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2 CHRIS HILLMANworth reading| the only comprehensive introduction known to me of the ergodic-theoretic viewpoint is the invaluable (but out of print) graduate level text [21].Thus, I hope that this paper will help to �ll a gap in the literature.I will not discuss the Noisy Coding Theorem (see [1]) or metric entropy (see [21])in this paper, but I will state and prove considerably more general versions of theAsymptotic Equipartition Theorem and Joint Asymptotic Equipartition Theoremthan those given in [1]. Throughout the paper I will discuss at least one, and oftenmore than one, intuitive interpretation of each quantitity we will de�ne, illustratingthem by a running example which I call \the Weatherman's Gambling Game".Proofs will be kept to a minumum.The paper is largely self contained, although some familarity with the basic factsof measure-theoretical life will be very helpful.2. Probability Measure SpacesDe�nition 2.1. Suppose X is a set equipped with a collectionM of subsets E � Xsuch that M is closed under countable unions and complements; that is, wheneverE 2 M, so is X n E, and whenever we have a sequence Ej of sets in M, then[1j=1Ej is in M. Then M is said to be a sigma-algebra on X.(The word \sigma" in \sigma-algebra" refers to sum, meaning union, while theword \algebra" indicates that M is de�ned in terms of certain formal operations,in this case unions and complements of sets.)IfM is a sigma-algebra on X, then taking any E 2M we see that E[(X nE) =X and X nX = ; must be in M; that is, sigma-algebras always contain both thelargest and smallest subsets of X, namely X itself and the empty set ;.De�nition 2.2. Suppose M is a sigma-algebra on X, and suppose that � :M![0; 1] is a function such that1 �(;) = 0,2 �(X) = 1,3 given any sequence of disjoint sets Ej in M, we have�f[1j=1Ejg = 1Xj=1�(Ej)Then � is said to be a probability measure on M, and (X;M; �) is called aprobability measure space.In this situation, sets E 2 M are called measureable sets. If � is a measureon M, then whenever E � F are measureable, we we have �(E) � �(F ). It turnsout that M can only rarely be chosen to be the entire power set 2X (the powerset is the set of all subsets of X); that is, non-measureable subsets usually exist.However, they are so pathological that we will not need to worry about them.If E is measureable, �(E) can be considered a measure of the \size" of E. Forinstance, the usual notion of length on the unit interval [0; 1] de�nes a probabiltymeasure, roughly as follows. LetM be the smallest sigma algebra containing all theclosed sub-intervals of [0; 1], and de�ne the measure of each subinterval I = [a; b] by�(I) = b�a. It turns out that this can be extended to give a well de�ned probabilitymeasure on every set in M; the resulting measure � is called Lebesgue measure(on [0; 1]). Similarly, the usual notion of area on the unit square [0; 1]� [0; 1] de�nesa probability measure, also called Lebesgue measure (on the square).



AN ENTROPY PRIMER 3If f is a non-negative function on R such that R f(x)dx = 1, then we say thatf is a probability density; classically, the probability of observing a value in theinterval [a; b] is R ba f(x)dx. In measure theory this idea is extended to de�ne theprobability of any \event" E 2 M by putting �(E) = RE f(x)dx, and it turns outthat this de�nes a probability measure on R. (We'll see some examples later in thepaper.)Unfortunately, it is not at all easy to visualize the details of how all this happens.One would be tempted to ignore the sophisticated concepts of measure theory andstick to the classical ideas of Laplace and Euler, which involve nothing more com-plicated than calculus, were it not for the following example, which is so importantthat it alone justi�es using a measure theoretical approach, albeit at the expenseof some handwaving in this section.Let X = BN= fx : N! Bg be the set of all binary sequences indexed from zeroto in�nity. A cylinder set is a set such asZ(01001) = fx 2 X : x(0) = 0; x(1) = 1; x(2) = 0; x(3) = 0; x(4) = 1gThat is, choose some block of n digits and collect all sequences whose zeroth through(n� 1)-st digits are given by corresponding digit of the given block; the result is acylinder of length n. Note that we can decompose X into a disjoint union of 2ncylinders of length n as followsX = [k=2n�1k=0 Z([k]2)where [k]2 denotes the base two representation of k. Let M be the sigma-algebragenerated by combining (using countably many unions, intersections, and comple-ments) the cylinder sets.Example 2.3. Suppose 0 � p; q � 1 with p + q = 1. Then the (p; q) Bernoullimeasure of any cylinder Z(w) de�ned by a word w containing m zeros and n �mones is �fZ(w)g = pjqk. (We can extend this de�nition to de�ne the � measure ofany set in M, but the details won't concern us).It often happens that a probability measure space (X;M; �) is also a topologicalspace; that is, has some notion of continuity, open and closed sets, and the like. Inthis situation, there is a natural sigma-algebra, generated by the closed (or open)subsets of X, which is called the Borel sigma-algebra B. Any measure on B iscalled a Borel measure.In particular, we can make the sequence space BNinto a metric space (a topolog-ical space in which a notion of distance is de�ned) by declaring that the sequencesx; y have a mutual distance of 2�n if n is the smallest place where they �rst dif-fer. It follows that the open ball around x of radius 2�n consists of all sequenceswhich agree with x at least up to the (n � 1)-th place{ in short, the balls in thistopology are precisely the cylinder sets already de�ned. Thus, the sigma-algebragenerated by the cylinders is precisely the Borel sigma-algebra for the sequencespace. (Warning! This space is rather strange| it is homeomorphic to the Cantorset.)The importance of sequence spaces will only become evident later in the paper,when we see how certain maps de�ned on sequence spaces give interesting andsuprisingly simple models of extremely complicated dynamical situations.



4 CHRIS HILLMANFor a readable and e�cient introduction to the rigorous theory of measures, seethe second chapter of the textbook [4]. The article [6] contains a detailed expla-nation of the relationship between probability measures and the classical notion ofprobability. 3. The Entropy of a PartitionDe�nition 3.1. Suppose (X;M; p) is a probability measure space. Let 
X be thecollection of all partitions of X into �nitely many measureable subsets. If A 2 
Xdenotes the partition X = [rj=1Aj, then each set Aj is called an atom of A. Nowlet B 2 
X denote the partition X = [sk=1Bk. Then the join of A and B, writtenA_ B, is the partition X = [rj=1 [sk=1 Aj \Bk. The trivial partition X = X isdenoted Z. We say that B re�nes A, written A � B, whenever every B 2 B isincluded in some A 2 A.In the partial ordering of 
X by �, Z is the smallest partition, and A_B is theleast upper bound of A;B; that is, the smallest partition re�ning both A and B.We can understand the intuitive signi�cance of these de�nitions by consideringthe following example. Let us imagine that there is some huge but de�nite numbern of atoms (idealized to be mutually indistinguishable) in the atmosphere overOmaha, NE. Each atom has a de�nite velocity and momentum (six real parametersin all) and the n atoms together de�ne a point in a 6n dimensional phase spacewhich represents the microscopic state, or microstate, of the atmosphere overOmaha. Naturally, human observers cannot hope to determine the velocities ormomenta of individual atoms even approximately, but we can imagine that at agiven time the detailed state of the atmosphere is nonetheless represented by sucha point.Now imagine a function � which takes each x 2 X to either 0 or 1 depending onwhether or not the microstate x is associated with a state of rain in Omaha. Next,imagine a function � which takes each x 2 X to a temperature range. For instance,the range of � might consist of the three (Fahrenheit) temperature rangesT < 30; 30 � T < 40; T � 40Then, saying that �(x1) equals the temperature range 30 � T < 40 is equivalent tosaying that the microstate x1 is associated with a ground temperature in that range.We can also imagine a function  which takes each x to the windspeed associatedwith x. (It is understood that all these macroscopic parameters are measured at aparticular \o�cial" weather station in Omaha.)De�nition 3.2. If � : X ! S, where S is some �nite set, is a measureable func-tion, then � is called a simple function. The kernel of � is the partition of X intopreimages under �.In probability theory, a simple function is known as a random variable. Notethat the preimages are measureable sets (that is the meaning of saying that � is ameasureable function.)To resume our example: suppose that � is the precipitation function, � is thetemperature function, and  is the windspeed function. If kernels of � (precipita-tion), � (temperature), and  (windspeed), respectively, are denoted A, B, and C,then A _ B _ C denotes a set of observable macroscopic states (or macrostates)of the weather over Omaha. For instance, the atom A3 \ B1 \ C2 might consist



AN ENTROPY PRIMER 5of all those microstates which yield states of precipitation with temperature in therange 40 � T < 50� F and windspeed in the range 0 � v < 5 mph. More generally,we can consider statements like x 2 E3, where E3 2 E 2 
X , to be denote partialinformation concerning the weather in Omaha.De�nition 3.3. The entropy of A 2 
X , where A is the partition X = [rj=1Aj,is H(A) = � rXj=1 p(Aj) logp(Aj)H(A) increases, all other things being equal, with the \�ne-ness" of the partition,in the sense that H(Z) = 0, and H(A) � H(B) whenever A � B. Moreover, H(A)tends to increase as, holding the number of sets Aj �xed, we adjust the atoms Ajso as to make their probabilities more nearly equal. Let us abbreviate p(A1) byp1 and so forth. Suppose that we increase p1 by " and decrease p2 by the sameamount, where we assume without loss of generality that p2 � p1 > 2". This hasthe e�ect of making the pj very slightly more homogeneous, and the e�ect on theentropy is to increase it by aboutdH = @H@p1 � �+ @H@p2 (��)= (�1 � log p1) � �+ (1 + logp2) � �= � log p2p1It is not hard to see that for a �xed number r of sets Aj, H is maximized whenall the pj are equal; the maximum value is log r. Thus, H(A) measures somecombination of \�ne-ness" and \homogeneity".A word about the units of measurement. Changing the base of the logarithmin the de�nition of entropy has the e�ect of multiplying H by a positive constant;therefore this can be considered \a change in units of entropy". In the engineeringliterature, it is customary to use logarithms base two, with the corresponding \unitson information" being called bits. In the mathematical literature, it is customary touse natural logarithms, and that is the convention I follow here. The correspondingunits of information are sometimes called nats.We can obtain an \operational" interpretation of H(A) as follows. Suppose thatthe Devil challenges us to guess whether or not it currently it is raining in Omaha,and promises us a penny if we guess correctly. In this situation, the two atoms ofthe partition A represent our two alternative guesses (\yes" or \no"), and H(A)can be interpreted as a measure of the di�culty of guessing whether or not it iscurrently raining in Omaha. The point is that if the Devil had challenged us insteadto guess whether it is currently raining in Death Valley, we would no doubt be muchmore con�dent of winning the penny.We can sum up this discussion by saying that H(A) may be considered a measureof the di�culty of guessing which atom an unknown point x lies in. Alternatively,we can say that H(A) measures, in a probabilistic sense, the variety of alternativescontained in A.4. Conditional Entropy and Mutual InformationDe�nition 4.1. If B is the partition X = [sk=1Bk, then the conditional entropyof A given B is H(A=B) = H(A_ B) �H(B).



6 CHRIS HILLMANIt is not hard to see thatH(A=B) = � rXj=1 sXk=1p(Aj \Bk) log p(Aj \Bk)p(Bk)= sXk=1p(Bk)H(Bk \A)Here Bk \A is the partition Bk = \rj=1Aj \Bk, and Bk is given the conditionalprobability measure pk(E) = p(E \Aj)=p(Bk), so thatH(Bk \A) = � rXj=1 p(Aj \Bk)p(Bk) log p(Aj \Bk)p(Bk)Thus H(A=B) is the average, over the atoms of B, of the entropies H(Bk \ A).H(A=B) can be interpreted as a measure of the di�culty of guessing which atomof A and unknown point x lies in, given that it lies in a speci�c atom of B. Alter-natively, we can say that the conditional entropy H(A=B) measures the variety ofalternatives left in A if a unique alternative in B is speci�ed.Note that should \most" of every atom Bk 2 B lie inside an atom Aj 2 A thenH(A=B) will be close to zero. On the other hand, should the regions Aj and Bkbear no particular relation to one another, then H(A=B) will be not much smallerthan H(A). Any change in B which tends to \de-homogenize" the conditionalprobabilites pk(Aj) will decrease the H(Bk \ B); this will decrease H(A=B) andincrease our average earnings. This happens because such modi�cations of B permitmore reliable estimation of which atom of A a point x lies in, given the knowledgethat x is in a particular atom of B.We can obtain an \operational" interpretation of conditional entropy by imagin-ing a modi�ed guessing game. Let A denote the kernel of the precipitation functionon the microstates of the atmosphere over Omaha, and let E = B _ C denote cur-rent temperature and windspeed data for Omaha, as outlined above. Suppose thatthe Devil challenges us to guess whether or not it is presently raining in Omaha,but is now willing to inform us (truthfully) of the current temperature and wind-speed. Our di�culty of guessing whether or not it is raining in Omaha, given theinformation available to us, is measured by H(A=E).Additional motivation for the de�nition of conditional entropy is suggested byan idea due to Resniko� [19]. Consider the situation of an experimenter makingnumerical measurements of some physical quantity x. Suppose the �rst measure-ment is a \coarse" one which determines the value of x to lie within the rangex1 < x < y1. Next, perhaps by adjusting the settings of his intstruments on thebasis of this knowledge, the experimenter is able to determine that the value of xlies within the smaller range x2 < x < y2, where x1 � x2 and y2 � y1. In thissituation, it is reasonable to seek a measure of the information gained about thevalue x from this procedure. Resniko� proves that if we demand that this measurebe invariant under a�ne transformations of the real line (that is, it should not bealtered by a change of scale or by translating the nested intervals (x2; y2) � (x1; y1)to (x2+ t; y2+ t) � (x1+ t; y1+ t)), then we must take as our information measuresome positive constant multiple of the quantityI = log jy1 � x1jjy2 � x2j



AN ENTROPY PRIMER 7Note that if we take Lebesgue measure m on the real line, then this quantity hasthe form m(Aj \Bk)=m(Aj ), where the Aj and Bk are �nite length intervals; thatis, it has the same form as the terms in H(A=B), except that m is not a probabilitymeasure.Now consider what happens when we have two partitions A and B of the realline. Suppose A has the atomsA1 = (�1; a1]; A2 = (a1; a2]; : : :Ar = (ar�1;1)while B has the atomsB1 = (�1; b1]; B2 = (b1; b2]; : : :Br = (bs�1;1)Suppose that b1 = a1 and bs�1 = ar�1. De�ne A _ B as before; note that twoatoms of A _ B will be in�nite half rays (namely A1 = B1 and Ar = Br) and theremainder will be �nite intervals. If we ignore the in�nite intervals and average theinformation gain determined by each inclusion Aj \Bk � Aj, we obtain� r�1Xi=2 s�1Xj=2 m(Aj \Bk)L log m(Aj \Bk)m(Aj)where L = ar�1 � a1 = r�1Xj=2m(Aj) = s�1Xk=2m(Bk)The former expression represents the expected information gain about the valueof a1 < x < ar�1 when we re�ne the precision of our measurements. If we setp(E) = m(E)=L, then we have precisely the same form as obtained above for theconditional entropy H(B=A), where A � B.De�nition 4.2. With A;B 2 
X as before, the mutual information of A;B isI(A;B) = H(A) +H(B) �H(A _ B)Note this quantity is symmetric in A;B, unlike H(A=B). It is not hard to seethat I(A;B) = H(A)�H(A=B) = H(B) �H(B=A)= � rXj=1 sXk=1p(Aj \Bk) log p(Aj)p(Bk)p(Aj \Bk)The �rst two equalities show that I(A;B) can be interpreted in terms of our weathergame as the information that we expect to gain about whether or not is raining inOmaha when the Devil tells us the current temperature range. The striking factis that neither player need object if the roles of A and B are interchanged, sinceneither one stands to bene�t from the change! This is because A gives the sameamount of information about B as knowledge of B gives about A.It is easy to see that I(A;B) = 0 i� for all A 2 A and all B 2 B, the sets A;Bare statistically independent in the sense that p(A \ B) = p(A)p(B). At theopposite extreme, I(A;B) = H(A) i� knowledge of B determines A (up to measurezero). Thus, I(A;B) can be considered a measure of the mutual dependence, orbetter yet, the statistical correlation of A and B. It would be quite wrong to inferfrom this that A is \causing" B or vice versa.



8 CHRIS HILLMANThere is an interesting interpretation (due to J. Kelly) of I(A;B) in terms of theexpected �nancial gain in gambling games where \side information" is available;see [1] for details. 5. Formal Properties of EntropyBy \formal properties" I mean properties which do not depend upon the math-ematical nature of the symbols A;B, etc. The idea is probably best understood byconsidering some examples. The following are among the more important formalproperties satis�ed by discrete entropy and its brethern, conditional entropy andmutual information. Bear in mind that H(A=Z) = H(A), where Z is the trivialpartition.1 Quotient Rule. H(A _ B=C) = H(A=C) +H(B=A _ C).2 Chain Rule.1 The entropy of the multiple join H(_nj=1Aj) can be expandedas follows:H(A1) +H(A2=A1) +H(A3=A2 _A1) + : : :+H(An= _n�1j=1 Aj)3 Entropy Balance.I(A;B) = H(A) +H(B) �H(A _ B)= H(A)�H(A=B)= H(B) �H(B=A)4 Order Properties. If A � B, thenH(A=C) � H(B=C)H(C=A) � H(C=B)5 Redundancy. H(A _ B=A_ C) = H(B=A _ C).6 Subadditivity. H(A_ B=C) � H(A=C) +H(B=C).7 Dependency Criteria. We say that A depends on B, written A � B, i� everyatom of A is included \up to null set" in some atom of B. (Note that A � Bimplies A � B but not conversely). The following are equivalent:� A � B.� H(A=B) = 0.� H(A_ B) = H(B).8 Codependency Criteria. We say that A;B are codependent, written A � B,if their atoms can be paired o� so that they agree up to null sets. This isthe natural notion of when two partitions of X are \indistinguishable". Thefollowing are equivalent:� A � B.� H(A=B) = H(B=A) = 0.� H(A_ B) = H(A) = H(B).9 Independence Criteria. We say that A;B are independent i� for every Aj 2 Aand Bk 2 B we have p(Aj \Bk) = p(Aj)p(Bk). The following are equivalent:� I(A;B) = 0.� H(A=B) = H(A).� H(B=A) = H(B).� H(A_ B) = H(A) +H(B).1This vivid and appropriate name comes from [1].



AN ENTROPY PRIMER 9rrrpqABC @@@���r rrE Fs tE _ FFigure 1. Left: D(A; C) = D(A;B) + D(B; C) = p + q. Right:D(E ;F) = D(E ; E _ F) +D(E _ F ;F) = s + t.@@@ ���@@@��� rr rrEA BA _ Bs tt0 s0Figure 2. The Diamond Lemma says that s0 � s, t0 � t, ands + t0 = t + s0.10 Class Functions. H(�) is a class function in the sense that it is constant oneach codependency class. Similarly, H(�=�) and I(�; �) are constant on code-pendency classes, and � forms a partial order on the codependency classes.11 Metric Space. D(A;B) = H(A=B) +H(B=A) de�nes a metric on the set ofcodependency classes. In [8] I develop the entropy geometry de�ned in thisway on the poset formed by the classes of paritions A 2 
X together withthe partial order �. The following three items give a taste of this geometricpicture| note that for convenience of notation we do not distinguish betweenA and the codependency class of A.12 Chain Addivity. (See Figure 1a.) If A � B � C, then D(A; C) = D(A;B) +D(B; C).13 Lambda Property. (See Figure 1b.) We have the identity D(E ;F) = D(E ; E _F) +D(E _ F ;F).14 Diamond Lemma. (See Figure 2.) Suppose E � A;B. Then D(E ;A) �D(B;A _ B) and D(E ;B) � D(A;A _ B). Moreover,D(E ;A) +D(A;A_ B) = D(E ;B) +D(B;A _ B)The Diamond Lemma is analogous to well-known property of group indices.This is no accident; see [8][7].15 Lipschitz Continuity. Entropy is Lipschitz continuous with respect to theentropy distance. Speci�cally, jH(A) �H(B)j � D(A;B). Similarly for con-ditional entropy and mutual information.See [8] for proofs and an extensive discussion (in a more abstract context) of theintuitive signi�cance of the Quotient Rule and other formal properties of entropy.



10 CHRIS HILLMAN6. Probability OperatorsIn this section we begin to consider dynamical processes.De�nition 6.1. Let (X;M; p) and (Y;N ; q) be probability measure spaces. Themap ' : X ! Y is a measure-preserving transformation if for all E 2 M,we have pf'�1(E)g = p(E). A measure-preserving map S from (X;M; p) to itself,written (X;M; p; S), is a probability operator.This terminology is intended to suggest an analogy with linear operators. Alinear operator T is a mapping V ! V , where V is an object possessing a certainmathematical structure (linear structure) which is preserved by T . Similarly, aprobability operator S is a mapping X ! X, where X is an object possessing acertain structure (a probability measure) which is preserved by S.Given a microstate x 2 X, the sequence x; S(x); S2(x) : : : is called the tra-jectory of x under S, or the microhistory of x. Of course, we should regardmicrohistories as unknowable in practice. In the next section we will consider\macrohistories" which are observable.Example 6.2. Let D(�) = 2� (taken modulo 2�) denote the angle doubling mapon the unit circle S1. We use the natural probability measure on the Borel sets, B,of the unit circle, namely q(E) = 12� ZE d�If 0 < A < B < 2�, so that (A;B) is a typical interval on the circle, thenD�1(A;B) = (A=2; B=2) [ (� + A=2; �+ B=2)is the union of two intervals of half the length of the original. Thus, (S1;B; q;D)is a probability operator. It is called the doubling map.Note that if I is a small interval on the circle, D takes I to an interval twice aslong, so that q(D(I) = 2q(I), whereas the preimage of I is two intervals each half aslong as I itself, so that qfD�1(I)g = q(I). This may help to clarify the de�nitionof a measure preserving map.Another example of a probability operator which is easy to study is the following.Example 6.3. Let T : [0; 1]! [0; 1] be de�ned byT (x) = (2x 0 � x < 1=22� 2x 1=2 � x � 1We use the natural probability measure given by ordinary integration (or Lebesguemeasure); p(E) = RE dx. It is easy to see that the preimage of a small interval isthe union of two disjoint intervals half as long, so ([0; 1];B; p; T ) is a probabilityoperator. It is called the tent map (see Figure 3).Here is an example which is quite di�erent from the preceeding two examples.Example 6.4. Let X = fx : N ! Bg be the set of all binary sequences indexedfrom zero to in�nity, with the (p; q) Bernoulli measure. De�ne the left shift mapS : X ! X by (Sx)(n) = x(n + 1). Note that S shifts every sequence one placeto the left, \erasing" the �rst symbol as it does so. Thus, it is a two-to-one map,and the shift of the cylinder of length n > 0 Z(0; n; x) is the disjoint union of twocylinders of length n � 1. Therefore the p measure of the shift preimage of any
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xFigure 3. The tent map T (x).cylinder Z agrees with the measure of Z; this is enough to guarantee that S is ameasure preserving map. Therefore (X;M; p; S) is a probability operator. It iscalled the one-sided (p; q) Bernoulli shift.The shift map is continuous in the metric topology introduced earlier. It \in-ates" the ball of radius 2�n around x to the larger ball of radius 21�n around x,and iterating S inates the ball to the entire space in a �nite time. The preimageS�1(B) of a ball B of radius 2�n consists of two smaller balls of radius 2�n�1.The (1=2; 1=2) Bernoulli shift can be used to model the process of tossing a faircoin. Each x 2 X determines a trajectory which corresponds to one possible resultof an in�nite sequence of coin tosses, where 0 is interpreted as \tails" and 1 as\heads".We would like to have some way of comparing the \complexity" of the behaviorof various probability operators, and in particular identifying those which are ascomplex as coin tossing. The following de�nition provides the neccessary concept.De�nition 6.5. Suppose (X;M; p; S) and (Y;N ; q; T ) are probability operatorsand suppose ' : X ! Y is a measure preserving map such that ' � S = T � ';that is, such that the diagram X S����! X'??y ??y'Y ����!T Ycommutes. Then ' is a probability operator homomorphism or factor mapfrom (X;M; p; S) to (Y;N ; q; T ).If ' has an inverse map which is also an operator homomorphism, it is said to bea metric conjugacy. In this case, we can think of the two probability operatorsas being \equivalent" from the point of view of probabilistic phenomena. Thesede�nitions give a category [18] in which objects are probability operators, mor-phisms are operator homomorphisms, and composition is the ordinary compositionof mappings.Because an operator homomorphism � from (X;M; p; S) to (Y;N ; q; T ) is ontoa.e., by de�nition, we can think of (Y;N ; q; T ) as a \simpli�edmodel" of (X;M; p; S);



12 CHRIS HILLMANhence the term \factor map". (In this situation, we can also say that (Y;N ; q; T )is a factor of (X;M; p; S).) Incidently, the above de�nitions are not completelysatisfactory because of the somewhat inconsistent way in which they \ignore setsof measure zero"; therefore many authors prefer to set up the theory in terms ofslightly di�erent categories; see [6][3] for two alternative categories. However, thesedefects are too subtle to worry about here, so we have adopted the above de�nitionsbecause of their simplicity and clear analogy with linear operators.It often happens that two very di�erent appearing probability operators are infact conjugate; for instance, the (1; 1) Bernoulli shift is conjugate to the doublingmap! To see this, consider the map � : X ! S1 de�ned by�(x) = � 1Xk=0 x(k)2kSince x(k) is either zero or one for every k, we see that 0 � �(k) � 2�. Moreover,if x; y disagree in the n-th place, then j�(x) � �(y)j � 2�n, so � is one-one (exceptperhaps at the endpoints, but this doesn't matter). Now suppose [A;B) is aninterval on the circle such that A=(2�) = j2�n and B=(2�) = k2�n are \dyadicrationals"; then ��1[A;B) is a cylinder of length n. This shows that pf��1[A;B)g =q[A;B), so � is a measure preserving map. Finally, by considering separately thecases x(0) = 0 and x(0) = 1, it is not hard to see that �(Sx) = D(�x), so � givesthe desired conjugacy. (Here, � is also a homeomorphism, so in fact S and D areconjugate as topological operators as well; see [9].) This shows that the doublingmap is precisely as \chaotic" as coin tossing!The following construction is very useful for constructing new probability oper-ators which are factors of a given operator.De�nition 6.6. Let (X;M; p) be a probability measure space and suppose ' : X !Y is some map. De�ne N to be the sigma-algebra generated by all sets E � Y suchthat '�1(E) 2 M, and de�ne q by q(E) = pf'�1(E)g. Then (Y;N ; q) is a newprobability measure space, called the pushout of (X;M; p) via '.The point is that if we have a given operator (X;M; p; S) and can �nd a map' : X ! Y , where Y is just some set, such that ' � S = T � ' for some mapT : Y ! Y , then when we give Y the pushout structure via ', T becomes a newprobability operator which is automatically a factor of (X;M; p; S)! This is easyto see, sinceqfT�1(E)g = pf'�1T�1(E)g = pfS�1'�1(E)g = p'�1(E) = q(E)where I used (left to right) the de�nition of q, the fact that ' � S = T �', the factthat pfS�1(F )g = p(F ), and the de�nition of q. If X;Y are topological spaces andM is the Borel sets on X, and if ' happens to continuous �-a.e., then the pushoutis a Borel measure on Y . However, although ' is automatically \almost onto", evenif it is also \almost one-one", ' need not be a conjugacy! (This is one of the subtlede�ciencies earlier alluded to).I shall illustrate this method of �nding factors of a given probability operator byconstructing two interesting new operators which are factors of the doubling map,and thus of the (1=2; 1=2) Bernoulli shift.Example 6.7. Let L(x) = 4x(1 � x); since L maps the unit interval to itself wemay consider L to be a map L : [0; 1]! [0; 1]. It is called the logistic map (see
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Figure 4. The Logistic Map L(x) = 4x(1� x).
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x Figure 5. The transformation  (�) = sin2(�).Figure 4). If we de�ne  : S1 ! [0; 1] by (�) = sin2(�)(see Figure 5) then  is continuous and(L �  )(�) = 4 sin2(�) cos2(�)= sin2(2�)= ( �D)(�)(This shows that L is a factor of D as a topological operator; see [9].) Thereforewe can de�ne a new probability operator on [0; 1] which is a factor of the doublingmap, as follows. Let I = [a; b] be some small subinterval of [0; 1]. Then the pushout
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Figure 6. The L-invariant density on the unit interval.measure of I is �(I) = �f �1(I)g= 12� Z arcsinpbarcsinpa d�= Z ba f(x) dxwhere f(x) = 1�px(1� x)is the desired L-invariant density (see Figure 6).This implies [17] that if we iterate L on a computer, starting with various initialpoints, the trajectories of each point may be very complicated (and essentiallyunpredictable in the long term), but if we divide [0; 1] into small subintervals andmake a histogram showing how many of the �rst one million iterates fell in agiven range, we will see something that looks very much like the graph of f(x); inparticular, more iterates will fall near zero or one than fall near the center of theinterval. This regular and predictable statistical behavior constrasts strongly withthe chaotic behavior of the trajectories, each of which can be said to be a slightlysimpli�ed model of a random coin toss.Note that  is a four-to-one map except at � = n�=2; n = 0; 1; 2; 3 (where itis two-to-one). Thus, it cannot give a conjugacy. Indeed, there is no conjugacybetween L and D.
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x Figure 9. The transformation '(�).is the desired N -invariant measure on R (see 10).N is the map which arises in applying Newton's Method to the problem ofevaluating p�1, that is �nding a root of h(x) = x2+1, with an initial guess whichis real. To see this, recall that Newton's method for �nding a root of h(x) = 0,where h is di�erentiable, replaces the guess xn by xn+1, where h(x)=(xn+1�xn) =h0(x). This amounts to iterating the function h�(x) = x� h(x)=h0(x). In the caseh(x) = x2 + 1 we have h�(x) = x�1=x2 = N (x).Thus, we see that in this example, Newton's method not only fails to convergeeither of the actual roots (which are of course imaginary), but is essentially as\random" in the details of the trajectory as is a coin toss! Nevertheless, if youiterate some initial guess on the computer and make a histogram as above, we will�nd something resembling the graph of the N -invariant density g; in particular,
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Figure 10. The N -invariant density g.iterates tend to remain near the origin, and rarely stray very far away from theorigin. The density g is sometimes called \the Poor Man's Bell Curve", because itsTaylor expansion begins the same way as that of the standard normal distribution.This phenomenom well illustrates a fundamental feature [17] of ergodic probabil-ity operators: while their individual trajectories may be very badly behaved, theynonetheless exhibit a rigorous statistical regularity.To sum up: the one-sided (1=2; 1=2) Bernoulli shift and the angle doubling mapon the circle are conjugate probability operators. The tent and logistic maps onthe unit interval and the Newton map N (x) = x�1=x on Rare mutually conjugateprobability operators; these are all factors of the angle doubling map and thus, ofthe one sided (1=2; 1=2) Bernoulli shift.Suppose P is a matrix whose entries are all real numbers between zero andone, such that the row sums are always exactly one. We can consider P to de�netransition probabilities between states of a stochastic process. Suppose that wehappen to know a row vector �, whose entries are non-negative numbers adding upto one, such that P � = �. For example, we might haveP = � 1=3 2=31 0 � ; � = � 1=21=2 �TheMarkov measure on BNde�ned by the pair (P; �) gives the cylinder Z(01001)the measure �fZg = �(0)P (0; 1)P (1; 0)P (0;0)P (0; 1)and similarly for other cylinders. Note that Markov measures are de�ned in a waywhich ensures that they are shift invariant.De�nition 6.9. Let the sequence space BNbe equipped with the Markov measure� de�ned by some (P; �), and let S denote the shift map. Then the probabilityoperator (BN; �; S) is called a Markov shift.



18 CHRIS HILLMANUnlike Bernoulli shifts, sequences in Markov shifts possess statistical correlationsbetween pairs of adjacent digits, but no higher order correlations.7. A Very Brief Tour of Ergodic TheoryWe begin our tour with the very �rst theorem in this subject, proven by Poincarein 1890.Theorem 7.1 (Recurrence Theorem). Let (X;M; p; S) be any probability opera-tor. Then for all A 2 M, almost every x 2 A is recurrent in A, in the sense thatfor some k > 0, Sk(x) 2 A.This theorem has been interpreted as implying that the Second Law of Thermo-dynamics must hold only \on average". Supposedly, if you simply wait long enough,you will eventually observe small and temporary accretions of \order" (with result-ing decreases in physical entropy), because the Recurrence Theorem implies thatevery dynamical system must eventually return to states arbitrarily \close" to itsinitial state2.Proof: Let F � A be the nonrecurrent points; that is,F = fx 2 A : 8j > 0; Sj 62 Ag:CLAIM: the sets S�j(F ) are mutually disjoint.Reason: if x 2 S�k(F ), then Sk(x) 2 A, so x 62 F . Thus S�k(F ) \ F = ;;pulling back both sides by Sj shows that S�k�j(F ) \ S�j(F ) = ;.CONSEQUENCE: since S is measure preserving, we have a countably in�nitecollection of disjoint measureable sets sharing the same measure, so they must allbe null sets. In particular, F is null, which is what we wanted to show.De�nition 7.2. Suppose (X;M; p; S) is a probability operator. Then E 2 Mis said to be an S-invariant set if S�1(E)�E is a null set. Similarly, f 2L1(X;M; p) is an S-invariant function if f(S(x)) = f(x) for almost every x 2 X.Here A�B = (A [B) n (A \B) is the symmetric di�erence of A;B (the setof all x in one or the other but not both of A;B). A null set is any set of measurezero, and \for almost every x" means for all x not in some null set.We are now in a position to introduce the central notion in ergodic theory.De�nition 7.3. (X;M; p; S) is an ergodic operator if every S-invariant set hasmeasure either zero or one.We will need two more technical de�nitions. We say that the sequence of func-tions fn converges a.e. to f means that for all x 2 E, where E is some set suchthat p(E) = 1, the numbers fn(x) converge to f(x) in the usual sense of calculus.More generally, saying that something \holds true a.e." means \except on a set ofmeasure zero". Similarly, fn converges in mean to f if the integralsZ jfn � f jdp! 02The average time interval between recurrences is inversely proportional to p(A), accordingto another famous theorem, due to Kac; see [12]. In practice this means that any real isolatedphysical systemwill usually be destroyed by other physical processes long before any truly strikingentropy decreases have time to occur. This is why chemical engineers need not concern themselveswith such \thermodynamic anomalies"!



AN ENTROPY PRIMER 19(Neither of these de�nitions of convergence implies the other; see [4].)Theorem 7.4 (Basic Ergodicity Criteria). Let (X;M; p; S) be a probability oper-ator. The following are equivalent:1 LAW OF AVERAGES: For any integrable function �, the sequence of timeaverages 1n n�1Xj=0 �(Sj(x))converges a.e. and in mean to a constant. (If so, the constant in question canonly be the phase space average RX �dp.)2 LAW OF FREQUENCIES: For each E 2M, for almost every x,1n n�1Xj=0 �E(Sj (x));the frequency with which the orbit of x enters E, approaches p(E).3 ZERO-ONE LAW: Every S-invariant set has measure zero or one; i.e., theoperator is ergodic.4 LAW OF CONSTANT INVARIANTS: Every S-invariant integrable functionis constant a.e.5 TRANSITIVITY: For each pair of non-null A;B 2 M, for some n > 0, wehave S�n(A) \B non-null.The Law of Averages is the famous pointwise ergodic theorem of Birkho� (1936).The Law of Frequencies says that we can reliably estimate the probability of anevent by looking at the empirical frequencies for almost any orbit; the expressionPn�1j=0 �E(Sj(x)) simply counts the number of times the trajectory of x enters Efor 0 � j � n� 1. (Here �E is the characteristic function of E, which is de�nedby setting �E(x) = 1 if x 2 E and �E(x) = 0 otherwise.) The Zero-One Law is,of course, simply our original de�nition of what it means for (X;M; p; S) to bean ergodic operator. The Law of Constant Invariants says that the only invariantfunctions are the ones (constant functions) that are neccessarily invariant under anymeasureable mapping X ! X. Transitivity means that if one �xes some region ofphase space, i.e. some B non-null, then the probability for the iterates of a pointx 2 A non-null to visit that region is nonzero. Note how each of these equivalentcriteria adds new insight into the intuitive meaning of ergodicity.Despite their apparently very restrictive properties, ergodic probability opera-tors often arise in applications, although the ergodicity may be di�cult to proverigorously (as, for instance, in the case of billiards.) It is often easier to establishcertain \mixing" properties which imply ergodicity; see [12] or [21]. The fact thatthe ZERO-ONE LAW implies the LAW OF AVERAGES is a special case of theIndividual Ergodic Theorem, a classical \hard" theorem due to G. D. Birkho�. Fora proof of this theorem and of Theorem 7.4, see [12].We will need one more \hard" theorem concerning ergodic operators.Theorem 7.5 (Shannon-McMillan-Breiman Theorem). Let (X;M; p; S) be an er-godic operator and let A 2 
X . Let�n(x) = �1n XE2An�10 log p(E)�E(x)



20 CHRIS HILLMANThen the sequence of functions �n converges to the constant function hS(A) almosteverywhere and in mean.Note that RX �ndp = (1=n)H(An�10 ). Note also that because Theorem 7.5 saysthat a certain sequence of functions converges both almost everywhere and in meanto a certain constant function, it has the same form as the Individual ErgodicTheorem. It is not a special case of that theorem because the �n are not of theform f � Sn. Two di�erent proofs of Theorem 7.5 are given in [12].8. The Entropy of a Message SourceDe�nition 8.1. Let (X;M; p) and (Y;N ; q) be probability measure spaces and sup-pose ' : X ! Y is a measure-preserving transformation. Given B 2 
Y , withatoms Bk, the pullback of B is the element '#B 2 
X whose atoms are the sets'�1(Bk).Notice that if ' is many-to-one, several atoms of B might pull back to the sameatom of '#B. That is, we might have (for example) '�1(B2) = '�1(B5) = A3.Think again of X as the set of microstates for the atmosphere over Omaha. Wecan imagine that some probability operator (X;M; p; S) can be interpreted as the\evolution operator", such that if the weather has microstate x at time t = n,it has microstate S(x) at time t = n + 1. As we have already remarked, thetrajectory x; S(x); S2(x) : : : is not observable. However, we can hope to determinethe trajectory relative to A; that is, the sequence of atoms in which the trajectorylies. We will call this sequence the macrohistory of x relative to A.Observe that x 2 A2, S(x) 2 A1, and S2(x) 2 A4 exactly in case x 2 A2 \S�1(A1) \ S�2(A4). In short, the atoms of A_ S#A _ S#2A correspond to alter-native sequences of three successive macrostates. It is convenient to abbreviate thejoin A _ S#A_ S2#A � � � _ S(n�1)#Aas An�10 . Atoms of An�10 represent partial macrohistories.This idea is adaptable to any complex process, for instance the process by whichhuman beings produce \messages" in natural language, which suggests the followingde�nition.De�nition 8.2. Let (X;M; p; S) be a probability operator and let A 2 
X . Then(X;M; p; S;A) is a (stationary) message source.Note that every x 2 X de�nes a sequence in the �nite set A by associating thesequence A3; A2; A4; A1; A2; A2 : : : to every x such that x 2 A3, S(x) 2 A2, S2(x) 2A4, S3(x) 2 A1, S4(x) 2 A2, S5(x) 2 A2, and so forth. The set of such sequencesis the set of messaages which can be produced by the source (X;M; p; S;A). Notethat the probability that the sequence de�ned by an arbitrary x 2 X will beginwith a given �nite sequence of length n is precisely p(E), where E 2 An�10 is theatom corresponding to the �nite sequence in question.In the case of the weather in Omaha, if A is the kernel of the precipitationfunction, then (X;M; p; S;A) is a source which produces \messages" according towhether or not it is raining at a given hour in Omaha.De�nition 8.3. The source entropy of (X;M; p; S;A) ishS(A) = limn!1(1=n) �H(An�10 )



AN ENTROPY PRIMER 21It is not very di�cult to show [21][1][8] that this limit always exists and thatwe always have hS(A) � H(A). The source entropy hS(A) can be interpreted as ameasure of the information about the microhistory of a typical microhistory whichis gained from knowledge of the corresponding macrohistory. Alternatively, hS(A)measures the average variety of alternatives at each place in the sequences producedby the source.We can obtain an operational interpretation of hS(A) by imagining a third ver-sion of our guessing game, in which every hour on the hour we must guess whetheror not it is currently raining in Omaha. Clearly (1=n) �H(An�10 ) measures the vari-ety of alternative outcomes, and thus the di�culty per round of guessing, averagedover the �rst n rounds. As n grows, we are taking account of longer and longerrange statistical correlations between macrostates of precipitation in Omaha. In thelimit, we are taking account of even the most subtle and longest range correlationsbetween the weather at present and in the distant past (and future).De�nition 8.4. An information source (X;M; p;A) such that S#A is statisticallyindependent of A is called a Bernoulli source. If S#2A is statistically indepen-dent of A, (X;M; p;A) is called a Markov source. More generally, if S#nAis statistically independent of A, then (X;M; p;A) is called an n-step Markovsource.It is easy to obtain simple formulas for the entropies of Bernoulli and Markovsources. For a Bernoulli source we haveH(An�10 ) = H(A) +H(S#A=A) +H(S#2A=A10) + : : :H(S#n�1A=An�20 )= n �H(A)whence hS(A) = H(A) = � rXj=1 p(Aj) logp(Aj)For the (one-step) Markov source de�ned by (P; �) in the obvious way, we haveH(An�10 ) = H(A) +H(S#A=A) +H(S#2A=A10) + : : :H(S#n�1A=An�20 )= H(A) + (n � 1) �H(S#A=A)whence hS(A) = H(S#A=A)= � rXj=1 rXk=1 p(Aj) p(Aj \ S�1Ak)p(Aj) log p(Aj \ S�1Ak)p(Aj)= � rXj=1 rXk=1�(j)P (j; k) logP (j; k)Similarly, for a two-step Markov source we have hS(A) = H(S#2A=A10), and soforth. 9. The Asymptotic Equipartition TheoremA sequence of functions fn is said to converge in measure to f if for every" > 0, there is some N > 0 such that for all n � N , the measure of the setfx 2 X : jfn(x)� f(x)j � "g is at most ".



22 CHRIS HILLMANLemma 9.1. If fn converges in mean to f , then fn also converges in measure tof .Proof: Fix " > 0. Put En = fx 2 X : jfn(x) � f(x)j � "g. Then RX jfn � f jdp �REn jfn � f jdp � " p(En). Now we can see that if fn converges in mean to f , sothat the left hand side approaches zero as n grows without bound, then the righthand side also must approach zero; that is, fn converges in measure to f .(See [4] for an excellent discussion of the meaning and inter-relationships ofvarious notions of convergence useful in analysis.)Theorem 9.2 (Asymptotic Equipartition Theorem). Suppose (X;M; p; S) is anergodic probality operator. Given A 2 
X and " > 0, de�ne for all n > 0 thecollections T (n) = fE 2 An�10 : j(�1=n) logp(E) � hS(A)j � "gThen for all � > 0, there is some N such that for all n � N ,1 we have, for all E 2 T (n),e�nhS (A)�n" � p(E) � e�nhS(A)+n"2 we have pfx 2 X : x is in some E 2 T (n)g > 1� "3 we have (1� ") en hS(A)�n" � jT (n)j � enhS (A)+n"The E 2 T (n) are called the typical atoms of An�10 .The AEP seems counterintuitive at �rst sight, but it actually has a very graphicinterpretation. For large n, we can visualize An�10 as a \beach" of total volumeone cubic mile (say). (See Figure 11.) Most of the volume is made up of aboutenhS (A) \pebbles" each having a volume of about e�nhS (A) cubic miles. (Since nis very large, this will indeed be a pebble-sized volume, despite the unusual units.)The beach also contains on the order of en log jAj of tiny \sand grains", which are sosmall that collectively they account for at most � cubic miles of the total volume ofthe beach; nevertheless, their teeming numbers completely overwhelm the numberof pebbles (provided that log jAj > hS(A)). The beach might contain the occasional\rock" having a volume considerably larger than enhS(A) cubic miles, but there arecertainly no \boulders" with volume on the order of � cubic miles.The AEP is a suprisingly easy consequence of the Shannon-McMillan-BreimanTheorem.Proof: (1) holds for all n > 0 by de�nition of T (n). Because the �n converge inmean to hS(A), they also converge in measure to hS(A), which means that for all" > 0, there is some N > 0 such that for all n � N , the measure of the setfx 2 X : x is in some E 2 An�10 such that j(�1=n) logp(E)� hS(A)j > "gis at most ", which gives (2).Now (3) follows by combining (1) and (2). Fix n � N and let E� minimize p(E)over T (n). Then by (1), e�nhS (A)�n� � p(E�)Let E+ maximize p(E) over T (n). Then by (1),p(E+) � e�n hS(A)+n�
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Figure 11. The pebbly beach.Let Mn = jT (n)j be the number of typical atoms, and letXn = fx 2 X : x is in some E 2 T (n)gbe the union over those atoms. ClearlyMn p(E�) � p(Xn) � Mn p(E+)But by (2), 1� � � p(Xn), so on the one hand we have1� � � p(Xn) � Mn p(E+) � Mn � e�nhS(A)+n�whence (1� �) enhS(A)�n� � Mnand on the other hand, we haveMn e�nhS(A)�n� � Mn p(E�) � p(Xn) � 1whence Mn � enhS(A)+n�



24 CHRIS HILLMAN10. Data CompressionThe AEP gives one interpretation of the \meaning" of the source entropy. Toexplain an alternative interpretation, we require the concept of block coding.De�nition 10.1. Let (X;M; p; S;A) be a message source. Recall that An�10 maybe identi�ed with the set of alternative sequences of length n which may be producedby the source. Suppose � : An�10 ! W , where W is some �nite set of codewords,perhaps W = f01302; 2201; : : :g. The corresponding block code assigns a sequencein W to every x 2 X, as follows. Suppose x 2 E1 2 An�10 ; Sn+1(x) 2 E2 2 An�10 ,and so forth. Then assign to x the sequence �(E1); �(E2); : : : . This code is said tohave block length n.Generally speaking, larger n allow a block code to take advantage of \longerrange" statistical correlations between earlier and later letters in sequences pro-duced by the source, and thus the e�ciency of optimal codes of length n generallyincreases (perhaps very slowly) as n increases. The key idea, due to Shannon [20],is that as long as we have enough codewords to code up the typical atoms in An�10 ,with at least one left over to serve as a \ag", we can obtain a workable n-blockcode.Theorem 10.2 (Data Compression Theorem). Suppose (X;M; p; S) is an ergodicoperator and A 2 
X . Let d = hS(A)= log r where r = jAj is the number of atomsin the partition A. Then for all � > 0, there exists N such that for all n � N , wecan �nd a block coding with block length n of sequences produced by (X;M; p; S;A)such that the mean codeword length,� = XE2An�10 p(E) � �(E)(where �(E) is the length of the code word assigned to E 2 An�10 ) satis�es� � n (d+ 2�)In short, the fraction by which typical sequences produced by (X;M; p; S;A)can be \compressed" by using block coding is d = hS(A)= log r. The followingingenious proof, which involves the idea of a \randomly chosen coding", is due toShannon [20].Proof: By the AEP we can �nd N such that for all n � N , p(Xn) > 1� � andMn � enhS (A)+n� = rn(d+�)= log rwhere Xn is the union of the typical atoms in An�10 andMn is the number of typicalatoms in An�10 . Now we can encode the typical atoms in An�10 by assigning each anarbitrary word of length n(d+�); if n is su�ciently large, this will leave one word oflength n(d+ �) left over to serve as a \ag". We can encode the atypical atoms bypre�xing the ag followed by a literal quote of the base r sequence correspondingto the atom. This means that each typical atom will be encoded by a codewordof length nd + n�= log r � n(d + �), whereas atypical atoms will be encoded by acodeword of length at most n(1 + d+ (�= log r)) � n(1 + d+ �). Therefore,� � (1� �) � n(d+ �) + � � n(1 + d+ �)= n(d+ 2�)



AN ENTROPY PRIMER 2511. Conditional Entropy and Information RatesJust as we took limits of entropies in order to de�ne the source entropy, we cantake limits of conditional entropies and mutual informations.De�nition 11.1. Let (X;M; p; S) be a probability operator and let A;B 2 
X .Then the conditional entropy rate of A given B ishS(A=B) = limn!1(1=n) �H(An�10 =Bn�10 )Similarly, the information rate between A;B isiS (A;B) = limn!1(1=n) � I(An�10 ;Bn�10 )It is not hard to see that hS(A=B) = hS(A_ B) � hS(B) and thatiS(A;B) = hS(A) + hS(B) � hS(A_ B)= hS(A) � hS(A=B)= hS(B) � hS(B=A)Both conditional entropy and information rates can be understood by consideringa fourth version of our guessing game. In this version, every hour on the hour, theDevil informs us (truthfully) about the current temperature range in Omaha, andwe must guess whether or not it is presently raining there. Now hS(A=B) measuresthe variety of outcomes, or the di�culty of guessing correctly, averaged over manyrounds, and iS(A;B) measures the average information gained per hour from whatthe Devil tells us concerning the current temperature.The quantities hS(A), hS(A=B), iS (A;B), and so forth, satisfy numerous formalproperties analogous to those satis�ed by H(A), H(A=B), I(A;B) and so forth.For more information about these formal properties see [8].The following result is a fundamental extension of the Equipartition Theorem.It was �rst found by Shannon [20] but the �rst correct proof did not appear forsome years after that.Theorem 11.2 (Joint Asymptotic Equipartition Theorem). Suppose (X;M; p; S)is an ergodic probability operator. Given A;B 2 
X and " > 0, de�ne for n > 0the following collections of atoms:1 J(n) is the set of all E \ F 2 (A_ B)n�10 such thatj(�1=n) logp(E \ F )� hS(A_ B)j � �;j(�1=n) logp(E) � hS(A)j � �;j(�1=n) logp(F )� hS(B)j � �;2 K(n) = fE 2 An�10 : E contains some E \ F 2 J(n)g,3 L(n) = fF 2 Bn�10 : F contains some E \ F 2 J(n)g,Then there exists N > 0 such that for all n � N ,1 we have that for all E \ F 2 J(n),(a) e�n hS(A_B)�n" � p(E \ F ) � e�n hS(A_B)+n",(b) e�n hS(A)�n" � p(E) � e�nhS(A)+n",(c) e�n hS(B)�n" � p(F ) � e�nhS (B)+n",(d) e�n hS(A=B)�2n" � p(E\F )p(F ) � e�n hS(A=B)+2n",(e) e�n hS(B=A)�2n" � p(E\F )p(E) � e�n hS(B=A)+2n",



26 CHRIS HILLMAN(f) e�n iS(A;B)�3n" � p(E) p(F )p(E\F ) � e�n iS(A;B)+3n",where E 2 An�10 and F 2 Bn�10 are the unique atoms in An�10 and Bn�10 ,respectively, which contain the given atom E \ F 2 J(n),2 we have(a) pfx 2 X : x 2 E \ F 2 J(n)g > 1� ",(b) pfx 2 X : x 2 E 2 K(n)g > 1� ",(c) pfx 2 X : x 2 F 2 L(n)g > 1� ",3 we have(a) (1� ") en hS(A_B)�n" � jJ(n)j � enhS (A_B)+n",(b) (1� ") en hS(A)�n" � jK(n)j � en hS(A)+n",(c) (1� ") en hS(B)�n" � jL(n)j � enhS (B)+n".The E \ F 2 J(n) are called jointly typical atoms. Pairs (E;F ), whereE 2 An�10 and F 2 Bn�10 and E \ F 2 J(n), are called jointly typical pairs.Proof: Note �rst that (1abc) follow directly from the de�nition and (1def) followeasily from (1abc); for instanceP (E \F )p(F ) � e�nhS(A_B)+n" enhS(A)+n"= e�nhS(A=B)+2n"By the Shannon-McMillan-Breiman Theorem, the functions�n = �1n XE2(A_B)n�10 log p(E)�Econverge to hS(A_B) in mean, and therefore also in measure. Thus there is someN1 such that for all n � N1, the measure of the setfx 2 X : x 2 E \ F 2 (A_B)n�10 such thatj(�1=n) logp(E \F )� hS(A_ B)j � "gis at most "=3. Similarly, there is some N2 such that for all n � N2, the measureof the setfx 2 X : x 2 E 2 An�10 such thatj(�1=n) logp(E) � hS(A)j � "gis less than "=3, and there is some N3 such that for all n � N3, the measure of theset fx 2 X : x 2 F 2 Bn�10 such thatj(�1=n) logp(F )� hS(B)j � "gis less than "=3. Now take N to be the maximum of N1, N2, and N3. Now the setfx 2 X : for all E \F 2 J(n); x 62 E \ Fgevidently has measure at most ", for all n � N , so the setfx 2 X : for some E \ F 2 J(n); x 2 E \ Fghas measure at least 1� " for all n � N , as claimed in (2a). This set is included inthe sets mentioned in (2bc), so we have now proven (2abc). Finally, (3abc) followby the same argument used in the Equipartition Theorem.



AN ENTROPY PRIMER 27This theorem shows that for jointly typical pairs (E;F ), we havep(E) � e�nhS (A)p(F ) � e�nhS (A)p(E \ F ) � e�nhS (A_B)p(E \ F )p(F ) � e�nhS (A=B)p(E \ F )p(E) � e�nhS (B=A)p(E)p(F )p(E \ F ) � e�n iS(A;B)This gives a very intuitive signi�cance to these dynamical entropies. For instance,the information source (X;M; S;A) might be used as the input into a noisy com-munication channel, whereas (X;M; S;B) could denote the output from the chan-nel (assuming that the noise sometimes alters zeros to ones and vice versa, butdoes not introduce new symbols). Then iS (A;B) denotes the asymptotic rate atwhich we can extract information about the source (X;M; S;A) using the source(X;M; S;B). References1. Thomas M. Cover and Joy A. Thomas, Elements of information theory. Wiley, New York,1991.2. Robert L. Devaney, An introduction to chaotic dynamical systems. Second edition. New York:Addison-Wesley, 1989.3. Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compactspaces. Springer, New York, 1976.4. Gerald B. Folland, Real analysis: modern techniques and their applications. New York: Wiley,1984.5. Silviu Guiasu and Abe Shenitzer, `The principle of maximal entropy'.Math. Intelligencer 7:1(1985), pp. 42{48.6. P. R. Halmos, `The foundations of probability', in The Chauvenet papers. Volume I. J. C.Abott, Ed. Mathematical Association of American, 1978.7. Chris Hillman, `Symmetry and information', forthcoming.8. |, `A formal theory of information'. Preprint, 1995.9. |, `All entropies agree for an SFT', Preprint, 1995.10. |, `What is Hausdor� dimension?' Preprint, 1995.11. |, `What is information?' Preprint, 1995.12. |, `Measure-theoretic entropy'. Preprint, 1993. All of my preprints are available at the URL<http://www.math.washington.edu/~hillman/personal.html>13. Nathan Jacobson, Basic algebra. Two volumes. Second Edition. W.H. Freeman, N.Y. 1989.14. AnatoleKatok and Boris Hasselblatt. Introduction to the modern theory of dynamical systems.Cambridge: Cambridge University Press, 1995.15. A.I. Khinchin, The mathematical foundations of information theory. Dover, N.Y., 1957.16. Douglas Lind and Brian Marcus, Introduction to Symbolic Dynamics and Coding, to appear.17. Andrzej Lasota and Michael C. Mackey, Chaos, fractals, and noise: stochastic aspects ofdynamics. New York: Springer-Verlag, 1994.18. Saunders Mac Lane, Categories for the working mathematician. Second Edition. Springer-Verlag, N.Y., 1971.19. Howard L. Resniko�, The illusion of reality. New York: Springer, 1989.20. C.E. Shannon, `A mathematical theory of communication', in C. E. Shannon and WarrenWeaver, The mathematical theory of communication. University of Illinois Press, Urbana,1949.
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