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1. INTRODUCTION

In this expository paper, I discuss the theory of discrete probabilistic entropy,
which was introduced in Parts I and II of the now classic 1948 paper by Shan-
non [20].

There are two major approaches to this subject. One approach is via probability
theory and the other is via ergodic theory. I have followed the second approach here,
for a number of reasons. First, I happen to find it easier to think about measureable
functions than about random variables. Second, the ergodic theory approach is
more closely connected with the recent explosion of work on the mathematical
theory of chaotic dynamical systems, but is considerably less well known than
the probabilistic viewpoint. Third, presenting the theory in terms of measureable
functions (rather than random variables) makes it much easier to understand how
the classical notion of entropy fits into the standard paradigm of twentieth century
mathematics; this paradigm might be briefly expressed by the slogan “in order to
understand some phenomenom of interest, one should define a category and then
use invariants to classify the objects in this category”. (See [11] for an extended
discussion of how information theory fits into this paradigm.) Fourth, whereas the
probability theory approach has been described in an excellent undergraduate level
text [1]— not to mention the original paper by Shannon [20], which is still well
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worth reading— the only comprehensive introduction known to me of the ergodic-
theoretic viewpoint is the invaluable (but out of print) graduate level text [21].
Thus, I hope that this paper will help to fill a gap in the literature.

I will not discuss the Noisy Coding Theorem (see [1]) or metric entropy (see [21])
in this paper, but I will state and prove considerably more general versions of the
Asymptotic Equipartition Theorem and Joint Asymptotic Equipartition Theorem
than those given in [1]. Throughout the paper I will discuss at least one, and often
more than one, intuitive interpretation of each quantitity we will define, illustrating
them by a running example which T call “the Weatherman’s Gambling Game”.
Proofs will be kept to a minumum.

The paper is largely self contained, although some familarity with the basic facts
of measure-theoretical life will be very helpful.

2. PROBABILITY MEASURE SPACES

Definition 2.1. Suppose X s a set equipped with a collection M of subsets . C X
such that M s closed under countable unions and complements; that s, whenever
E € M, sois X\ E, and whenever we have a sequence E; of sets in M, then
UFZ By s in M. Then M s said to be a sigma-algebra on X.

(The word “sigma” in “sigma-algebra” refers to sum, meaning union, while the
word “algebra” indicates that M is defined in terms of certain formal operations,
in this case unions and complements of sets.)

If M is a sigma-algebra on X, then taking any £ € M we see that FU(X\ E) =
X and X \ X = () must be in M; that is, sigma-algebras always contain both the
largest and smallest subsets of X, namely X itself and the empty set §.

Definition 2.2. Suppose M is a sigma-algebra on X, and suppose that p : M —
[0,1] is a function such that

1 (@) =0,

2 u(X) =1,

3 gwen any sequence of disjoint sets F; in M, we have

p{Us2 By = w(Ey)
ji=1
Then 1 is said to be ¢ probability measure on M, and (X, M, ) is called a
probability measure space.

In this situation, sets F € M are called measureable sets. If y is a measure
on M, then whenever F C F are measureable, we we have pu(F) < u(F). Tt turns
out that M can only rarely be chosen to be the entire power set 2% (the power
set is the set of all subsets of X); that is, non-measureable subsets usually exist.
However, they are so pathological that we will not need to worry about them.

If £ is measureable, y(E) can be considered a measure of the “size” of E. For
instance, the usual notion of length on the unit interval [0, 1] defines a probabilty
measure, roughly as follows. Let M be the smallest sigma algebra containing all the
closed sub-intervals of [0, 1], and define the measure of each subinterval I = [a, b] by
A(I) = b—a. Tt turns out that this can be extended to give a well defined probability
measure on every set in M; the resulting measure X is called Lebesgue measure
(on [0, 1]). Similarly, the usual notion of area on the unit square [0, 1] x [0, 1] defines
a probability measure, also called Lebesgue measure (on the square).
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If f is a non-negative function on R such that [ f(x)dz = 1, then we say that
f is a probability density; classically, the probability of observing a value in the
interval [a, b] is fab f(z)dx. Tn measure theory this idea is extended to define the
probability of any “event” E € M by putting u(E) = [, f(x)dz, and it turns out
that this defines a probability measure on R. (We’ll see some examples later in the
paper.)

Unfortunately, it is not at all easy to visualize the details of how all this happens.
One would be tempted to ignore the sophisticated concepts of measure theory and
stick to the classical ideas of Laplace and Euler, which involve nothing more com-
plicated than calculus, were it not for the following example, which is so important
that it alone justifies using a measure theoretical approach, albeit at the expense
of some handwaving in this section.

Let X =BY = {z : IN — B} be the set of all binary sequences indexed from zero
to infinity. A cylinder set is a set such as

Z(01001) = {w € X : 2(0) = 0,2(1) = 1,2(2) = 0,2(3) = 0, z(4) = 1}

That is, choose some block of n digits and collect all sequences whose zeroth through
(n — 1)-st digits are given by corresponding digit of the given block; the result is a
cylinder of length n. Note that we can decompose X into a disjoint union of 2"
cylinders of length n as follows

X =UpZ ' Z([k)2)

where [k]5 denotes the base two representation of k. Let M be the sigma-algebra
generated by combining (using countably many unions, intersections, and comple-
ments) the cylinder sets.

Example 2.3. Suppose 0 < p,q < 1 with p+ ¢ = 1. Then the (p,q) Bernoulli
measure of any cylinder Z(w) defined by a word w containing m zeros and n —m
ones is p{Z(w)} = pPq*. (We can extend this definition to define the yt measure of
any set in M, but the details won’t concern us).

It often happens that a probability measure space (X, M, u) is also a topological
space; that is, has some notion of continuity, open and closed sets, and the like. In
this situation, there is a natural sigma-algebra, generated by the closed (or open)
subsets of X, which is called the Borel sigma-algebra 3. Any measure on B is
called a Borel measure.

In particular, we can make the sequence space B into a metric space (a topolog-
ical space in which a notion of distance is defined) by declaring that the sequences
x,y have a mutual distance of 27" if n is the smallest place where they first dif-
fer. It follows that the open ball around # of radius 27" consists of all sequences
which agree with z at least up to the (n — 1)-th place— in short, the balls in this
topology are precisely the cylinder sets already defined. Thus, the sigma-algebra
generated by the cylinders is precisely the Borel sigma-algebra for the sequence
space. (Warning! This space is rather strange— it is homeomorphic to the Cantor
set.)

The importance of sequence spaces will only become evident later in the paper,
when we see how certain maps defined on sequence spaces give interesting and
suprisingly simple models of extremely complicated dynamical situations.
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For a readable and efficient introduction to the rigorous theory of measures, see
the second chapter of the textbook [4]. The article [6] contains a detailed expla-
nation of the relationship between probability measures and the classical notion of
probability.

3. THE ENTROPY OF A PARTITION

Definition 3.1. Suppose (X, M,p) is a probability measure space. Let Qx be the
collection of all partitions of X into finitely many measureable subsets. If A € Qx
denotes the partition X = Uj_1A;j, then each set A;j s called an atom of A. Now
let B € Qx denote the partition X = U,_, By,. Then the join of A and B, written
AV B, 1s the partition X = U;_; U;_; Aj N By The trivial partition X = X s
denoted Z. We say that B refines A, writien A < B, whenever every B € B is
included in some A € A.

In the partial ordering of Qx by <, Z is the smallest partition, and AV B is the
least upper bound of A, B; that is, the smallest partition refining both A and 5.

We can understand the intuitive significance of these definitions by considering
the following example. Let us imagine that there is some huge but definite number
n of atoms (idealized to be mutually indistinguishable) in the atmosphere over
Omaha, NE. Each atom has a definite velocity and momentum (six real parameters
in all) and the n atoms together define a point in a 6n dimensional phase space
which represents the microscopic state, or microstate, of the atmosphere over
Omaha. Naturally, human observers cannot hope to determine the velocities or
momenta of individual atoms even approximately, but we can imagine that at a
given time the detailed state of the atmosphere is nonetheless represented by such
a point.

Now imagine a function « which takes each # € X to either 0 or 1 depending on
whether or not the microstate x is associated with a state of rain in Omaha. Next,
imagine a function # which takes each # € X to a temperature range. For instance,
the range of 5 might consist of the three (Fahrenheit) temperature ranges

T < 30, 30 < T < 40, T > 40

Then, saying that 5(z1) equals the temperature range 30 < T < 40 is equivalent to
saying that the microstate x; is associated with a ground temperature in that range.
We can also imagine a function v which takes each z to the windspeed associated
with z. (It is understood that all these macroscopic parameters are measured at a
particular “official” weather station in Omaha.)

Definition 3.2. If o : X — S, where S is some finite set, is a measureable func-
tion, then o is called a simple function. The kernel of ¢ is the partition of X into
preimages under o.

In probability theory, a simple function is known as a random variable. Note
that the preimages are measureable sets (that is the meaning of saying that o is a
measureable function.)

To resume our example: suppose that « is the precipitation function, § is the
temperature function, and v is the windspeed function. If kernels of « (precipita-
tion), 4 (temperature), and v (windspeed), respectively, are denoted A, B, and C,
then AV BV C denotes a set of observable macroscopic states (or macrostates)
of the weather over Omaha. For instance, the atom Az N By N C; might consist
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of all those microstates which yield states of precipitation with temperature in the
range 40 < T < 50° F and windspeed in the range 0 < v < 5 mph. More generally,
we can consider statements like € E5, where E3 € £ € Qx, to be denote partial
information concerning the weather in Omaha.

Deﬁnition 3.3. The entropy of A € Qx, where A is the partition X = Uj_, Aj,
is

H(A) = - ZP(AJ) log p(4;)

H(A) increases, all other things being equal, with the “fine-ness” of the partition,
in the sense that H(Z) = 0, and H(A) < H(B) whenever A < B. Moreover, H(A)
tends to increase as, holding the number of sets A; fixed, we adjust the atoms A;
so as to make their probabilities more nearly equal. Let us abbreviate p(A;) by
p1 and so forth. Suppose that we increase p; by ¢ and decrease p; by the same
amount, where we assume without loss of generality that p» — p; > 2¢. This has
the effect of making the p; very slightly more homogeneous, and the effect on the
entropy is to increase it by about
0H n 8H( )
Ip1 ‘ Ip2 ‘
= (=1 —logp1) e+ (1+logps)- ¢

P2
= elog—
P1

dH =

It is not hard to see that for a fixed number r of sets A;, A is maximized when
all the p; are equal; the maximum value is logr. Thus, H(A) measures some
combination of “fine-ness” and “homogeneity”.

A word about the units of measurement. Changing the base of the logarithm
in the definition of entropy has the effect of multiplying H by a positive constant;
therefore this can be considered “a change in units of entropy”. In the engineering
literature, it is customary to use logarithms base two, with the corresponding “units
on information” being called bits. In the mathematical literature, it is customary to
use natural logarithms, and that is the convention I follow here. The corresponding
units of information are sometimes called nats.

We can obtain an “operational” interpretation of H(.A) as follows. Suppose that
the Devil challenges us to guess whether or not it currently it is raining in Omaha,
and promises us a penny if we guess correctly. In this situation, the two atoms of
the partition A represent our two alternative guesses (“yes” or “no”), and H(A)
can be interpreted as a measure of the difficulty of guessing whether or not 1t is
currently raining in Omaha. The point is that if the Devil had challenged us instead
to guess whether 1t is currently raining in Death Valley, we would no doubt be much
more confident of winning the penny.

We can sum up this discussion by saying that H(.A) may be considered a measure
of the difficulty of guessing which atom an unknown point z lies in. Alternatively,
we can say that H(A) measures, in a probabilistic sense, the variety of alternatives
contained in A.

4. CONDITIONAL ENTROPY AND MUTUAL INFORMATION

Definition 4.1. If B is the partition X = U, _, By, then the conditional entropy
of A given B is HLA/B) = H(AV B) — H(B).
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It 1s not hard to see that

r 5

A]' Bk
H(A/B) = —;;p(Aijk)log%
= Y _p(Bi)H(BrNA)

Here B, N A is the partition By = ﬂ;zlAj N By, and By, is given the conditional
probability measure pp(E) = p(E N A;)/p(By), so that

ZPA ﬂBk lo p(A]'ﬂBk)
p(Br)

Thus H(A/B) is the average, over the atoms of B, of the entropies H(Bj; N .A).
H(A/B) can be interpreted as a measure of the difficulty of guessing which atom
of A and unknown point « lies in, given that it lies in a specific atom of 5. Alter-
natively, we can say that the conditional entropy H(A/B) measures the variety of
alternatives left in A of a unique alternative in B is specified.

Note that should “most” of every atom By € B lie inside an atom A; € A then
H(A/B) will be close to zero. On the other hand, should the regions 4; and By
bear no particular relation to one another, then H(.A/B) will be not much smaller
than H(A). Any change in B which tends to “de-homogenize” the conditional
probabilites pg(A4;) will decrease the H(By N B); this will decrease H(A/B) and
increase our average earnings. This happens because such modifications of B permit
more reliable estimation of which atom of A a point x lies in, given the knowledge
that # is in a particular atom of B.

We can obtain an “operational” interpretation of conditional entropy by imagin-
ing a modified guessing game. Let A denote the kernel of the precipitation function
on the microstates of the atmosphere over Omaha, and let £ = BV C denote cur-
rent temperature and windspeed data for Omaha, as outlined above. Suppose that
the Devil challenges us to guess whether or not it is presently raining in Omaha,
but is now willing to inform us (truthfully) of the current temperature and wind-
speed. Our difficulty of guessing whether or not it is raining in Omaha, given the
information available to us, is measured by H(A/&).

Additional motivation for the definition of conditional entropy is suggested by
an idea due to Resnikoff [19]. Consider the situation of an experimenter making
numerical measurements of some physical quantity . Suppose the first measure-
ment 18 a “coarse” one which determines the value of # to lie within the range
z1 < x < y1. Next, perhaps by adjusting the settings of his intstruments on the
basis of this knowledge, the experimenter is able to determine that the value of z
lies within the smaller range z2 < * < ya, where #1 < z2 and y» < y1. In this
situation, it is reasonable to seek a measure of the information gained about the
value z from this procedure. Resnikoff proves that if we demand that this measure
be invariant under affine transformations of the real line (that is, it should not be
altered by a change of scale or by translating the nested intervals (22, y2) C (21,41)
to (w2 +1t,y2+1) C (x1+1t,y1+1)), then we must take as our information measure
some positive constant multiple of the quantity

H(ByNA) =

|y1—l‘1|

=1
o8 |y2—l‘2|
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Note that if we take Lebesgue measure m on the real line, then this quantity has
the form m(A4; N By)/m(A4;), where the A; and By are finite length intervals; that
is, it has the same form as the terms in H(A/B), except that m is not a probability
measure.

Now consider what happens when we have two partitions A and B of the real
line. Suppose A has the atoms

Al = (_Ooaal]aAZ = (alaaz]a M 'AT = (ar—laoo)
while B has the atoms
Bl = (_Ooabl]aBZ = (blabQ]a M 'BT = (bs—laoo)

Suppose that by = a; and b,_1 = a._1. Define AV B as before; note that two
atoms of AV B will be infinite half rays (namely A; = By and A4, = B,) and the
remainder will be finite intervals. If we ignore the infinite intervals and average the
information gain determined by each inclusion A; N B, C A;, we obtain

r—1s—1

m(A] N Bk) m(A] N Bk)
o Z Z T log m(4;)
i=2 j=2 J
where
r—1 s—1
L=a_1—a = Zm(Aj) = Zm(Bk)
j=2 k=2

The former expression represents the expected information gain about the value
of a1 < ¥ < a,_1 when we refine the precision of our measurements. If we set
p(E) = m(FE)/L, then we have precisely the same form as obtained above for the
conditional entropy H(B/A), where A < B.

Definition 4.2. With A, B € Qx as before, the mutual information of A, B is
I(AB)=H(A)+ HB)— H(AVEB)

Note this quantity is symmetric in A, B, unlike H(A/B). Tt is not hard to see
that

I(A,B) = H(A) — H(A/B)=H(B)— H(B/A)
_iip(Aijk)logM

j=1k=1 p(4; 0 By)

The first two equalities show that I(.A, B) can be interpreted in terms of our weather
game as the information that we expect to gain about whether or not is raining in
Omaha when the Devil tells us the current temperature range. The striking fact
is that neither player need object if the roles of A4 and B are interchanged, since
neither one stands to benefit from the change! This is because A gives the same
amount of information about B as knowledge of B gives about .A.

It is easy to see that I(A,B) = 0 iff for all A € A and all B € B, the sets A, B
are statistically independent in the sense that p(A N B) = p(A)p(B). At the
opposite extreme, I(A, B) = H(A) iff knowledge of B determines .A (up to measure
zero). Thus, I(A, B) can be considered a measure of the mutual dependence, or
better yet, the statistical correlation of A and B. It would be quite wrong to infer
from this that A is “causing” B or vice versa.
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There is an interesting interpretation (due to J. Kelly) of I(.A, B) in terms of the
expected financial gain in gambling games where “side information” is available;
see [1] for details.

5. FOrRMAL PROPERTIES OF ENTROPY

By “formal properties” I mean properties which do not depend upon the math-
ematical nature of the symbols A, B, etc. The idea is probably best understood by
considering some examples. The following are among the more important formal
properties satisfied by discrete entropy and its brethern, conditional entropy and
mutual information. Bear in mind that H(A/Z) = H(A), where Z is the trivial
partition.

1
2

[

Quotient Rule. H(AV B/C) = H(A/C)+ H(B/A V).
Chain Rule.! The entropy of the multiple join H(\/?Ilflj) can be expanded
as follows:

H(A)+ H(As /A + H(Az/As vV A+ ...+ H(A,/ \/?I_ll ./4])
Entropy Balance.
I(A,B) = HA)+HB)—H(AVDB)
= H(A)—- H(A/B)
= H(B)-H(B/A)
Order Properties. If A < BB, then
H(A/C) < H(B/C)
H(C/A) > H(C/B)
Redundancy. HAV B/AVC)=H(B/AVC).
Subadditivity. H(AV B/C) < H(A/C)+ H(B/C).
Dependency Criteria. We say that A depends on B, written A < B, iff every
atom of A is included “up to null set” in some atom of B. (Note that A < B
implies A < B but not conversely). The following are equivalent:
o ALK
o H(A/B) =0.
o H(AV B) = H(B).
Codependency Criteria. We say that A, B are codependent, written A & B,
if their atoms can be paired off so that they agree up to null sets. This is
the natural notion of when two partitions of X are “indistinguishable”. The
following are equivalent:
o A= B.
o H(A/B)=H(B/A)=0.
o H(AV B) = H(A) = H(B).
Independence Criteria. We say that A, B are independent iff for every A; € A
and By € B we have p(A4; N By) = p(A4;)p(Bg). The following are equivalent:
I(A,B) = 0.
H(A/B) = H(A).
H(B/A) = H(B).
H(AVB)=H(A)+ H(B).

IThis vivid and appropriate name comes from [1].
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FiGure 1. Left: D(A,C) = D(A,B) + D(B,C) = p+ q. Right:
D(E,F)=D(E EVF)+ DEVF,F)=s5+t.

AV EB

FIGURE 2. The Diamond Lemma says that s’ < s, ¢/ < ¢, and
s+t =t+5.

10 Class Functions. H(-) is a class function in the sense that it is constant on
each codependency class. Similarly, H(-/-) and I(-,-) are constant on code-
pendency classes, and < forms a partial order on the codependency classes.

11 Metric Space. D(A,B) = H(A/B) + H(B/A) defines a metric on the set of
codependency classes. In [8] T develop the entropy geometry defined in this
way on the poset formed by the classes of paritions A4 € Qx together with
the partial order <. The following three items give a taste of this geometric
picture— note that for convenience of notation we do not distinguish between
A and the codependency class of A.

12 Chain Addivity. (See Figure la.) If A < B <« C, then D(A,C) = D(A,B) +
D(B,C).

13 Lambda Property. (See Figure 1b.) We have the identity D(&,F) = D(E,E V
F)y+ DEVF,F).

14 Diamond Lemma. (See Figure 2.) Suppose &€ < A/ B. Then D(&,A) <
D(B, AV B) and D(&,B) < D(A, AV B). Moreover,

D(E,A)+ D(A, AV B) = D(€,B) + D(B, AV B)

The Diamond Lemma is analogous to well-known property of group indices.
This is no accident; see [8][7].

15 Lipschitz Continuity. FEntropy is Lipschitz continuous with respect to the
entropy distance. Specifically, |H(A) — H(B)| < D(A, B). Similarly for con-
ditional entropy and mutual information.

See [8] for proofs and an extensive discussion (in a more abstract context) of the
intuitive significance of the Quotient Rule and other formal properties of entropy.
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6. PROBABILITY OPERATORS
In this section we begin to consider dynamical processes.

Definition 6.1. Let (X, M,p) and (Y,N q) be probability measure spaces. The
map ¢ : X — Y is a measure-preserving transformation if for all £ € M,
we have p{o~Y(E)} = p(E). A measure-preserving map S from (X, M, p) to itself,
written (X, M, p, S), is a« probability operator.

This terminology is intended to suggest an analogy with linear operators. A
linear operator 7" is a mapping V' — V| where V is an object possessing a certain
mathematical structure (linear structure) which is preserved by 7. Similarly, a
probability operator S is a mapping X — X, where X is an object possessing a
certain structure (a probability measure) which is preserved by S.

Given a microstate # € X, the sequence z,S(x),S?*(z)... is called the tra-
jectory of # under S, or the microhistory of x. Of course, we should regard
microhistories as unknowable in practice. In the next section we will consider
“macrohistories” which are observable.

Example 6.2. Let D(6) = 20 (taken modulo 27) denote the angle doubling map
on the unit circle S*. We use the natural probability measure on the Borel sets, B,

of the unit circle, namely
1
F)y=— do
q(E) 27T~/E
If0 < A< B < 2m, so that (A, B) is a typical interval on the circle, then
D™YA,B) = (A/2,B/2)U (7 + AJ2, 7+ B/2)

is the union of two intervals of half the length of the original. Thus, (S*,B,q, D)
is a probability operator. It is called the doubling map.

Note that if I is a small interval on the circle, D takes I to an interval twice as
long, so that ¢(D(I) = 2¢(I), whereas the preimage of I is two intervals each half as
long as [ itself, so that ¢{D~1(I)} = ¢q(I). This may help to clarify the definition
of a measure preserving map.

Another example of a probability operator which is easy to study is the following.

Example 6.3. Let T : [0,1] — [0, 1] be defined by

2 < 1/2
T(x) = x 0<z<l1/
2—-2z 1/2<z<1

We use the natural probability measure given by ordinary integration (or Lebesgue
measure); p(E) = fE dx. It is easy to see that the preimage of a small interval is
the union of two disjoint intervals half as long, so ([0,1],B,p,T) is a probability
operator. It is called the tent map (see Figure 3).

Here is an example which is quite different from the preceeding two examples.

Example 6.4. Let X = {& : N — B} be the set of all binary sequences indexzed
from zero to infinity, with the (p,q) Bernoulli measure. Define the left shift map
S:X — X by (Se)(n) = x(n+1). Note that S shifts every sequence one place
to the left, “erasing” the first symbol as it does so. Thus, it is a two-to-one map,
and the shift of the cylinder of length n > 0 Z(0,n,x) is the disjoint union of two
cylinders of length n — 1. Therefore the p measure of the shift preimage of any
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F1GURE 3. The tent map T'(z).

cylinder 7 agrees with the measure of Z; this is enough to guarantee that S is a
measure preserving map. Therefore (X, M,p,S) is a probability operator. It is
called the one-sided (p, ¢q) Bernoulli shift.

The shift map is continuous in the metric topology introduced earlier. It “in-
flates” the ball of radius 27" around z to the larger ball of radius 2! =" around «,
and iterating S inflates the ball to the entire space in a finite time. The preimage
S~Y(B) of a ball B of radius 27" consists of two smaller balls of radius 27"~ 1.

The (1/2,1/2) Bernoulli shift can be used to model the process of tossing a fair
coin. Each x € X determines a trajectory which corresponds to one possible result
of an infinite sequence of coin tosses, where 0 is interpreted as “tails” and 1 as
“heads”.

We would like to have some way of comparing the “complexity” of the behavior
of various probability operators, and in particular identifying those which are as
complex as coin tossing. The following definition provides the neccessary concept.

Definition 6.5. Suppose (X, M,p,S) and (Y,N q,T) are probability operators
and suppose ¢ : X — Y 1s a measure preserving map such that p oS = T o p;

that s, such that the diagram

X % X

o] |¢
Y —— Y
T
commutes. Then ¢ is a probability operator homomorphism or factor map

from (X, M p,S) to (Y,N,q,T).

If ¢ has an inverse map which is also an operator homomorphism, it is said to be
a metric conjugacy. In this case, we can think of the two probability operators
as being “equivalent” from the point of view of probabilistic phenomena. These
definitions give a category [18] in which objects are probability operators, mor-
phisms are operator homomorphisms, and composition is the ordinary composition
of mappings.

Because an operator homomorphism ¢ from (X, M, p, S) to (Y, N, q,T) is onto
a.e., by definition, we can think of (Y, A, ¢, T') as a “simplified model” of (X, M, p, S);
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hence the term “factor map”. (In this situation, we can also say that (Y, N, ¢, 7T)
is a factor of (X, M, p,S).) Incidently, the above definitions are not completely
satisfactory because of the somewhat inconsistent way in which they “ignore sets
of measure zero”; therefore many authors prefer to set up the theory in terms of
slightly different categories; see [6][3] for two alternative categories. However, these
defects are too subtle to worry about here, so we have adopted the above definitions
because of their simplicity and clear analogy with linear operators.

It often happens that two very different appearing probability operators are in
fact conjugate; for instance, the (1,1) Bernoulli shift is conjugate to the doubling
map! To see this, consider the map € : X — S! defined by

= x(k
@ =r Y
k=0
Since x(k) is either zero or one for every k, we see that 0 < £(k) < 27. Moreover,
if #,y disagree in the n-th place, then |£(x) — &(y)| > 277, so £ is one-one (except
perhaps at the endpoints, but this doesn’t matter). Now suppose [A, B) is an
interval on the circle such that A/(27) = j27" and B/(27w) = k27" are “dyadic
rationals”; then € 7'[A, B) is a cylinder of length n. This shows that p{¢~1[4, B)} =
q[4, B), so £ is a measure preserving map. Finally, by considering separately the
cases #(0) = 0 and #(0) = 1, it is not hard to see that £(Sz) = D(éx), so £ gives
the desired conjugacy. (Here, £ is also a homeomorphism, so in fact S and D are
conjugate as topological operators as well; see [9].) This shows that the doubling
map is precisely as “chaotic” as coin tossing!
The following construction is very useful for constructing new probability oper-
ators which are factors of a given operator.

Definition 6.6. Let (X, M, p) be a probability measure space and suppose ¢ : X —
Y is some map. Define N to be the sigma-algebra generated by all sets E CY such
that =1(E) € M, and define q by ¢(E) = p{lo~Y(E)}. Then (Y,N,q) is a new
probability measure space, called the pushout of (X, M, p) via ¢.

The point is that if we have a given operator (X, M, p,S) and can find a map
@ : X — Y, where Y is just some set, such that ¢ 0o S = T o ¢ for some map
T:Y — Y, then when we give Y the pushout structure via ¢, T becomes a new
probability operator which is automatically a factor of (X, M, p, S)! This is easy
to see, since

HT7HE) = ple ' THE)} = p{S™ o™ (E)} = pp™ ' (E) = q(E)

where T used (left to right) the definition of ¢, the fact that ¢ 0.5 = T o ¢, the fact
that p{S~!(F)} = p(F'), and the definition of ¢. If XY are topological spaces and
M is the Borel sets on X, and if ¢ happens to continuous p-a.e., then the pushout
is a Borel measure on Y. However, although ¢ is automatically “almost onto” | even
if it is also “almost one-one”, ¢ need not be a conjugacy! (This is one of the subtle
deficiencies earlier alluded to).

I shall illustrate this method of finding factors of a given probability operator by
constructing two interesting new operators which are factors of the doubling map,

and thus of the (1/2,1/2) Bernoulli shift.

Example 6.7. Let L(z) = 42(1 — x); since L maps the unit interval to itself we
may consider L to be a map L : [0,1] — [0,1]. Tt is called the logistic map (see
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F1GURE 4. The Logistic Map L(z) = 4z(1 — ).

1
0.8
0.6
x
0.4
0.2
0
0 1 2 3 4 5 6
theta

FIGURE 5. The transformation (0) = sin®(6).

Figure 4). If we define ¢ : S* —[0,1] by
¥(6) = sin*(6)
(see Figure 5) then 1 is continuous and
(Low)(0) = 4sin*(0) cos’(f)
= sin?(20)
= (o D))

(This shows that L is a factor of D as a topological operator; see [9].) Therefore
we can define a new probabilily operator on [0, 1] which is a factor of the doubling
map, as follows. Lel I = [a,b] be some small subinterval of [0,1]. Then the pushout
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F1GURE 6. The L-invariant density on the unit interval.

measure of I is

v() = MpH(D)}
1 arcsin /b
- ﬁ arcsin \/a a0
b
= /f(a:)dx
where
1
J) = 7/ x(l — x)

is the desired L-invariant density (see Figure 6).

This implies [17] that if we iterate L on a computer, starting with various initial
points, the trajectories of each point may be very complicated (and essentially
unpredictable in the long term), but if we divide [0, 1] into small subintervals and
make a histogram showing how many of the first one million iterates fell in a
given range, we will see something that looks very much like the graph of f(x); in
particular, more iterates will fall near zero or one than fall near the center of the
interval. This regular and predictable statistical behavior constrasts strongly with
the chaotic behavior of the trajectories, each of which can be said to be a slightly
simplified model of a random coin toss.

Note that ¢ is a four-to-one map except at ¢ = nwx/2,n = 0,1,2,3 (where it
is two-to-one). Thus, it cannot give a conjugacy. Indeed, there is no conjugacy
between L and D.
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0 0.2 0.4 0.6 0.8 1
X

FIGURE 7. The transformation £(z) = sin?(7z/2).

To see that L is conjugate to T, let &(x) = sin®(7x/2). (See Figure 7.) Then
-9
sin“(7x), 0<z<1/2
€ = {0 ey

sin®(r —7x), 1/2<x<1
= sin’(7x)
= 4sin®*(7x/2) cos?(mx/2)
= (Log&)(x)

Tt is not hard to check that £ is measure preserving, so it is a factor map. (Indeed,
¢ 18 a homeomorphism, so that L and T are also conjugate as topological operators;

see [9].)
Example 6.8 (Doug Lind). Define

0 x=0
N(l‘): {x—l/x 1‘750
2

on the real line. Then

0 6=0
P(0) = {—cot(@/?) 0<0<2m

(see Figure 9) defines a map from the circle to the real line, which is continuous
almost everywhere, and it is not hard to see (consider the case § = © seperately)
that Now = po D, so we can define a new probability operator on the real line which
is conjugate to the doubling map, as follows. Let I = [a,b] be some subinilerval of
[0,1] and define the pushout measure of I by

pd) = Me™' (D)}
1 —2/ arctan(b)

= de

ﬁ —2/ arctan(a)
b
= /g(x)dx

1
g(x) = 0427

where
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10

N( x)
o
N

-10

-10 -5 0 5 10

F1GURE 8. The map N(z).

Thet a
F1GURE 9. The transformation ¢(6).

is the desired N-invariant measure on R (see 10).

N is the map which arises in applying Newton’s Method to the problem of
evaluating /—1, that is finding a root of h(z) = 22 + 1, with an initial guess which
is real. To see this, recall that Newton’s method for finding a root of h(z) = 0,
where h is differentiable, replaces the guess #, by 2,41, where h(2)/(2n41 — 2n) =
h'(x). This amounts to iterating the function h*(z) = @ — h(x)/h'(z). In the case
h(z) = 22 + 1 we have h*(z) = # = N(=).

Thus, we see that in this example, Newton’s method not only fails to converge
either of the actual roots (which are of course imaginary), but is essentially as
“random” in the details of the trajectory as is a coin toss! Nevertheless, if you
iterate some initial guess on the computer and make a histogram as above, we will
find something resembling the graph of the N-invariant density g¢; in particular,



AN ENTROPY PRIMER 17

FiGURE 10. The N-invariant density g.

iterates tend to remain near the origin, and rarely stray very far away from the
origin. The density g is sometimes called “the Poor Man’s Bell Curve”, because its
Taylor expansion begins the same way as that of the standard normal distribution.
This phenomenom well illustrates a fundamental feature [17] of ergodic probabil-
ity operators: while their individual trajectories may be very badly behaved, they
nonetheless exhibit a rigorous statistical regularity.

To sum up: the one-sided (1/2,1/2) Bernoulli shift and the angle doubling map
on the circle are conjugate probability operators. The tent and logistic maps on
the unit interval and the Newton map N(z) = ¢ —1/z on R are mutually conjugate
probability operators; these are all factors of the angle doubling map and thus, of
the one sided (1/2,1/2) Bernoulli shift.

Suppose P is a matrix whose entries are all real numbers between zero and
one, such that the row sums are always exactly one. We can consider P to define
transition probabilities between states of a stochastic process. Suppose that we
happen to know a row vector #, whose entries are non-negative numbers adding up
to one, such that P 7 = 7. For example, we might have

(PP ()

The Markov measure on BY defined by the pair (P, 7) gives the cylinder Z(01001)
the measure

u{2} = x(0) P(0,1) P(1,0) P(0,0) P(0, 1)
and similarly for other cylinders. Note that Markov measures are defined in a way
which ensures that they are shift invariant.

Definition 6.9. Let the sequence space B be equipped with the Markov measure
p defined by some (P,7), and let S denote the shift map. Then the probability
operator (BY | j1, S) is called a Markov shift.
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Unlike Bernoulli shifts, sequences in Markov shifts possess statistical correlations
between pairs of adjacent digits, but no higher order correlations.

7. A VERY BrIEF Tour oF ErRGoDIC THEORY

We begin our tour with the very first theorem in this subject, proven by Poincare

in 1890.

Theorem 7.1 (Recurrence Theorem). Let (X, M, p,S) be any probability opera-
tor. Then for all A € M, almost every € A 1s recurrent in A, in the sense that
for some k >0, S*(z) € A.

This theorem has been interpreted as implying that the Second Law of Thermo-
dynamics must hold only “on average”. Supposedly, if you simply wait long enough,
you will eventually observe small and temporary accretions of “order” (with result-
ing decreases in physical entropy), because the Recurrence Theorem implies that
every dynamical system must eventually return to states arbitrarily “close” to its
initial state?.

Proof: Let F' C A be the nonrecurrent points; that is,
F={recA:Yj>0 5 ¢A}.

CLAIM: the sets S™/(F) are mutually disjoint.

Reason: if # € S7%(F), then S*(z) € A, so x € F. Thus S~*(F)n F = {;
pulling back both sides by S/ shows that S~™¢~J(F)N S~/ (F) = (.

CONSEQUENCE: since S i1s measure preserving, we have a countably infinite

collection of disjoint measureable sets sharing the same measure, so they must all
be null sets. In particular, F' is null, which is what we wanted to show. |

Definition 7.2. Suppose (X, M,p,S) is a probability operator. Then E € M
is said to be an S-invariant set if STHE)AFE is a null set. Similarly, f €
LY (X, M, p) is an S-invariant function if f(S(z)) = f(z) for almost everyz € X.

Here AAB = (AU B)\ (AN B) is the symmetric difference of A, B (the set
of all # in one or the other but not both of A4, B). A null set is any set of measure
zero, and “for almost every 2”7 means for all  not in some null set.

We are now in a position to introduce the central notion in ergodic theory.

Definition 7.3. (X, M, p, S) is an ergodic operator if every S-invariant set has
measure either zero or one.

We will need two more technical definitions. We say that the sequence of func-
tions f, converges a.e. to f means that for all # € | where F is some set such
that p(F) = 1, the numbers f,,(z) converge to f(z) in the usual sense of calculus.
More generally, saying that something “holds true a.e.” means “except on a set of
measure zero”. Similarly, f, converges in mean to f if the integrals

[ 18- sidp =0

2The average time interval between recurrences is inversely proportional to p(A), according
to another famous theorem, due to Kac; see [12]. In practice this means that any real isolated
physical system will usually be destroyed by other physical processes long before any truly striking
entropy decreases have time to occur. This is why chemical engineers need not concern themselves

with such “thermodynamic anomalies™!
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(Neither of these definitions of convergence implies the other; see [4].)

Theorem 7.4 (Basic Ergodicity Criteria). Let (X, M,p,S) be a probability oper-
ator. The following are equivalent:
1 LAW OF AVERAGES: For any integrable function «, the sequence of time
averages

LY )

converges a.e. and in mean to a constant. (If so, the constant in question can
only be the phase space average fX adp.)
2 LAW OF FREQUENCIES: For each E € M, for almost every z,

> (s (),

the frequency with which the orbit of x enters E, approaches p(F).

3 ZERO-ONE LAW: Every S-invariant set has measure zero or one; i.e., the
operator is ergodic.

4 LAW OF CONSTANT INVARIANTS: Every S-invariant integrable function
1s constant a.e.

5 TRANSITIVITY: For each pair of non-null A, B € M, for some n > 0, we
have ST"(A) N B non-null.

The Law of Averages is the famous pointwise ergodic theorem of Birkhoff (1936).
The Law of Frequencies says that we can reliably estimate the probability of an
event by looking at the empirical frequencies for almost any orbit; the expression
Z?:_ol (57 (x)) simply counts the number of times the trajectory of = enters E
for 0 < j < n—1. (Here xg is the characteristic function of ¥, which is defined
by setting xg(x) = 1 if x € F and yg(x) = 0 otherwise.) The Zero-One Law is,
of course, simply our original definition of what it means for (X, M, p,S) to be
an ergodic operator. The Law of Constant Invariants says that the only invariant
functions are the ones (constant functions) that are neccessarily invariant under any
measureable mapping X — X. Transitivity means that if one fixes some region of
phase space, 1.e. some B non-null, then the probability for the iterates of a point
z € A non-null to visit that region is nonzero. Note how each of these equivalent
criteria adds new insight into the intuitive meaning of ergodicity.

Despite their apparently very restrictive properties, ergodic probability opera-
tors often arise in applications, although the ergodicity may be difficult to prove
rigorously (as, for instance, in the case of billiards.) Tt is often easier to establish
certain “mixing” properties which imply ergodicity; see [12] or [21]. The fact that
the ZERO-ONE LAW implies the LAW OF AVERAGES is a special case of the
Individual Ergodic Theorem, a classical “hard” theorem due to G. D. Birkhoff. For
a proof of this theorem and of Theorem 7.4, see [12].

We will need one more “hard” theorem concerning ergodic operators.

Theorem 7.5 (Shannon-McMillan-Breiman Theorem). Let (X, M, p, S) be an er-
godic operator and let A € Qx. Let

an(z)=— Y logp(E)xe()

BeAy~!
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Then the sequence of functions oy, converges to the constant function hg(A) almost
everywhere and in mean.

Note that fX andp = (1/n)H(AZ™!). Note also that because Theorem 7.5 says
that a certain sequence of functions converges both almost everywhere and in mean
to a certain constant function, it has the same form as the Individual Ergodic
Theorem. It is not a special case of that theorem because the «,, are not of the
form f o S™. Two different proofs of Theorem 7.5 are given in [12].

8. THE ENTROPY OF A MESSAGE SOURCE

Definition 8.1. Let (X, M,p) and (Y, N, q) be probability measure spaces and sup-
pose ¢ : X — Y s a measure-preserving transformation. Given B € Qy, with
atoms By, the pullback of B is the element o# B € Qx whose atoms are the sels

¢~ (By).

Notice that if ¢ is many-to-one, several atoms of B might pull back to the same
atom of ¢#B. That is, we might have (for example) ¢~ 1(Bs) = ¢~1(Bs) = As.

Think again of X as the set of microstates for the atmosphere over Omaha. We
can imagine that some probability operator (X, M, p, S) can be interpreted as the
“evolution operator”, such that if the weather has microstate # at time t = n,
it has microstate S(z) at time ¢t = n + 1. As we have already remarked, the
trajectory z,S(z), S%(z) ... is not observable. However, we can hope to determine
the trajectory relative to A; that is, the sequence of atoms in which the trajectory
lies. We will call this sequence the macrohistory of z relative to A.

Observe that € Ay, S(z) € Ay, and S?(x) € A4 exactly in case @ € Az N
S71(A1) N S™2(A4). In short, the atoms of AV S# AV S#2A correspond to alter-
native sequences of three successive macrostates. It is convenient to abbreviate the
join

AV SFAVSHFA. v SDE Y
as Ag_l. Atoms of Ag_l represent partial macrohistories.

This idea is adaptable to any complex process, for instance the process by which
human beings produce “messages” in natural language, which suggests the following
definition.

Definition 8.2. Let (X, M,p,S) be a probability operator and let A € Qx. Then
(X, M,p, S, A) is a (stationary) message source.

Note that every @ € X defines a sequence in the finite set A by associating the
sequence As, Az, Ay, A1, Aa, As ... to every x such that x € Az, S(x) € Az, S%(2) €
Ag, S3(x) € Ay, S%(x) € Az, S®(x) € Ay, and so forth. The set of such sequences
is the set of messaages which can be produced by the source (X, M, p, S, A). Note
that the probability that the sequence defined by an arbitrary & € X will begin
with a given finite sequence of length n is precisely p(E), where F € Ag_l is the
atom corresponding to the finite sequence in question.

In the case of the weather in Omaha, if A is the kernel of the precipitation
function, then (X, M, p, S, A) is a source which produces “messages” according to
whether or not it is raining at a given hour in Omaha.

Definition 8.3. The source entropy of (X, M,p, S, A) is
hs(A) = lim (1/n) - H(AZ™Y
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It is not very difficult to show [21][1][8] that this limit always exists and that
we always have hg(A) < H(A). The source entropy hg(A) can be interpreted as a
measure of the information about the microhistory of a typical microhistory which
is gained from knowledge of the corresponding macrohistory. Alternatively, hg(A)
measures the average variety of alternatives at each place in the sequences produced
by the source.

We can obtain an operational interpretation of hg(A) by imagining a third ver-
sion of our guessing game, in which every hour on the hour we must guess whether
or not it is currently raining in Omaha. Clearly (1/n)- H(A2™1) measures the vari-
ety of alternative outcomes, and thus the difficulty per round of guessing, averaged
over the first n rounds. As n grows, we are taking account of longer and longer
range statistical correlations between macrostates of precipitation in Omaha. In the
limit, we are taking account of even the most subtle and longest range correlations
between the weather at present and in the distant past (and future).

Definition 8.4. An information source (X, M, p, A) such that S# A is statistically
independent of A is called a Bernoulli source. If S#?A is statistically indepen-
dent of A, (X, M,p, A) is called a Markov source. More generally, if S#" A
is statistically independent of A, then (X, M, p, A) is called an n-step Markov
source.

It 1s easy to obtain simple formulas for the entropies of Bernoulli and Markov
sources. For a Bernoulli source we have

H(AZ™Y = H(A) + H(S*AJA) + H(ST2AJAD + .. H(S*F'7LAJAP™?)
= n-H(A
whence
hs(A) = ZP ) log p(4;)
For the (one-step) Markov source defined by (P, ) in the obvious way, we have

HAY = H(A) + H(S*AJA) + H(ST2A/AY) + ... H(S*=1A/AD™?)
= H(A)+(n—1)-H(S*A/A)

whence
hs(A) = (S#.A/.A)
. A NS~ Ak) p(AjﬂS_lAk)
- ‘]Zl,;p T I Ty
= —ZZ k)log P(j, k)

Similarly, for a two-step Markov source we have hg(A) = H(S#2A/A}), and so
forth.

9. THE AsyMPTOTIC EQUIPARTITION THEOREM

A sequence of functions f,, is said to converge in measure to f if for every
€ > 0, there 18 some N > 0 such that for all n > N, the measure of the set
{r € X |fo(x) — f(x)] > £} is at most .



22 CHRIS HILLMAN

Lemma 9.1. If f,, converges in mean to f, then f, also converges in measure to

f.

Proof: Fix e > 0. Put B, = {o € X : |fy(x) — f(x)] > e}. Then [y |fn — fldp >
fEn |fr, — fldp > ep(Fy). Now we can see that if f, converges in mean to f, so
that the left hand side approaches zero as n grows without bound, then the right
hand side also must approach zero; that is, f,, converges in measure to f. |

(See [4] for an excellent discussion of the meaning and inter-relationships of
various notions of convergence useful in analysis.)

Theorem 9.2 (Asymptotic Equipartition Theorem). Suppose (X, M, p,S) is an
ergodic probality operator. Given A € Qx and € > 0, define for all n > 0 the
collections
T(n) ={E € A;™" : [(=1/n)log p(E) — hs(A)| < ¢}
Then for all € > 0, there i1s some N such that for alln > N,
1 we have, for all E € T(n),

e—nhs(A)—na SP(E) S e—nhs(A)+na

2 we have

ple € X twisin some E€T(n)} >1—¢
3 we have

(1 _ E) e” hs(A)—ne < |T(n)| < en hs(A)+ne

The E € T(n) are called the typical atoms of A2,

The AEP seems counterintuitive at first sight, but it actually has a very graphic
interpretation. For large n, we can visualize Ag‘l as a “beach” of total volume
one cubic mile (say). (See Figure 11.) Most of the volume is made up of about
e?hs(A) “pebbles” each having a volume of about e~""s(4) cubic miles. (Since n
is very large, this will indeed be a pebble-sized volume, despite the unusual units.)
The beach also contains on the order of ¢” 1814l of tiny “sand grains”, which are so
small that collectively they account for at most ¢ cubic miles of the total volume of
the beach; nevertheless, their teeming numbers completely overwhelm the number
of pebbles (provided that log|.A| > hg(A)). The beach might contain the occasional
“rock” having a volume considerably larger than e””s(4) cubic miles, but there are
certainly no “boulders” with volume on the order of ¢ cubic miles.

The AEP is a suprisingly easy consequence of the Shannon-McMillan-Breiman
Theorem.

Proof: (1) holds for all n > 0 by definition of T'(n). Because the «, converge in
mean to hg(A), they also converge in measure to hg(.A), which means that for all
€ > 0, there is some N > 0 such that for all n > N, the measure of the set

{x € X : xis in some £ € A2™! such that |(—=1/n)logp(E) — hs(A)| > ¢}

is at most ¢, which gives (2).
Now (3) follows by combining (1) and (2). Fix n > N and let F_ minimize p(F)
over T'(n). Then by (1),

e hs(A)—ne < p(E_)
Let 4 maximize p(F) over T(n). Then by (1),

p(E+) S e hs(A)+ne
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FiGure 11. The pebbly beach.

Let M,, = |T(n)| be the number of typical atoms, and let
Xp={x € X :xisinsome F € T(n)}
be the union over those atoms. Clearly
My p(E-) < p(Xn) < My p(Ey)
But by (2), 1 — e < p(X,,), so on the one hand we have
L= € < p(Xn) < My p(By) S My - e7nhs(AMne

whence
(1 _ 6) enhs(A)—ne S Mn
and on the other hand, we have
My, e7mhs(A=re < M p(BZ) < p(Xp) <1
whence

Mn < enhs(A)+ne
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10. DataA COMPRESSION

The AEP gives one interpretation of the “meaning” of the source entropy. To
explain an alternative interpretation, we require the concept of dlock coding.

Definition 10.1. Let (X, M,p, S, A) be a message source. Recall that Ag_l may
be identified with the set of alternative sequences of length n which may be produced
by the source. Suppose ¢ : Ag_l — W, where W 1s some finite set of codewords,
perhaps W = {01302,2201,...}. The corresponding block code assigns a sequence
in W to every x € X, as follows. Suppose x € Ey € Ap~' St (x) € By € AP7Y,
and so forth. Then assign to x the sequence ¢(FE1), $(FE2),.... This code is said to
have block length n.

Generally speaking, larger n allow a block code to take advantage of “longer
range” statistical correlations between earlier and later letters in sequences pro-
duced by the source, and thus the efficiency of optimal codes of length n generally
increases (perhaps very slowly) as n increases. The key idea, due to Shannon [20],
is that as long as we have enough codewords to code up the typical atoms in Ag_l,
with at least one left over to serve as a “flag”, we can obtain a workable n-block
code.

Theorem 10.2 (Data Compression Theorem). Suppose (X, M,p, S) is an ergodic
operator and A € Qx. Let d = hg(A)/logr where v = |A| is the number of atoms
in the partition A. Then for all € > 0, there exists N such that for alln > N, we
can find a block coding with block length n of sequences produced by (X, M, p, S, A)
such that the mean codeword length,

X= > p(E)-AE)

BeAy~!
(where M(E) is the length of the code word assigned to E € AL™') satisfies
X < n(d+2e)

In short, the fraction by which typical sequences produced by (X, M,p, S, A)
can be “compressed” by using block coding is d = hg(A)/logr. The following
ingenious proof, which involves the idea of a “randomly chosen coding”, is due to
Shannon [20].

Proof: By the AEP we can find N such that for all n > N, p(X,,) > 1 — ¢ and

Mn S " hs(A)+ne — rn(d+e)/log7‘

where X, is the union of the typical atoms in Ag_l and M, is the number of typical
atoms in A2~ Now we can encode the typical atoms in A2 ™! by assigning each an
arbitrary word of length n(d+¢); if n is sufficiently large, this will leave one word of
length n(d + €) left over to serve as a “flag”. We can encode the atypical atoms by
prefixing the flag followed by a literal quote of the base r sequence corresponding
to the atom. This means that each typical atom will be encoded by a codeword
of length nd + ne/logr < n(d + €), whereas atypical atoms will be encoded by a
codeword of length at most n(1 + d+ (¢/logr)) < n(1 + d + ¢). Therefore,

A < (I—=¢-nld+e)+e-n(l+d+e)
= n(d+ 2¢)
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11. CoONDITIONAL ENTROPY AND INFORMATION RATES

Just as we took limits of entropies in order to define the source entropy, we can
take limits of conditional entropies and mutual informations.

Definition 11.1. Let (X, M,p,S) be a probability operator and let A, B € Qx.
Then the conditional entropy rate of A given B is

hs(A/B) = lim (1/n)- H(A;™'/B;™")
Similarly, the information rate between A, B is
is(A,B) = lim (1/n) - I(A;™", By~

It is not hard to see that hs(A/B) = hg(AV B) — hg(B) and that
is(.A,B) hs(.A) —|—h5(6) - hs(.A\/B)
= hg(A)—hs(A/B)
= hs(B) — hs(B/A)

Both conditional entropy and information rates can be understood by considering
a fourth version of our guessing game. In this version, every hour on the hour, the
Devil informs us (truthfully) about the current temperature range in Omaha, and
we must guess whether or not it is presently raining there. Now hg(A/B) measures
the variety of outcomes, or the difficulty of guessing correctly, averaged over many
rounds, and ig(.A, B) measures the average information gained per hour from what
the Devil tells us concerning the current temperature.

The quantities hg(A), hs(A/B), is(A, B), and so forth, satisfy numerous formal
properties analogous to those satisfied by H(A), H(A/B), I(A,B) and so forth.
For more information about these formal properties see [8].

The following result 1s a fundamental extension of the Equipartition Theorem.
It was first found by Shannon [20] but the first correct proof did not appear for
some years after that.

Theorem 11.2 (Joint Asymptotic Equipartition Theorem). Suppose (X, M, p,S)
is an ergodic probability operator. Given A, B € Qx and € > 0, define for n > 0
the following collections of atoms:

1 J(n) is the set of all ENF € (AV B2~ such that
((=1/n)logp( 1 F) — hs(AV B)|
(=1/n)log () — hs(A)
((=1/n)log p(F) — hs(B)
2 K(n)={E € A" . E contains some ENF € J(n)
3 L(n) ={F € B}~ F contains some ENF € J(n)}
Then there exists N > 0 such that for alln > N,

1 we have that for all ENF € J(n),
(a) e hs(AVB)—ne S p(Eﬁ F) S e hs(AVB)+na’
(b) e hs(A)—ne S p(E) S e hs(A)+na’
(C) e~ " hs(B)—ne S p(F) S e~ " hS(B)+na’
d) e hs(A/B)—2ne < p(EnF) < e~ M hs(A/B)+2ne
= pF) = ’

ININIA
-

2

?

~—~

(e) e hs(B/A)—2ne S P(ﬁgf‘) S e hs(B/A)+2na’
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(f) —nis(A,B)-3ne S p((EE)gF(F)‘) < e—n2q(A B)+3na

where B € A2™Y and F € B2 are the unique atoms in A" and Bi ™1,
respectively, which contain the given atom ENF € J(n),
2 we have
(a) pleeX:z€e ENFeJn)}>1—c¢,
b) pleeX:xecEec K(n)}>1—c¢,
(c) fzeX:zeFeln}>1-c¢,
3 we have
( ) ( 6)6 n hs(AVB)—ne < |]( )| <e nhq(.AVB)-I—na’
(b) (1-2)e < [K(n)] < enhsChrtos
(C) (1 6) e hs(B)—ne S |L( )| e q(B)+na

The ENF € J(n) are called jointly typical atoms. Pairs (F,F), where
Ec A~ and F € By~ and ENF € J(n), are called jointly typical pairs.
Proof: Note first that (labc) follow directly from the definition and (1def) follow
easily from (labc); for instance

PIEOE) _ ons(avyine gnbetdrios

p(F)
e—nhs(A/B)+2na

By the Shannon-McMillan-Breiman Theorem, the functions
-1
On =~ Z log p(E)xEe
Ee(AvB)r~?

converge to hg(AV B) in mean, and therefore also in measure. Thus there is some
N1 such that for all n > Ny, the measure of the set

{reX:x € ENF € (AV B! tsuch that|(—1/n)logp(ENF) — hs(AV B)| > ¢}

is at most /3. Similarly, there is some Ny such that for all n > N», the measure
of the set

{r € X :x€F € Al such that|(—1/n)logp(E) — hs(A)| > ¢}

is less than ¢/3, and there is some N3 such that for all n > N3, the measure of the
set

{x € X :x € F € Bl *such that|(—1/n)logp(F) — hs(B)| > ¢}
is less than £/3. Now take N to be the maximum of Ny, Ns, and N3. Now the set
{reX: foral ENFeJn),z¢ ENF}
evidently has measure at most ¢, for all n > N, so the set

{r e X : forsome ENF e J(n),z € ENF}

has measure at least 1 — ¢ for all n > N, as claimed in (2a). This set is included in
the sets mentioned in (2bc), so we have now proven (2abc). Finally, (3abc) follow
by the same argument used in the Equipartition Theorem.
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This theorem shows that for jointly typical pairs (E, F'), we have
p(F) = e hs(A)
p(F) e hs(A)
p(ENF)a ¢ hs(AVE)
p(ENF) ny o= hs(A/B)
p(F)
p(ENF) - hs(B/A)
p(E)

pEP(E) p—nis(AB)
p(ENF)

2

This gives a very intuitive significance to these dynamical entropies. For instance,
the information source (X, M, S, A) might be used as the input into a noisy com-
munication channel, whereas (X, M, S, B) could denote the output from the chan-
nel (assuming that the noise sometimes alters zeros to ones and vice versa, but
does not introduce new symbols). Then ig(A, B) denotes the asymptotic rate at
which we can extract information about the source (X, M, S, A) using the source

(X, M, S, B).
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