infonnation carried by the lit bulb about the position of the switch or the 
state of the batteries. It is of the greatest importance that the components of 
the flashlight are connected together in such a way that the whole flashlight 
behaves in a more or less predictable manner. In this case, the regularities that 
ensure the uniform behavior of the system are mostly electrical and mechanical 
in nature. The contacts in the switch, the design of the case, and many other 
details of the construction of the flashlight go to ensure that the flashing of the 
bulb is systematically related to the position of the switch. 

The behavior of the system need not be entirely predictable for information 
to flow. Properties of components of the flashlight, such as the discoloring of 
the plastic case due to exposure to sunlight, are not at all predictable from 
properties of the other components; yet this indetenninacy does not interfere 
with the regular behavior of the system in the informationally relevant respects. 
More complex systems may even be highly nondetenninistic while still allowing 
information flow. Yet, as a general rule, the more random the system the less 
information will flow. 

The range of examples in the story of Judith on Mt. Ateb show that infor­
mation flows may be due to a wide range of factors. Some of them are "nomic" 
regularities, of the kind studied in the sciences; others, such as those relating a 
map to the mapped terrain, are conventional; and others are of a purely abstract 
or logical character. Sometimes the regUlarity involved is very difficult to pin 
down. Parents can often tell when their children are getting ill just from the 
look of their eyes. The relationship between the appearance of the eyes and the 
condition permits this inference reliably, but even an ophthalmologist would 
hesitate to say on what exactly the inference depends. 

Despite the wide range of regularities that pennit infonnation flow, it is 
important to distinguish genuine regularities from merely accidental, or "sta­
tistical" regularities. Accidents are not sufficient for information flow. To give 

-an example,suppose that on-the occasion- ot'J udith' s-fall,Miranda caught sight 
of the light of the moon reflected from a small waterfall on the mountainside. 
By chance, we suppose, the waterfall reflected the moonlight in a sequence of 
flashes very similar to the Morse code SOS. In such circumstances, Miranda 
might have formed the belief that there was someone in trouble on the mountain 
in the approximate location of Judith's fall. Her belief would be true but she 
would not have the information. Infomiation does not flow from A to B just 
because someone at B happens to have been misled into believing something 
correct about what is going on at A. 

--------------- --~-------
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Now suppose that over the course of several months, a large ~umber of 
climbers are saved from the treacherous slopes ofMt. Ateb by MountaIll Rescue, 
alerted by reports of SOS signals flashed from the mountain. In fact, the flashes 
were all caused by reflected moonlight and a spate of visiting climbers, rather 
overzealous in their desire to report potential accidents. It is important that 
we assume that there really is no more to it that this, that is, no mysterious 
link between troubled climbers and water spirits. The result would be that a 
statistical regularity is established between fl~shes from the mountainside and 
climbers in distress. It should be clear that this spurious regularity is no more 
able to establish information flow than the one-time coincidence considered 

previously.3 

1.3 Information and Knowledge 

There is a close connection between information and knowledge. Puzzles sim­
ilar to those discussed in the previous section are used by philosophers to test 
different theories of knowledge. Indeed, the origin of the work presented here 
was an attempt to elaborate and improve on a theory of knowledge presented 
by Fred Dretske (1981) in his book Knowledge and the Flow ~f Information. 
The informational role of regularities in distributed systems WIll be better ap-

preciated if seen in the light of Dretske's theory. . 
Since Gettier's famous paper of 1963, philosophers have been looking for the 

missing link between true belief and knowledge. The "traditional': ~ccount is 
that knowledge is justified true belief. Miranda knows that someone IS III trouble 
on the mountain because her belief is justified by her knowledge of Morse code 
and other relevant considerations. But consider the case in which the flashes 
were produced by reflected moonlight. Miranda's belief and its justification 
would remain the same, but she would not know that someone is in trouble. 

, ·4 
This is Gettier's argument and there have been many responses to It. 

Recently, the topic has largely been put aside, not because an agreed upon 
solution has. been found but because_!11any ,have _ b~en proposed_ and no __ ~lear __ 
victor has emerged. Dretske's solution was one of the first. He proposed that 
information is the missing link. Very roughly, Dretske claims that a person 
knows that p if she believes that p and her qe.!ixviIlg ,thflt p( Qr the events in her 
head responsible for this belief) carries the information that p. To the extent 

3 An interesting question, which tests !he best of intuitions, is whether information is carried by 
Judith's flashlight signals against a background of fortuitously correct accident reports of !he 

kind considered in our example. 
4 For a survey, see Shope (1983). 
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that our beliefs carry information about the world, they play an invaluable role 
in guiding our actions and in communicating with others. 

, We take Dretske's account of the relationship between information and 
knowledge to be an important insight.5 As a bridge between two subjects, 
we can use it both as a means of applying our theory to epistemology and also 
as a way of incorporating epistemological considerations into the theory of 
information. 

For example, the first principle of information flow is illuminated by con­
sidering some related epistemological puzzles. A perennial problem in the phi­
losophy of knowledge is that of accounting for a person's knowledge of remote 
facts. Miranda's knowledge of the world must stem from her experience of it, 
and yet a great deal of her knowledge concerns things that are not and never 
were part of our immediate physical environment. She may never have climbed 
Mt. Ateb herself, and she is certainly not able to see what happened on the 
scree slope in the dark. How is she able to know about parts of the world that 
are beyond her experience? 

A rough answer is as follows: Things outside Miranda's experience are 
connected in lawlike ways to things within her experience. If the world beyond 
her senses bore no relationship to her experience, then she would not be able 
to know about it. It is the regularity of the relationship that makes know­
ledge possible. This answer places the philosophical problem squarely within 
the scope of our current investigations. Miranda and the remote objects of her 
knowledge form a distributed system governed by regularities. The fact that 
the system is distributed gives rise to the problem; the regularity of the system 
provides the only hope of a solution. 

Dretske's approach to the theory of knowledge is not dissimilar to those who 
claim that it is the reliability of the belief-producing process that constitutes 
the difference between knowledge and mere true belief (Goldman, 1979, 1986; 
Nozick, 1981; Swain, 1981). Indeed, there is a close connection between' 
information flow and reliability. For a signal to carry information about a 
remote state of affairs, it must have been produced by a reliable process. An 

_ unreliable process will notpermiljnfOIlD<!tiQIltQ,l1pw. 
Reliability, however, is clearly a matter of degree. Some processes are more 

reliable than others, and what counts as sufficiently reliable may vary with 
circumstances. Consider Judith's flashlight. The information that the bulb is 
lit carries the information that the switch is on, because they are linked by a 

5 We do not accept Dretske 's account of information based on probability theory, and motivation for 
the design of our theory can be traced back to inadequacies in his proposals. Dretske's proposals 
will be discussed in more detail in Section 1.5 of the present chapter. 
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reliable mechanism. But the mechanism can become less reliable. If the battery 
is dead, the switch could be_ on but the bulb not lit. If there is a short circuit, 
the switch might be off but the bulb lit. Considerations of this kind make one 
wonder whether the bulb being lit really carries the information that the switch 
is on even when the flashlight is "working properly." Much depends on the 
standards of reliability being used. 

Consider also Judith's map of Mt. Ateb. Such a map is full of information, 
vital to the mountain navigator. But it also contains a number of inaccurate 
details - details that misled Judith into taking the wrong path and resulted in 
her perilous descent of the scree slope. The map is reliable in some respects 
but fallible in others; it carries both information and misinformation. Judith's 
use of the map is partly responsible both for her knowledge of the mountainous 
terrain around her and for her mistakes. 

Whenever one talks of information, the issue of reliability is close at hand. A 
goal of this book is to present a theory of information that is compatible with the 
facts about reliability, especially the treatment of partially reliable information 
sources and the ubiquitous possibility of error. 

1.4 The Grammar of Information Flow 

There are no completely safe ways of talking about information. The metaphor 
of information flowing is often misleading when applied to specific items of 
information, even if the general picture is usefully evocative of movement in 
space and time. The metaphor of information content is even worse, suggesting 
as it does that the information is somehow intrinsically contained in the source 
and so is equally informative to everyone and in every context. 

Perhaps the least dangerous is the metaphor of carrying information. One 
can at least make sense of one thing carrying different items of information on 
different occasions and for different people, and the suggestion of movement 
and exchange adds a little color. What's more, there is a pleasant variety of 
words that may be used as alternatives to "carry": "bear," "bring," and "convey" 
can all be usedillllie appropnateconfexc- ------~--..--.---

We therefore adopt the form "x carrieslbears/conveys the information that y" 
as our primary means of making claims about the conveyance of information. 
Some comment about the values of x and y is in order. 

The position occupied by y may be fille~ by any expression used in the 
attribution of propositional attitudes: thevhlues'for y in \'She knowslbelievesl 
doubts/thinks/hopes that y." Company is comforting, but in this case espe­
cially, the sense of security may well be false. The problem of determining the 
semantic role of such expressions is notoriously difficult and we do not wish to 

---- .--------.--~ .. -------
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suggest that anything we say about information involves a commitment to any 
alleged solution. 

The position occupied by x may be filled by a variety of noun phrases: 

. The e-mail message bore the information that Albert would be late for 
dinner. 

The rifle shot carried the information that the king was dead to the whole 
. city. 

Jane's being taller than Mary carries the information that Mary will fit under 
the arch. 

The greyness of the sky carries the information that a storm is approaching. 
The beating of tjrums conveyed the information that the enemy had been 

sighted. 

Mary's kissing John carried the information that she had forgiven him. 

It appears difficult to summarize this list. Events, such as Mary's kissing John, 
can carry information, so can objects, such as the e-mail message, and proper­
ties, such as the greyness of the sky. Perhaps more accurately, it is an object's 
being a certain way (e.g., the e-mail message's containing certain words in a 
certain order) and a property's being instantiated (e.g., the greyness of the sky) 
that really carries the information. 

While recognizing these complications, we need some way of talking about 
the general case. Following Dretske, we choose to focus on claims of the form 
"a's being F carries the information that b is G." The main advantage of this 
form is that one can go on to ask what information is carried by b's being 
G, without committing too many grammatical offenses. A bonus is that the 
information carried by the Fness of a is likely to be the same as that carried by 
a's being F. 

At first sight, Dretske's Way oftalking about information conveyance seems 
ill-suited to describing the information carried by events. There is no easy way 
of describing Mary's kissing John using an expression of the form "a's being 

-F ,"We-solve this problem by recognizing the distinction between a particular __ ._ 
event (an event token) and a type of event. The occasion e of Mary kissing John 
on a particular day in a particular place and in a particular way is a token of 
the type E of kissings in which Mary is the kisser and John is the person she 
kissed. Thus we can talk of the information carried bye's being of type E and 
remain within Dretske' s scheme. As will become apparent, the making of type­
token distinctions is very important to out project, and the reasons for making 
the grammatical distinction here are not as superficial as they might at first 
appear. 
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1.5 Approaches to Information 

In this section we survey a number of approaches to information flow, starting 
with Dretske's. In doing so, we have two motivations. One is to make clear 
some of the difficulties involved in answering our basic question, especially 
those having to do with exceptions and errors. The other is because our own 
proposal draws on aspects of each of these approaches. Our purpose here, then, 
is not to knock down straw men, but rather to pay our dues to important ideas that, 
although inadequate on their own, are in fact closely related to our own proposal. 

Information, Probability, and Causation 

The meteorolooist who tells us that it will be warm and dry today in the Sahara 
desert is not being very informative. If she tells us that there will be three inches 
of rain, and she is right, then we will be properly awed. 

The example suggests an inverse relationship between information and prob­
ability, namely, the less likely the message, the more informative it i~. ~e 
connection is thoroughly exploited in communication theory, the quantItatIVe 
theory of information used for the analysis of the efficiency of channels in 
communication networks.6 Communication theorists consider a network to be 
composed of distinct, nondeterministic, interdependent proces~es, the behav­
ior of which conforms to a probability distribution. A channel IS a part of the 
network responsible for the probabilistic dependence between two of the com­
ponent processes, called the source and the receiver. Quantities measuring the 
flow of information from source to receiver, the noise in the channel, channel 
capacity, and so on, can be computed from the probabili~ distributi~n. The 
basic idea is that the amount of information associated WIth an event IS deter­
mined by how unlikely it is to have occurred and so by the ~eciprocal of the 
probability of it occurring. Logarithms (to base 2) are taken m order to make 

the measure additive. 
Communication theory is an established branch of engineering that has 

--~-provect veryuseful-to-designefs-ef-Gommunication-dC!-v~ce~._RutjtLth~()retiC111 __ -
impact is far wider. Any physical system whose behavlO~ IS m~de~ed m pr~b­
abilistic terms can be regarded as an information system m WhICh mformatlOn 

flows according to the equations of the the9!),' '.' '.' _ . 
Impressed by the universality of the approach, anumber~fphi10s~phers have 

tried to use the theory to elucidate our ordinary concept of mformatlOn. Attrac­
tive as this appears, there are a number of obstacles. Firstly, communication 

6 The classical theory is presented in Sha~non (1948). Dretske gives a summary of the relevant 

parts of the theory in Dretske (1981). 

., 
J 

1.5. Approaches to Information 15 

theory is concerned with "amounts of information ... not with the information 
that comes in those amounts" (Dretske, 1981, p. 3). The engineer is only inter­
ested in how much information is transmitted in a network or lost to noise, not in 
the details of the communication itself, which are consequently omitted from 
the mathematical modeL Nonetheless, it may be hoped that the quantitative 
theory places constraints on solutions to the more philosophically interesting 
problem of determining what information is conveyed. Dretske adopts this view 
and proposes a number of such constraints. 

The second obstacle is that communication theorists are interested only in 
averages. It is the average amount of noise, equivocation, and information 
transmitted that matters to the engineer, not the amount of information trans­
mitted on a particular occasion. This is not such a serious problem, and Dretske 
shows that the mathematics of communication theory can be adapted to give a 
measure of the amounts of information involved in a particular communication 
between a source and a receiver. He defines the information I (E) generated by 
an event E at the source and the amount of information Is (r) about the source 
process carried by the receiver process as a function of the state r of the receiver 
and the state s of the source.? 

These quantities do not determine what information is carried by the signal, 
but they do constrain the search. If the receiver carries the information that the 
event E occurred at the source, then the amount of information about the source 
carried by the receiver must be at least as much as the amount of information 
generated by the occurrence of E at the source. Furthermore, E must have 
occurred, otherwise the information carried by the receiver is not information 
but misinformation. Finally, Dretske claims that the information measured by 
Is (r) must "contain" the information measured by I (E). Although lacking a 
precise sense for "containment" between quantities of information, he maintains 
that these conditions are sufficient to establish the following definition as the 
only viable contender: 

Dretske's Information Content: To a person with prior knowledge k, r being F carries 
the information that s is G if and only if the conditional probability of s being G given 
thit£ r is Fis 1 (and !t!SS than 1 -given k alone f 

The role of a person's prior knowledge in determining whether information 
is carried is important for Dretske's epistemology. It allows him to distinguish 

7 Suppose that the source is in one of the mutually exclusive states s" ... ,Sn with probability 
p(Sj). The probability peE) of E occurring at the source is given by the sum of the p(Sj) for 
those S; compatible with E's occurrence. Then l(E) = log(l/ peE»~ = -log peE). Moreover, 
if pes; I r) is the conditional probability of the source being in state S; given that the receiver is 
instater, then Is(r) = L,;p(s; Ir)(logp(s; Ir) -logp(slr». 
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bt!t\lieen an "internal" C::.".t:: an "external" contribution to assessing if something 

is known. The relativi:1 e,f information to a person's prior knowledge is set 

;lgainst a background (;: ~robabilities, fixed by more or less objective features 

l)f the world. 

Dretske's requiremt'~.~ that the conditional probability must be 1, not just 

\'ery close to 1, in orde :'Jr information to flow is supported by the following 

;ugument. Consider ar;: repeatable method of sending messages. If the con­

Jitional probability tha:. : :> G given the receipt of a message is less than one, 

t-y however small a m":75:n one cares to consider, then in principle one could 

resend the message usi:.;; the same process so many times that the conditional 

rrobability that s is G ~>'en the final receipt of the message is close to zero. 

Dretske claims that iftb; ;:.rocess is good enough to transmit the information on 

,1ne occasion, then no <:::.r)unt of duplication can prevent the information from 

flowing. This is captuf';:! hy the following principle: 

Dretske's XeroxPrinciplt: If r being F carries the information that sis G, ands being 
G carries the information '':.«t t is H, then r being F carries the information that t is H. 

The main objection tl, maximal conditional probability is that it sets too high 

a standard. In percepti(;fJ, for example, the possibility of perceptual mistakes 

suggests that the condit:(Jnal probability of the scene being as one perceives it 

w be is seldom if ever a, high as 1. Widespread skepticism would seem to be 

inevitable.s 

Dretske has an intere'oring, and for our theory important, response. He points 

,)ut that the relation btu'cen the probability of an event and its occurrence 

rresupposes that certain conditions are met. The probability of a tossed coin 

landing heads may be 1/2, but it will definitely not land heads if it is snatched 

from the air in midtos,>. In assessing the probability to be 1/2 we assume 

that such breaches of fetir play do not occur - but that is not to say that they 

are impossible. Applying this strategy to perception, we can say that the as­

sessment of probability for everyday perception presupposes that "normal" 

conditions obtain. When the stakes are higher, as they are in a murder trial 

-- for example,-we maTchangetheassessmentof probabiHiYby considering a .~----­
rIDge of abnormal circumstances that may affect the veridicality of a witness's 

rerception. 

The strategy is a SUbtle one. When determining whether a signal carries 

some information, it is important for Dretske that there is a distinction between 

the "internal" contribution of a personyprior' knowledge and the "external" 
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contribution of objective probabilities. But now it turns out that these proba­

bilities, although objective, are relative, not absolute. In effect, Dretske admits 

a further parameter into the account: whether information flows depends not 

only on prior knowledge but also on the probability measure used. Different 

standards of relevant possibility and precision give different probability mea­

sures and so give different conclusions about information flow and knowledge. 

This relativism is downplayed in Dretske's book, but it is an unavoidable con­

sequence of his treatment of skepticism. 

Another objection, acknowledged by Dretske, is that his account makes no 

room for a priori knowledge. Consider, for example, Euclid's theorem that 

there are infinitely many prime numbers. If it makes any sense to talk of the 

probability of mathematical statements, then the probability of Euclid's theorem 

must be I. Given any prior knowledge k, the conditional probability of Euclid's 

theorem given k is also I and so no signal can carry it as information. This is 

a serious defect that threatens any probabilistic theory of information flow.9 

The use of probability to give an account of information is closely related to 

the similar use of probability to account for causation. A proposed solution to 

one problem often suggests a candidate for the other. Nonetheless, one must be 

careful to distinguish the two. Causal relations often underpin informational re­

lations, but they are not the same. One important difference is that the direction 

of information flow is not necessarily aligned with the direction of causation. 

Present events can carry information about conditions in the remote past and 

about their future consequences, but there are strong arguments against the 

possibility of a present event causing a past event. 

Moreover, a causal connection between two events, in whatever direction, 

is neither necessary nor sufficient for information flow. Suppose that Judith's 

flashlight may be switched on by either of two switches: a slider on the side 
of the case and a push button at the end. On a given occasion, Judith flashes 

the light with the push button. The occurrence of the flash was caused by the 

pushing of the button, but it does not carry the information that the button was 

pushed because the same effect could have been achieved using the slider. What 

abouUhe-other direction,?_Does_the-pushing of the button carry the information 

that the flashing occurs? Perhaps it does, in this case, but not in general. If 
there is a loose connection, for example, or the battery is running low, then the 

pushing of the button may happen to cause the light to flash without carrying 

the information that the light is flashing. 

9 It does no good to loosen the definition to allow unit conditional probability given the signal to be 
sufficient for infonnation flow, irrespective of the conditional probability without the signal, for 

~ On some versions ofprobahility theory, events with zero or infinitesimally small probability may then any signal would be deemed to carry the infonnation that there are infinitely many primes. 

"""'''''''' "po"ib •. ",,"" (1996) "" rn in,"",o~ prop<>'- "=, ""'"' ""~ ... -~-t. _._~_ . 
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The above discussion shows that a causal connection, in either direction, is 
not sufficient for information to flow. That it is also not necessary can be seen 
by considering cases in which two causally unrelated events have a com~on 
cause. Suppose, for example, that two divers set their stopwatches for a thlrty­
minute dive. One watch going to zero carries the information that the other 
watch does the same, but neither event causes the other. 

Information and the Elimination of Possibilities 

A familiar idea in the philosophy of language is that the semantic value of a 
statement is given by the set of "possible worlds" in which it is true. This can 
be used to give an account of information content: 

Possible-Worlds Information Content: To a person with prior knowl~dge k: r being 
F carries the infonnation that s is G if in all the possible worlds compatible Wit? k a~d 
in which r is F, s is G (and there is at least one possible world compatible WIth k In 

which s is not G). 

Applying this account to epistemology, we see that it gives us a counterfactual 
account: whether one knows that p depends not only on the facts of this world 
but also on what goes on in other possible worlds. 

As it stands, the account is open to the same skeptical charge leveled aga~nst 
Dretske in the previous section. The skeptic proposes that there is some pOSSIble 
world in which our perceptions are radically mistaken. The mere possibility 
of one such world is enough to ensure, on this definition of possible-worlds 
information content, that none of our perceptual beliefs carry the information 

they should. . . 
Philosophers have. addressed this problem by using a more sophIstIcated 

account of the semantics ofcounterfactual conditionals (Lewis, 1973; Stalnaker, 
1984; Nozick, 1981; Dretske, 1970, 1971). The basic idea is to restrict the range 
of quantification from all possible worlds to all "near" or "normal" worlds, 

--where what counts as "near" or "normal" may dependoD the_conditional being_ 
evaluated. Taking a cue from Dretske, we may interpret this move in terms of 
standards of evaluation. The statement that information flows presupposes that 
these standards are met. In Dretske's probabilistic account, the standards of 
evaluation are modeled by a probability measure. It is only in the context of an 
ev.aluation of probability that-information is said to flow or not, and assessment -
of probability always presupposes that certain conditions are held fixed. In the 
theories of conditionals of Stalnaker and Lewis, we can think of what counts 
as a "near" possible world as modeling these standards. 

I 
I 
I 
I 
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Information and State Spaces 

Within applied mathematics and experimental science, similar normality as­
sumptions are made. The evaluation of some experimental data as confirming 
or conflicting with theory presupposes that "experimental conditions" were 
met. It is instructive, therefore, to examine the use of mathematical models in 
science, looking for the role played by this presupposition. 

The most common kind of model used for studying regularities in physical 
systems is a "state space." A state space consists of a set Q with some sort of 
mathematical structure defined on it, together with an assignment of elements 
of Q to the system at different times in its evolution. The elements of Q are 
called "states" because the characteristic feature of the model is that the system 
is deemed to be in only one state at a time. 

Newtonian physics, for example, studies systems consisting of a finite num­
ber of particles in space. The complete state of the system is assumed to be 
determined by information about position (relative to some coordinate scheme) 
and velocity of each particle in the system. Because both position and velocity 
are determined by three magnitudes, the state of a system of n bodies can be 
modeled by a vector of 6n real numbers; that is, we can take Q to be the vector 
space lR6n 

, where lR is the field of real numbers. The basic assumption of classi­
cal mechanics is that everything about such a system is a function of this state. 
The object of the 'enterprise is to figure out ways of writing down theories, usu­
ally in the form of some sort of equation that specifies the relationships between 
states of the system at different times. 

State spaces are also used in computer science where computing machines 
are assumed to have a finite number of possible states, and that computation 
proceeds by means of transitions from state to state. These states are not assumed 
to have any internal structure; instead they are related by the possible transitions 
between them. Thus, in both examples, there is some additional mathematical 
strucrure on the set of states: a vector space in one case and a transition function 
in the other. 

The term state space encourages one to regard such models using a spatial 
----metapnor.lIie stafes-of the-space are thought of as --rocatIOnSiilii-lanoscape-­

whose geography is molded by physical laws (as expressed by the equations). 
The evolution of the system is interpreted as motion in this abstract landscape, 
usually according to some principle of following the path of least resistance. 

The construction of state spaces often proceeds by isolating certain measur­
able attributes, the so-called "observables" of the system, and a range of values 
for each observable. For example, in an experiment to investigate the behavior 
of gases, a scientist might decide that the pressure, volume, and temperature are 
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the relevant observables, and that in his laboratory, these observables will take 
"alues within the ranges 1-20 bar, 0.001-2 liters, and 0-100 degrees Celsius, 
respectively. From these observables one can specify an initial set of states, 
namely, one for each assignment of values to the three attributes. The gas in 
the laboratory is in exactly one of these states at a time. Which state it is in can 
be determined by measurement. 

The set of possible states is pared down by further investigation. Boyle's law 
tells us that only those states in which the product of the pressure and the volume 
is some specific multiple of the temperature are possible. This gives us a way of 
understanding information flow. For example, knowing that the gas is contained 
in a I-liter bottle, the behavior of the thermometer carries information not just 
about the temperature but also about the pressure of the gas. We can define a 
notion of information content in a way that is parallel to the possible-worlds 
definition. 

State-space Infonnation Content: To a person with prior knowledge k, r being F 
carries the information that s is G if in every state compatible with k in which r is F, s 
is G (and there is at least one state compatible with k in which s is not G). 

Despite formal similarities, there are several important differences from the 
possible-worlds version. Firstly, the definition clearly presupposes a notion of 
possible state, and therefore a notion of state space, according to our earlier 
analysis of the concept Typically, the notion of state will be applicable to only 
a small part of the world for a limited duration of time. The gas experiment, 
for example, occurs inside a laboratory and only lasts for a few hours, at most. 
This is in contrast to the notion of a possible world, which is typically taken to 
be all-encompassing. 1O 

Secondly, in the case of scientific experiments, certain "experimental con-
_ ditions" must be maintained throughout the limited domain of application. For 
state-space models constructed by selecting observables and ranges of values, 
the experimental conditions are often taken to be that (i) the values of the 
selected observables should not exceed those in the specified ranges and (ii) 

.-~ ~th~';~b~e~~bl~;(th~p~aIIleters) sh~~ld rerii~i~' fi~~d-ttll-oughol£ ~The-' 
satisfaction of these conditions is a presupposition of the laws governing the 

system. . \ . . . 
If during the gas expenment, the bottle cOI1tammg the gas developed a sbght 

fracture, allowing the gas to escape slowly ,nto the surrounding room, then 
- \ 

.• /_.~ •. -,.-. V .. 0.. -, ••. 

10 This is not true of Stalnaker's (1984) work. indeed, one way of interpreting talk of possible 
worlds. close to Stalnaker's interpretation, is to identify possible worlds with possible states of 
this world. 
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the regularities expressed by Boyle's law would cease to be observed, and 
the behavior of the thermometer would no longer carry information about the 
pressure of the gas. 

A failure of this kind is not considered a counterexample to Boyle's law; it 
is merely a case in which the law's presuppositions were not satisfied. For this 
reason, the possibility of a leak does not count against the claim that information 
flows when there is no leak. 

We can now return to the question of how to make our definition of informa­
tion content respect varying standards of evaluation. The basic idea is to apply 
something similar to the meeting of "experimental conditions" whenever the 
notion of a state space is used. For example, in describing a coin toss as having 
the outcomes heads and tails, we presuppose that the coin will be tossed in a 
"normal" manner, with no interference from participants and certainly no coin 
snatching in midtoss. 

The example also illustrates the relationship between Dretske's definition 
information content and the state-space version. The rational assignment of 
probabilities to events presupposes a probability measure on a set of possible 
outcomes. If we take the set of outcomes to be our set of possible states, then 
we will have a state-space system within which the state-space definition of 
information content will be equivalent to Dretske's. 

The state-space conditions of a state space constructed in this way are just 
those presupposed by assigning probabilities. As such, they reflect our standards 
of evaluation that may depend on many factors, but once fixed the resulting 
system of regularities determines an objective conception of information flow. 

In practice, of course, it is next to impossible to pin down these conditions 
precisely. Often we can tell if a condition is violated; lacking any evidence 
that they are violated we will have reasonable confidence that they are obeyed. 
But the epistemologically important point is that the definition of information 
content (and hence of knowledge) only depends on the conditions being met, 
not on our knowing that they are met. I I 

In summary, recall that the First Principle of Information Flow is that infor-
matloii flow-reSUlts-from -ci-"distribut-ec(system-of -reguIaIiti~s~Th~tie~fu;n -~f--- ------~--~---
whether information flows or not therefore presupposes a system of regularities 
against which it can be evaluated. In this section we have considered a model of 
systems of regularities using the notion of a state space. A definition of infor­
mation content follows. It is formally similar to the possible-worlds definition 

II The skeptic's hypothetical scenario shows that we could fail to detect that the conditions are not 
met. but this does not affect the issue of whether information actually flows, assuming that the 
conditions are in fact met. 
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but differs both in having a clearly limited domain of application and in clearly 
presupposing that certain conditions are met within that domain. It is similar 
to Dretske's definition but differs in not requiring a probability measure on sets 

of states. 

Inference and Information 

Inference has something crucial to do with information. On the one hand, in­
ference is often characterized as the extraction of implicit information from 
explicit information. This seems reasonable, because it is clearly possible to 
obtain information by deduction from premises. In carrying out these infer­
ences in real life, we take as premises some background theory of how the 
world works. On the other hand, getting information typically requires infer­
ence. Judith, for example, had to infer something about the mountain from her 
map, and Miranda had to infer something about Judith from the distress signal. 

Some philosophers would go farther and maintain that the distinction be­
tween knowledge and true belief can be analyzed in terms of inferential relations 
alone. This "intemalism" differs from the "extemalist" position adopted here, 
according to which the world must participate in some way. On an intemalist 
account, explanations of the sort used in discussing Judith's rescue would not 
be required to explain the fact that the pilot knew where to look. Still, they 
would be required to explain why it was that Judith was there to be found. 

The close relation between inference and information suggests a different, 

more intemalist, take on information: 

Inferential Information Content: To a person with prior knowledge k, r being F 
carries the information that s is G if the person could legitimately infer that s is G from 
r being F together with k (but could not from k alone). 

This proposal is refreshingly different from the earlier ones and is promising 
ina number of regar.ds. First,. it relativizes information to a person's ability to 
infer, that is, to some kind of information-processing abilities, a feature notably 

lacking in the other approaches. 
__ .~ ___ ~ __ ConsiderJuditlLancLMiranda...lLludith.had-no knowledge of maps, she_ 

would not have been able to infer anything-abO'iitwh\!reshe was from the map, 
so the map would have carried no information to her. Similarly, if Miranda had 
known nothing about Morse code the outcome of the story would most likely 
have been quite different. Under these conditions she would not have taken the 
light flashes to be a signal of distress. There would have been no information 
flow, seemingly because there would have been no inference. 

Secondly, the background theory k of the agent comes much more actively 
into this account. It is not justthere as a parameter for weeding out possibilities; 

I 
~ 
I 

I 
i 

I 

1.5. Approaches to Information 23 

it becomes a first-class participant in the inference process. It makes Judith's, 
Miranda's, and the pilot's everyday knowledge of the world play key roles in 
the story, which it seems it should. 

Finally, by relativizing information flow to human inference, this definition 
makes room for different standards in what sorts of inferences the person is 
able and willing to make. This seems like a promising line on the notorious 
"monotonicity problem." 

In classical logic, the inference from "et entails y" to "et and f3 entails y" 
is valid and fundamental. This form of inference is sometimes called "Mono­
tonicity" or "Weakening" and is symbolized as follows: 

etf-y 

et, f3 f- y 

(In this way of formulating logic, initiated by Gentzen, multiple items on the 
left of f- are treated conjunctively, multiple items on the right are treated dis­
junctively.) After all, if et and f3 both hold, then et holds, so we have y. But 
consider the following: 

The switch being on entails that the bulb is lit. 

This regularity is a commonplace bit of information about Judith's flashlight. 
On the earlier accounts, it would be seen as capturing some kind of regularity of 
the system. On the present account, it might be seen as an inference permitted 
by Judith's background theory k of the world. 

However, this conditional has exceptions. The battery might be dead, for ex­
ample. From the logical point of view, this looks like a problem because weak­
ening seems to allow us to conclude the following from the above regularity: 

The switch being on and the battery being dead entails that the bulb is lit. 

The inference is clearly unwarranted and unwelcome. 
_____Thedifficulty. seems closely related to the_ problem.of error in information 

flow. In the first three approaches, error is seen as involved with changing the 
probability space, changing what counts as a normal or near possible world, or 
changing the state space. The present proposal, it seems, might simply take the 
ability to recognize such shifts as a property of legitimate human inference. 

Difficulties start to appear, however, when we probe more deeply into the 
role "legitimate" plays in this account. It is clearly crucial, because without it 
the person could infer anything from anything and it would count as informa­
tion for that person. But if Miranda had inferred from the light flashes that they 
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were caused by giant fireflies on the mountain, she would have been misin­
formed by the flashes, not informed. Similarly, had the heiicopter pilot inferred 
from Miranda's message that she was deluded, he would have been wrong and 
so misinformed. Such considerations show that the inferences allowed by the 
definition must, at the very least, be sound inferences. 

In a way, this is promising, because it suggests that this proposal has to be 
related to a more semantic a;;count and so might be seen as a strengthening of 
one or more of the earlier proposals. But the question is, why not allow any 
sound inference? In particular, why not allow the sound rule of weakening? 

Taking our cue from the earlier responses to problems involving exceptions, 
it seems that one might try to pin the problem on the relationship of the per­
son's theory k of the world and the background conditions and standards of 
the person. In our above example, it seems that the premise that the battery is 
dead violates the background theory k used for the first inference and so causes 
one to change k. The account of information flow presented here relates infer­
ence and background theory with the kinds of background conditions built into 
the more semantic approaches. 12 

1.6 Summary 

In describing the role of information in the modern world, an old word has 
been appropriated and its meaning gradually transformed. Yet the new uses of 
"information" only serve to highlight its function as a linking term in everyday 
explanations. Whenever a complete understanding of some series of events 
is unavailable or unnecessary for providing an explanation, we can make do 
with information talk. Whether or not these partial explanations are ultimately 
reducible to a single physical science, there is sufficient reason to investigate 
the conception of information flow on which they rest. 

Information is closely tied to knowledge. Following Dretske, we think that 
epistemology should be based on a theory of information. The epistemic prop­
erties of an agent's mental processes should be analyzed in terms of their infor­

_ - -- - - -;-ati~~ai-re-laiionshipstoeach oilier,-to the agent's actions, and to the agent's 

environment. 
But what is information and how does it flow? We stated the first principle 

of information flow: information flow results from regularities of distributed 
systems. The systems in which information flows are distributed because they 
are made up of parts related by regUlarities. The existence of such a system 

12 Of the theories available, the Lewis and Stalnaker theories of nearby possible worlds seem most 
like this sort of theory. 
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is presupposed by talk of the flow of information, and if we are to understand 
informational explanation in any more than a metaphorical way, we must find 
out which system is presupposed. 

The central question, in a nutshell, is this: How is it that information about 
some components of a system carries information about other components of 
the system? We have looked for an answer in various places: in Dretske's 
probabilistic analysis, in the idea that information eliminates possible worlds, 
in the idea that information tracks possible movement in a state space, and in 
the connection between information and inference relative to a theory. In each 
case we offered a preliminary definition of information flow and a discussion 
of the presuppositions of the definition, especially concerning the possibility of 
error. 

The existence of such different approaches to the study of information flow 
might make one wonder whether there is any unity to the subject. However, 
the perceived relationships between these accounts suggest they might all be 
seen as part of a general theory. In this book, we present what we hope is such 
a theory. 
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Information Channels: An Overview 

To understand the account presented here, it is useful to distinguish two ques­
tions about information flow in a given system. What information flows through 
the system? Why does it flow? This book characterizes the first question in terms 
of a "local logic" and answers the second with the related notion of an "infor­
mation channel." Within the resulting framework one can understand the basic 
structure of information flow. The local logic of a system is a model of the 
regularities that support information flow within the system, as weIl as the ex­
ceptions to these regularities. The information channel is a model of the system 
of connections within the system that underwrite this information flow. 

The model of information flow developed here draws on ideas from the 
approaches to information discussed in Lecture I and, in the end, can be seen 
as a theory that unifies these various apparently competing theories. The model 
also draws on ideas from classical logic and from recent work in computer 
science. The present lecture gives an informal overview of this framework. 

2.1 Classifications and Infomorphisms 

Fundamental to the notions of information channel and local logic are the no­
tions of "cIassification"andhinfomorphisms."These terms may be unfamiliar, 
but the notions have been around in the literature for a long time. 

Paying Attention to Particulars 

We begin by introducing one of the distinctive features of the present approach, 
namely its "two-tier" nature, paying attention to both types and particulars. 

Suppose we are giving a state-space an~.ly:;is ,of a system consisting of two 
dice that are being tossed. There are thirty-six possible 'states of this system, 
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corresponding to fact that each die can come up with one of the numbers 1, ... , 6 
on top. Thus the set Q of possible states of the system is taken to be the set 
{(n, m) 11 ::::: n, m ::::: 6}. Suppose Judith is interested in the situation where the 
system happens to come up with a total of seven. Thus Judith is interested in 
the outcome being in a state in the set 

a = {(I, 6), (2,5), (3,4), (4,3), (5,2), (6, I)} 

In probability theory, this set a is said to be the "event" of getting a seven. 
This talk of events can be a bit misleading since a is not an event at all, but 

rather a type of event, that is, a way of classifying any particular roll of the pair 
of dice, or indeed, of any roll of any pair of dice that comes out with a total 
of seven. Whereas there are only thirty-six states, and so 236 events, there are 
potentially an infinite number of particulars. Intuitively, the rolls of the dice 
are token events, a is (or models) a type of event. 

Probability theory, and applied mathematics in general, works at the level 
of types. One considers a system that has various instances St at time t. Each 
instance St is assumed to be in a unique state in Q, written state(st) E Q. Sets 
a of states are called events. Intuitively, if state(sr) E a, then St is of type a. 
Once this framework of states and events is set up, the instances themselves are 
usually ignored. 

For a theory of information, however, these particulars, or instances, cannot 
be ignored. It is particulars, things in the world, that carry information; the 
information they carry is in the form of types. It was a particular lighting event 
that carried the information about Judith. That it was an event of type S.O.S. 
carried the information that Judith was in distress. It was a particular map that 
carried information (and misinformation) about the mountain. The map's being 
of a certain type carried information that the mountain was of some other type. 
We codify this observation in our second principle. 

Second Principle ofInformation Flow: Infonnation flow crucially involves both types 
and their particulars. 

Notice that Dretske's account of information flow does not really respect this 
principle. On his analysis, information flow is characterized entirely in terms 
of conditional probabilities of "events." But, as we have seen, the events of 
probability theory are really types of events, not particular events. In spite of 
appearances to the contrary, there are no particulars in Dretske's analysis. 

In this book we use the term "token" for the instances or particulars that 
carry information. For readers coming out of philosophy, this terminology may 
bring with it baggage from the philosophy of language that we hasten to avoid. 
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:::::-Jrric:ular. any suggestion that tokens must have something like "syntax" is 
.:::.:~~ aIlwelcome. By a token, we mean only something that is classified; by 

-~. we mean only something that is used to classify. 

Classifications 

~-: .·l~c!r £l) relate the diverse approaches to infonnation surveyed in Lecture 1, 
-. ~:~ ,'Ile classifies tokens by sets of states (i.e., "events") in one approach, 

:- <!H-:!Kc!S in others. and by a host of other devices in still others, the theory 

:---.:,":!Hc!J here uses a very general framework, the notion of a classification. 

-:-:'" :ll'rll)[1 is a very simple one, and one that has been used in various contexts 

--:, :l' this book.! 

~t::inition. A classification A = (A, EA , FA} consists of a set A of objects to 

::-:: '::JSsitled. called tokens of A, a set EA of objects used to classify the tokens, 
=-=,,-1 the ryl'l's of A. and a binary relation FA between A and EA that tells one 

-. -::'::1 rl,kens are classified as being of which types. 
'-. ':!Jssification is depicted by means of a diagram as follows. 

EA 

A 

7~mple 2.1. We might classify flashlight bulbs at times, say bl, by means of 
~ :: ~s LIT. U7'o'UT, and LIVE. For example, b, F LIT if the bulb instance b l 

::; it:.. :hat is. if b is lit at time t. 

~Ie 2.2. A familiar example of a classification is that of a first-order 

~l;Ige. Here the tokens are particular mathematical structures M, and the 

=~:Ire. ~entences ,!.oftpe hUlguag~lI11d. M F ex_ if and only if ex is tru~in }1:. __ 

~Ie 2.3. Another example would be that of classifying rolls of a pair of 

;Z.=. Suppose we use the set n = {(n, m} 11 :::: n, m :::: 6} as our state space 

2'. ~_ BiIthotf dubbed such structures "polarities" in Birkhoff (1940). They are used in Hartonis 
.m.i I:'unn (1993). The literature on fonnal concept analysis calls them "contexts"; see Hardegree 
~) and. for a discussion and historical references, Chapter 11 of Davey and Priestley 
~). ~jore recently they have been called "Chu spaces" in theoretical computer science. 

.':' .JI'~ liter.uure has grown up around· this topic, especially in the work of Vaughan Pratt 
:nu ~ .:olleagues. A complete list of these papers can be found on the World Wide Web at 
~c. t.."-'le_stanforcledulchuguide.html. 
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n for analyzing these tosses. Let us suppose that the dice are chosen from a 
set D of six-sided dice. These dice may be tossed repeatedly. We might model 

particular tosses by triples like x = (d1, d2, t}, where d1, d2 E D are distinct and 

t is the time of a particular toss. These form the tokens of a classification. 
Each toss x has, we assume, some statestate(x) E {in, m} 11:::: n, m :::: 6}. For 

example, the state of (d1, d2, t} is (1, 5} if and only if d1 lands at t with the 

numeral 1 showing and d2 lands at t with the numeral 5 showing. The types of 
our classification are, then, the events over n, that is, subsets ex S; n, and x F ex 

if and only if the state of x is in ex. 

As these examples illustrate, we sometimes take the tokens of a classification 
to be structureless mathematical objects, while at other times we give them struc­

ture so as to relate them to other tokens of other classifications more effectively. 
If a particular classification models some device (or class of devices), say 

Judith's whole flashlight or the World Wide Web, then the types of the classifi­
cation represent all the properties of the device of relevance to our model. If the 
tokens of the classifications represeI!t all the possible instances of the device 

deemed relevant to the problem at hand, then the classification gives rise to a 
"theory" of the device, namely, those relationships between types that hold for 
all the tokens. We want to define this theory. 

In logic it is usual to take a theory to be a set of sentences, together with some 
kind of notion of entailment, r I- ex, between theories and sentences. Because 
we are working in a more general setting, we want to allow theories that have as 
premises not just sets of sentences but quite generally sets of types. Moreover, 

following Gentzen, we treat entailment not just as a relation between sets of 

sentences and single sentences, but we allow sets on both sides. In doing so, 
however, things work much more elegantly if one treats the set r on the left 
side of r I- /::;. conjunctively and that on the right disjunctively. By a sequent 

we just mean a pair (f, /::;.) of sets of types. The reader not familiar with logic 
may want to restrict attention to the case where there is a singleton set on the 
right-hand side, for now. 

Definition. LetA be a classification and let (1, /::;.} be a sequent of A. A token 
a of A satisfies (r, /::;.) provided that if a is of type ex for every ex E r then a is 

of type ex for some ex E /::;.. We say that r entails /::;. in A, written r I-A /::;., if 

every token a of A satisfies (f, /::;.}. If r I-A /::;. then the pair (f, /::;.) is called a 

constraint supported by the classification A . 

The set of all constraints supported by A is called the complete theory of A 
and is denoted by Th(A). The complete theory of A represents all the regularities 
supported by the system being modeled by A. 
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Example 2.4. In Example 2.1 we get constraints like LIT f- LIVE, since every lit 
bulb is live, and LIT, UNLIT f-. (Strictly speaking, we should be writing these as 
{LIT} f- {LIVE} and {LIT, UNLIT} f-, but we leave out the set brackets because no 
confusion is likely.) The latter constraint says that no bulb is both lit and unlit, 
because it says that any bulb of both types on the left is of at least one type on 
the right, but there are no types on the right. Similarly, we get f- LIT, UNLIT 

because every bulb is either lit or unlit. 
In Example 2.2, we have r f- fl if and only if every structure M that is a 

model of every sentence in r is a model of some sentence in fl. This is just the 
classical notion of logical entailment from first-order logic. 

In Example 2.3, suppose that each state (n, m) in every event in r is in at 
least one event in fl. Then for any toss x, if it satisfies every type in r, it 
must also satisfy some type in fl, and so r f- fl. Whether or not the converse 
holds will depend on whether the set of tokens of the classification contains, 
for each state (n, m), a toss with (n, m) as its state. If so, then the converse 
holds. But if not, then intuitively the theory of our classifications will capture 
some accidental generalizations. This is a theme we will be coming back to. 

Here are five special kinds of constraint to keep in mind. 

Entailment: A constraint of the form Cl f- {3 (the left- and right-hand sides 
are both singletons) represents the claim that Cl entails {3. 

Necessity: A constraint of the form f- Cl (the left-hand side is empty, the 
right is a singleton) represents the claim that the type Cl is necessarily the 
case, without any preconditions. 

Exhaustive cases: A constraint of the form f- Cl, {3 (the left-hand side is 
empty, the right is a doubleton) represents the claim that every token is of 
one of the two types Cl and {3, again without any preconditions. 

Incompatible types: A constraint of the form Cl; {3 f- (the right-hand side is 
empty, the left is a doubleton) represents the claim that no token is of both 
types ex and {3. (This is because no token could satisfy any type on the right, 
because1here.are none,_andhence could not satisfy both_typ~s on theJeft·l_ 

Incoherenttypes: A constraint of the form ex f- (the rightchand side is empty, 
the left is a singleton) represents the claim that no token is of types Cl. 

Infomorphisms Between Classifications 

In modeling a distributed system, one U-s'eS' a Classification for each of the 
components and another for the system as a whole. Consequently, we need a 
way to model the relationship between the whole and its parts. 
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As an analogy to guide us, let us think about the example of number theory 
considered as a part of set theory .. Applying Example 2.2, suppose that L, is 
the language of arithmetic, with numerals 0 and 1 and additional nonlogical 
symbols like <, +, x, =, and so on. By the tokens of L, we mean any structure 
that satisfies the basic axioms PA of Peano arithmetic; the types are sentences 
formulated using the above symbols plus standard symbols from logic. Let L2 
be the language of set theory, with only E and = as nonlogical symbols. By 
the tokens of L2 we mean any structure that satisfies the usual axioms ZFC of 

. Zermelo-Fraenkel set theory; again types are sentences formulated in terms of 
E, =, and the basic symbols of logic. 

One of the standard themes in any course on set theory is to show how to 
translate number theory into set theory using the finite von Neumann ordinals. 
Formally, what is going on is the development of an "interpretation." One 
shows how to translate any sentence Cl of number theory into a sentence Cl

i of 
set theory. 

At the level of structures, though, things go the other way. A model of 
number theory does not determine a unique model of set theory. Indeed, some 
models of number theory are not parts of any model of set theory at all, because 
set theory is much stronger than number theory.2 By contrast, any model V 
of set theory does determine a unique model N = VI of number theory. The 
reversal of directions is quite important. 

This example is a special case of the notion of an interpretation (sometimes 
called a translation) of one language into another. There are two aspects to an 
interpretation, one having to do with tokens (structures), the other with types 
(sentences). An interpretation I: L, +=! L2 of language L, into language L2 
does two things. At the level of types, it associates with every sentence ex of LI 
a sentence Cl

i of L z, its "translation." At the level of tokens, it associates with 
every structure M for the logic L2 a structure MI for the logic L,. This might 
be diagramed as follows: 

I 
Ll-sentences - L 2-sentences 

Ll-structures T L2-structures 

2 If the model of number theory is one where some theorem of set theory about numbers, like 
GOdel's formal encoding of the consistency of PA, is false, then it cannot have an associated 
model of set theory. 
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One needs to make sure that the translation a l of a means the right thing, 
that is, that the translation a l says about a structure M what a itself says about 
the corresponding structure MI. Hence one requires that 

MI FLI a iff M FL2 a l 

for all structures M for Lz and all sentences a of L!. 
Thinking of number theory as a "part of" set theory suggests that this sort 

of picture might apply more generally to distributed systems. The notion of an 
infomorphism f : A ;:::! C gives a mathematical model of the whole-part rela­
tionship between instances of a whole, as modeled by a classification C, and that 
of a part, as modeled by a classification A. This is obtained by generalizing the 
notion of interpretation from logics to arbitrary classifications in the natural way. 

Definition. If A = (A, 'EA , FA) and C = (C, 'Ee, Fe) are classifications then 
an infomorphism is a pair f = (r, r) of functions 

Fe 

A .,----C r 
satisfying the analogous biconditional: 

for all tokens c of C and all types a of A. 

Such infomorphism is viewed as a "morphism" from A to C. The displayed 
biconditional will be used many times throughout the book. It is called the 
fundamental property ofinfomorphisms. 

------Think-of- the-classification-Con-theright-as Lscientific..classificatiQnof __ 
the tokens (instances) of the whole system, say )udjth~s flashlight, and the 
classification A on the left as a classification of tokens on one of the components 
of the system, say the bulb. The latter might be a scientific classification of 
the sort used by an engineer in designing the bulb or a more common sense 
classification of the sort Judith would use. By an instance of the flashlight we 
simply mean the flashlight at a given instant, rather than the flashlight as a type 
or as an object that persists through time. The infomorphism f has two parts. 
The lower part r (read "f -down") assigns to each instance c of the whole 
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flashlight the instance a = r(c) of the bulb at the same time. The upper part 
r (read "f-up") assigns to each type a of the component classification A some 
"translation" r(a) in the "language" of the classification C. For example, the 
classification of the bulb might be very simple, with types {LIT, UNLIT, LIVE}, 

and the classification of the flashlight might be quite complex, in the language 
of electrical engineering or even basic atomic physics. The biconditional in the 
definition of infomorphism insures that the translation of a type a says about 
the whole system what a says about the component. 

The use of "infomorphism" for this notion is' new here, but infomorphisms 
are not new. In the case of logical languages, they are, as we have indicated, 
just the old notion of interpretation of languages. In more a general setting, 
these infomorphisms are known in computer science as Chu transformations. 
They have been studied extensively by Chu, Barr, Pratt, and others. The present 
authors rediscovered them in a roundabout way, trying to solve the problems 
of information flow discussed above. So one could look at this book as an 
application of Chu spaces and Chu transformations to a theory of information. 3 

A great deal is known about classifications and their infomorphisms. For 
our purposes, the most important fact is that they can be combined by what 
is known as a "(co)limit" construction.4 A special case of this construction 
allows one to "add" classifications. Given two (or more) classifications A and 
B, these classifications can be combined into a single classification A + B with 
important properties. The tokens of A + B consist of pairs (a, b) of tokens from 
each. The types of A + B consist of the types of both, except that if there are 
any types in common, then we make distinct copies, so as not to confuse them. 
For example, if A and B both had contained the type LIT, then A + B would 
have two types, LITA and LITB. A pair (a, b) would be of type LITA in A + B 
if and only if a was of type LIT in A. Thus the classification A + B gives us a 
way to compare types that classify tokens from both classifications. 

This construction works nicely with infomorphisms as well. First of all, 
there are natural infomorphisms aA : A;:::::t A + Band aB : B;:::! A + B defined 
as follows: 

C a,\(a) = aA(theA-copy o{CiHor each-a-E-ijp(A): 
2. aB(fJ) = fJB for each fJ E typ(B), and 

3. for each pair (a, b) E tok(A +B), aA«a, b) = a andaB({a, b) = b. 

3 A good deal of the mathematical content of Lectures 4-6 is already known to the people who 
study Chu spaces. In particular, the existence of colimits was established by Chu in his appendix 
to Barr (1979). We hope they will be interested in how this material fits into the general theory 
of information developed here. 

4 We will work through this construction in Lecture 6, where we will see that it is intimately tied 
up with Dretske's Xerox principle. 
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More importantly, given any classification C and infomorphisms f : A ;:::::± C 
and g : B;:::::± C, there is a unique infomorphism h = f + g such that the follow­
ing diagram commutes. (Saying that a diagram commutes means you can go 

either way around the triangles and get the same result.) 

C 

/lh~ 
A .A+B· B 

(TA (TB 

Each of the arrows represents an infomorphism and hence a pair of functions, 
one on types and another on tokens that goes in the opposite direction. The defi­
nition of h is obvious once you think about it. On tokens, h(c) = (f(c), g(c)). 
On types of the form etA, h gives feet). On types of the form etB, use g. 

2.2 Information Channels 

One of the two central notions of the present approach, that of an information 
channel, can now be explained. Suppose there is a distributed system, modeled 
by means of a classification C, and several components, modeled by means of 
classifications A; for i in some index set I. BecauseA; is a part ofC, there must 
be an infomorphism fi : Ai ;:::::± C, one for each i E I, reflecting the part-whole 

relationships between the system and its parts. 

Definition. An information channel consists of an indexed family C = {.Ii : Ai ;:::::± 

C}ieI of infomorphisms with a common codomain C, called the core of the 

channel. 
An information channel for a distributed system with four components, like 

Judith's flashlight, can be diagrammed as follows: 

Al A2 

I 
I 

I 

I 
I 
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Again, each of the arrows represents an infomorphism, hence a pair of 
functions, one on types going in and another that goes in the opposite direction, 
taking each token c to its ith component ai = .Ii (c). 

The following simple observation is at the heart of the theory developed in 
this book. Think of the token c of the whole system as a "connection" between its 
various components, the various a;. For example, a bulb at a time is connected 
by a switch at a time if they are connected by being parts of, say, a single 
flashlight. It is this connection that allows one to carry information about the 
other. 

Third Principle ofInformation Flow: It is by virtue of regularities among connections 
that information about some components of a distributed system carries information 
about other components. 

The classification C and its associated Th(C) give us a way to model these 
regularities. Using the constraints of Th(C) and the infomorphisms, we can 
capture the basic principles of information flow relating the components. 

It is now clear why the first two principles are so important. The first focuses 
attention on distributed systems, the second on their tokens, which include 
connections. Without the tokens, we would not be able to track which things 
are connected to which others and so would have no idea how to tell what is 
carrying information about what. 

This basic point can be illustrated with a simple example. If you flip a light 
switch, which light comes on depends on which light the switch is connected 
to. Similarly, suppose you have two photos, one each of two individuals. One 
photo carries information about one person, the other about the other person. 
But what determines which person a given photo carries information about is 
the connection between the person and his or her own photo, a connection 
rooted in the process of photography. 

Given the notion of an information channel, we can now propose our analysis 
of information flow. In this introduction, we treat the simplest nontrivial case, 

~-- .. ~-~---.-.~ .. ~ ....... ~-~--- ---~~ .~~~~.-.~-~-y-- ~ ____ ~ __ -,t=hat of two cpmpo!lents ... a and~b, Qfa system. 

!I~ /12 
C 

Initial Proposal. Suppose that the token a is of type a. Then a's being of type 
et carries the information that b is of type {3, relative to the channel C, if a and 
b are connected in C and if the translation a' of a entails the translation {3' of {3 

in the theory Th(C), where C is the core of C.5 

5 If we compare this proposal to Dretske' s probability proposal, we see one thing that Dretske has 
built in that we have ignored. Namely, in giving this definition one might want to exclude the 
case where fJ i. a universal tYPe, one that holds of all tokens. 
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Example 2.5. Here is a simple example using Judith's flashlight. Suppose 
f : B ;:::! F and g : S ;:::! F represent the part-whole relations between flashlights 
(tokens of F) classified scientifically, with bulbs (B) and switches (S) classi­
fied in commonsense ways. Let us suppose the classification F supports the 

constraint 

g(ON) I-F I (LIT) , 

where the antecedent ON is the type of S of switches that are on. In other words, 
we suppose that the flashlights that make up the tokens of F are all working 
normally. Then if switch St is connected to bulb bt by some flashlight It in F, 

and b
t 

is on, this will carry the information that Sf is lit. 

Let's examine a couple of the virtues of this proposal. 

Veridicality 

The proposal agrees with Dretske's in that it makes information veridical. That 
is, if a is of type a and this carries the information that b is of type {3, then b is 
of type {3. The reason is that the connection c between a and b must satisfy the 
constraint a' I-c {3' on the one hand, and it must be of type a' because a is of 
type a by the fundamental property of infomorphisms. Hence c must also be 
of type {3'. But then b must be of type {3, again by the fundamental property of 

infomorphisms. 

The Xerox Principle 

Dretske's Xerox principle also falls out of this proposal. If a being of type a 

carries the information that b is of type {3, then it does so by virtUe of some 
information channel Ct. Similarly, if b being of type (3 carries the information 
that d is of type 8, then it does so by virtue of a channel C2· Let C be the limit 
of these channels. It turns out, as we wi11 see, that this is exactly the channel 
we need to see that a being of type a carries the information that d is of type 
8 by virtue of the channel C. In .other words, composing information channels 

amounts to taking their limit.--

Shortcomings 

By way of introducing the notion of a local logic, we point out a couple of 
shortcomings with our initial proposal, one aesthetic, one substantial. The aes­
thetic problem is that the proposal does not directly identify the regularities on 
the components of the system. Rather, it characterizes them indirectly in terms 
of constraints on the core and translations into this core. We would like to have 
the regularities among the components themselves as constraints. 

I 

I 
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More seriously, our initial proposal presupposes that we have complete 
information about the regularities on the core of our channel, that is, the 
complete theory Th(C) of C. The proposal gives a God's eye analysis of 
information flow. But in actual fact, we seldom (if ever) have complete infor­
mation about the core of a real-world channel. Usually, we have at best some 
kind of commonsense theory of, or some scientific model of, the core of our 
channel; we use it to attribute information about one component to another 
component. We wi\1 have a more general theory of information if we rela­
tivize our proposal in a way that permits less than perfect information about 
the core. 

2.3 Local Logics 

In trying to model commonsense theories, artificial intelligence (AI) researchers 
have felt the need to introduce a variety of nonclassical logics to model the 
way people reason about these systems. Ordinary reasoning is not logically 
perfect; there are logical sins of commission (unsound inferences) and omission 
(inferences that are sound but not drawn). Modeling this, AI has had to cope 
with logics that are both unsound and incomplete. These are the sorts of logics 
we need in order to model our less than perfect information about the core of a 
channel. 

We can see how unsound and incomplete logics arise in reasoning about 
distributed systems. We give two examples, each of which can be pictured as 
by the following diagram: 

c 

P D 

--- --proxfrtiar-- - - - -illstaI--

This is a channel involving a proximal classification P, a distal classification 
D, and connecting classification C. 

Example 2.6. For a dramatic example, consider a nuclear reactor. Such a reac­
tor is indeed a very distributed system. An engineer operating such a system is 
forced to reason about what is going on in the reactor's core from information 
available to him at the periphery, so to speak, from various monitors, gauges, 
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warning lights, and so forth. In this case, the proximal classification would be 
a classification of the control room with its monitors, gauges, and so forth. The 

distal classification would classify the core of the reactor. The connecting clas­
sification classifies the whole reactor. (Our terminology "core" is potentially 
misleading in this example, as the core of our channel is the whole reactor, not 

its core in the usual sense.) 

Example 2.7. For a different sort of example, imagine some ~eal-wor1d phe­

nomenon being studied by scientists using mathematical tools. The proximal 
classification is the classification of various mathematical objects. The distal 

classification is that of the real-world phenomenon. The connecting classifica­
tion is the particular practice of mathematical modeling being employed. Thus 
in this example we are interested in how reasoning about the mathematical 

objects can give us information about the real-world phenomenon. 

In both examples, we are interested in seeing what kind of a theory of the 
distal classification is available to someone with complete knowledge of the 
proximal classification. The diagram suggests breaking this problem into two 
parts, that of going from P to C and that of going from C to D. Notice that the 
first step is in the direction of the infomorphism p, whereas the second step is 

against the direction of the infomorphism d. 
We can discuss both steps at once by considering arbitrary classifications 

A and B and an infomorphisrri f: A <=! B. Imagine someone who needs to 
reason about tokens on either side by using the natural theory of the other side. 

(In the above, f could be either p : P <=! C or d: C <=! D.) Let's write r f for 

the set of translations of types in r when r is a set of types of A. If r is a 
set of types of B, write r- f for the set of sentences whose translations are 

in r. 
Consider, now,the following "rules of inference": The first of these is a 

stylized way of saying that from the sequent r- f I--A/!"-f we can infer the 

sequent r 1--8 /!,.; the second is read similarly. 

r-f I--A /!,.-f 
f -Intro: r 1--8 /!,. 

• rf 1--8 /!,.f 
f-Elim: r f-A /!,. 

'$"> ... <'. '1 " .~ .. 

The first rule allows one to move froIrlasequent of A to a sequent of B, 
whereas the second allows one to go the other way around. These inference 

rules have very important properties. 
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Let us think of them in terms of the interpretation of Pea no arithmetic (PA) in 
set theory in Section 2.1. The first rule would allow us to take any valid sequent 

of PA and translate it into a sequent about models of set theory. The second rule 
goes the other way around, allowing us to take a sequent in the language of set 
theory that happens to be the translation of a sequent from number theory and 
allowing us to infer the latter from the former. 

Consider whether these inference rules preserve validity and nonvalidity. 
Let us think first about whether the rules preserve validity, that is, lead from 
constraints of A to constraints of B. 

The rule f -Intro preserves validity. That is, if the sequent r- f f-A/!"-f 

is valid in A, then r f-B /!,. is valid in B. This follows immediately from the 
fundamental property of infomorphisms. If c were a counterexample to the 
latter sequent, then fCc) would be a counterexample to the former. 

The rule f -Elim does not preserve validity. It is perfectly possible to have a 
constraint rf f-8 /!,.f of B such that r f-A /!,. has a counterexample. However, 
no such counterexample can be of the form fCc) for a token c of B, again 

by the fundamental property of infomorphisms. In other words, the rule is 
sound as long as one restricts attention to tokens that come from tokens of the 
classification B. In the case of number theory and set theory, this tells us that 
theorems of set theory in the language of number theory are reliable as long as 
we are only interested in models of number theory that are parts of models of 
set theory. On other models, these theorems are unreliable. 

Let us tum now from preservation of validity to preservation of nonvalidity. 
If the premise sequent of the rule f -Intro is not a constraint of A, can we be 

sure that the conclusion is not a constraint of B? No, not in general. In the 

case of number theory and set theory, for example, there are many nontheorems 
about numbers that can be proven in ZFC, Godel's consistency statement for 
PA being the most famous. By contrast, the rule f-Elim is much better in this 
regard. If the premise is a nonconstraint of B then the conclusion will be a 
nonconstraint of A. 

Summarizing the above observations, the rule of f-Intro preserves valid-
ity- but not nonvalidity, whereas--the-rule of. f -Elim -preserves-nonvalidity but- __ _ 

not validity. Using the f -Intro rule, any constraint that holds for a component 
translates into a constraint about the system. Using the f-Elim rule, any con­

straint about the whole system gives one a constraint about the components but 
only guarantees that it holds on those tokens that really are the components of 
some token of the whole system. All bets are off on any other tokens. This is 

certainly a reasonable rule of inference, even if it might lead one astray were 

one to apply it to something that was not a component of the system, that is, 
even though it is not sound. 



lL 

1\ 
I 
! 

Ii 
I! 
! 

40 Lecture 2. Information Channels: An Overview 

Now lets return to apply these considerations to the channel depicted earlier: 

C 

P D 

proximal distal 

We. wanted to know what happens when we use the complete theory of the 

proximal classification P to reason about the distal classific~tion D. '!Ie have 
seen that p-Intro preserves validities, so the theory we obtam on C IS sound, 
but it may not be complete. That is, there may be constraints about C that we 

miss. On the other hand, using d-Elim means that we lose our guarantee that 
the resulting theory is either sound or complete. A sequent about distal tokens 

obtained from a constraint about proximal tokens in this way is guaranteed to 

apply to distal tokens that are connected to a proximal token in the channel, but 

about other distal tokens we have no guarantees. 
The concept of a local logic tracks what happens when we reason at a distance 

in this way. 

Definition. A local logic £ = (A, I-,e, N,e) consists of a classification A, a 

set I-,e of sequents (satisfying certain structural rules) involving the types of A, 
called the constraints of £, and a subset N,e S; A, called the normal tokens of 

£, which satisfy all the constraints of I-,e. A local logic £ is sound if every 

token is normal; it is complete if every sequent that holds of all normal tokens 

is in the consequence relation I-,e. 

This is the promised generaliz~tion of the notion of the complete theory of a 

classification. Sound and complete local logics are really nothing more or less 

than classifications. But infom~rpi1isms allow us t() move local logics around 
-·-~--~---from-~n~ classification to another, in ways that do not preserve soundness and 

completeness. Given any infomorphism f : A ;::! B and a logic ? on o~e of 
these classifications, we obtain a natural logic on the other. If £ IS a logIC on 

A, then fl£1 is the logic on B obtained from £ by f-Intr~. If £ is a logic on 

B then f-11..e1 is the logic onA obtained from..e by f-Ehm. 
, For any binary channel C as above, we defipe tI:1~ l()callogic Loge (D) on D 

induced by that channel as 

Loge(D) = d-1[p[Log(P)]], 

------------- •. ----
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where Log(P) is the sound and complete logic of the proximal classification P. 
This logic builds in the logic implicit in the complete theory of the classification 
P. As we have seen, Loge (D) may be neither sound nor complete. 

In Lecture 15 we will show that eve ry local logic on a classification D is of the 
form Loge (D) for some binary channel. Moreover, the proximal classification 
of C has a very intuitive interpretation as an idealization of D. This result shows 
that local logics are very naturally associated with information channels. 

We can now go back and generalize our initial proposal concerning infor­
mation flow. That proposal presupposed knowledge of the complete theory of 

the core of the channel. We really want to allow the core of the channel to 

be thought of as the distal classification of some other channel and use the 
proximal channel to reason about the core and so about the components. Or, 

equivalently in view of the previous paragraph, we relativize our account of 
information flow along a channel relative to some local logic £ on its core. 

We mentioned two problems with our initial proposal, one aesthetic, one 
substantial. We have dwelt at length on the substantial problem, that of complete 

knowledge of the theory of the core classification. We now tum to the first 

problem, the fact that we did not end up with constraints about the components 
of the system, only about their translations into the types of the core. We can 

solve this problem quite easily with the tools we have developed. 

The existence of sums of classifications allows one to tum any information 
channel into one with a single infomorphism; to do so you simply take the sum 
of the component classifications and a corresponding sum of the component 

infomorphisms. Ifwe have any channel C = {f; : Ai;:::::! C}iEl, we can represent 

it by means of a single infomorphism by simply taking the sum A = I:iEI Ai 
of the Ai and the corresponding sum f = I:i El fi of the f;: 

f:A +=! C. 

Given any logic £ on the core, we can use the rule f -EIim to obtain a local 
logic f-II£I on A. It is this logic, with its constraints and its set of normal 
tokens, that captures the information flow inherent in the channeL Or, to return 

to the questions posed at the start of this lecture, the local logic f-II£I is the 
"what" of information flow, the channel is the "why". The closer the logic £ 
agrees with the complete theory of C, the better an account we will get of the 
actual information flow of the system. 

Example 2.8. Let's reexamine the flashlight example in light of this discus­

sion. Recall that f : B;::! F and g : S;::! F represent the part-whole relations 
between flashlights (tokens of F) classified scientifically, and bulbs (B) and 
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switches (S) classified in commonsense ways. Putting these together, we ob­
tain an infomorphism h = f + g from B + S to F. On flashlight tokens x, 
hex) = (f(x), g(x)), that is, hex) gives us the bulb and ~witch connected by 

x. On types, h is the (disjoint) union of f and g. 
Let us suppose that the classification B supports the constraint: 

LIT I-B LIVE. 

It is easy to verify that this will also be a constraint in B + S. Now, whatever 
the classification F of flashlights is and whatever our infomorphism h does to 

these types, we see that 

h(LIT) I-F h(LIVE) 

must be the case. We know from the validity of the one sequent that the other 

must be valid. 
To go the more interesting way around, suppose again that the classification 

F supports the constraint 

h(ON)I-F h(LIT), 

where the antecedent ON is the type of S of switches that are on. In other words, 
we suppose that the flashlights that make up the tokens of F are all working 

normally. In this case, we obtain the sequent 

ON I-B+S LIT. 

This sequent, nice as it is, is not valid! There are pairs (b, s) of switches and 
bulbs such that s is on but b is not lit. Not surprisingly, it only holds ofthose pairs 
that happen to be connected by a token of a single flashlight ft of F. The pairs 
that are so connected are the normal tokens of our the logic obtained by h-Elim. 
(Notice that this is entirely paralle1tothe case of number-theoretic theorems 
of ZFC not holding of all models of PA.) This logic gives us a mathematical 
characterization of the information flow between bulbs and switches made 
possible by-the channel inquestion.--~------~- ~.----~-'--' ---

2.4 Exceptions 

We now tum to the most challenging aspect of a theory of information. As 
explained earlier, an important motivatior fore developing the details of the 
theory presented in this book is the severe tetlsion between the reliability and 
the fallibility of constraints describing distributed systems and the consequent 

information flow. 

I 
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Exceptions and Information Channels 

On the present account, distributed systems are modeled by means of classifica­
tions and infomorphisms. Typically, there are many ways to analyze a particular 
system as an information channel. Take Judith's flashlight, for example. In the 
first place, it is up to us as theorists to decide on the level of granularity of anal­
ysis. Do we consider just the switch and bulb, or do we want to also take into 
account the case, the batteries, the spring, the wires, and all the other pieces. In 
the second place, it is up to us to decide on the types to be used in the analysis. 
We might have a very simple system or a much more elaborate one. This is true 
of both the system as a whole and of the constituent parts. Last but far from 
least, there is the matter of what tokens are present in the classifications. Do 
we take only tokens of the particular system that happen to have occurred in the 
past, or do we also allow more idealized tokens to represent possibilities that 
may not have been realized yet? Do we admit only "normal" instances of the 
flashlight, where the batteries are working and there is no short circuit, or do we 
admit other tokens? The decisions here all go into determining what counts as a 
valid constraint of the classification. We summarize this as our final principle. 

Fourth Principle of Information Flow: The regularities of a given distributed system 
are relative to its analysis in terms of information channels. 

This principle includes, among other things, the key insight in Dretske's 
response to sckepticism, discussed in Lecture 1. Recall that that reply argued 
that whether or not something counted as a relevant possibility was not an 
absolute matter, but was dependent on some contextually based standards. In 
the same way, an analysis of a system as a channel is similarly dependent on 
contextually based perspectives and standards. Whether or not some sequent 
is a constraint of a given system is not an absolute matter, but depends' on the 
channel one uses in understanding the system. Such a channel may be explicitly 
described by a theorist, or it may be implicit in the judgments of a user of the 
system. But the point is that if one changes the channel, one typically gets 

____ <iifferent constraintsandso different infonnati9n fl()w_._Thus_whetheror not a 
particular token carries information about another token depend; in part on the 
channel under consideration. 

Intuitively, the more "refined" the channel used to analyze a system, the 
more reliable the information flow. But what sort of relation between channels 
is this notion of being more refined? 

Example 2.9. Consider, for simplicity, two analyses of Judith's flashlight in 
terms of channels F and F' with core classifications F and F', respectively. If 
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there is an infomorphism r : F' ;:::::t F such that the following diagram commutes. 

then :F' is said to be a refinement of :F. 

F 

B s 
Let us see why this is a reasonable definition. 

Consider the rules of inference r-Intro and r-Elim for the infomorphism r, 
as discussed earlier. Any constraint of F' will yield a constraint about Fusing 
r-Intro. This means that any sequent that holds relative to F' will continue to 
hold relative to F. However, some sequents that are constraints relative to F 
may not be constraints relative to F', owing to the unsoundness of r-Elim. 

Let us assume that F' contains as tokens all actual instances of Judith's 
flashlight, induding those where the batteries are dead. (It might even include 
wider tokens, so as to take account of whether the flashlight is in air or water, 
say.) Suppose, however, that F is just like :F' except that it does not contain 
any tokens where there are dead batteries. Observe that F' is a refinement of. 
F; take r to be identity on both types of F' and tokens of F. 

Now suppose Judith's flashlight does indeed have a dead battery. Then b, 
the bulb, is connected to the switch s by a connection c' in F' but not relative to 
any connection in F. Relative to F there is a constraint that the switch being 
on involves the bulb being lit. This is not a constraint relative to F', however, 
Judith's flashlight is an exception relative to F but not relative to :F'. 

Now let us move back to the normal case. Suppose that switch s and bulb 
-b -are-connected by being components of a normal flashlighty;-onewherethe--- ---I~­

batteries are in working order. Does s being on carry the information that b is 
lit or not? Well, it depends. It does relative to the channel with core F but not 
with respect to the more refined channel F'. 

The rule of Weakening 

al-y 

a,fJl-y 
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is perfectly valid, as long as one is working with constraints relative to a single 
information channel. The trouble with the inference from 

The switch being on entails the bulb lighting 

to 

The switch being on and the battery being dead entails the bulb lighting 

is that the added antecedent implicitly changes the channel relative to which 
the sequent is assessed; it does so by changing the standards through raising 
the issue of whether the battery is dead. 

Another way to put it is as followi'!. The inference is not a counterexample to 
the valid rule of Weakening but rather an application of the invalid rule r-Elim 
where r : F' ;::::! F is the refinement described above. The seque·nt ' 

h(ON) I-F h(LIT) 

is valid, but the sequent 

h' (ON) I-F' h' (LIT) 

(obtained from the former sequent by r-Elim, where h' = f' + g') is not valid; 
there are tokens in F' that are not in F. 

From the present perspective, the reluctance of people to use Weakening in 
such circumstances does not show that they use nonclassical logic, but rather 
shows that people are good at changing channels when exceptions arise, re~ 
assessing a situation in terms of a refined channel, and that this is a useful way 
to think about exceptions. 

This suggests that, corresponding to the notion of refinements among chan­
nels, there ought to be a notion of refinement in local logics, and there is. More 
refined logics have fewer constraints but more normal tokens to which they 

_apply~ ________________ _ 

It is too soon to tell whether these equivalent ways of looking at exception­
ality will help in the AI researcher's quest search for computationally tractable 
logics that cope with exceptions in a graceful way, though we do explore some 
ideas in this direction in Lecture 19. It would be interesting to reinterpret various 
nonmonotonic logics as logics of changing channels, but we have not attempted 
that here. We do feel that it can only help, though, to have an account of dis­
tributed systems and their information flow that can, in a principled way, say 
something sensible about reliability· and exceptionality. 
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2.5 State Spaces 

In science, engineering, and applied mathematics the classifications employed 
are typically derived from state-space models of a system. In the final section 
of this lecture we want to discuss how these models fit into the framework 
presented here. In particular, we want to show how any such state space gives 
rise to a local logic embodying a theory of information flow on the components 

of the system. 
In the framework presented. here, a state space S is not just a (possibly 

structured) set Qs of states, but also comes with a function mapping a set S 
of tokens into the set Qs of states. Such a state space S is depicted here as in 
the diagram below. (When we use the arrow notation and write state: S -+ Q s 

horizontally, or vertically as below, we mean that state is a function with domain 

S and range contained in Qs ·) 

state 

S 

State Spaces and Classifications 

Every state space is a classification, but this fact is a bit misleading. From an 
informational point of view, the types associated with a state space are not the 
states, but rather the events, that is, the sets a <; Qs of states. Thus for any 
state space S, we let Evt(S) be the classification with the same tokens as S but 
with types the sets a E pow Q s (the power set of Qs), and with s t= a if and 
only if state(s) Ea. Notice that a token is of type an f3 if and only if it is of 
both types a and f3. More generally, using sets of states as types gives rise to a 

, Boolean algebra, where the set-theoreti<;: operations of intersection, union, and 
complement correspond to conjunction, disjunction, and negation, respectively. 

. _ State Spaces and [nfomorp~isms 

Let us now turn to infomorphisms. Suppose we use the earlier state-space 
analysis of the system that consists of the roll of two dice. Let S consist of all 
tosses (dl' d2, t) where dl , d2 E D are distinct and Qs is the set used earlier, 
namely pairs of numbers between I and 6; let state be a function from S to Q s · 
Now let SI consist of all tosses (d l , t) of one die, let Q I be {I, 2, 3, 4, 5, 6}, 

and let state I be a function from S I to Q I . 
If these two state spaces are to sensibly describe a system and one of 

its parts, they should be related. How? Well, suppose we start with a toss 

2.5. State Spaces 47 

x = {dl , d2, t} of two dice, extract a toss XI = {db t} of the first dice, and de­
termine its state state I (XI). We should get the same thing if we determine the 
state {n, m} = state (x) of X and then take its first coordinate n. That is, writ­
ing r«(dl , d2, t}) = (dl , t) and r«(n, m}) =n, the following diagram should 
commute: 

Q I • r Q s 

state I l"m, 
SI • 

r 
S 

A pair f = (r, r) like this is called a projection from the state space S for 
the whole to that for the component S I. (In this diagram the state space for the 
system as a whole is written on the right and that for the component is written 
on the left, for ease of comparison with the notion of infomorphism.) 

More generally, suppose one has a state-space analysis of some distributed 
system, and in addition, a state-space analysis of a component of the sy~tem. If 
both of these are correct, then there should be a way to get from the system to 
its component, and from the state of the system to the state of the component, 
in such a way that the above diagram commutes. That is, starting with c (in 
the lower right-hand corner), one could either determine its state and then see 
what information that gives one about the state of the component ai, or one 
could determine the component and determine its state. These two procedures 
correspond to the two paths from the lower right to the upper left corner of the 
diagram. Clearly, the two ways of getting at the state of the component should 
agree. 

The diagram makes it appear there is a problem squaring the notion of state­
space projection with the notion of an infomorphismgiven earlier, because the 
arrows here both run from right to left rather than in opposite di~ections. As 
we have seen, however, when working with information, one works not with 

. ~single states but wi thsets. of_states~The.comrnutati.vity-Of.the.above.diagram is ._---- -.-_._- -
equivalent to that of the following: 

SI "'--::c;-- S r 
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The function on types is now running the other direction, mapping any set a of 
states to its inverse image 

r-1[a] = {a I rea) E a}. 

Thus one has an infomorphism after all. 
In Lecture 1 we mentioned the problem of squaring scientific accounts of 

inference and information flow with the more commonsense accounts actually 
used by people in going about the world. The use of infomorphisms and clas­
sifications also gives us a way to attack this problem by relating commonsense 
accounts of information flow to the kinds of state-space accounts more com­
mon in science and engineering. The basic idea is to obtain an infomorphism 
f : A ;:::! Evt(S) from a commonsense classification A to the event classification 
associated with a state space S. An example of this is worked out in Lecture 3 
(and in more detail in Lecture 18) where we show how useful, commonsense, 
but vague properties can be related to precise, scientific accounts. 

State Spaces and Theories 

The choice of a given set Qs as a set of states for a system implicitly brings with 
it a theory of that system. Consider, for example, the set Qs used in Example 2.3 
for classifying throws x = (dh d2, t) of a pair of dice. Suppose, for example, 
that die d1 is normal but d2 is abnormal in that it has a face with the numeral 7 
(or seven dots) on it. In this case our state space is inadequate to model a toss 
(dl, d2, t) because the state of such a toss might not be in our state space. By 
assuming the set {(n, m) II :'S n, m :'S 6} as our state space, we have implicitly 
limited ourselves to the analysis of particulars whose state is in this set. If 
we use this space in the presence of our unusual die, we will make unsound 
inferences. 

On the other hand, imagine that the dice are six-sided dice but with only 
tue ririinenils 1, 2, 3, and 4 on their faces, some more than once, of course. 
In this case our state-space model is inappropriate but in a different way. It 
implicitly assumes that every state a E Qs is possible, which in this case is not 
so. Reasonlngtfsing-snch a state spaC?about these tosses-will be-incomplete; 
For example, from the information thatth'e state of toss x has a sum of at least 
seven, it will fail to follow that the state is in {(3, 4), (4, 3)}, an inference that 
is in fact warranted in this context. 

Definition. For any state space S, Log(S) is the local logic on the classification 
Evt (S) with every token normal and with constraints given by 

r I- ~ iff 

--,-_._-_._- ._-- . _._-- ... -- .-» 

" 
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That is, r I- ~ holds if and only if every state that is in every type in r is in 
at least one type in ~. Notice that this logic is sound, because we assume that 
every token a in S has a state state(a) E Qs . But also notice that the logic is 
given entirely by the set Qs of states; it is completely independent of the set of 
tokens and the state function. This is quite different than the case of the sound 
and complete logic associated with a classification that depends crucially on 
the set of tokens and the classification relation. 

Suppose we have an information channel with a core of the form Evt(S) for 
some state space S. The logic Log(S) is then a logic on this core that is suitable 
for distributing over the sum of the component classifications. This gives us an 
account of the information flow in the system implicit in the use of the set Qs 
of states of S. We will examine an application of this idea in the next lecture. 

Let us now tum to an extended example to illustrate how these ideas can be 
put to work. 



Lecture 3 

A Simple Distributed System 

In this lecture we investigate a distributed, physical system that is simple enough 
to explore in some detail but complex enough to illustrate some of the main 
points of the theory. Readers may work through this lecture as a way of getting 
a feeling for the motivations behind the mathematics that follow or skip ahead 
to the theory and come back to this example later. Readers who decide to work 
through this lecture should accept various assertions on faith, because they are 

justified by the work that follows. 

Informal Description of the Circuit 

The example consists of a light circuit LC. The circuit we have in mind is drawn 
from the home of one of the authors. It consists of a light bulb B connected 
to two switches, call them SWI and SW2, one upstairs, the other downstairs. 
The downstairs switch is a simple toggle switch. If the bulb is on, then flipping 
switch SW2 turns it off; if it is off, then flipping SW2 turns it on. The upstairs 
switch SWI is like SW2 except that it has a ~liderSL controlling the brightness 
of the bulb. Full up and the bulb is at maximum brightness (if lit at all); full 
down and the bulb is at twenty-five percent brightness, if lit, with the change 

.. ~-~inbrightness-being linear~ifrbetween;---- ----~---~.~ ... ~ .. ~ ~. ~~ .. 

We are interested in showing how the theory sketched in the previous lecture 
and developed in this book handles two kinds of information flow in this system: 
static and dynamic. The static information we are interested in can be expressed 

informally by means of statements like the following: 

1. If SW1 is down and SW2 is up, then B is on. 
2. If SL is up and B is on, then B. is bright. 
3. If B is off, then the switches are both up or both down. 
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Another phrasing makes the connection with information flow clearer: 

1. SWI being down and SW2 being up carry the information that B is on. 
2. SL being up and B being on carry the information that B is bright. 
3. B being off carries the information that the switches are both up or both 

down. 

Our aim is to see how these sorts of claims can be seen to fall out of an analysis 
of the circuit connecting the components .B, SWl, SW2, and SL. 

These claims are static because they do not involve any change in the system. 
The dynamic information that interests us has to do with changes effected by 
actions taken when someone uses the system by flipping one ofthe switches or 
moving the slider to a new position. We want to account for the following sorts 

of statements: 

4. If B is off and SWI is flipped, then B will go on. 
5. If B is off and SL is slid to the midpoint, then no change will take place 

inB. 
6. If B is dim and SL is slid to the top, then B will be bright. 

The aim of this lecture is to build an information channel CLC and an associ­
ated local logic £'LC that captures these regularities. In fact, we will build two 
such pairs, one for the static case and one for the dynamic. We call the static 
versions Cs and £'S and the dynamic versions Cd and £d. The most natural 
way to study the circuit LC is with state spaces. However, the regularities are 
phrased in terms of the commonsense conditionals used for talking about such 
Circuits. Thus one of our tasks in analyzing this example is to show how these 
commonsense conditionals square with a state-space description of the system. 
The account will explain why these conditionals hold. 

Notice, however, that these conditionals are defeasible. If the power to this 
house is off, then neither (2) nor (3) hold, for example. We want to see how this 
sort of thing fits into a general account. That is, normal and exceptional cases 
should be seen as arising from principled considerations involving the-circuit~ 
Indeed, they should be seen as following from the mathematical modeling of 
the principles enunciated in the preceding lecture. " 

As an added attraction, we note that our constraints involve useful but vague 
predicates like "dim" and "bright." Working out this example will allow us 

to see how such predicates can interact with our scientific description of the 
system by way of infomorphisms. 1 

I The basic idea here is elaborated in Lecture 18 on vagueness. 
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Our first task is to construct the classification A on which the local logic 
'cs lives. This classification is the sum of four classifications, one for each of 
the components; A = AB + Asw + Asw + ASL. These classifications are 
connected together by a channel as follows: 

AB Asw 

c 

ASL AsW 

A light bulb classification ABo There are many different ways one could clas­
sify light bulbs at times. We could take into account the state of their vacuums, 
their filaments, the glass, their metal connectors, the current passing through 
them, and so on. We will, for now, at least, restrict ourselves to the illumination. 

The tokens b, b', ... of AB consist of light bulbs at various times. Types 
consist of ON, OFF, BRIGHT, MEDIUM, and DIM, with the obvious classification 
relation. We assume that these types have the obvious meanings but stress that 
the meanings of the last three are vague and somewhat context dependent. We 
will see how that works out below. 

The switch classification Asw 0 Just as there are many ways of classifying the 
bulbs, so are there many ways of classifying the switches. We will keep things 
simple. The tokens s, s', ... of Ssw consist of switches at various times. The 
types consist of UP and DN. 

r 

I 
I 
f 

t 
E 
\ 

I 
! 

Lecture 3. A Simple Distributed System 53 

4-tuples (b, sI, s2, sl), where b, SI, S2, and sf are instances of a bulb, two 
switches, and a slider SL. The types of this classification are the disjoint union 
of the types of the individual classifications. Because Asw occurs twice, and 
because its types are also types in A SL, the types ofAB +Asw +Asw +ASL 
contain three copies of UP and DN, one for each copy of Asw and one 
for A SL. (The other types are distinct from one another.) We denote the 
copies of UP by UPI, UP2, and UPSL, respectively, and analogously define copies 
forDN. 

We want a local logic on A that captures the intuitions about information 
flow in the system that interests us. Intuitively, this local logic should have as 
normal tokens those 4-tuples (b, SI, S2, sl) that are part of a normal instance of 
our circuit, and it should have as constraints things like 

DNI, UP2 f- ON. 

UPSL, ON f- BRIGHT. 

We will obtain such a local logic by finding a natural channel Cs with these four 
classifications as its component classifications and by looking at a distributed 
local logic associated with this system. 

The most natural way to proceed for this particular example is by way of state 
spaces. So we first construct state spaces for each of these components together 
with infomorphisms of these classifications into the event classifications of the 
state spaces. Because our analysis will make central use of state spaces, we 
need to say a bit more about them and their relationship to classifications. 

First, recall that a state space S consists of a set S of tokens, a set Q of 
states, and a function state: S -+ Q assigning a state to each token. We call S 
complete if every state a E Q is the state of some s E S. 

Associated with any state space S, there is a classification Evt(S), called 
the event classification of S. Thetokens of Evt(S) are the same as those of 
S but whose types are sets of states from S, interpreted disjunctively. That is, 

The slider classification ASLo The tokens sl, sl', ... ofSsL consist of sliders at if cx is a set of states of S and a is a token of S, then a i=Evt(S) cx if and only 
-.--. -- -various times. -The types consist of real numbers.betweenJlandJ.,-r.epresenting.._ ------.if1he~tate(a) .. the.state.ofa.js. in a_As we. mentioned, in this classification, 

the position of the slider, plus two new types UPandDN. Thereal-numbertypes the types form a Boolean algebra under the operations of, intersection (con-
represent the position of the slider. For example, if sli=AsL .2 then sl is exactly junction of types), union (disjunction of types), and complement (negation of 
two-tenths of the way up. As for the other two types, we declare that sl is of types). 

type DN if and only if sl is less than one-tenth of the way up, and is of type UP There is im intuitive notion of entailment implicit in any classification of the 

if it is more than nine-tenths of the way up, ,"',' k''' •• '3' form Evt(S). Recall that type cx entails type /3 if every state in cx is in /3; that 
We now define the Classification A we are after to beAB +Asw +Asw + is, if cx S; {J. When we combine this with the Boolean operations, we see that, 

ASL. The classification Asw of switches occurs twice because the circuit we for example, CXI, CX2 f- /31, f32 if every state in both CXI and CX2 is in at least one 

are interested ;n has two sw;tches. ~e ~kens of ~s CI:,::tion con:lst of ~I of ft. 0' p" thot Is, If " n., ~ ft. u p,. More genernlly, If r ""d A are sets 
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of Evt(S) types, then, intuitively, 

r f-- ~ iff n r ~ U ~. 
This defines a sound entailment relation on Evt(S). We can turn it into a sound 
local logic by simply taking all the tokens of S to be normal. This logic is called 
the local logic induced by the state space S, and is written Log(S); it is the logic 
implicit in the use of the state-space model S. 
W~ can now see the rationale for calling a space S complete when every state 

is the state of some token. For suppose S is complete and consider a sequent 
(r, M that holds of every token. It follows that r f-- ~, for if not, there would 
be a state in 0' E (n r - U 6.). But then let s be a token whose state is 0'. 

This token would be of every type in r and of no type in ~, contradicting the 

assumption that (f, 6.) holds of every token. In other words, the logic Log(S) 
is a complete logic. 

In the previous lecture we noted that whenever there is a projection p : S =l S I 
of state spaces, there is a natural associated info morphism p*: Evt(S I) += Evt(S) 
of their associated classifications. On types, this infomorphism takes a set of 
types to its inverse image under p~; on tokens it is identical to pV. We call this 
infomorphism Evt(p). Thus whenever p is a projection, Evt(p) : Evt(S I) += 

Evt(S) is an infomorphism. We will use this operation repeatedly below. 

3.1 The Static Case 

We begin by restricting attention to the static case, returning to the dynamic 

case in the next section, where we will build on the work done here. 

The bulb state space SB. The tokens b, b', ... of S 8 consist of light bulbs at 
various times. The states will consist of real numbers between 0 and 1, repre­
senting the brightness of the bulb. If states. (b) =.5 then·b is at half brightness; 
if states. (b) = 0 then b is off. The classification Evt(S 8) has the same tokens 
as A8 and has types arbitrary subsets of the closed, unit interval [0, 1]. 

Infomorphisms from AB to Evt(SB). The classification A8 is rather subjec­
tive. What is considered bright or dim varies from person to person and also 
with conditions. What seems bright at night may not seem bright at noon on 
a sunny day. This sort of dependence on the viewer's perspective might seem 

inimical developing a mathematical theory of information flow, so we want to 
see how we can handle it. .,."c. ""', 

One way to get at some aspects of this SUbjectivity is by recognizing that there 

are many different infomorphisms g8: A8 +=Evt(SB) fromA B into Evt(SB). 

... ~ 
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We are interested in those that are the identity on tokens and satisfy the following 
condition on types: 

• gB(ON) = (0, 1] 

• gB(OFF) = {OJ 

·gB(DIM) is a left closed subset of (0, 1].2 

• g B (BRIGHT) is a right closed subset of (0, 1]. 

• gB(MEDIUM) is a convex subset of (0, 1].3 

• Every member of gB(DIM) is less than every member of gB(MEDIUM), which 
in tum is less than every member of g B (BRIGHT). 

Notice that we have not assumed that the three sets gB(MEDIUM), gB(DIM), and 
gB (BRIGHT) exhaust the interval (0, 1], because there might be some values that 
the observer would be reluctant to classify as any of medium, dim, or bright. 

The switch state space Ssw. The tokens s, s', ... of Ssw consist of switches 

at various times. The states will consist of 0 and 1. The state of s is l'if s is up, ° if s is down. 

Whenever a state space S has exactly two states, say ° and 1, the event 
space Evt(S) will have four types, namely, the empty set 0, the set to, I}, and 

~he types {OJ and {I}. The empty set is a type with no tokens of that type; 
It represents impossibility. The type to, I} represents no information at all, 

because every token is of that type; it represents necessity. So the only possible 

but non necessary types are {OJ and {I}. Thus we see that for such a state space, 
the only advantage of Evt(S) over S is that the former has an impossible type 
and a necessary type. . 

We define a token-identical infomorphism gsw : Asw += Evt(S)sw to cap­
ture the relationship between the types and the states. Namely, gsw(up) = {I} 
and gsw(DN) = {OJ. 

. -Th~slideLStat~space5SL--The-tokens_slrSL'.--~oLSsfr-COnsist-of. sliders. __ 
at various times. The states will consist of real numbers between ° and 1 
representing the position of the slider. If statessw (81) = .2 then sl is two-tenth~ 
of the way up. The classification Evt(SSL) has arbitrary subsets of [0, 1] as 
types. 

2 A left closed subset X of a set Y ()f realsis a set such that if x E' X and y E Y is less than x, then 
y E X. 

3 A convex subset X of a set Y of reals is a set such that if XI, X2 E X, and y E Y is between XI 
and X2. then y E X. . 

- ~--.- -._-------------_ .. _----._--._--
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We define the obvious infomorphism gSL :ASL;:::! Evt(SSL) by letting 
gSL(r) = {rl for each real number and letting gSL(DN) = [0, .1) and gSL(UP) = 

(.9, 1]. 
We have now constructed token identical infomorphisms from each of our 

classifications into the event classifications of the corresponding state spaces. 

The Channel Cs 

The information channel consists of a classification of the circuit as a whole, 
together with infomorphisms from our component classifications into this clas­
sification. In coming up with a classification for the circuit, we have to choose 
what aspects of the circuit to model. Should we take into account the condi­
tion of the wiring, the amount of current available, whether or not the house is 
flooded, or just what? We want our framework to be able to account for such 
factors and contingencies without getting bogged down by them. We choose 
to develop a state space S L to model the system and then take the core of the 
channel to be the event classification of this state space. Before defining SL, 

we define an auxiliary space st· 
The state spaces S~. The tokens c, c', ... of st are arbitrary instances of the 
circuit at various times. The set Q* of states of st is [0, 1]\ the set of all 
4-tuples of real numbers between 0 and 1. This is a very simplified model of 
the state of the circuit. The circuit c is in state (rl, r2, r3, r4) if the state of c's 
bulb is r" the state of c's lower switch is r2, the state of c's upper switch is r3, 

and the state of c's slider is r4· 
We have set up our example state spaces so that there are simple, natural pro-

jections PB :st ~SB' PSWl :st ~SSW, PSW2 :st ~Ssw,andpsL :st ~ 
S SL from st into the state spaces for the bulbs, switches, and slider, respectively. 

For example, the projection P B: st ~ S B acts as follows. On tokens, 
PB(C) is the bulb that is part of the circuit instance c. (We suppose that 
every circuit instance that is a token of st has a bulb screwed in.) On states, 

PB«(rt. r2, r3, r4» = rl. The projection Psw, : st ~ Ssw acts on tokens by 
P SWl (c) being the instance of tIle-sWitch S W Itharis part of the-circuit instance 
c. On states, Psw, «(rl, r2, r3, r4)) = r2· The projection PSW2 : S~ ~ Ssw is 
similar except that it gives an instance of SW 2 on tokens and r3 on states. The 

projection PSL: st ~ SSL is defined similarly. 

The state space SL. The constraints weare after are a'product of natural laws 
governing the circuit and the meanings of our types. The latter are built into the 
infomorphisms defined above. The laws governing the circuit, however, have 
not yet been built into the model. We do this by looking at a subspace S L of Si, 
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Let Q consist of all those tuples (1 = (rl, r2, r3, r4) satisfying: 

Notice that if r2 = r3 (that is, if the switches are both up or both down), then 
rl = 0, On the other hand, if r2 = 1 and r3 = 0 or vice versa (meaning that the 
two switches are in opposite positions), then 

3r4 + I 
r l =--4-· 

For example, if r4 = 0, then rl = .25, meaning that if the slider is all the way 
down, then the bulb is at twenty-five percent brightness, whereas if r4 = 1, 
then rl = 1, meaning that if the slider is all the way up, then the bulb is at full 
brightness. The dependence of rl on r4 is linear, as specified earlier. 

We let S L be the subspace of st with Q as the set of states and tokens those 
instances of the circuit whose state is in Q. It is reasonable to suppose that this 
state space is complete for the following reason. There are only four possible 
combinations of positions for the switches. We have put the switches in these 
four positions and, in each of these, run the slider from bottom to top. In this 
way we have exhausted all the possible states of the system, at least up to the 
gap between the physical system and its mathematical model. 

The core of the channel. The core of our channel Cs is the event classification 
of SL, that is, the classification C = Evt(Sd. 

The infomorphisms from the component classifications are defined in the 
expected manner: 

The infomorphism fB: AB;:::! C is the composition of the infomorphisms 
--gB: As ;:::!Evt(SB) and Evt(piJ): Evt(SB) ;:::!C.4~--------'-------

Theinfomorphismfsw, : Asw ;:::!Cisthecompositionofgsw: Asw ;:::!Evt 
(Ssw) and Evt(psw,) : Evt(Ssw) ;:::! C. 

Theinfomorphismfsw2 : Asw ;:::!Cisthecompositionofgsw: Asw ;:::!Evt 
(S SW) and Evt(psw2 ) : Evt(S SW) ;:::! C. 

The infomorphism fSL: (ASL);:::! C is the composition of gSL : ASL ;:::! Evt 
(SSL) and Evt(PSL): Evtp(Ssd;:::! C. 

4 Composition of infomorphisms is defined in the obvious manner in the next lecture. 
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Let the index set! = {B, SW [, SW2 , SL}, and let 

be the channel as depicted earlier. 
The core classification C has a local logic £c that captures the state space 

classification, namely, the logic Log(Sd defined earlier. This local logic has a 
consequence relation given by 

for r, tJ. sets of sets of states of Q. It is sound, so its normal tokens are the 
tokens of SL, that is, the tokens of S~ whose state obey the defining law for Q. 

Because the state space is complete, the local logic is also complete. 

The local logic £ •. We can now use the local logic £c on the core C to obtain 
the desired local logic £. on the sum A using the infomorphisms. Let I : A <= C 
be the sum infomorphism 2:iEl Ii. This infomorphism allows us to move the 
logic from C toA, via I -Elim. £s is the resulting local logic. In the lectures that 
follow, this kindoflogic will be denoted by the logic I-I [£el- It is the strongest 
logic onA such that the infomorphism I is well-behaved. In particular, r I-.cs f:!,. 

if and only if f[r] I-.cc f[tJ.J. (We'll compute some of the constraints in a 
moment.) This local logic is complete, because the inverse image of a complete 
local logic is always complete. It is not sound, however. That is, not all tokens 
are normal. The normal tokens consist of those sequences (b, Sl, S2, sl) of bulb, 
switches, and slider that are connected by means of a circuit c whose state 
satisfies the defining law for Q. 

Because the local logic £s is complete, it should give us all the constraints 
we expect, but let us check the following two constraints in some detail, by way 
of illustrating this logic: 

i d -jt--------an _----

I 
I 
I 
I 

I. 
II 
II 
II 

------H~-
II 

UPSL, ON I-,l!, BRIGHT. 

By the definition of £s, we need to check that 

and 

I 
I • 1 

I 
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These amount to 

and 

These, in turn, say. the following: for every for tuple (rl, r2, r3, r4) E [0,1]4 
such that r2, r3 E {O, I} and 

1. if r2 = 0 and r3 = 1, then rl > 0; 
2. if r4 > .9 and rl > 0, then rl E IB (BRIGlIT). 

The first of these is clear. The second does not actually follow from anything 
we have said so far. The reason is that in postulating our conditions on the 
infomorphism g B we did not assume that g B (BRIGlIT) is nonempty; it might 
be, for example, that a person might under certain conditions consider the bulb 
dim even at its brightest. But for such a person, the second constraint would 
not hold! To get this constraint to hold, we must assume that gB(BRIGHT) is 
nonempty. In fact, because anything over nine-tenths of the way up counts as 
being up, this constraint will hold if and only if we assume that all brightnesses 
above 92.5% count as being bright, that is, that (.925, 1] ~ IB(BRIGlIT) (the 
reason being that .925 = (3 x .9 + 1)/4). 

Let us now consider the third constraint 

If B is off, then the switches are both up or both down. 

Intuitively, this should be expressed by 

-- OFF r.c,- UPrA UP2,· DNI/\ DN2: .-

However, our local logic £s does not have a conjunction because A doesn't 
have one, so this does not make sense in this logic. 

The natural thing to do is to enlarge the system of types in A to one that has 
conjunctions, disjunctions, and negations of types. There is a canonical way to 
do this, resulting in a classification Boole(A). Because the types of C form a 
complete Boolean algebra, there is a canonical way to extend the infomorphism 
I to an infomorphism f* = Boole(f) from Boole(A) to C. Let £; be the local 
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logic j*-I[£;d. This is the natural extension of our logic ..cs to the Boolean 

closure Boole(A) of A. We will show that 

This is equivalent to the condition: 

!B(OFF) ~ (fSW,(UPI) n !SW2(UP2)) U (fsw.(DNI) n !sw,(DN2» 

This says the following: for every 4-tuple (rh r2, r3, r4) E [0, 1]4 such that 

r2, r3 E to, I} and 

rl = Ir2 _ r31 (3r\+ 1). 
if rl = 0, then either r2 = 1 and r3 = 1 or r2 = 0 and r3 = O. This is easily 

checked. 

Exceptions 

Our model of the circuit made many simplifying assumptions of norm~lity, 
assumptions that get reflected in our constraints. Let us see what happens If we 
relax one of these assumptions. Suppose, for example, that we want to model 
the possibility that the power to the house can go off, during a storm, say. To 
do this construct a new state space S~ using 5-tuples rather than 4-tuples for 

, ( r ) E [0 1]5 where the fifth coordinate represents whether 
states, say rh···, 5 " 

there is power (rs = 1) or not (r5 = 0). . . 
Let n' consist of all those tuples (I = (rl' r2, r3, r4, r5) satIsfymg 

r2, r3, rs E to, 1} 

(3r4 + 1)' 
rl = Ir2 - r31 --4- r5 

I 

... and let S'r;-bethespace. witlLthis.set 9Ls.tates.llIld to.k~l!.s.!ha~~~ allcircuits -­
whose state is in n'. This will properly include. the tok~n~ of our earl~er examp~e, 
which only included circuits where the power IS on. Slmtlarly, let C = Evt(S L) 

be the event classification of S~. 
We could run through everything we did before and obtain a channel 

C' {J." A -> C'l· .... s = i· i ~ lEI· 

Using this local logic would not give us any of the above cons~nts, because 
this channel takes into account the possibility of the power bemg off. To get 
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some constraints, we would need to devise a classification Ap for the power 
and put it in as a summand of our classification A and put the assumption that 
the power was on into the antecedent of the constraint. 

The channel C; is a refinement of the channel Cs in the precise sense defined 
in the preceding lecture. This means that its constraints are more reliable than 
those of Cs , that is, more reliable in that they hold of a wider class of cases. To 
see that C; is a refinement of Cs , first notice that the state space S L is isomorphic 
to a subspace of the state space S~; the embedding e is the identity on tokens 
whereas on types e( (rl' r2, r3, r4) = (rl' r2, r3, r4, 1). 

Applying this operation to e, we let r = Evt(e) be the infomorphism that is 
the identity on tokens and is defined on types by: rea) = e-I[a]. The infomor­
phism r shows the channel C; to be a refinement of the channel Cs • 

C' __________ r ________ +. C 

A 

The constraints discussed above hold relative to the channel Cs but not relative 
to the more refined channel C;. 

Suppose that one has the information that the light is off and the switch SW 2 

is up. Does one have the information that the switch SWI is also up? Well, not 
unless the two are connected by a normal instance c of our circuit, of course, 
and so are both up at the same time. But even then we see that the constraint 
depends upon which channel we consider. If we consider the channel Cs , then 
the answer is "yes," because 

and because we are dealing with a normal token of the local logic. However, 
_ .... if. we are considering the more refined channel C;, then the answer is "no," 

because 

For example, the state (I = (O, 1, 0, 1, 0) is a counterexample, one where the 
power is off. 

Our general attitude toward defeasible reasoning and its so-called nonmono­
tonicity is that additional information can alert the reasoner to a shift in channels 
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and so to a shift in local logics. This happens typically by bringing in some is­
sue that is not relevant to the channel under consideration. Thus, for example, 
suppose one is asked "Does the above constraint hold when the power is off?" 
In such a case one knows immediately that channel Cs and its associated local 
logic ..cs are inappropriate and moves to the local logic ..c~. 

3.2 The Dynamic Case 

Recall that 'we are also concerned with information that involves someone 
operating the switches and slider, things like the following: 

4. If B is off and 5W I is flipped, then B will go on. 
5. If B is off and 5L is slid to the midpoint, then no change will take place 

in B. 
6. If B is dim and 5L is slid to the top, then B will be bright. 

We now want to find a classification B and a local logic ..cd on B that captures 
these kinds of constraints. 

The constraints are about actions that affect the circuit so we need to classify 
such actions. We thus define a classification Act of actions. The tokens are 
particular acts a, a', ... , that involve our circuit. We assume that for each act 
a there are two instances of the circuit, init(a) and final(a). We posit types 
FLIP1, FLIP2, RAISE-SL, SLIDER-TO-p (where 0 ~ p ~ 1), and TURN-Off with 
the natural extensions. For example, the extension of FLIP 1 is the set of all 
acts where the first switch is flipped, but the other switch and slider are left 
unchanged. Similarly, the extension of SLIDER-TO-P is the set of all acts where 
the slider starts at some position other then p and is positioned at p at the end, 
with both switches remaining changed. 

Our desired classification is the classification B = A + Act + A. The tokens 
consist of 9-tupIes of the fOrin 

(b
init init sinit slinit a bfinal sfinal sfina1 slfina1 ) 

,Sl ' 2' " '1' 2' . 

- -We interPret- such--a-t()ken~as-f()I1ows:-ThefirStToliiteffus-will beLhe-initial 

components, before the action a; the last four will be the final components 
(after the action a). Because the classification has two copies of A it will have 
two copies of each of its types in the type set. We use superscripts to indicate 
these. For example, upiiit is the copy of UPI that goes with the first copy of A, 
because that copy represents the initial configuration. Our example constraints 
can now be formulated. 
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5. OfF
init

, SLIDER-TO-.S I- OfFflnal . 

6. DIM
init

, SLIDER-TO-l I- BRIGHTfinal. 

The next step in our analysis is to translate these types into types in the event 
space of an appropriate state space. For this we use a state space SAct. The 
tokens consist of all acts a such that the states of both init(a) and final(a) are 
in the set n of normal states discussed in the previous section. The set of states 
is n x n. The state of an action is defined to be the ordered pair consisting of 
the states of its initial and final circuits. 

Let Pinit: SAct ~ SL and Pfinal: SAct ~SL be the projections defined as fol­
lows: 

Pinit(a) = init(a) 

Pinit( (CT, CT')) = CT 

Pfinal(a) = final (a ) 

Pfinal( (CT, CT')) = CT' 

Our information channel has as its core the event classification C
Act 

= 
Evt(SAct). This classification has as types subsets of n x n, that is, binary 
relations on n. 

Because CAet is the event space of the state space SAel, there is an inherited 10-
cal logic, namely, Log(SAet). We are going to use this local logic to obtain the 10-
cal logic ..cd on the classification B by means of an infomorphism h : B ;:::::t C

Aet
. 

We construct this infomorphism as follows. First, let k init = Evt(Pinit) and kfinal = 
Evt(Pfinal) so that k init : C ;:::::t CAet and kfinal : C ;:::::t CAet are infomorphisms. We 
let h init = fk init and hfinal = fkfinal, where f: A;:::::t C is the infomorphism used 
in the previous section. Thus both h init and hfinal are infomorphisms fromA into 
C. The first represents the case where the components are considered compo­
nents of the initial circuit of an action; the latter represents the case where the 
components are considered components of the final circuit of the.action. 

There is a token-identical infomorphism h Aet : Act;.::± CAet defined on types 
ct of Act as follows: 

---~ -a~---·--

FLIP 1 {(CT, CT') I r~w, = I - rsw,} 
FLIP2 {(CT, CT') I r~W2 = I - rSW2} 
RAISE-SL {(CT, CT') I rf;£ > rsLl 
SLIDER-TO-p {(CT, CT') I rSL =1= P, rSL = p} 

TURN-OFF - --({CT, CT') J rB = 1, r~ = O} 

(In the descriptions on the right we have only given the condition on the coor­
dinate that changes under the action. All other coordinates are fixed.) 
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The local logic ..cd- We are now in a position to define the channel Cd that 
is going to give us our desired local logic. Namely, it consists of the three 

infomorphisms displayed below: 

A Act A 

Adding these three infomorphisms together, we obtain an info morphism 
h = hinit+hAet+hfinal from B=A+Act+A into CAet• This infomorphism 
h: B;::::! CAet is the desired map for obtaining our local logic. Let ..cd 
h- I [LOg(SAct)], a local logic on the classification CAet. 

The normal tokens of this local logic are those 9-tuples 

<b
init sinit sinit slinit a bfinal sfinal sfinal slfinal ) 

, 1 ' 2' " '1' 2 ' 

such that a is an action for which both init(a) and final(a) are normal circuit 
instances and such that the components of init(a) are b init , sinit, s~nit, slinit and 
the components of final(a) are b final , st

al
, stnal, slfi

nal
. 

Let us now check our three sample constraints, to see that they in fact hold 

in our local logic: 

4. OFFinit, FLIP 1 I-.c
d 

ONfinal. 

5. OFFinit, SLIDER-TO-.51-.cd OFFfina
l
• 

6. DIMmit, SLIDER-TO-11-.cd BRIGHTfinal . 

Le ( init init init init) (final final final final) [0 1]4 h t rB , rSWt 'rSW2,rSL ,rB ,rSWt,rSW2,rSL E , meett econ-
ditions for states in Q. The three constraints translate into the following condi-

tions: 

4 If r init - 0 and rfina
l 

- 1 - r mit then rfina
l > 0 · B - SWt - SWt' B . 

5 If init 0 d final 5 th final 0 • r B - _=an JSL- _~:::::_-' ____ en rB __ = . 
6 If init f( ) d final 1 h init f(--- )­· rSL E B DIM an rSL = , t enrSL E B BRIGHT. 

The first two are readily checked. The last one can be checked if we again 
assume that (.925, 1] ~ fB(BRIGHT). 

Sequences of Actions 

The logic ..cd handles single actions but it does not allow us to express constraints 

like the following: 
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7. If B ~s off and .S~ 1 is flipped and then SW 2 is flipped, then B will be off. 
8. If B IS off, SL IS slid to the bottom and then SW is fl· d th B . dim. '2 Ippe, _ en WIll be 

This shortcoming is easily remedied, however. 

Ass~me th~re is an operation ° of composition of actions, so that if 
are actIOns WIth fi I( ) .. ( a" a2 

_. . na al = IllIt a2) then al ° a2 is an action with init(al ° 
a2) -'.ntt(al) and final(al ° a2) = final (a2). At the level of types, add a bin 
operatIOn, also denoted by 0, requiring that a is of type ·f d ru: th . al ° a2 I an only If 

ere are aCtions a, of type a 1 and a2 of type a2 such that a = a I ° a2 FinalIy 
we define h ( ) t h ( I . . , 

Act al ° a2 0 t e re atlOnal) composition of the relations h ( ) 
and hAet(a2? With these elaborations the reader can easily deriv~ the fOI~~~~~ 
formal versIOns of our earlier constraints: g 

7. OFFinit, FLIPI 0 FLIP2 I- OFFfinal• 

8. OFFinit, SLIDER-TO-O ° FLIP2 I- DIMfi~al. 
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Lecture 4 

Classifications and Infomorphisms 

In this lecture, we present the basic theory of classifications, infomorphisms, 
and information channels, the latter being our basic model of a distributed 
system. Information flow will be defined relative to an information channel. 
These notions are used throughout the rest of the book. 

4.1 Classifications 

Information presupposes a system of classification. Information is only possible 
where there is a systematic way of classifying some range of things as being 
this way or that. 

Information flow is not restricted to a single on to logical category. The 
theoretical vocabularies used to describe these different kinds of things can be 
extremely diverse, so one needs a way to talk about classification that does not 
favor any particular "vocabulary." This is captured in the following definition. 

Definition 4.1. A classification A = (tok(A), typ(A), FA} consists of 

1. a set, tok(A), of objects to be classified, called the tokens of A, 
2. a set, typ(A), of objects used to classify the tokens, called the types of A, and 
3. a binary relation, FA, between tok(A) and typ(A). 

If a FAa, then a is said to be of type a in A. We sometimes represent a 
classification by means of a diagram of the following form: 

typ(A) 

tok(A) 

69 
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Example 4.2. Finite classifications can be conveniently represented by a clas­
sification table. We write the types along the top of the table, and tokens along 

the left side. For example, the following table 

A 4.2 al a2 a3 a4 as 

al 0 0 

a2 1 0 I 0 

a3 0 I 0 I 0 

a4 0 I 0 0 

as 0 0 0 0 

a6 0 0 0 

represents the classification A with tokens {aI, a2, a3, a4, as, a6} .and types 

{~ a a 'a4 as} where al is of type ai, a2, and a4, whereas a2 IS of types 
\..(.1, 2, 3, , , 5 32 

aI, a3, and as. Notice that although there are five types, there are 2 = 
possible distinct sequences of Is and Os. Any classification where some of 
the possible rows do not appear in the table is one where there are patterns or 
regularities among the) types. In the above classification, for example, we se.e 
that nothing that is of type a3 is of type a4 and that every token of type as IS 

also of type a I . 

Example 4.3. We can represent the classification of English w~rds ~ccording 
to parts of speech as given in Webster's Dictionary ~sing a ~lass~ficatlOn table. 
We give only a small part of the table representing thiS claSSificatIOn, of course. 

Webster NOUN INTVB TRVB AD] 

bet 1 1 1 0 

eat 0 1 0 

fit 1 1 1 

friend 1 0 1 0 

square 0 

-- --~--. - -------------~-- -

Given a classification A, we introduce the following notation and termino­

logy. For any token a E tok(A), the type set of a is the set 

typ(a) = {a E typ(A) I a FA a}. 

Similarly, for any type a E typ(A), the token set of a is the set 

tok(a) = {a E tok(A) I a FA a}. 
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(For example, in the classification Webster, the type set of the word "square" is 
the set {NOUN, TRANSITNE VERB, ADJECTIVE}. The token set of the type NOUN 

is the set of all nouns of English.) 
Typesal anda2 E typ(A) are coextensive inA, writtenal ~A a2, iftok(al) = 

tok(a2). Tokensa[, a2 are indistinguishable inA, writtenai ~A a2, iftyp(ad = 
typ(a2). (No pair of distinct types in Example 4.2 or in Webster are coexten­
sive. In Example 4.2 it happens that no pair of tokens are indistinguishable. In 
Webster any two words that are of the same parts of speech, like "apple" and 
"kiwi" are indistinguishable.) 

The classification A is separated provided there are no distinct indistin­
guishable tokens, that is, if al ~ A a2 implies al = a2. The classification 
A is extensional provided that all coextensive types are identical, that is, if 
al ~A a2 implies al =a2. (The classification in Example 4.2 is both separated 
and extensional whereas Webster is extensional.) 

Example 4.4. Given any set A, the powerset classification associated with A 
is the classification whose types are subsets of A, whose tokens are elements of 
A and whose classification relation is defined by a F a if and only if a Ea. The 
classification is both extensional and separated. 

Example 4.5. Given any function f : A -+ B, the map classification associated 
with f is the classification whose types are elements of B, whose tokens are 
elements of A and whose classification relation is defined by a F b if and only 
if b = f(a). 

Example 4.6. Given a first-order language L, the truth classification of L is the 
classification whose types are sentences of L, whose tokens are L-structures, 
and whose classification relation is defined by M 1= qJ if and only if cp is true 
iuthe structure M. I The type set of a token M is the set of all sentences of L 
true in M, usually called the theory of M. The token set of a sentence cp is the 
collection of all models of cpo 

Definition 4.7. Classifications A and B are said to be isomorphic, written 
A ;: B, if there are one-to-one correspondences between their types and between 
their tokens such that given corresponding tokens a and b and corresponding 
types a and {3, a FA a if and only if b FB {3. 

t Strictly speaking, this is not a classification because every language has a proper class of structures. 
We shall not be concerned with the matter of size here; with the usual modifications, everything 
carries over to classifications with classes of tokens and types. 

----="' .. +-_.-._-- -
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Exercises 

For Examples 4.4-4.6 what is the type set of each token and the 
token set of each type? Which of these classifications are in general 
separated or extensional? For those that are not one or the other, state 
the conditions under which they would be. 

4.2 Infomorphisms 

Now that the notion of a classification has been introduced, we turn to the 
main notion used in this book, that of an infomorphism. Infomorphisms are 
important relationships between classifications A and B and provide a way of 
moving information back and forth between them. The classifications can be of 
the same objects or they can be of different objects. When modeling a distributed 
system and one of its components, we typically think of the latter. But when we 
think of one object viewed from different perspectives, that of different people, 
different linguistic communities, different time zones; or different branches of 
science, it is the former we have in mind. 

We shall work extensively with pairs / = (r, r) of functions, of which 
r is a function from the types of one of these classifications to the types of 
the other, and r is a function from the tokens of one of these classifications 
to the tokens of the other. To remember which function is which, recall that 
classifications are pictured with the types above the tokens. The function /A 
(read "/ up") on types has the caret pointing up, the function r (read "/ 
down") on tokens has the caret pointing down. 

We are primarily interested in the case where the two functions map in 
opposite directions. We say that / is a contravariant pair from A to B, and 
write/: A <= B, if r: typ(A) ~ typ(B) and r: tok(B) ~ tok(A). In later 
lectures we shall explore the covariant case, / : A =4 B, in which the functions 
both run the same direction: r: typ(A) ~ typ(B) and r: tok(A) ~ typ(B). 

~ Definition 4.8. An in/omorphism /: A ;:::tBfromA toB is~ cOlltravari~~ 
pair of functions / = <r, r} satisfying the following Fundamental Property 
of Infomorphisms: 

for each token b E tok(B) and each type ex E typ(A).2 

2 Strictly speaking. an infomorphism consists of two things: a pair of classifications (A. B) and a 
contravariant pair I = (t'. Ii of functions between A and B. satisfying the above condition. 

4.2. In/omorphisms 
73 

We will omit the "up" and "down" superscripts if no confusion is likely in 
which case the fundamental property reads ' 

~e use classification diagrams to depict infomorphisms as follows, again leav­
mg off the superscripts on / because it is clear which function is which: 

typ(A) ---I- typ(B) 

tok(A) f tok(B) 

Ex~ple 4.9. Here is an infomorphism that represents the way that the punc­
tuatIOn at the end of a written sentence carries infonnation about the type of 
the sentence. We have two classifications, Punct and Sent. The tokens of 
Punct are written inSCriptions of the punctuation marks of English, things like 
~ommas, periods, and question marks. We will classify these marks in the way 
Just suggested, by PERIOD, EXCLAMAnON MARK, QUEsnON MARK, COMMA, 

and so forth. The tokens of Sent are full, written inscriptions of grammatical 
sentences of English. For types we take three: DECLARA11VE, QUEsnoN, and 
OTHER. 

. Define an info morphism /: Punct;::! Sent as follows. On tokens, / as­
signs ~o each sentence token its own terminating punctuation mark. On types, 
/ assigns DECLARA11VE to EXCLAMAnON MARK and PERIOD, QUESTION to 
QUESTION MARK, and OTHER to the other types of Punct. The fundamental 
property of infomorphisms is the requirement that a written token be of the 
type indicated by its own punctuation. This condition is satisfied if we treat 
commands as declarative sentences and if part of what we mean for a written 

__ .~ ~to~e~ofan_~n~!!~ sente~ce to be gr~!!ll!tic~Li~Jhat i!..!!!l~.wlth_th~~right 
punctuation mark. 

Example 4.10. Let A and B be power classifications on two sets A and B 
re~pectively. Let us examine the meaning of the infomorphism condition i~ 
thiS case. By definition, an infomorphism /: A ;::! B consists of a function 
r: B ~ A and a function r: pow A ~pow B satisfying the condition that 
for all b E B and all ex £ A, . 

"----,-~ _ .. ._--_._._ ... -. --,-~ .. - ._--"--------._-----_._._-_ .. __ .. 
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which is to say that 

reb) E a iff b E rea). 

But this line says that 

rea) = (b E B I reb) E a}, 

which is, by definition, r- I [a]. In other words, in the case of power classi.fi­
cations, an infomorphism is nothing but a function' from B into A paired wI~h 
its inverse, the latter being a function from subsets of A to subsets of B. ThIs 
is, of course, a familiar situation in mathematics. For example, in topology we 
use open sets to classify points and focus on "continuous" functions, functions 

whose inverse takes open sets to open sets. 

We said earlier that we think of an infomorphism f : A ;::± B as going from 
A to B. Example 4.10 suggests that this is backward, that it goes from B to A. 
The direction of the infomorphism in 4.8 is a terminological decision that could 
have gone either way. Our choice was motivated by the following example 
from logic. 

Example 4.11 (Interpretations in First-Order Logic). Let Land L' be first­
order languages. We assume for simplicity that the basic symbols of L are 

. I 3 A . relation symbols RI, ... , Rn of arities V(RI), ... , veRn), respectIve y. n in-

terpretation of L into L' is determined by a formula 1/1 (x) of L' with the one free 
variable x (used to define the range of quantification) and formulas CPI, ••• , CPn 

of L' such that CPi has free variables Xi> •.• ,XV(Ri ), where CPi is used to interpret 

Ri· 
Such an interpretation I can be thought of as an infomorphism on the truth 

classifications of Land L' in a natural way. On types, that is on L-sentences, 
we get a mapping fA from L-sentences to L' -sentences as follows. Each atomic 
formula Ri (tl, ••• , tV(Ri» is replaced by cpUt, ... , tV(Ri» and all quantifiers are 

-relativized to 1/1.4 For example, thefQtmqla __ 

is mapped to the formula 

3y(1/I(y) /\ CP2(X, y», 

3 The arity of a relation is just its number of places. So, for example, .if R is binary, tb:n v(R) = 2. 
4 Some care has to be taken to avoid claShes of free and bound vanables, but we WIll not worry 

about tbe details here. 

._:; 
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and the sentence 

is mapped to the sentence 

V'X[1/I(X) -+ [CPI (x) -+ 3y(1/I(y) /\ 'P2(x, y»)]]. 

On structures, the interpretation works in the opposite direction. Given an 
L'-structure M', we use the formulas of L' to define a model reM'). Its 
domain consists of those objects b of M' that satisfy 1/1 in M'; for 1 :::s i :::s n, 
the interpretation of Ri in fV(M') is the set of veRi )-ary sequences that satisfy. 
CPi (XI, •.• ,XV(Ri » in M'. 

It is a straightforward matter to check that for each model M' of L' and each 
sentence cP of L, cP is true in reM') if and only if r(cp) is true in M'. (It would 
be a good exercise to verify this.) Thus the contravariant pair (r, r) is an 
infomorphism from the truth classification of L to the truth classification of L'. 

Definition 4.12. For any classification A, the identity infomorphism lA : A ;:::::t A 
consists of the identity functions on types and tokens, respectively. 

Justification. In this definition, we have implicitly made a claim, namely, that 
IA is indeed an infomorphism. In this case, the claim is obvious. In other 
definitions, we will be making similar implicit claims and so will need to justify 
them. . 0 

Definition 4.13. Given infomorphisms f : A ;:::::t Band g : B ;::± C, the compo­

sition gf : A ;::± C of f and g is the infomorphism defined by (gft = gAr and 
(gf)v = Fgv. 

Justification. We leave it to the reader to verify that the composition of info­
morphisms really is an infomorphism. 0 

- --~---- . --.------------------------~----------"-------

An infomorphism f : A ;::± B is an isomorphism if both r and F are bi­
jections. Classifications A and B are isomorphic if and only if there is an 
isomorphism between them. 

4.3 Information Channels Defined 

We now come to our key proposal for modeling information flow in distributed 
systems. 
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Definition 4.14. A channel C is an indexed family (f; : Ai ~ C}iEI of info­
morphisms with a common codomain C, called the core of C. The tokens 
of C are called connections; a connection c is said to connect the tokens 
f; (c) for i E I. A channel with index set {O, ... , n - I} is called an n-ary 

channel. 

When we need a notation for the various parts of a channel C, we write 
C = {hf :Ai ~core(C)}iE[' 

As we have explained in Part I, our proposal is that information flow in a dis­
tributed system is relative to some conception of that system as an information 
channel. 

Refinements 

We sometimes draw diagrams showing infomorphisms between several clas­
sifications. For the sake of graphical simplicity, we draw an arrow only in 
the direction of the function on types. Think of an infomorphism j : A ~ B 
as a way of translating from the types of A to those of B. For example, the 
diagram 

B 

/h~ 
A .C 

indicates that f, g, and h are contravariant pairs as follows: f: A ~B, 
g: B~C, andh:A ~C. 

To say that this diagram commutes is to assert that h = gf. For types, this 
--~-- ; -------- --~-~--meannhlich (a )~==-gtf(a-)_).for all aE -typ(A), -whereas for tokens it means ~---_-

I that h(c) = f(g(c» for all tokens c E tok(C). (Ji!otice Ule different order of j 
! and g in these two equations.) I We can now define what it means for one channel to refine another. 

I 
I 

Definition 4.15. Let C = {f; :Ai ~ C}iEI and C' = (gi : Ai ~ C'}iE[ be chan­
nels with the same component classifications Ai. A refinement infomorphism 
r from C' to C is an infomorphism r: C' ~ C such that for each i, fi = rgi, 

~-----I -----------------------
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that is, such that the following diagram commutes: 

C' 

;/~ 
f; 

A --------~--------+. C 

The channel C' is a refinement of the channel C if there is a refinement r from 
C'toC. 

Example 4.16. One example of a refinement is where typ(C) = typ(C') , 
tok(C) ~ tok(C'), and their classification relations agree on their common to­
kens. The refinement infomorphism is the identity function on types and the 
inclusion function on tokens. This refinement amounts to taking more tokens 
into account in the more refined channel. The more refined channel gives more 
reliable information, though at a cost, as we will see. 

While on the subject of diagrams, we prove a lemma that is useful for 
determining that a pair of functions is an infomorphism. We say that a pair 
j: A += B of functions is token surjective (or type surjective) if r (or r, 
respectively) is surjective. 

Lemma 4.17. Let j : A += B, g : B ~ C, and h : A += C be contravariant pairs 
such that the follOWing diagram commutes: 

B 

/h~ 
A --------. C 

~ -~ L If j and g are infomorphisms, so is ho- __ ~ _ ~~ ~ ___ ~ ___ ~~ ______ __ 

2. If j and hare injomorphisms, and j is type surjective, then g is an 
infomorphism. 

3. If g and hare injomorphisms, and g is token surjective, then f is an 
infomorphism. 

Proof (1) is straightforward. To prove (2) let fJ E typ(B) and c E tok(C). We 
need to showthatg(c) FB fJ if and only if c Fe g(fJ). Because rissUIjective, we 



Ii 
,1 
I. 

78 
Lecture 4. Classifications and Infomorphisms 

know that f3 = f(a) for some a E typ(A). The following are then equivalent: 

g(c) FB f3 iff g(c) FB f(a) (because f3 = f(a» 
iff f(g(c» FA a (because f is an infomorphism) 

iff h(c) FA a (because h = gf) 
iff c Fe h (a) (because h is an info morphism) 

iff c Fe g(f(a)) (because h = gf) 

iff c Fe g(f3) (because f3 = f(a)) 

(3) is proved in a similar way. (It also follows from (2) by the duality of types 

and tokens discussed in the next section.) 0 

4.2. 

4.3. 

4.4. 

4.5. 

Exercises 

If f : A ;::::! B is an infomorphism and b is indistinguishable from b' in 

B, sh~w that feb) is indistinguishable from feb') in A. 

Let A and B be classifications, and let g : tok(B) -+ tok(A). Find a 
necessary and sufficient condition for there to be an infomorphism 

f : A ;::::! B with r = g. 

There is a special classification 0 that plays the role of a zero classifica­
tion. It has a single token but no types. Show that for any classification 
A there is a unique infomorphism f: 0 ;::::!A. (Note that any two clas­
sifications with this property are isomorphic, so 0 is unique up to 

isomorphism.) 

Given a separated classification A and infomorphisms f : A ;::::! Band 

g: A ;::::!B, show that if r = gA, then f = g. 

4.6. -- (t)The category whose objects are classifications and whosemor- --­
phisms are infomorphisms is sometimes called the category of Chu 

spaces, or the "Chu over Set" category. Show that an infomorphism 

-~kF!--Bis - -
I. monic in this category if and only if r is injective and r is sur-

jective and 
2. epi in this category if r is surjective and r is injective. 

4.4 Type-Token Duality 
' .... '; ,.'" 

In any classification, we think of the t;p;sa~ cl~ssifying the tokens, but it is 
often useful to think of the tokens as classifying their types. Elements of a set 

-.-- - .. ------- ------_. __ .-.... _------" 
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can classify those subsets containing them; models can classify the sentences 
they make true; objects can be regarded as classifying their properties. 

Definition 4.18. 

1. For any classification A, the flip of A, is the classification A..l whose tokens 
are the types of A, whose types are the tokens of A and such that a F AJ. a if 
and only if a FA a. 

2. Given any pair of functions f: A ;::::!B, define f..l : B..l +=2A..l by f..lA = r 
and f..lv = r. 
Pictorially, A..l amounts to just flipping A upside down (hence the name 

"flip" of A, as follows (where FA' represents the converse of FA): 

typ(A) 

tok(A) 

A 

tok(A) 

F-' 
A 

typ(A) 

A..l 

In terms of classification tables, flipping amounts to interchanging rows and 
columns. 

When deciding which way to model a classification we sometimes tum to 
epistemological considerations. The types are usually considered as "given"; 
they are things we know about. The tokens are things we want to find out about, 
i.e., about which we want information. For example, with objects and properties 
one usually wants to find out about the objects by classifying them in terms of 
familiar properties. In this case, the objects are taken as tokens and the properties 
as types. In other circumstances, one might want to learn about some properties 
by seeing which objects have them_ For example, we use paradigmatic objects 
to explain a concept to a child unfamiliar with it. In this case, we would take 
the properties or concepts as tokens and the objects to be types. (Chapter 17 
contains an application of this idea to the theory of speech acts.) 

The observation that the flip of a classification is itself a classification to­
gether with the fact that it behaves nicely with infomorphisms, sets up a du~lity 
between types and tokens that can cut certain work we have to do in half, be­
cause it means that any definition or notion involving types or tokens has a 
dual about tokens or types. For example, the dual of "the type set of a token" 
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is "the token set of a type." The notions of coextensional types and in~istin­

guishable tokens are duals of one another. Similarly. ~e du~ of the notIOn of 
an extensional classification is that of a separated classificatIOn. 

When we say that flipping is well-behaved with respect to infomorphisms. 

what we have in mind is the following: 

. if d I ifjl.· Bl. -> Al. Proposition 4.19. j:A +=!B is an injomorphlsm I an on y I . <-

is an in/omorphism. 

Proof Looking at the following diagrams. we see one is just a redrawing of 

the other. 

typ(A) J:..... typ(B) 

tok(A) -L-- tok(B) 

/ 

Proposition 4.20. 

1. (Al.)l. = A and (/1.)1. = /. 
2. (/g)l. = gl. /1.. 

Proof This is a routine verification. 

tok(B) L.. tok(A) 

1=-1 
A 

r typ(B) - typ(A) 

/1. 

o 

o 

As a simple example of duality at work. we can dualize Exercise 4.2 to obtain 

the following: 

Proposition 4.21. Given an in/omorphism / :A <= B, if a is coextensive with 
a' iilA.;then !(a)is-coextensive-with 1(a')-inB. -- ---------- ----"--1---

Proof Apply Exercise 4.2 to A 1. and /1.. o 

We will make frequent use of such dualities in what follows. 

Exercise 

4.7. Dualize Exercise 4.4. 

Lecture 5 

Operations on Classifications 

There are many operations that take classifications and produce new classifi­
cations. This lecture discusses two of these operations that are quite important 
from an information-theoretic perspective. Whenever such an operation is in­
troduced, we will study how it interacts with infomorphisms. 

5.1 Sums of Classifications 

As should be evident from Part I, the most basic way of combining classifica­
tions for our purposes is to add them. In forming a sum of classifications A and 
B, we classify pairs (a, b) of tokens, a from A and b from B, using types that 
are copies of the types in A and B. 

Definition 5.1. Given classifications A and B, the sum A + B of A and B is 
the classification defined as follows: 

1. The set tok(A + B) is the Cartesian product of tok(A) and tok(B). Specifi­
cally. the tokens of A + B are pairs (a, b) of tokens, a E tok(A) and b E 
tok(B). 

2. The set typ(A +B) is the disjoint union oftyp(A) and typ(B). Forconcrete­
ness;thetypesofA -+-B areprurs\l,a). -\\-ihere i= 0 and a E typ(A) or 
i = 1 and a E typ(B). 

3. The classification relation FA+B of A + B is defined by 

(a, b) FA+B (0, a) 

_ (a, b) FA+B (1, fJ) 

Example 5.2. Suppose that Sw is a classification of light switches using types 
UP and DN. Then Sw + Sw classifies pairs (Sl, S2) of switches using four types, 
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types we write informally as UP!> UP2, DNI, and DN2. For example, (Sl, S2) is 

of type DN2 if and only if S2 is down. 

Definition 5.3. There are natural infomorphisms aA: A ~A + Band 

aB : B ~ A + B defined as follows: 

1. aA (a) = (0, a) for each a E typ(A), 
2. aB(f3) = (l, (3) for each f3 E typ(B), and 
3. for each pair (a, b) 'E tok(A +B), aA«(a, b» = a and aB«(a, b» = b. 

Justification. It is routine to verify that aA and aB are infomorphisms. o 

The following proposition will be used implicitly over and over again in 

what follows. 

Proposition 5.4 (Universal Mapping Property for Sums). Given infomor­
phisms f : A ~ C and g : B ~ C, there is a unique infomorphism f + g such 

that the following diagram commutes: 

Proof Let us prove this explicitly, even though it is pretty cl~ar. First, suppose 
we had such an infomorphism f + g. From the fact that the dIagram commutes 
we see that f + g must satisfy the following equations: 

U +gn(O, a» = rea) 
(f + gn(l, (3» = gA(f3) 

(f + gnc) = (r(c), gV(c» 

But we can use these equations to define f + g. If we show that f + g so defi­
ned is an infomorphism, we will show both existence and uniqueness. Suppose 

c Etok(C) and that (i, a) E typ(A +B). We need to check that (f +g)(c) is of 

type (i, a) inA +B if and only if cis of type (f + g)( (i, a» in C. There are.two 
cases to consider, depending on whether i'.==;O or i = 1. They are symmetncal, 
though, so assume i = O. Then the following are equivalent: 

(f + g) (c) is of type (0, a) in A + B; 
(f (c), g(c» is of type (0, a) in A + B (by the definition of (f + g) (c»; 

,i 
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f(c) is oftype a inA (by the definition of FA+B); 

c is of type f (a) in C (by the fact that f is an infomorphism); and 
c is of type (f + g)( (0, a» in C (because f(a) = (f + g)( (0, a))). 

So we have the desired equivalence. o 

Many of our constructions extend from two classifications to indexed fami­
lies of classifications in a straightforward way. We give the details for addition 
and then are less detailed about others. By an indexed family {Ai lief of clas­
sifications we mean a function on some set 1 taking classifications as values. 
We call 1 the index set of the indexed family. 

Definition 5.5. Let {Ai LeI be an indexed family of classifications. The sum 
Lief Ai of the family {Adief is defined by the fOllowing: 

1. tok(Liel Ai) is the Cartesian product of the sets tok(Ai ) for i E 1; 
2. tYP(Liel Ai) is the disjoint union of the sets typ(Ai) for i E 1; and 

3. for each a E tok(Lief Ai) and each a E typ(Ai), writing ai for the ith com­
ponent of a, 

aF(i,a) in LAi iff aiFAia. 
ief 

This is a generalization of our previous definition because we can think of 
a pair A I, A2 of classifications as an indexed family {A};e(l.2} for which the 
index set is {I, 2}. In this case, Liell.2} Ai = AI + A 2 . 

Definition 5.6. Natural infomorphisms ai: Ai ~ LielAi are defined as 
follows. 

1. For each a E typ(Ai), ai(a) is the copy of ain tYP(LiefAi)' 

2. For each a E tok(LiefAi), ai(a) = ai, where ai is the ith component of a. 

---Finally; given a family {f,---:-A,--F!-etrer-ofinfomorphisms::·the-sum ~--+.'-of-' ____ . 
, L.lielJr 

this family is the unique infomorphism h: Lief Ai ~ C such that haAi = j; 
for each i E 1. 

Justification. This is a straightforward generalization of the finite case. 0 

Sums and Channels. The importance of the addition operation is evident from 
Our examples in Part I. It gives us a way of putting the components of an 
information channel C = {j;: Ai ~ C}ief together into a single classifica­

tion, A== Lief_Ai, a_n~ t~e i~~om~p~_~sms toget~~J~_t.?~~~gl~!~l~()~()!phism 
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1= L:iEI Ii, with I :A t=! C. This greatly simplifying the kinds of channels 
we need to consider as well as giving a single classification on which we will 
discover a local logic that captures ihe constraints about the system implicit in 
the channel. 

5.2 Invariants and Quotients 

My copy of today's edition of the local newspaper bears much in common 
with that of my next door neighbor. If mine has a picture of President Clinton 
on page 2, so does hers. If mine has three sections, so does hers. For some 
purposes, it is convenient to identify these tokens. On the other hand, they are 
different, both as tokens and in terms of types. Mine has orange juice spilled 
on it, hers does not. Hers has the crossword puzzle solved, mine does not. 

These observations have clear information-theoretic implications. I can 
get certain kinds of information about my neighbor's paper by looking at mine, 
but not other kinds. How can we view this in terms of classifications and 
infomorphisms? 

Definition 5.7. Given a classification A, an invariant is a pair I = (~, R) con­
sisting of a set ~ s; typ(A) of types of A and a binary relation R between 
tokens of A such that if aRb, then for each a E ~,a FA a if and only if b FA a. 

Example 5.8. LetA be the classification of newspapers by their physical pro­
perties. Let I = (~, R), where aRb hold if and only if a and b are physical 
copies of the same edition and ~ is the set of those properties that are invariant 
under R. This is an invariant on A. We want to form a new classification AI I 
that identifies tokens related by R, using types from ~. 

When we apply the notion of an invariant I = (~, R) the relation R will 
usually be an equivalence relation on the tokens of A. But it is convenient not 

I to require this. After all, given any relation R on a set A, R is contained in 
-~------l' -~~ --------~~~a-smallest~equivalence relation =K on A,-the equivalence relationgenerated __ 

i by R. This is simply the reflexive, symmetric, transitive closure of R. In the 
II following definition we refer to the equivalence classes under =R as the R-! 

I 
I , 

~--------. ~ -_.- -- _._--- -.. _- ---.-. 

I 

equivalence classes and write [a]R for the R-equivalence classes of the token a. 

Definition 5.9. Let I = (~, R) be an inv;mant on the classification A. The 
quotient 01 A by I, written AI I, is the classification with types ~, whose tokens 
are the R-equivalence classes of tokens of A, and with [a]R FAil a if and only 
ifaFAa. 
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Justification. A simple (inductive) proof shows that if (~, R) is an invariant 
on A, so is (~, =R). Hence if a =R h and a E ~, then a FA a if and only if 
b FA a. Thus our definition of the relation FA/lis well-defined. 0 

Here are some examples of this construction. We begin with a very sim­
ple example, move on to a more motivating example, and then turn to some 
important special cases. 

Example 5.10. Recall the classification A4.2 of Example 4.2. If we restrict 
attention to the types a3 and a4, we can discover a repeated pattern. The 
third and fourth rows look just like the first and second, respectively, and the 
sixth looks like the fifth. We can isolate this pattern as a new classification as 
follows. Let R be the relation given by alRa3, a2Ra4, and a5 Ra6. There are 
three R-equivalence classes, one that groups al with a3, one that groups a2 with 
a4, and one that groups a5 and a6. Let us call these equiValence classes bl , h2, 
and h3, respectively. Let ~ = {a3, a4} and let I = (E, R). Our pattern tells 
us that I is an invariant so we can form a quotient classification A4.z/ I. This 
classification has as tokens hI. h2, b3, types a3 and ct4, and its classification 
relation is given by the following table: 

Example 5.11. Given a classification A, a binary relation R on tok(A) is an 
indistinguishability relation if all tokens related by R are indistinguishable in 
A. In that case, (typ(A), R} is an invariant. The quotient of A by (typ(A), R} 
is sometimes abbreviated as AI R. 

Example 5.12. For any classification A, the pair (typ(A), ~A} is an invariant. 
The corresponding quotient identifies tokens that are indistinguishable from 
one another in A and so is separated ... It iscalle<t the separated qtlOtierft bf A~------- - ---­
written Sep(A). 

Example 5.13. For any classification A, let =A be the identity relation on 
tok(A). For any set ~ S; typ(A), the pair (:E, =A) is an invariant. The quotient 
of A by (~, = A) is called the restriction of A to ~, written as A IE. 

Example 5.14. Given infomorphisms I : At=! Band g : A t=! B, we can obtain 
an invariant on A as follows. Let ~ fg be the set of types ct E typ(A) such that 
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f(a) = g(a), and let Rfg be the binary relation between tokens of A defined 

by aiR fg a2 if and only if there is some bE tok(B) such that feb) = al and 

g(b) = a2. The pair (bfg, Rfg) is easily seen to be an invariant on A. 

Definition 5.15. Given a classification A and an invariant I = (b, R) on A, 

the canonical quotient infomorphism L[ : All <= A is the inclusion function on 

types, and on tokens, maps each token of A to its R-equivalence class. 

justification. From the definition of All, [alR FAI[ a if and only if a FA a, and 

so L[ is an infomorphism. 0 

Definition 5.16. Given an invariant 1= (b, R) on A, an infomorphism 

f : B <= A respects I if 

1. for each f3 E typ(B), f(f3) E b; and 

2. if alRa2, then f(al) = f(a2). 

Example 5.17. Let f: B <=A be any infomorphism. There is a natural invari­

ant onA respected by f; namely, the types are the range of r and the relation 

is given by a
l
Ra2 if and only if feat) = f(a2)' (This invariant is called the 

coke mel of f·) 

Given any invariant I, the canonical quotient infomorphism L[ : All <= A 
clearly respects I. What is more, it does so canonically in the following sense. 

Proposition S.lS. Let I be an invariant on A. Given any infomorphism f : 
B <=A that respects I, there is a unique infomorphism f': B <=AII such that 

the following diagram commutes. 

L[ 
AII-~--~ A 

+7--------
B 

Proof Let I = (b, R). Notice that if f' is an infomorphism making the above 

diagram commute then ' .. -' 

1. f'(f3) = f(f3) for each f3 E typ(B), and 

2. f'([a]R) = f(a) for each a E tok(AIl)· 

, .,-'''"'""--"''-,,------''---' ---+ 
.it 
~ 
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These conditions give us a definition of f'. That it is a good one follows from the 

assumption that f respects I :f' maps into the types of AI I because f(f3) E A 

for each f3 E typ(B), and is well-defined on tokens because if [adR = [a2lR, 
then R(al, a2), so f(ad = f(a2). o 

Definition 5.19. An infomorphism f : A <= B is token identical if tok(A) = 
tok(B) and r is the identity function on this set. Dually, f is type identical if 

typ(A) = typ(B) and r is the identity. 

. For ex~ple, given any indistinguishability relation R on A, the quotient 

mfomorphlsm [lR : AI R <= A is type identical. 

Proposition 5.20. Given classifications A and B, if A is separated, then there 
is at most one type-identical infomorphism from A to B. 

Proof The result in an immediate corollary of Exercise 4.5. o 

Dualizing Invariants and Quotients 

There is a dual notion to that of an invariant and we will need this notion as well 

Indeed, it will be quite important. We work through the process of dualizin~ 
the above, both because we need the notion and to give us a better feel for the 

uses of the type-token duality. 

. Given a classification A, recall that an invariant is a pair I = (b, R) consist­
mg of a set b ~ typ(A) of types of A and a binary relation R between tokens 

of A. such that if aRb, then for each a E 1:, a FA a if and only if b FA a. By 

duahty, a dual invariant is a pair J = (A, R) consisting ofa set A of tokens and 

a binary r~lation R on types such that if aRf3, then for each a E A, a FA a if 
and only If a FA f3. The (dual) quotient of A by J has A for its set of tokens 

and has as types the R-equivalence classes of types of typ(A). We write this 

asAIJ· 
Contlnulngthis p-roce"55 of duali~atiOn~-giv~~-a ~i~sifi~ati~~;A ~d~-ciual 

~nvari~t J =:= (A, R) on A, the canonical quotient infomorphism 7:J : A <= AI j 
IS the ~ncluslOn function on tokens, and on types, maps each type of A to its 
R-eqUlvalence class. An infomorphism f: A <= B respects J if 

1. for each bE tok(B), feb) E A, and 

2. if atRa2, then f(al) = f(al). 

Dualizing Proposition 5.18 gives us the following proposition. 
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Proposition 5.21. Let J be a dual invariant on A. Given any infomorphism 

f: A<=! B that respects J, there is a unique infomorphism f': AI J <=! B such 

that the following diagram commutes: 

5.1. 

5.2. 

5.3. 

A oJ. AI J 

~
' 

:1' 
t 

B 

Exercises 

Let A, B, and C be classifications. Prove that A + 0 ~ A, A + B ~ 
B + A, and A + (B + C) ~ (A + B) + C (0 is the zero classification 

introduced in Exercise 4.4). 

Show that a classification A is separated if and only if A ~ Sep(A). 

Define II ~ 12 on invariants II = ('El> RI) and h = {"1:2, R2} ifandonly 
if "1: 1 S:;"1:2 and aR2b entails a =R. b. Show that this is a preordering 
and that it is a partial ordering on invariants where the relation on 
tokens is an equivalence relation. Show that if It ~ h, then there is a 

natural infomorphism f: AI It <=! AI h. 

5.4. Let f : B <=! A be an infomorphism. Show that the cokemel of f is 
the smallest invariant (in the sense of the ~-ordering) I such that f 
respects I. 

5.5. m Show that the pair Ifg = {"1: fg , Rfg} defined in Example 5.14 re­
ally is an invariant, and that art infomorphism h : C <=! A respects it if 
and only if fh = gh. Conclude that the canonical quotient infomor­
phism 0 I fg : AI I fg <=! A is the equalizer of f and g. Show that every 

-- -canonicaf qllotient fnfomorphismts-anequalizer.--------

.Lecture 6 

Distributed Systems 

We introduced the notion of an information channel C = {f; : Ai <=! C}iEI as a 
mathematical model of the intuitive idea of a distributed system, a whole made 
up of parts in a way that supports information flow. The core C of the channel 
represents the whole, the classifications Ai the parts, and the infomorphisms fi 
the relationships between the whole and its parts. When we look at a typical 
real-world example, however, like that involving Judith from Lecture I we 
see that there are many interacting' systems involved in information flow. 'The 
question arises as to whether we can put these various systems together and 
view it as a single channel. The aim of this lecture is to show that we can. 

6.1 The Xerox Principle 

To initiate the discussion, let us start with a special case, the one needed to 
justify Dretske's Xerox principle, the principle that says that information flow 
is transitive. To be more concrete, suppose we have two channels sharing a 
common component, maps. The first channel will involve people examining 
maps; this channel is to capture the process whereby a person's perceptual 
state carries information about the map at which the person is looking. The 

--.second channel will involve maps of mountains and other regions, -the idea­
being that a map carries information about the region of which it is a map. 
Diagrammatically, we have the following picture: 

BI B2 

;/~;/~ 
A2 

89 
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The connections of the first channel (the tokens of B I) are spatiotemporal per­
ceptual events involving people (tokens in A I) looking at maps (tokens in A2)' 

The connections of the second channel (the tokens of B2 ) are spatio-temporal 
events that involve the making of maps (tokens in A 2 ) of various regions (to­
kens in A3).1 We want to show that under certain circumstances, a person's 
perceptual state carries information about a particular mountain in virtue of the 
fact that the person is examining a map of that mountain. To do this, we need 
to see how to get a channel that puts these together into another channel. 

There is a natural set of "connections" connecting people with regions: 
namely, go first to a person, then to a map she is examining, and then on to 
the map's region. Mathematically, we can model this with the set of pairs 
(b l , b2) such that h(b l ) = 13 (b2), say; that is, b l is to be a perceptual event, b2 

a map-making event, and they involve the same map a2 = h(bl ) = h(b2). 
How should we classify such connections c = (b l , b2)? Because they are 

combinations of tokens from the classifications BI and B 2 , we can certainly 
use the types of these two classifications to classify them. However, this alone 
misses something very important about their relationship. For suppose we have 
some type a2 E typ(A2) about maps. This type translates into some property 
fh = h (a2) of perceptual events, but also translates into some other property 
f32 = 13 (a2) of mapmakings. If h(bl) = h(b2) = a2, we know that the percep­
tual event bl is of type f31 if and only if the map a2 is of type a2, but this latter 
holds if and only if the mapmaking event b2 satisfies f32. In other words, by 
restricting attention to connections c = (bl' b2) with h (b l ) = h (b2), the types 
f31 and f32 are equivalent because they are both "translations" of a2· We need 
to build this into our information channel by identifying f31 and f32. 

Thus we form a new classification C with the above tokens, and whose types 
are the types of BI and B 2 , except that we identify types that come from a 
common type in A2. We can tum this into a channel connecting BI to B2 by 
defining the infomorphisms in the obvious way, giving us the following picture: 

C 

{!~ -~{!?---.­
)7 ~ 

1 We will have more to say about these channels in the lecture on representations, Lecture 20_ ,__ _ ___ _ __ ,---, 

6.2. Distributed Systems to Channels 91 

Out of this picture we obtain a derived binary channel with core Clinking 
Al to A3· The infomorphisms of the channel are hi =gtil and h3 =g2h.J,. 
This is the sequential composition of the original channels. A person al is 
connected to a region a3 relative to this channel if al is examining some map 
of a3. Of course there is also a ternary channel with the addition classification 
A2 and infomorphism h2 = gl h. (Note that h2 = g2h because the diagram 
commutes.) 

Notice that although we have used talk of people, maps, and regions to 
illustrate this construction, it is all perfectly general and applies to allow us to 

sequentially compose any pair of channels that line up as depicted in the first 
diagram above. 

6.2 Distributed Systems to Channels 

Having seen how to sequentially compose binary channels, we want to gener­
alize this substantially. 

Definition 6.1. A distributed system A consists of an indexed family cla(A) = 
{Ai}; EI of classifications together with a set inf(A) of infomorphisms all having 
both domain and codomain in cla(A). 

It is possible for Ai to be the same as A j even if i i' j. In other words, it is 
possible for one classification to be part of a distributed system in more than 
one way. This will be important in some of our applications. Also, there is no 
assumption that any infomorphisms in inf(A) commute. This notion allows us 
to model distributed systems that are quite disparate, as in the example with 
Judith in the first lecture. We will show how any such system can be turned 
into achannel.2 

Example 6.2. If we have a pair of binary channels as depicted above, it gives 
us a distributed system with five classifications and four infomorphisms. 

Example 6.3. Let Z be the set of time zones. We define a classification Az , 

for each Z E Z, as follows. The tokens of A z are times (not their descriptions), 
the types of A z are temporal descriptions, things like "12:05 A.M." The classi­
fication relation is given by t FA, a if and only if a is the correct description of 
t in time zone z. For example, the time right now is of type 12:05 A.M. in A z 

2 The reader versed in category theory will note that we could have required distributed systems to 
be subcategories of the category of all classifications with infornorphisms; this would not effect 
anything we do here, because it amounts to throwing in the identity infomorphisms and closing 

_. _u_n_~:.c~~p,~sition~_, ________________ , ___ , ____ _ 
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if and only if it is now 12:05 A.M. in time zone z. There are lots of infomor­
phisms between these various classifications. For example, betweenAe andAp 
(""e" and "p" standing for Eastern and Pacific time zones in the United States, 
respectively), we have a token identical infomorphism fep : Ae +=! Ap given by 
subtracting three hours, mod 12, from the description, and changing AM to PM 

or vice versa when mod 12 is invoked; for example, fep of "12:05 A.M." is 
"9:05 P.M." 

The relationship between distributed systems in general and channels is 
given by the following definition. 

Definition 6.4. A channel C = {hi: Ai +=! C}ief covers a distributed system A 
if clatA) = {Ai lief and for each i, j E I and each infomorphism f: Ai +=! A j 
in inf(A), the following diagram commutes: 

c 

Ai ---------. Aj 
f 

C is a minimal cover of A if it covers A and for every other channel V covering 
A there is a unique infomorphism from C to D. 

A minimal cover of a system A turns the whole distributed system into a 
channel. Minimal covers of arbitrary distributed systems may be constructed 
in a way that generalizes our first example. Minimal covers are known as 
"colimits" in category theory. The fact that colimits of classifications exist is a 
result owing to Barr and Chu; see Barr (1991) for a discussion of the history. 
We state this in the following way: 

Theorem 6.5. Every distributed system has a minimal cover, and it is unique .. 
lip to isomorphism. 

We are interested not just in the existence of the minimal cover but in un­
derstanding its structure, so we take some pains over proving this theorem. We 

will construct one particular minimal cover of A and dub it the "limit" of A, 
written lim A.3 We begin with a few simple observations. 

3 Strictly speaking. we should call it the colimit of A. of course. 
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Proposition 6.6. Any two minimal covers of the same distributed system are 
isomorphic. 

Proof For readers familiar with universal algebra or category theory, this proof 
will be routine. For others, we give an outline. The key to the proof is to 
realize that if C is a minimal cover, then the identity is the only refinement 
infomorphism from C to C, because it is one, and there can be only one, by the 
definition of minimal cover. Now given this, suppose we had another minimal 
cover V. Then there would be refinements r from C to V and r' from V to C. 
But then the composition r'r is a refinement infomorphism from C to C and so 

is the identity. Hence rand r' must be inverses of one another and so r is an 
isomorphism. 0 

Example 6.7. The sum of classifications is an example of a minimal cover. 

Given a family {Ai lief of classifications, let A be the distributed system con­
sisting of these classifications and no infomorphisms. The channel with core 

Lief Ai and infomorphisms O'A j : Aj +=! LiEf Ai for each j E I is a minimal 
cover of A. 

Example 6.8. The sequential composition of two binary channels constructed 
in the preceding section is a minimal cover for the distributed system consisting 
of five classifications and four infomorphisms. 

We now generalize the construction from the special case of binary compo­
sition to arbitrary distributed systems. The construction will not yield exactly 
what we had before, but will yield something isomorphic to it. 

Definition 6.9. Let A be a distributed system with classifications {Ai hEf. The 
limit lim A of A is the channel c.onstructed as follows. 

1. The core of lim A is a (dual) quotient of the sum A = Lief Ai of the clas-
_ sificl!tions ()fJ!l_esysJeIll-"._W~ s.forJll~_~tl?-_~oordinate of a token c of A. 

Define the dual invariant J = (C, R) on A as follows. The set C of tokens 
consists of those tokens c of A such that f(cj) =Ci for each infomorphism 
f: Ai += Aj in inf(A). Intuitively, in terms of systems, this says we have 
a sequence of tokens that respects all possible whole-part relationships of 

the system. Define the relation R on the types of the sum by a Ra' if and 
only if there is an infomorphism f: Ai +=! A j and a type ao E typ(A i ) 

such that a = O'i(ao) and a' = O'j(f(ao)). Let C be the dual quotient 

LiEfA;!J. 
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2. To define the infomorphisms of lim A, let gj : A j ;:::! C (for any j E 1) be 
the pair of functions defined by 

gj(ex) is the R-equivalence class of Uj(ex) for each ex E typ(A j ). 

and 

gj(e) = Uj (e) for each e E tok(C). 

This is just a restriction of the usual infomorphism from a classification to 
its quotient and so g j is an infomorphism. 

Justification. To see that the definition is well defined, we must verify that J is 
indeed a dual invariant. Suppose that C E C and that etRci.'. We need to verify 
that 

Because et Ret', there is an infomorphism f : Ai ;:::! A j and a type eto E typ(A i ) 

such that et = CTi(etO) and Ci' = CTj(f(CiO». Because C E C, f(cj) = Ci. Thus 
we have the following chain of equivalences: 

CFA Ci iff C FACTi (Cio) 

iff CiFAiCiO 

iff f(cj) FAi CiO 

iff Cj FAj f(Cio) 

iff C FA CTj (f (eto» 

iff C FA Ci' 

as desired. 0 

Theorem 6.10. -Given a distributed system A, its limit lim A is a minimal cover 

of A 

-------proorThseetfiarlim Aisacover, note that for each infomorphism f : A,-<=!A j 
the following diagram commutes. 

C 

-+-
Ai ---------f--------· Aj 
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Now suppose D = {hi: Ai;::::;t D}iEI is a channel that also covers A Then for 
each j E I, the following diagram commutes, 

D 

Aj ---------., A 
CTj 

where A = 2::iEIAi and h is the sum of the infomorphisms h j • Because h 
respects J, it factors uniquely through T, by the universal mapping property of 
the quotient A/ J. This gives us the following commuting diagram: 

D 

Aj ---------..... A 
CTj 

Thus r is the unique refinement infomorphism from Cha(A) to D, as illustrated 
by the upper right triangle in the diagram. 0 

If one specializes the limit construction to the special case of sequential 
composition of binary channels considered in the discussion of the Xerox prin­
ciple, the set of tokens is different. Instead of the pairs (b l , b2 ) satisfying 
h(bl) = f3(b2) that we used there, we now find 5-tuples (aj, bj, a2, b2, a3) 

such that al = fl(b l ), !z(bl )=a2 = f3(b2), and a3 = h(ln). However, there 
is clearly a natural one-to-one correspondence between the two sets of tokens. 
Going one way, just throw out the ai. Going the other way, insert the ai as 
dictated by the Ji. 
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As a word of warning. we note that it is possible for the core of the limit of 
a distributed system to have an empty set of tokens. This happens when there 
are no sequences of tokens that respect all the infomorphisms of the system. 
Such a distributed system is called completely incoherent. 

Quotient Clzallllels 

We initiated the discussion of invariants and quotients by an example involving 
the information flow between two copies of the same edition of a newspaper, 
noting how some information about one carries over intact to the other, but not 
all information carries. We never diu really finish the discussion, though. We 
can do that now by taking the limit of a suitable distributed system. 

Definition 6.11. GiYen an invariant I == (L. R) on a classification A, the quo­
tient channel of A by I is the limit of the distributed system depicted by the 

following: 

fr fr A ... --.:...-A./I----. A 

Notice that this distributed system has three classifications, not just two, even 
though two are the same. (This is m:l.de possible by the use of indexed families.) 
Similarly, there are two infomorphisms. each a copy of the canonical quotient 
infomorphism. The quotient channel makes the following diagram commute 
and is a refinement of any other such channel: 

C 
• • I 

~ 
/ ! 

7 hi 
I 

A· 
fr .-1/ I 

fr .A 

The quoiierifcnartnH is-easiIy-soortu-be-isomorphi~ to the-following; -For--~­

each type Ci E typ(A) - E, there are two copies, say Cil and Ci2; let typ(C) 
consist of all these types, plus the ty~s in E. The tokens of C consist of triples 
c = (ai, b, a2). where [atlR = b = {a:]R. The classification relation is defined 

for such c = (al. b. az) by 

c FeCi iff bFAfICi for aE:E 

c Fe Cil iff al F7A Ci for Ci E typ(A) - E 

c Fe Cil iff a: ;:_-1 C! for Ci E typ(A) - :E 

------.--- . ... --.--_.- ".-
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The obvious infomorphisms gi : Ai ;::::t C and h : AI l;::::t C are defined by the 
following: each infomorphism is an inclusion on types, whereas on a token 

c = (at. b, a2), li(c) = ai, and h(c) = b. 
Now suppose that c connects ai, b, and a2. Then for any type ct E E, we 

have alFA ct if and only if b FAil ct if and only if a2FA ct. On the other hand, 
if ct E typ(A) - :E, then al FA ct carries no information at all about b or a2 via 
this channel. 

Example 6.12. To finish up our newspaper example (5.8), letA and 1= (E, R) 

be as in Example 5.8 and let C be its quotient channel. The equivalence class 
[a]R models the edition of a so a token c = (ai, b, a2) of C is a model of the 
connection that exists between al and a2 if they are of the same edition. We 
see that for types in Ci E :E, information about a particular newspaper a I carries 
information both about its edition. [aIlR, as well as about any other token a2 
of that same edition. That is, al being of type ex carries the information that a2 

is of the same type, relative to this channel, as long as ex E :E. Notice that this 
does not hold for ct E typ(A) - :E. Having an orange juice stain would be such 
a type. 

6.1. 

6.2. 

Exercises 

What are the infomorphisms g( and g2 in the map example? 

Determine the limit of the time-zone distributed system. Obtain a sim­
pler, isomorphic minimal cover of this system. Interpret your results 
in terms of time zones. 

6.3. Define a notion of parallel composition of binary channels. 

6.4. Give an example of a completely incoherent distributed system. 
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Lecture 7 

Boolean Operations and Classifications 

The notion of a classification does not build in any assumptions about closure 
under the usual Boolean operations. It is natural to ask What role do the usual 
Boolean connectives play in information and its flow? This lecture takes an ini­
tial step toward answering this question. We will return to this question in later 
chapters as we develop more tools. It is not a central topic of the book, but it is 
one that needs to be addressed in a book devoted to the logic of information flow. 

Actually, there are two ways of understanding Boolean operations on classi­
fications. There are Boolean operations mapping classifications to classifi­
cations, and there are Boolean operations internal to (many) classifications. 
Because there is a way to explain the latter in terms of the former, we first 
discuss the Boolean operations on classifications. 

7.1 Boolean Operations on Classifications 

Given a set <I> of types in a classification, it is often useful to group together 
the class of tokens that are of every type in <1>. In general, there is no type 
in the classification with this extension. As a remedy, we can always con~ 
struct a classification in which such a type exists. Likewise, we can construct a 

___ classification in which thei"(!_ is _~ tYl'e __ who~J<.tl!!1~()~ ~()Il~i~s ~ all those ----,.--.-
tokens that are of at least one of the types in <1>. 

Definition 7.1. Given a classification A, the disjunctive power of A, written 
vA, and the conjunctive power of A, written I\A, are classifications specified 
as follows. Each of these classifications has the same tokens as A and has 
pow(typ(A)) as type set. Given a E tok(A) and <I> ~ typ(A), 

1. a FVA <I> if and only if a FA a for some a E <1>; 
2. a FAA <I> if and only if a FAa for every a E <1>. 

98 - ~------'--""'-----4-
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Proposition 7.2. For each classification A. there are natural embeddings 
Tli: A;::::! vA and 1/A: A;::::! I\A defined by 

1. TJ~(a) = TJ~(a) = {a}foreacha E typ(A) and 
2. 1/i (a) = TJA (a) = a for each a E tok(vA) = tok(I\A). 

Proof Both 1/i and 1/A are clearly injective. They are infomorphisms because 
a FA a if and only if a FvA {a} if and only if a FAA {a}. 0 

Another useful operation on classifications is negation. 

Definition 7.3. Given a classification A, the negation of A, ..... A is the classi­
fication with the same tokens and types as A such that for each token a and 
type a, 

aF_Aa iff a ~A a. 

These operations on classifications have counterparts on infomorphisms. 

Definition 7.4. Let f : A ;::::! B be an infomorphism. We define infomorphisms 
v f: vA;::::! vB, I\f: I\A;::::! I\B, and ..... f: ..... A;::::! ..... B as follows: All three of 
these agree with f on tokens. On types they are defined by 

1. v f(8) = f[8] for all 8 ~ typ(A); 

2. I\f(8) = J[8] for all 8 ~ typ(A); and 
3 ...... f(a) = f(a) 

Justification. We need to verify that these are indeed infomorphisms. We 
check the first. We need to check that for all b E tok(B) and all 8 ~ typ(A), 
feb) FVA 8 if and only if b FvB v f(8). This is seen by the following chain of 
equivalences: 

feb) FVA 8 iff feb) FA a for some a E 8 
iff b FB f(a) for some a E 8 

-iff - VFB f3 for some f3 E J[8] 
iff b FVB (v /)(8) 

The others are similar and are left to the reader. 

Another Duality 

o 

Notice that for each classification A, .......... A = A. Consequently, the negation 
operation on classifications and infomorphisms gives us a second duality, the 
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classical duality of Boolean algebra. Under this duality conjunction is the dual 
of disjunction. For example, -.(vA) = A-.A and -'(AA) = v-.A. Under this 
duality, unlike the flip duality, the direction of infomorphisms is not reversed. 

7.2 Boolean Operations in Classifications 

We can use the Boolean operations on classifications to determine what it would 
mean for an operation on types to be a disjunction, conjunction, or negation 
in a classification. Recall the notion of a token identical infomorphism from 
Definition 5.19. 

Definition 7.5. LetA be a classification. 

I. A disjunction infomorphism on A is a token identical infomorphism 
d: vA ;:::tA; the corresponding operation d~ is called a disjunction on A. 
Given a disjunction infomorphism d and a set e of types, we often write 
vE> for d~(e). 

2. A conjunction infomorphism on A is a token identical info morphism 
c: AA ;:::tA; the corresponding operation c~ is called a conjunction on A. 
Given a conjunction infomorphism c and a set E> of types, we often write 
AE> for c~(e). 

3. A negation infomorphism on A is a token identical infomorphism n: 
-.A ;:::tAo Given a negation infomorphism n and a type a, we often write 
-'a for n~(a). 

It is easy to see that if d is a token identical infomorphism, then d is a 
disjunction on A if and only if for every set E> of types and every token a, 
a FA d(E» if and only if a FA a for some a E E>. Likewise, c is a conjunction 
on A if and only if for every set E> of types and every token a, a FA c (e) if and 
only if a FA a for all a E e. Similarly, n is a negation if and only if for every 
a E typ(A) and every token a, a ;eA n(a) if and only if a FA a. 

7.3 Boolean Classifications 

Definition 7.6. A classification B is Boolean if it has a disjunction V, conjunc­

tion /\' and negation -.. 

Boolean classifications are expressively rich. We make this precise in the 
next result. Call a set X ~ tok(A) closed under indistinguishability in A pro­
vided that whenever al E X and at "'A a2, then a2 EX. Clearly every set of 
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tokens of the form X = tok(a), fora E typ(A), is closed under indistinguisha­
bility. The Boolean classifications are the classifications in which every set 
closed under indistinguishability has this form. We leave the proof of the fol­
lowing result to Exercise 7.3. An answer is provided. 

Proposition 7.7. A classification A is Boolean if and only iffor every set X of 
tokens closed under indistinguishability there is a type a such that X = typ(a). 

Every classification can be canonically embedded in a Boolean classifica­
tion. We define this classification here. The classification defined will tum out 
to be important in our discussion of state spaces. 

Definition 7.8. A partition of a set L is a pair (1, ~) of subsets of L such that 
r U ~ = Land r n ~ = 0. 1 Given a classification A and a token a of A, the 
state description of a is the pair 

stateA (a) = (typ(a), typ(A) - typ(a») 

Notice that such a state description forms a partition of typ(A). 

Definition 7.9. Let A be a classification. The Boolean closure of A, written 
Boole(A), is the classification defined as follows: 

1. the tokens of Boole(A) are the tokens of A; 
2. the types of Boole(A) are arbitrary sets of partitions of the types of A; and 
3. the classification relation is defined by a FSoole(A) a if and only if stateA (a) 

Ea. 

We define a token identical, injective infomorphism 1JA : A ;:::t Boole(A) by 

1JA(a) = {(1, M a partition I a E fl· 

Justification. Notice that 1JA (a) is indeed a set of partitions of the types of A and 

.ht!.n.(;e.a type of o!l! !Jlrg_~~_,!§sification. It..i§...~~io!!S that 1JA: . .':l E B.Sl.<l~{~l. 
is an injective infomorphism. 0 

Proposition 7.10. For any classification A, the operations of union, intersec­
tion, and complement are a disjunction, conjunction, and negation, respectively, 
on Boole(A). 

1 These are sometimes called "quasi-partitions" because it is not assumed that the sets are non­
empty. We will be using the notion too frequently to put up with such unpleasant terminology, 
however. 
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Proof This is easy, given the definitions. For example, to see that n is a 
conjunction, we need only note that the state description of a token is in every 
a E r if and only if it is in n r. 0 

Exercises 

7.1. Prove Proposition 7.7. 

7.2. For any classification A, show that 
I. -.-.A = A 

7.3. 

7.4. 

7.5. 

2. -. 1\ A = v-.A 
3. -. V A = I\-.A 

Show that for any classifications A and B, -'(A + B) = -.A + -.B. 
Conclude that -'(-'A + -.B) = A + B. 

Find an infomorphism f : 1\1\ A ;:::: I\A such that fT}~A = I"A. 

Investigate the properties of the finite analogs of the Boolean operations 
studied in the chapter. 

Lecture 8 

State Spaces 

State-space models are one of the most prevalent tools in science and ap­
plied mathematics. In this lecture, we show how state spaces are related to 
classifications and how systems of state spaces are related to information 
channels. As a result, we will discover that state spaces provide a rich source 
of information channels. In later lectures, we will exploit the relation­
ship between state spaces and classifications in our study of local logics. 

8.1 State Spaces and Projections 

Definition 8.1. A state space is a classification S for which each token is of 
exactly one type. The types of a state space are called states, and we say that 
a is in state a if a FS a. The state space S is complete if every state is the state 
of some token. 

Example 8.2. In Example4.5 we pointed out that for any function f : A --+ B, 
there is a classification whose types are elements of B and whose tokens are 
elements of A and such that a F b if and only if b = f(a). This classification 

; -is a state space-and every state space-arisesin.this way,-soanotherway-to-- _________ , 
put the definition is to say that a state space is a classification S in which the 
classification relation FS is a total function. For this reason, we write states (a) 

for the state a of a in S. In defining a state space S, we will often proceed by 
specifying its tokens, types, and the function a = stateA (a). The state space S 
is complete if and only if this function is surjective. 

Because the classification relation in state spaces is a function, we depict 
them by diagrams of the following kind: 

103 .--- ----- ---------f, 
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typ(S) 

l"a", 
tok(S) 

We call a state space S ideal if typ(S) = tok(S) and for each s E tok(S), 
states(s) = s. For any set S there is exactly one ideal state space S with types 
and tokens that are the members of S. This is an extremely simple example 
but it lets us see that we are generalizing the usual notion of a state space, 
where tokens are ignored. One can simply identify the standard notion of a 
state space with our notion of an ideal state space. Notice that ideal state spaces 

are necessarily complete. 
We have given a number of examples of state spaces in Lecture 3. We 

present some additional examples here. 

Example 8.3. Let A be a sequence of n gravitating bodies, let T be some 
ordered set modeling time, and let 

S = {{A, t) I t E T} 

be the set of tokens, with (A, t) modeling the bodies at time t. A Newtonian 
state space with tokens S and states Q = ROO represents the position and velocity 

of the bodies at time t. 

Example 8.4. If we depict a finite state space as a table, then there must be 
exactly one "1" in each row, as in the following: 

S al a2 a3 a4 a5 

1 000 0 
l---(f--O~O-O---

a3 0 0 0 0 

The flip Sl._ of a state space is not in general a state space, of course. 

Example 8.5. A molecule of DNA is .madellP ,of a long double strand of 
simpler molecules, called bases, and denoted by A, T, C, and G. For example, we 
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might have 

G T A T C C G 

c A T A G G C 

Because of the bonding properties of the bases, C and G are always paired 
together, as are T and A. Inf~rmation about the genetic makeup of an individual 
plant or animal is encoded in such a strand. Strings from individuals of a single 
species will be similar in most regards, and quite different from individuals of 
other species. Because of the nature of the bonding, any strand of DNA can 
be characterized by a single string on the alphabet {A, T, C, G}. Thus we can 
form a state space SONA whose tokens are strands of DNA and whose types 
are finite strings on {A, T, C, G}. The state of a strand is the sequence that 
characterizes it. 

In 1953, Crick and Watson observed that if a single strand of DNA were 
to split and recombine naturally with free molecules of the four bases, two 
strands would form, each identical in structure to the original. Following up on 
this idea, Meselson and Stahl showed in 1956 that such splits and recombina­
tions do indeed account for the production of new DNA from old. These con­
nections allow one strand to carry a great deal of information about the other 
because any two strands of DNA that are connected will normally (mutations 
being the exceptions) be of the same type. (See Exercise 8.1.) 

Example 8.6. In Example 4.6, we defined the truth classification of a language 
L. This is not a state space as every model will satisfy more than one sentence. 
However, there is a closely related state space where we take states to be sets of 
sentences and assign to each model its complete theory, the set of all sentences 
true in the model. 

8.2 Projections and Products 

Definition 8.7. A (state space) projection!: SI =4S2 from state space SI to 
state space S2 is given by a covariant pair of functions such that for each 
token a E tok(S\), 

!(states, (a)) = states2 (f(a)). 
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This requirement can be rephrased by saying that the following diagram 

commutes: 

typeS l) L tYP(S2) 

"are"j j"a,,,, 
tok(Sl) f tok(S2) 

(In this diagram we have left off the up and down symbols on I, as we often 

do when no confusion is likely.) 

Example 8.8. Recall the Newtonian state spaces of Example 8.3. Given a se­
quence A ofn gravitating bodies andaset T oftimes, wetookS = {(A, t) It E T} 
as the set of tokens and Q = R6n as the set of states. A state space S with these 
tokens and types models the physical system through time. Now consider a 
subsequence Ao of A consisting of, say, m < n objects and consider So to be the 
analogous state space representing this system of bodies in Ao through time. 
There is a natural projection I: S =t So defined as follows. For a token (A, t) 

we define I«(A, t}) =x(Ao, t}. This just assigns to the whole system at time 
t the subsystem at the same time. Given a state a E R6n, I(a) is the vector in 
R6m that picks out the position and velocity of the bodies in Ao· 

Example 8.9. Given projections I: SI =t S2 and g : S2 =t S3, the composition 
gl : S 1 =t S3 of I and g is the projection defined by (gf)~ = g~ rand (g/f = 
g~ r. It is straightforward to see that gl is indeed a projection. _ 

. Example 8.10. The identity Is: S =tS onS, which is the identity on both tokens 
and states, is clearly a projection: . ,- -.-=. 

In dealing with classifications, the operation of summation was central. With ~. 
state-spaces; products playtheanalogounole.---------· --~..,.*--

Definition 8.11. Given state spaces SI and S2, the product SI x S2 of SI and 
S2 is the classification defined as follows: 

1. The set of tokens of SI x S2 is the Cartesian product of tok(SI) and tok(S2); 
2. the set of types of SI x S2 is the Cartesian'produCt oftyp(SI) and typ(S2); 

and 
3. (a, b) I=s\ XS2 (a, f3) if and only if a I=s\ a and b I=S2 f3 • 

. .. -.-.. _-------_._---
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There are natural projections 1rs\ : S 1 x S2 =t S 1 and 1rs2 : S 1 x S2 =t S2 de­
fined as follows. 

1. For each (a, f3) E typeS I x S2), 1rs\ «(a, f3») = a and 1rs2 «(a, f3») = f3. 
2. For each (a, b) E tok(SI x S2), 1rs\ «(a, b») = a and 1rs2 «(a, b») = b. 

Justification. It is clear that SIX S2 is a state space and that states\ XS2 «(a, b») = 
(states\ (a), states2(b)}. It is routine to verify that 1rs\ :SI x S2 =tSI and 
1rs, : SIX S2 =t S2 satisfy the defining condition for projections. 0 

The product I1iE! Si of an indexed family {Si }iEI of state spaces is defined 
similarly. 

8.3 Subspaces 

In order to capture the laws of a physical system, we found it convenient in 
Lecture 3 to carve out a subspace of a state space by means of imposing certain 
equations of state. Here is the general notion. 

Definition 8.12. A state space So is a subspace of a state space S I, written 
So S; S I, if the pair L = V, LV} of functions that is the identity L~ on states and 
L v on tokens is a projection L : So =t S I. 

Equivalently, So S; S I if and only if the tokens of So are a subset of the tokens 
of S l, the states of So are a subset of the states of S I, and the state function of 
So is the restriction of the state function of S I to the tokens of So. 

Example 8.13. Let R6n be the set of states in the position and momentum state 
space for n bodies moving through space. The energy of the system of bodies 

. . 

is some (typically differentiable) function of the position and momentum of 
the bodies, say E(PI, XI, ... , Pn, xn). (Here Pi is the triple representing the 
position of the ith body, Xi its momentum.) If the system is isolated, then its 
energy iemainsconstant over time, at sOlne vaIue, say eo. Thus the states' the 
system can actually occupy are the solutions to the equation 

If E is differentiable, the solution space is a differential manifold M embedded 
in R6n and the system will always have a state in M. Restricting the tokens to 
those whose states are in M will capture the fact that energy is conserved in 
isolated physical systems. 
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Definition 8.1~. Let I : S =t S' be a state space projection. 

I. G:~·;!n J. subspace So of S, the image of So under I, written I [So], is the 
su!:-sF;;..:e of S' whose tokens are those in the range of IV and whose states 

;;:;! :hose in the range of r. 
~ S;:::iLrly. giwn a subspace S I of S', the inverse image of S I under I, written 

.-'-: [S:]. is the subspace of S whose tokens are those in r-I [tok(SI)] and 
wl:cse sures are those in r-I[typ(SI)]. 

J:IS::'';L·uril111. We need to verify that I [So] is a subspace of S' and that I-I [S I] 

is a subspace of S. We verify the latter and leave the former to the reader. 
Supp,-'se .: is a token of I-I [S d. We need to make sure that states(a) is a 

SUI;! in f- i [Silo By definition, I(a) is a token of SI. Hence states'(f(a» is 

J. SUIe of St. because SI S; S'. But states (f(a» = I (states (a» because I is 
a prl'je.:rion. Hence states(a) is a state in I-I [S d, as desired. 0 

8.4 Event Classifications 

Given a s.tate space S, its states represent total information about the tokens; 
relative to the classification. Usually, however, we have only partial infor­

mation about a token. The common way around this is to tum to the "event 
classification" of S, which we write as Evt(S). (The terminology, not entirely 

felicitous for reasons explained in Lecture 2, comes from probability theory.) 
Projections on state spaces correspond to infomorphisms of the associated event 

classifications. 

Definition 8.15. The e\'ent classification Evt(S) associated with a state space 

S has as tokens the tokens of S. Its types are arbitrary sets of states of S. The 
Classification relation is given by a I=EVI(S) a if and only if states (a) Ea. 

As we saw in Lecture 3, these event classifications are a useful tool for 
understanding the relationship between ·linguistic· accounts of the world, . both --..... -­

scientific and common sense accounts, and scientific models of the world. 

Example 8.16. Recall the DNA state space SDNA from Example 8.5. The clas­
sification Evt(SDNA) is quite useful. Certain sets of states correspond to genetic 
traits. For example, there will be certain sets of states that correspond to DNA 
strands from humans with green eyes. This suggests the following infomor­

phism. Let Genes be a classification of humans by their genetic traits. Thus 
the types of A include things like the gene GREEN-EYES for green eyes, and 
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so forth, with a I=A a if and only if a carries the genetic trait a. Let hgp: 
Gene;::::! Evt(SDNA) be defined on (gene) types by the following: hgp(a) is the 

set of strings that characterize strands of DNA of individuals of type a. On 
tokens, hgp(s) is the individual whose strand of DNA is S. This is an info­

morphism because genetic traits are entirely determined by DNA. The famous 
Human Genome Project can be thought of as attempting to characterize this 
infomorphism, which is why we have dubbed it "hgp." 

Let S I and S2 be state spaces and let I: S I =t S2 be covariant. Define a 
contravariant pair Evt(f) : Evt(S2) ;::::! Evt(S I) as follows. On tokens, Evt(f) 

and I are the same: Evt(fna) = rea) for a E tok(Evt(SI». On types a E 
typ(Evt(S2», Evt(f)(a) = I-I[a]. 

Proposition 8.17. Given state spaces S I and S2, the lollowing are equivalent: 

1. I: S I =4 S2 is a projection; 
2. Evt(f): Evt(S2) ;::::! Evt(S I) is an infomorphism. 

Proof Assume I : S I =4 S2 is a state-space projection. To show that Evt(f) is 
an infomorphism, let a E tok(Evt(S I» and let a E typ(Evt(S2». Then 

Evt(f)(a)I=Evl(S2)a iff states2(f(a» Ea 

iff I(states, (a» E ex 

iff states,(a) E I-I[a] 

iff a I=EVI(S,) I-I [a] 

iff a I=EVI(S') Evt(f)(a) 

To prove the converse, suppose Evt(!) is an infomorphism. We need to 

check that states, (f(a» = I (states, (a». Let states,(a)=a. We show that 
states2(f(a»=/(a). Let a' = states2 (f(a», which we can write as I(a) 
I=EVI(S2) {a'}. Because Evt(f) is an infomorphism, 

I(a) I=EVI(S2) {a'} iff a I=Evt(S') 1- 1(0"), 

so a I=EVI(S,) 1-1(0"), which means that a E 1-1(0"), that is, 1(0') = a', as 
~~~ 0 

The following makes event classifications especially well behaved. 

Proposition 8.18. For any state space S, the Classification Evt(S) is a Boolean 
classification. Indeed, the operations 01 intersection, union, and complement 
are a conjunction, disjunction, and negation, respectively. 
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Proof These are all routine. Let us prove that the complement operation is a 
negation. For readability, we write -a for typ(A) -a. We show that for any 
set a of states, a ~Evt(S) a if and only if a FEvt(S) - a. But a ~Evt(S) a if and 
only if states (a) !if a if and only if states (a) E - a if and only if a FEvt(S) - a, 
as desired. 0 

8.5 State Spaces from Classifications 

The classifications naturally associated'with first-order logic, where tokens are 
structures and sentences are types, are not state spaces. We saw in Example 8.6, 
however, that there is a natural state space associated with each such classifi­
cation, namely, where we take the state of a structure to be its complete theory. 
We can do something similar for an arbitrary classification. 

Given a classification A and a token a of A, recall from Definition 7.8 that 
the state description of a is the pair 

stateA(a) = (typ(a), typ(A) - typ(a)}. 

Thus the state description forms a partition of typ(A). 

Definition 8.19. Given a classification A, the free state space Ssp(A) of A is 
defined as follows: 

I. The tokens of Ssp (A) are the same as those of A; 

2. the states of Ssp(A) are arbitrary partitions (r, .6.) of the types of A; and 
3. statessp(A) (a) is the state description stateA (a) of a in A. 

Let A and B be classifications, and let f : A t=': B be a contravariant pair 
of functions. Define a covariant pair of functions Ssp (f): Ssp(B) ~ Ssp(A) 
as follows. On tokens, Ssp(fYalld'j-are;the'skTIe: Ssp(Jf(b) =F(b) for 
b E tok(B). On partitions, Ssp(f) is defined by 

---------_Ssp(j}( (f ~ ~}) __ =dJA---' [I'J~ f~-I[~J). 

Proposition 8.20. Let A and B be classifications, and let f : A t=': B be a con­
travariant pair of functions. The following are equivalent: 

1. f: A t=': B is an infomorphism; 
2. Ssp (f): Ssp(B) =+ Ssp(A) is a state space proj'edion. ' 

Proof To prove the implication from (1) to (2), we need to show that for all 
bEtok(B), Ssp(f) (stateB(b» = stateA (Ssp (f) (b». To simplify notation, let 
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g=Ssp(f) and let stateB(b) = (r, M be the state description of bin B. To 
show that g«(r, ~» is the state description of g(b) = feb) in A, we need to 
show that a E f A_'[f] if and only if feb) FA a and similarly that a E f A-'[~J 
if and only if feb) ~A a for every a E typ(A). The first of these is verified as 
follows: 

a E r-'[f] iff f(a) E r 
iff bFBf(a) 
iff f(b) FA a. 

The second verification is similar. 

To prove that (2) implies 0), assume that Ssp(f) is a state-space projec­
tion. We need to check that for b E tok(B) and a E typ(A), feb) FAa if and 
only if b FB f(a). Suppose that b~B f(a). Then f(a) is in the second coor­
dinate of the state description of b in B. But then because Ssp(f) is a pro­
jection, a is in the second coordinate of the state description of feb) in A. 
But that means feb) ~A a. The proof of the converse is similar, using first 
coordinates. o 

8.6 Back to Boole 

The question naturally arises as to what happens if we start with a state space, 
construct its event classification, and then construct the state space associ­
ated with that. Or, to start in the other way, we can begin with a classifica­
tion, construct its state space, and then construct its event classification. In this 
section we study this question. 

In Lecture 3, we relied at one point on the fact that any infomorphism 
f : A t=': Evt(S) of a classification into an event classification has a natural 
extension to the Boolean closure Boole(A) of A; that is, there is an f* agreeing 
with f of A such that 1*: Boole(A) t=': Evt(S) is an infomorphism.Thereason 
for this will fall out of our discussion. 

Proposition 8.21.porany cl{lssiJjfqtjpnA,_ ------- --___ ___ . ___ i 

Boole(A) = Evt(Ssp(A». 

Proof This amounts to unwinding the two definitions to see that they come to 
the same thing. 0 

The correspondence between state spaces and event classifications is closely 
related to the Stone representation theorem for Boolean algebras. (If we define 
the obvious Boolean algebra on the type set of a Boolean classification then the 
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partitions used in the construction of its state-space are in one-to-one corres­
pondence with the points of the corresponding Stone space. Our main addition 
to the Stone representation theorem is in keeping track of the classification 
relation throughout the construction. See Davey and Priestlay (1990) for an 
excellent introduction to representation theorems.) 

Recall the token identical embedding of TJA : A <= Boole(A) of a classifica­
tion A into its B.oolean closure. In view of the above proposition, this means we 
have a token identical embedding TJA : A <= Evt(Ssp(A». On types a E typ(A) 

TJA (a) = {{r, ~) a partition I a E fl. 

In mathematical terms, the next result shows that for any classification A, 
the state space Ssp(A) is "free" on A. It can also be taken as showing that 
given a state space S and a classification A, there is a natural bijection between 
infomorphisms f : A <= Evt(S) and projections g : S =t Ssp(A). 

Proposition 8.22. Let S be a state space and let A be a classification. For every 
infomorphism f : A <= Evt(S) there is a unique projection g : S =t Ssp(A) such 
that the following diagram commutes: 

A TJA • Evt(Ssp(A» 

~ :Evt(g) 

t 

Evt(S) 

Proof First, assume g.: S =t Ssp(A) is any projection that makes the diagram 
commute. Because TJA is the identity on tokens, it is clear that f and g agree on 
tokens. On types, the commuting of the diagram insures that 

a E f(a) iff a E 1" (g(a». 

Because g : S =t Ssp(A), this tells us that 

g~(a) = ({a I a E. f(a)}, {a I a ¢ f(a)}). 
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So let us use this equation to define g~. It is easy to check that g is a projection 

and that the diagram comml!tes. 0 

This proposition expresses a much simpler idea than it might seem, as is 
shown by the following example. 

Example 8.23. Recall the infomorphism hgp: Gene <= Evt(SDNA) encoding 
genetic traits of humans in terms of strands of their DNA. This infomor-

. phism has the form of f in the proposition, so we are promised a projection 
g: SDNA =t Ssp(Gene) bearing a certain relationship to f. This projection is the 
same as hgp on tokens; that is. it assigns to each strand of DNA the individual 
from which it came. On a state a E {A, T. C. G}*, g partitions the genetic traits 
into those that are compatible with DNA of type a and those that are not. The 
infomorphism hgp and the projection g are, up to the embedding of Gene in 
its Boolean closure. two ways of looking at the same coding of human genetic 
traits by DNA. 

As a consequence of the proposition, we obtain the desired ability to lift 
infomorphisms to Boolean closures of classifications. 

Corollary 8.24. Every infomorphism f of the form f: A <= Evt(S) ofa classi­
fication into an event classification has a natural extension to an infomorphism 
J* : Boole(A) ;::1 Evt(S). 

Proof In view of Proposition 8.21, we can just let J* = Evt(g). where g is 
given as in Proposition 8.22. 0 

If we examine the proof of Proposition 8.22, we can get a little more infor­
mation from it. Namely, we can see how to define the projection g from the 
infomorphism f. First we need a definition. 

Definition 8.25. For anyst;tte_sp.ace.S,letJ1.s:~S:::tSsp(Evt{S) !>.t!_the injec~ ._ .. ___ __ _ 
tive, token-identical projection defined as follows: for any state a E typeS) 

J1.s(a) = ({r s; typeS) I a E r}, {~ S; typeS) I a ¢ ~}). 

Justification. Notice that J1.s(a) is indeed a partition of the types of Evt(S) and 
hence a state of our target state space. It is obvious that J1.s : S =t Ssp(Evt(S» 

is an injective projection. o 
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Corollary 8.26. If the diagram on the left commutes, then so does that on the 
right. 

A T/A. Evt(Ssp(A» S {Ls. Ssp(Evt(S» 

~ jEvtcg) ~ jS'P(f) 
Evt(S) Ssp(A) 

Proof Recall that Ssp(f) agrees with J on tokens and on types satisfies 

On the other hand, 

{Ls(a) = ((r ~ typ(S) I a E r}, (~ ~ typ(S) I a 1= ~}}. 

Thus 

Ssp(f)({Ls(a» = ({a I a E J(a)}, (a I a f/ J(a»)}. 

Thus to say that the diagram commutes is just to say that J and g agree on 
tokens and that 

g(a) = ((a I a E J(a»), (a I a f/ J(a»)) 

But this is the definition of g in the proof of Proposition 8.22. o 

8.7 State-Sp~ce Systems 

The state-space model of a complex system consists of a state space for the sys­
______ tern as.a.whole,..together.withprojectiolliintostatespaces.£or eamcomponent ... 

Thus we give the following definition. 

Definition 8.27. A state-space system consists an indexed famil y S = {Ii : S =4 

Si )ie! of state-space projections with a common domain S, called the core of 
S, to state spaces Si (for i E I); Si is calledthe ith .90mpo,nent space of S. 

We can transform any state-space system into an information :hannel by 
applying the functor Evt. This is particularly obvious if we use diagrams. The 

--------.----~-....... . 
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system S consists of a family of projections, of which we depict two: 

S 

Si 

Applying the operator Evt to this diagram gi¥es a family of infomorphisms with 
a common codomain, Evt(S): 

Evt(Sj) 

This is an information channel. Using the fundamental property of sums, we 
get the following commuting diagram, where for the sake of readability, we 

write ai for aEvt(Si)' and J for 'Eke! Evt(fk): 

Evt(S) 

EV~ 11 ~/j) 
Evt(Si) ---;;: LEvt(Sk) ~ Evt(Sj) 

, ke! } 

This diagram will be quite useful to us in Lecture 15, once we learn how to 
move logics along infomorphisms. 

We could also go the other way around, turning any channel into a state-space 
system by means of the functor Ssp. 

8.1. 

8.2. 

Exercises 

Construct an information channel representing information flow be­
tween two strands of DNA that have the sarne parent, that is, that arose 
from the normal splitting of a single strand of DNA. 

Show that state spaces S 1 and S2 are isomorphic (as classifications) if 
~d only if there is a projection J : S 1 =4 S2 such that both r and r 
are bijections. 
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Show that if state spaces SI and S2 are both complete, so is their 
product. 

For any state space S, we define the idealization of S to be the state 
space with types and tokens that are the set of types of S. Show that 
there is a projection f from S to its idealization. This shows that every 
state space is the inverse image of an ideal state space under some 
projection .. Note that ideal state spaces are complete, so that we also 
find that every state space is the inverse image of a complete state space 
under some projection. 

8.5. Show that for any classifications A and B, 

8.6. 

8.7. 

Ssp(A + B) ~ Ssp(A) x Ssp(B). 

(This result is a consequence of the adjointness results proven above, 
together with well-known facts about adjoint functors. However, for 
most of us, it is easier to prove directly.) 

(t) Verify that EvtOis a functor from the category of state spaces (with 
projections as morphisms) to classifications (with infomorphisms) 
by showing the following: 

1. If f : S 1 ::::t S2 and g : S2 ::::t S3 are projections of state spaces, then 
Evt(gf) = Evt(f)Evt(g). 

2. If S is any state space, then Evt(ls) = lEvt(s). 

(t) Verify that SspO is functor from classifications to state spaces by 
proving the following: 

1. If f: A += B and g : B += C are infomorphisms, then Ssp(gf) 
Ssp(f)Ssp(g ). 

2. If A is any classification, then SsP(1A) ~ ISsp(A). 

Lecture 9 

Regular Theories 

In this lecture, we prepare the way for the notion of local logic by studying the 
ways that classifications give rise to "regular theories." These theories can be 
seen as an idealized version of ~e scientific laws supported by a given closed 
system. The adjective "reglllar" refers to the purely structural properties that 
any such theory must satisfy. Any theory with these properties can be obtained 
from a suitable classification. At the end of the lecture, we will return to the 
question of how different scientific theories, based on different models of the 
phenomena under study, can be seen as part of a common theory. We will see 
conditions under which this obtains. 

9.1 Theories 

One way to think about information flow in a distributed system is in terms of 
a "theory" of the system, that is, a set of known laws that describe the system. 
Usually, these laws are expressed in terms of a set of equations or sentences 
of some scientific language. In our framework, these expressions are modeled 
as the types of some classification. However, we will not model a theory by 
means of a set of types. Because we are not assuming that our types are closed 
undet:..the...Booleanoperations, as they are not in.many .. examples, $eget a _ 
more adequate notion of theory by following Gentzen and using the notion of 
a sequent. 

Given a set :E, a sequent of :E is a pair (r, M of subsets of :E. (r, ~) is 
finite if r u ~ is a finite set. Recall that a sequent (r, M is a partition of a set 
:E' if r u ~ = :E' and r n ~ = 0. 

Definition 9.1. A binary relation f- between subsets of:E is called a (Gentzen) 
consequence relation on L A theory is a pair T = (:E, f-), where f- is a 

------'-I~-.------ .. __ .. 117 
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consequence relation on :E. A constraint of the theory T is a sequent (r, t..) of 
:E for which, r f- t... 

We will use the nonnal notational conventions about consequence relations. 
For example, we write ex, fJ f- y for {ex, fJ} f- {y} and r, r' f- t.., ex for 
r u r' f- t.. U {ex}. We have already given several examples of constraints in 
Lecture 2. Here is another. 

Example 9.2. Suppose that :E is the set of polynomials in the variables x and 
y, and let f- be the consequence relation consisting of sequents (r, t..) such that 
every pair (rl, r2) E R2 of real numbers satisfying all the equations in r satisfies 
some equation in t... For example, one constraint of the resulting theory is 

x 2 + l = 25, 3x = 4y f- x = 4, x = -4. 

The point of this example is twofold: to illustrate the way sequents allow us 
to express certain constraints that would not be expressible without otherwise 
bringing in logical operations on types, and to stress that the comma on the left 
has a conjunctive force, whereas that on the right has a disjunctive force. 

Example 9.3. Given a first-order language L, recall the truth classification of 
L given in Example 4.6 whose types are sentences of L and whose tokens 
are L-structures. The theory of this classification has as constraints just the 
sequents of first-order logic that are valid in the usual sense. For example, the 
sequent 

\Ix [A(x) -+ B(x)] f- ...,A(c), B(c) 

. is Dne such constraint. . 

1! Our definition of a theory is intended to be neutral between semantic and 
___ _ _________ QrQ9f-Jileoretic notioIls()fth(!ory·9urpriHl~ e!,:arnI'les ()f tlI~ories collleJr:9!l1 .. 

I classifications and from state spaces. 

Definition 9.4. Given a classification A, a token a E tok(A) satisfies a sequent 
(r, M of typ(A) provided that if a is of every type in r, then it is of some 
type in t... A token not satisfying a sequent is ~~Iled a counterexample to the 
sequent. The theory Th(A) = (typ(A), f-A } ge;:;~r'ltelbya'C1;issificationA is 
the theory whose types are the types of A and whose constraints are the set of 
sequents satisfied by every token in A. 
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Proposition 9.5. The theory Th(A) = (typ(A), f-A } generated by a classifica­
tionA satisfies thefollowingforall types ex andall sets r, r', t.., D.', :E', :Eo, :EI 
of types: 

Identity: ex f- ex. 
Weakening: Ifr f- D., then r, r' f- t.., t..'. 
Global Cut: If r,:Eo f- t..,:E1 for each partition (bo, :E1) of :E', then 
r f- t... 

Proof It is clear that f-A satisfies Identity and Weakening. Let us show that it 
satisfies Global Cut. Suppose a is a counterexample to (r, t..) and that :E' S; 

typ(A). Let:Eo = {ex E :E'jaFex}, and let:E 1 = {ex E :E' j a ~ ex}. This 
gives us a partition of :E'. Clearly, a is also a counterexample to (r U :Eo, 
D. U :Et). 0 

We generalize these properties to arbitrary theories. 

Definition 9.6. A theory T = (b, f-) is regular if it satisfies Identity, Weaken­
ing, and Global Cut. 

It is perhaps worth noting that there are some other structural rules present 
in some treatments of logic via Gentzen sequents that are made unnecessary by 
our decision to treat sequents as pairs of sets. For example, the familiar rules 
of pennutation and contraction are not needed, as illustrated by the fact that 
{ex, fJ} = {fJ, fJ, ex}. If we were dealing with pairs of sequences, rather than pairs 
of sets, we would need additional closure conditions in the notion of regular 
theory. 

Readers familiar with the rule of Cut in logic will find our use of this tenn 
nonstandard. I We call the usual Cut rule "Finite Cut!' We will state it in a 
moment and show it is a consequence of Global Cut and, under certain condi­
tions, is equivalent to it. It is convenient to define the following partial order 

(r, t..) :::: (r', t..') iff r S; r' and D. S; t..'. 

If (r, t..) :::: (r', t..'), then we say that (r', L'>.') extends, or is an extension of, 
the sequent (r, M. 

1 We found Global Cut in the course of characterizing the theories of classifications, only to discover 
out that it had been previously studied in M. Dunn and G. Hardegree (unpublished manuscript, 
1993). The terminology Global Cut is borrowed from their work. 
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Proposition 9.7. ForeverytheoryT = (E, 1-), there is a smallest regular theory 
on E containing the sequents in I- as constraints. This is called the regular 
closure ofT. 

Proof. If we take as a theory all sequents on E, it is regular, that is, it satis­
fies Identity, Weakening, and Global Cut. Now consider the intersection of 
all regular consequence relations containing 1-. It is easy to see that it 

too is a regular consequence relation, simply from the general form of the 
definition. 0 

Proposition 9.S. Any regular theory T = (E, I-) satisfies the following 
conditions: . 

Finite Cut: If r, a I- fl and r I- fl, a then r I- fl. 

Partition: If r' I- fl' for each partition of E with (r', fl') ::: (r, M, then 
r I- fl. 

Proof. Both conditions are special cases of Global Cut, the first with E' = {a}, 
the second with E~ = E. 0 

The form of the Finite Cut rule makes it clear why this is called Cut: The 
type a that appears in both premises is cut out of the conclusion. In practice, 

we typically use one or the other of these special cases of Global Cut. In the 

presence of Weakening, Global Cut is equivalent to Partition. We will use this 
fact repeatedly, so we prove it here. 

Proposition 9.9. Let T = (E, 1-) be any theory. 1fT satisfies Weakening and 
Partition, then T is regular. 

Proof. We need to verify Identity and Global Cut Identity follows from 

Partition simply because there are no partitions extending {{a}, {a}). To verify 
Global Cut, assume the premise of Global Cut; that is, r, Eo I- fl, E I for 

~ ______ each partition-+EIh-E.~}..oLEL In ~rdex:.t~pply ~Partition, we. need only show 

that r, Eo I- fl, El for each partition (Eo, El) of E. But any such parti­
tion of E is an extension of some partition of E', so we obtain the result by 

Weakening. 0 

The following definition is going to seem very odd if the sequents mentioned 
are thought of in terms of constraints. But sequents are not only used in stating 
constraints, things that must happen, they are also good for talking about what 

might happen. This definition should be understood in this sense. 

.. ~.- -~ .. - -- -- .-.--~--
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Definition 9.10. Given a regular theory T = (E, I-), a sequent (r, fl) is 

T -consistent if r.J.L fl. The theory T is consistent if it has a consistent sequent. 

Example 9.11. If A is a classification, then a sequent of the form (r, 0) is 

Th(A)-consistent if and only if there is a token a E tok(A) such that a FA a for 

allaEr. 

Intui~ively, (r, fl) is consistent if, as far as the theory T knows, it is possible 
that everything in r could hold but, simultaneously everything in fl could fail. 

This is clearly the case if our theory is the theory of a classification. If a theory T 
is fixed, we will omit the "T" and just call a sequent consistent. The following 

states for the record some obvious equivalences. 

Proposition 9.12. Given a classification A and a sequent (r, fl) of typ(A), 

the following are equivalent: 

1. (r, M is Th(A)-consistent. 
2. (r, fl) is a subsequent of the state description of some a inA. 
3. There is a token a that is a counterexample to (r, fl). 

Hence Th(A) is consistent if and only iftok(A) ~ 0. 

It is sometimes convenient to specify a theory by specifying the set of 

its consistent partitions. This is a legitimate way to proceed, by virtue of 

Proposition 9.14. But first we need the following observation. 

Proposition 9.13. Every regular theory satisfies the following condition: 

r f- f1 if and only if there is no consistent partition extending (r, f1). 

Conversely, any theory satisfying this condition is regular. 

Proof.~The first claim follows from Weakening in one directiolLand Partition in~ 
the other. As for the second claim, it is easy to check that any theory satisfying 

the condition satisfies Identity, Weakening, and Partition. For example, to see 
that a I- a, suppose it does not. Then by the condition there is a consistent 

partition extending ({a}, {a}}. But there can be no such partition. The other 

rules are checked similarly. 0 

We can now prove the result that justifies defining a theory by giving a set 

of consistent partitions . 
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Proposition 9.14. Every set P of partitions of L is the set of consistent parti­
tions of a unique regular theory on L. 

Proof Define 

r r /1 if and only if there is no partition in P extending (r, /1). 

By Proposition 9.13, this definition defines a regular theory. But any regular 
theory with this relation as its set of consistent partitions must also satisfy the 
above biconditional, so there is only one. 0 

Example 9.15. Let L = {a, {3, y}. Think of these types as atomic propositions 
and construct the truth table that displays all possible assignments oftruth values 
to these three propositions. As with classification tables we use" I" and "0" for 
truth and falsity, respectively. 

ex {3 y 

1 
1 0 
o 1 

1 0 0 
o I 
010 
o 0 1 
000 

Each row ofthis truth table corresponds to a partition (r, ~) of L: put a type into 
r if the type has a 1 under it, and into ~ if it has an 0 under it. Conversely, every 
partition of L arises in this way. Thus giving a set of partitions is nothing more 
than givingasetof~ow~ofthis truth table, ~ose thatare possible distributions 

. of truth values among the atomic types. . 

The following notion will be useful when we tum to characterizing the logical 
operations on theories. -~----- -- ~ -- - -~ -- -- ~ -- -

Definition 9.16. Let A be a classification and L S; typ(A). A partition (r, ~) 
of L is realized inA if there is a token a E tok(A) such that 

Otherwise (r, t.) is said to be spurious in A. The set L is independent in A if 
every partition of L is realized in A. 

------.--.--.--- - .. _---.- .... -- -
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If L = typ(A), then a partition (r, ~) of L is realized in A if it is the state 
description of some token a E tok(A). However, we also want to apply the 
notions in cases where L is a proper subset of typ(A). 

Example 9.17. Suppose we are classifying light bulbs and have among our 
types the set L consisting OfUT, UNLIT, and LIVE. In the everyday classification 
of bulbs using these types, the types are far from independent. The partitions 
nonnally realized correspond to the rows of the following table: 

Lit Unlit Live 

I 0 
o 
o 

1 
o 

The other partitions are nonnally spurious. Hence the intuitive theory of light 
bulbs, at least as far as L is concerned, can be specified by the consistent 
parti tions represented by the rows of this truth table. 

We can use these ideas to help us compute the theory of a classification A 
from its classification table. In this way we give substance to the intuition that 
the regularities of a classification correspond to patterns in the classification 
table of A. First, note that each row of such a table corresponds to a consistent 
partition of the types. Hence each such row must satisfy every constraint of T 

in the following sense: if r rr ~ and every element of r has a 1 under it in 
the given row, then some element of /). has a 1 under it in the same row. Each 
missing row corresponds to a spurious partition in the corresponding theory 
and will thereby falsify some constraint of the theory. We codify this simple 
but useful observation as follows. 

Proposition 9.18. Let A be a classification and T be a theory on typ(A):The 

regular closure ofT is Th(A) ifand only if every row of the classification table of 

A satisfies each constraint ofT and each missing row falsifies some constraint 
ofT. 

Proof Assume that the regular closure of T is Th(A). Each token of A must 
satisfy each constraint of T, so clearly every row of the classification table 
satisfies each sequent of T. Suppose we have a missing row. This corresponds to 
an inconsistent partition oftyp(A), that is, a partition (r, /).} such that r rA /).. 
But then the row in question falsifies this constraint of T. 

For the converse, assume that every row of the classification table of A 
satisfies each constraint of T and each missing row falsifies some constraint 

:1 
! 

'.! 

i 

.:1.;, 
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of T. We! want to show that the regular closure of Tis Th(A). Because every 
row (If the! classification table of A satisfies each constraint of T, and because 
L:e!::tiry. Weake!ning, and Cut are sound, every row of the classification table of 
A. s;.;riStle!s e!ach constraint of the regular closure of T. Hence every constraint of 
me! [;!gul:lrclosure is a constraint ofTh(A). To show they are the same, suppose 
w<: tJ.\-e a consistent sequent f JoLT /). of the regular closure. By Partition, we 

.:::.n ;lSsum<: that this is a partition. But every partition corresponds to a possible 
:-0W of th<: classification table. This row cannot be missing, otherwise it would 
{;;ls~~- scme constraint of T. Hence the row must correspond to some token of 

..t.. Hence r r.-l. Ll.. 0 

Example 9.19. We use Proposition 9. I 8 to show that the theory defined by the 
:m,,:', ubk in Example 9.17 is the least regular theory such that 

_ LIT f- LIVE, f- LIT, UNLIT, LIT, UNLIT I- . 

L<:r.4 be the! classification whose types are those of Example 9.17 and whose 
:0ke:1s are the! rows of the truth table, with the natural classification relation. 
Th<: .:onstraints are satisfied by each of these rows and each missing row falsifies 
::it le;lSr one of the constraints. 

9.1. 

9.2. 

Exercises 

Le!t T be a regular theory. Show that T is inconsistent if and only if 
\:1 :-T 0. 

For any theory T, define an ordering on its types by a ~T {3 if and 
only if a I-T {3. Show that if T is regular, then ~T is a preordering, 
that is, is reflexive and transitive. A theory is said to be algebraic if 

~T is a partial ordering. Show that Th(A) is algebraic if and only if A 
is e!xtensional. 

93. Show that every preordering ~ on a set}; is ~ T for some regular theory 
- -----------1"-00-:E.--------------------

9.... Let:E be a set. 

9.5. 

-L Identify the smallest regular theory T on :E. Is it algebraic? 
2. What is the largest regular theory on T? Is it algebraic? 

Given a classification A, showthat each state description stateA (a) is a 
partition of the set typ(A) of types of A. Prove that for all a E tok(A), 
a is a counterexample to the.sequent (r, /).} if and only if (f, fl.) < 
stateA (a). 

9.6. 

9.7. 
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Let rand /). be sets of types of aclassificationA. Show the following: 
1. r f-A if and only if there is no token of A that is of all types in r; 
2. f-A /). if and only if every token of A is of some type in /).. 

Given any set };, define a consequence relation on I: by 

r f- /). iff f has more than one element, or 
{

fn/).=rf0, or 

/). = :E. . 

I. Show that I- is the closure of the following set of sequents under 
Identity and Weakening: 

(a) (0, };). 

(b) ({a, {3}, 0) for each pair a, {3 of distinct elements of I:. 

2. Show that f- is closed under Global Cut. 
3. Show that a classification A with typ(A) = }; is a complete state 

space if and only if for each r, /). ~ :E, r h /). if and only if 
r f-~. 

9.2 Finite Cut and Global Cut 

The results of this section are not needed in the remainder of the book. We 
include it in order to connect Global Cut with the more familiar version. 

Definition 9.20. A theory T = (I:, 1-) is compact ifforeachconstraint (f, fl.) 
of T, there is a finite constraint of T such that (fo, /).0) :s (r, fl.); equivalently, 
if (r, fl.) is a sequent and every finite sequent (fo, /).0) :s (r, ~) is consistent, 
then so is (r, ~). 

Example 9.21. Consider the theory of the truth classification of Example 9.3. 
__ The compactness theoremoffirst--order.iogic insures that this classification is 

compact. However, if we restricted the tokens to some class of structures not 
closed under first-order equivalence, like the class of well-orderings, then the 
resulting classification would not have a compact theory. Thus, in general, we 
cannot expect the theories we deal with to be compact. 

The following result, whose proof is given as an answer to Exercise 9.8, 
shows that for compact theories, our notion of regularity agrees with the usual 
notion of structural rules of classical logic. 

'I 
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Proposition 9.22. A compact theory T is regular if and only if it is closed 
under Identity, Weakening, and Finite Cut. 

The following gives an example of a theory that satisfies Identity, Weakening, 
and Finite Cut, but is far from the theory of any classification with a nonempty 

set of tokens. 

Example 9.23. Let L be an infinite set. A subset r of L is co finite if L - r 

is finite. Define a consequence relation of L as follows: 

r I-- f). if and only if either r n f). i' 0 or r u f). is cofinite. 

This relation I-- satisfies Identity, Weakening, and Finite Cut but is not regular. 
Indeed, the regular closure of this theory contains the absurd sequent I- with 
both sides empty. (The proof of this claim is left as Exercise 9.9.) These 

observations show that in the case where a consequence relation is not compact, 
the rules ofIdentity, Weakening, and Finite Cut are far from sufficient for having 

a reasonable consequence relation. 

9.8. 

9.9. 

9.10. 

Exercises 

Prove Proposition 9.22. 

Prove the claim made in Example 9.23. 

The rule of Infinite Cut asserts that if r, r' I- 11 and r I- 11, a for 
each a E r', then r I- 11. (There is also a version of Infinite Cut 
where the sides of the cut types are reversed. Everything said below 
about it applies to the other version without change.) 

L Show that eVery regular theory satisfies Infinite Cut. 
2. Show that the consequence relation of Example 9.23 satisfies In­

finite Cut. 

3 .. Conclude that Identity~.Weakening,..andlnfinite_CuLdo.noLenUll.l_~-I­

Global Cut. 

9.3 The Theory of a State Space 

Each state space has a regular theory associated with it; beca~~e,each state space 
is a classification, and a classification has a theory associated with it. From the 
informational point of view, however, the most riatural classification to associate 
with a state space S is not the space itself, but its event classification Evt(S). 
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By virtue of this classification, we can asS(x."irre with S the regular theory 
Th(Evt(S)) generated by the event classificati0:: =\t(5). 

When state spaces are used in science, how=--·e-. the tokens are not usually 

considered in any explicit manner. Thus, in oril=: :0 be able to link up with the 
state space literature, we study a second regu~= ::reory on pow(typ(S)), one 

that is independent of the tokens of the state Sp.'l'::=. By way of introduction, we 

first note a property of all regular theories of thO' i'rm Th(Evt(S)). 

Proposition 9.24. IfS is a state space and T = -=-::., htlS)), thenforall r, 11 ~ 

typ(Evt(S)), ifn f ~ U 11 then r I-r 11. 

Proof Assume thatn r ~ U 11. Lets E tokeS) -;;,-~ need to showthats satisfies 
(f, 11). So assume s is of every type X E r. T=~, is. states(s) E X for every 
such X. But then states(s) E n r, so states(s ~ J 11. But then s is of type 

some Y E 11, so s satisfies (r, !1). 0 

Notice this did not give us a biconditional. T,' ;et one, we must bring in the 
set Q of "realized" states. A state is realized if :: ~ the state of some token of 

the state space in question. 

Proposition 9.25. Given a state space S, let r2 :-<! rile set of realized states of 
S and let T = Th(Evt(S)). For each seqllellt if. ~ i ofT, r rT 11 if and only 

ifCnrnQ) ~ UI1. 

Proof The proof of the direction from right ;.:- left is essentiaIIy the same 
as that of Proposition 9.24. To prove the other Cn:ction, assume r rT 11 and 
(T E cn r n Q) and let us prove that (T E U 11. B~:;J.use (j E Q, (T is realized, so 

let s be of state (T. Because r I-T 11, s satisfies ~ S<!quent (r, !1). But because 

s is of every type in r, it must be of some type i::: .l so (j E U 11. 0 

Corollary 9.26. IfS is a complete state space ar.d T = Th(Evt(S)), thenfor 

aU-I;--b--~-typ(-1),A-F-§-tJ-fr-if and only ifF I--:-~. In particular; this holds 
for every ideal state space. 

Proof To say that S is complete is to say that typ(S) is the set of realized 
states. 0 

When working with a state-space<. model of some phenomena, the default 
assumption is that the space is complete, that is.. that every state is realized. 
After all, if one knew that some states were not ~ized, one would throw out 

.i.i .. ~ 


