- Steven Roman

)

Introduction to
Coding and .
Information Theory

With 50 illustrations

) Springer

CHAPTER

An Introduction to
Codes

1.1 Strings and Things

Modular Arithmetic in Z,

If nis a positive integer, we let Z, denote the set {0, 1, ..., n—1} consisting

of the first n non-negative integers. Much of what we will do in this book
(especially in the coding theory portion) involves this set.
If o and B are integers, the following three conditions are equivalent.

1. a — B is divisible by n
2. there exists an integer k for whicha = 8 + kn
3. « and B have the same remainder when divided by n.
If any (and hence all) of these conditions hold, we say that « and B

are congruent modulo n, and write

a = f(modn)

Example 1.1.1

1. 5 =3(mod2)
2. 178 = 17(mod?7)
3. —4 = 12(mod4)

26 \ 1. An Introduction to Codes

4. 15 = 0(mod5)
5. 4 % 6(mod3)
6. 14=9=4=-1= —6(mod5) o

Given an integer «, there is exactly one integer k in Z,, that is congru-
ent to , that is, for which k = a(modn). Put another way, in Z,, there
exists a unique solution to the equation

x = a(modn)

This solution is simply the remainder obtained by dividing « by n and is
referred to as the residue of « modulo n. It can also be found by adding, or
subtracting, a suitable multiple of n in order to produce a number in Z,.
For instance, the residue of 25 modulo 7 is found by subtracting 3-7 = 21
from 25, to get 4. That is, 4 = 25 (mod 7), where 4 € Z;.

We can define two algebraic operations, known as addition modulo -
n and multiplication modulo n, on the set Z,. If x,y € Z,, we set

x ®n y = the remainder obtained by dividing x + y by n
and
X ®, y = the remainder obtained by dividing xy by n
Hence, x @, y = (¥ + y) (mod n) and x ®, y = xy (mod n).

Example 1.1.2
1. In Z5,

3®s 4

2and3®52 =1
2. II’lZlo,

7@108=531’1d7®108=6 d

The set Zy, together with the operations of addition and multiplica—
tion modulo n, is referred to as the integers modulo n. It is customary,
whenever the context makes it clear, to use the ordinary symbols + and

., instead of @, and ®,, and we will also follow this custom.

The Field Z,

In Z,, addition and multiplication modulo 2 are described by the
following tables.

Addition modulo 2 Multiplication modulo 2
+ 0 1 . 0 1
0 0 1 0 0 0
1 1 0 : 1 0 1

The Field Z,

Our main interest in the set Z, is when p is a prime. The reason is that,
when p is a prime, addition and multiplication modulo p have much nicer
properties than in the nonprime case. The following theorem is a case in
point.

Theorem 1.1.1 The following property holds in Z, if and only if n is a
prime

" af = 0Oimpliesa = 0or B =0

Proof Letn = p be a prime and suppose that B = 0 in Z,. This is
equivalent to af = 0 (mod p), which holds if and only if p divides a8.
Since p is a prime, it divides the product «f if and only if it divides at
least one of the factors. But if p divides a then ¢ = 0 (mod p); that is,
a = 0in Z,. Similarly, if p divides g then B = 0 (mod p); thatis, 8 = 0 in
Zp.

To see that the property does not hold in Z,, when n is not a prime,
observe that, if n is not prime, it has the form n = aB, where 2 < a,8 <
n — 1. Hence, a and B are nonzero elements of Z,, and

af = n = 0(modn)
that is, aB = 0 in Z,. :]

The set Z,, together with the operations of addition and multiplication
‘modulo p, forms a field. Before giving a formal definition, we need to
define the concept of a binary operation on a set.

Definition Let S be a nonempty set. A binary operation on Sisa
function % : § x § — §, from the set § x S of all ordered pairs of elements
of § to S. We usually denote *((«, B)) by a * B. 0O

28

1. An Introduction to Codes

For example, ordinary addition of real numbers is a binary operation
+R x R — R, where +(a, B) is almost always written a + B.
Now let us give a formal definition of a field.

Definition A field is a nonempty set F, together with two binary opera-
tions on F, called addition (denoted by +) and multiplication (denoted
by juxtaposition), satisfying the following properties.

Associative properties: For all ¢, B, and y in F,

a+(B+y)=(a+pB)+yanda(fy) = (ef)y
Commutative properties: For all @ and B in F,
a+p=p+candaf = Bu
Distributive property: For all ¢, f and y in F,
a(B+y) = +ay

Properties of 0 and 1: There exist two distinct special elements in F,
one called the zero element and denoted by 0 and the other called the
identity element and denoted by 1, with the properties that, foralla € F,

O+og=a+0=aandl - a=a-1 =«

Inverse properties: For every ¢ € F, there exists another element in F,
denoted by —a and called the negative of «, for which :

a+(—a)y=(—a)+a=0

For every nonzero «¢ € F, there exists another element in F, denoted by
o~ ! and called the inverse of «, for which

a-(@N=(@H)a=1 O

The most familiar fields are the sets QQ of rational numbers, R of real
numbers, and C of complex numbers, each with ordinary addition and
multiplication. However, it happens that, for every prime power g = p",
there is a field of size g. In fact, there is essentially only one field for each
prime power. For g = p a prime, this field is easy to describe, for it is just
the integers modulo p.

Theorem 1.1.2 The set Z, of integers modulo n is a field if and only if n
iS a prime number.

The Field Z,

Proof Suppose first that n = p is a prime. We will not establish all of

the properties in the definition of field, but show only that every nonzero
element a of Z, has an inverse. Consider all possible products of & with
the elements of Z,

{aB| B € Zyp}

These p products are distinct, for if 8 = af then ¢(8 — ') = 0 and
Theorem 0.1.2 gives 8 — B/ = 0, whence B8 = . Since the p products
are distinct, they represent every element in Z,. In particular, one of the
products must equal 1, that is, «f = 1 for someé B € Z,. By commutativity
we also have Ba = 1 and so B is the inverse of a.

If nis not a prime, then n = «f for some nonzero ¢, 8 € Z,. It follows
that @8 = 0 in Z, and so a cannot have an inverse. For if a~! did exist,
then we would have |

B=al@B) =al0=0

-which is not the case. Since the nonzero element a does not have an
inverse, the set Z, cannot be a field. |

Example 1.1.3 Since 2 + 5 = 0 in Z,, the negative of 2 is 5. In symbols,
—2 = 5. Note that this is true only in Z;, using addition modulo 7. It is
certainly not true in the familiar field of real numbers.

Since 2 -4 = 1 in Z,, the inverse of 2 is 4, that is, 271 = 4. Again, this
is true only in Z;, and not in the field of real numbers. O

When p is not.a prime, all of the properties in the definition of a field
hold except that not all nonzero numbers have inverses. However, since
Zy, is not a field if n is not prime, many other properties that hold in Z,
do not hold in Z,. Theorem 1.1.1 is a case in point.

The field Z, of integers modulo 2 has an interesting property not
shared by the other fields Z, forp > 2. Since 1 + 1 = 0 in Z;, we have
1 = —1. Certainly 0 = -0, and so, if e is either 0 or 1, then

e—e=¢e+(—€)=¢€e+e

In other words, in Z,, each element is its own negative and subtraction
is the same as addition. Note that this is not true in Zy, forp # 2.

“We should caution against confusing addition modulo 2 in Z; with
addition of binary numbers. In Z;, we have 1 +1 = 0, but for addition of
- binary numbers, we have 1 + 1 = 10.

29

30

1. An Introduction to Codes

Strings
The concépt of a string is fundamental to the subjects of coding and
information theory. Let S = {s1,8;,...,8,} be a finite, nonempty set,

which we refer to as an alphabet. A string, or word, over § is simply a
finite sequence of elements of S. For instance, if S = {¢, 8, 1, 2} then

B,al,1182, and 2222

are strings over 8. A sequence does not have to be meaningful in some
language to qualify as a word. For instance, if S = {a, b, ¢, ..., z}, then xyah
is a word over S, even though it is not a word in the English language. The
terms string and word are synonymous and will be used interchangeably.

Strings will be denoted by boldface letters, such as x, yand z. If x =
X1X - - - Xk is a string over S, then each x; in x is an element of x. The
length of a string x, denoted by len(x), is the number of elements in the
string. .

The juxtaposition of two strings x and y is the string xy. For instance,
the juxtaposition of x = 101 and y = 1000 is xy = 1011000. If a string
has the form z = xy, we say that x is a prefix of z. For instance, 110 is a
prefix of 1101010. It is clear that '

len(xy) = len(x) + len(y)

The set of all strings over § is denoted by §*. We also include in §* the
empty string, denoted by 6 (the Greek letter theta), and defined to be the
string with no elements. Thus, len(f) = 0. If n is a non-negative integer,
the set of all strings over S of length n is denoted by §”, and the set of all
strings over S of length n or less is denoted by S,. Thus, S* C S, C §*.
Note that 8° = Sy consists of just the empty string.

A string over Z, = {0,1} is called a binary string. Each of the ele-

- ments 0 and 1 is called a bit, which is a contraction of binary digit. For

instance, 011101 is a binary string of length 6. The complement x° of a
binary string x is defined to be the string obtained by replacing all 0s by 1s
and all 1s by 0s. For instance, (11001)° = 00110. A string over Zz = {0, 1, 2}
is called a ternary string.

If 0 is in the alphabet, then the stringzero string 00- - - 0 is denoted
by a boldface 0. If 1 is in the alphabet, the string consisting of all 1s is
denoted by a boldface 1. For instance, in Z3, we have 0 = 00000 and 1
= 11111. If 0 < i < n, the notation e; is reserved strictly for the string all

Strings

of whose elements are 0 except for a 1 in the ith position. For instance,

. 4-
in Zj,

e; = 1000, e; = 0100,e3 = 0010,e, = 0001

" InZs, we have e; = 10000. Thus, there is some ambiguity in this notation,

since there is a different string e; in each Z, with n > i. However, this
should not cause any problems, since the context will always resolve any
ambiguity.

The next theorem tells us how many strings there are in §” and §,,.

Theorem 1.1.3 Let S be an alphabet of size k > 1. Then
kn+1 -1

1 Sn =kn 2 S =
) I8) 18] = ——

- Proof For part 1), note that each string in 8" can be formed by picking

one of the k symbols in S for the first position, one for the second position,
one for the third position, and so on. Because there are k choices for each
of the n positions, the number of strings that can be formed in this way
is k™. That is, |S"| = k™.

For part 2), we use the results of part 1),

1Sal = 18%] + [S'} + -+ + |8

. n+l __
1+k+k2+-~-+k"=k——l N
k—1

Theorem 1.1.4

1. In Z7, the number of strings with exactly k 0s is (Z)

2. InZ7, the number of strings with exactly k 0s is (3)(r — 1)* .

Proof Part1) follows from the fact that there is one such string for every
way of choosing k of the n positions in which to place the 0s. Part 2) is
similar, and left as an exercise. [|
Example 1.1.4

1. The set Z§ has size 2 = 256. Furthermore, there are (3) = 56 binary
strings in Z containing exactly three Os.

2. The set Z§ has size 3° = 729. There are ()2* = 240 strings in Z§ that
contain exactly two Os.

3. The number of strings in Z3° that contain exactly three Os and exactly
two 1s is (})(])3° = 612360. This follows from the fact that there are

31

32

1. An Introduction to Codes

() ways to choose the 3 positions for the 0s, then there are (}) ways
to choose 2 of the remaining 7 positions for the two 1s and, finally,
there are 3° ways to fill in the remaining positions with any of the 3
other elements of Zs. ‘

4. The number of strings in Z}? with at least nine Os is

12 12 12 12
6% + 62 + 6 + = 49969 C
9 10 11 12

Exercises

~

. Write out the addition and multiplication modulo 3 tables for Z;.

. Show that the cancellation law

aff = ay,x # 0implies g = y
holds in Z,, p a prime. Does it hold in Z, when n is not prime?
Find the following residues
a) 23 (mod 11)
b) —17 (mod 3)
c) 1345 (mod 5)
d) 1232456 (mod 2)
e) 133 (mod 3)
f) —1793 (mod 5)

. Find the following inverses

a) 37'inZs
b) 371in Z,
C) 8_1 in le

. How many strings are there in Zg that contain exactly four 0s? Hov

many strings are there that contain exactly three 0s and two 1s?

. Show that there are (})(r — 1)"~* strings in Z! containing exactly k Os

How many strings are there in Z§ with at most two 0s?

8. How many strings are there in ZZ° with at least two 0s?

1.2. What Are Codes? 33

- 9. How many strings are there in Z] that contain exactly k nonzero
elements?

10 Prove that1 + k + k% + .-+ + k" = l;f"k”.
-11. In Z7%, show that

2) (x +yF =X+ 5"

b) x°+y“_=k+y.a.

For the next exercises, we use the following concept (which will be
defined more formally later in the text). The distance between two strings
of the same length is the number of positions in which these strings differ.
For instance, d(0011, 0110) = 2, since these two strings differ in 2 places
(the second and fourth).

~~ 12. Letx be a string in Z?". Show that there are (*)(r—1)* strings in Z" that
have distance k from x.

13. If x and y are binary strings of length n, find expressions for
a) d(x%,y)
b) d(x°,y°)
in terms of d(x, y).

14. Show that if x, y, and z are strings of the same length, then

d(x,y) <d(x,2z) + d(z,y)

This is known as the triangle inequality.

1.2 What Are Codes?

A code is nothing more than a set of strings over a certain alphabet. For
example, the set

€ = {0, 10, 110, 1110}

~is a code over the alphabet Z,. Of course, codes are generally used to
~ encode messages. For instance, we may use C to encode the first four
letters of the alphabet, as follows

34

1. An Introduction to Codes

a—0

b — 10
c— 110
d — 1110

Then we can encode words (or messages) built up from these letters. The
word cab, for instance, is encoded as

cab — 110010
These ideas lead us to make the following definitions.

Definition LetA = {ai,4ay,...,a,} be a finite set, which we call a code
alphabet. An r-ary code over A is a subset C of the set A* of all words
over A. The elements of C are called codewords. The number r is called
the radix of the code. a

The most commonly used (and studied) alphabet is the set Z,. _Cod'es
over Z, are referred to as binary codes. Codes over the alphabet Z; are
referred to as ternary codes. '

Definition LetS = {s),s3,...,5;} be a finite set, which we refer to as a
source alphabet. Let C be a code. An encoding function is a bijective
functionf : S — C, from Sonto C. If Cis a code and f : § — C is an
encoding function, we refer to the ordered pair (C,f) as an encoding
scheme for S. O

Because an encoding function is bijective (that is, both one-to-one and
onto), it associates to each source symbol in the source alphabet one and
only one codeword. Moreover, every codeword is associated to a source
symbol. This makes it possible to decode any sequence of codewords.

Example 1.2.1 The 26 letters of the alphabet can be encoded as follows.
Let the source alphabet be S = {a,b,c, ..., z}, let the code alphabet be
A =1{0,1,...,9},andletthe codebe C = {00,01,02,...,25}.Letf : S —> C
be defined by -

f(a) = 00, f(b) = 01, f(c) = 02, f(d) = 03, f(¢) = 04,
£0) = 05, f(8) = 06, f(k) = 07, f(i) = 08, £(j) = 09,
f(K) = 10, f(I) = 11, f(m) = 12, f(n) = 13, f(0) = 14,
fp) = 15, £(@) = 16, £(r) = 17, f(s) = 18, f(t) = 19,
flw) = 20, f(v) = 2L, f(w) = 22, f(x) = 23, f(¥) = 24,

f(z) = 25

1.2. What Are Codes?

TABLE 1.2.1 The ASCII Encoding Scheme (Partial)

A — 01000001 | J - 01001010 | S - 01010011
B — 01000010 | K — 01001011 | T — 01010100
C — 01000011 | L — 01001100 | U — 01010101
D — 01000100 | M — 01001101 | V — 01010110
E — 01000101 | N — 01001110 | W — 01010111
F — 01000110 | O — 01001111 | X — 01011000
G — 01000111 | P — 01010000 | Y — 01011001
H — 01001000 | Q — 01010001 | Z — 01011010
I — 01001001 | R — 01010010 | space — 00100000

This encoding function may be used to encode any message. For instance,
math is fun — 120019070818052013

. We purposely used two-digit numbers for each codeword. If we had

‘taken the code tobe C' = {0,1, 2,3,4,5,6,7,8,9,10,..., 25}, then unique-
ness problems would have arisen. For instance, the string 1019 could have
resulted from several different messages,

bat — 1019, babj — 1019, kt — 1019

We will discuss the problem of uniqueness later in this chapter. O

Example 1.2.2 Table 1.2.1 shows a portion of a very commonly used
code, known as the ASCII code. The acronym ASCII stands for American
Standard Code for Information Interchange. This code is used by micro-
computers to store characters in memory or on storage media. In this
case, the complete source alphabet consists of all upper- and lower-case
letters, punctuation marks, and various other symbols. The code consists
of all binary numbers from 0000000 to 1111111, that is, from 0 to 127 dec-
imal. (The extended ASCII code, adopted by many personal computers,
consists of 8-bit binary numbers.)

For instance, the ASCII code for the upper-case letter A is 1000001 (or
65 decimal). The first thirty-three ASCII codes (not shown in the table) are
used for control characters, that is, characters that control the operation
of a monitor, printer, or other device. For instance, the decimal number
12 (00001100 binary) is the ASCII code for a form feed, and 7 (00000111
binary) is the ASCII code for tintinnabulation. O

35

36

1. An Introduction to Codes

Codes can be divided into two general types as follows.

Definition A fixed length code, or block code, is a code whose code-
words all have the same length n. In this case, the number n is also called
the length of the code. If a code C contains codewords of varying lengths,
it is called a variable length code. O

Fixed length codes have advantages and disadvantages over variable
length codes. One advantage is that they never require a special symbol to
separate the characters in the message being coded. For example, consider
the encoded ASCII message

01000011010011110100010001000101

Because the (binary) ASCII code is a fixed length code whose codewords
have length 8, we know that the first 8 bits represents the first character
of the original message, which according to Table 1.2.1, is C. Similarly,
the second set of 8 bits represents the second character in the message,
namely O. Continuing in this way, we decode the message to get the word
CODE.

Perhaps the main disadvantage of fixed length codes, such as the ASCII
code, is that characters that are used frequently, such as the letter e, have
codes as long as characters that are used infrequently, such as the space
character. On the other hand, variable length codes, which can encode
frequently used characters using shorter codewords, can save a great dea
of time and space. We will discuss both types of codes in this book.

Exercises

1. Suppose you require a binary block code containing 126 codewords
What is the minimum possible length for this code?

2. Suppose you require a binary block code containing n codewords
What is the minimum possible length for this code?

3. How many encoding functions are possible from the source alphabe
S = {a, b} to the code C = {0, 1}? List them.

4. How many encoding functions are possible from the source aiphabe
S = {a, b, c} to the code C = {00, 01, 11}? List them.

1.3. Uniquely Decipherable Codes

5. Find a formula for the number of encoding functions from a source
alphabet of size n to a code of size n.

6. How many r-ary block codes of length n are there over an alphabet
A? How many binary codes are there of length 5?

7. How many r-ary codes are there with maximum codeword length n
over an alphabet A? What is this number for r = 2 (binary codes) and
n =57

1.3 Uniquely Decipherable Codes

One of the most important properties that a code can possess is unique
decipherability. Informally speaking, this means that any sequence
of symbols can be interpreted in at most one way as a sequence of
" codewords. More formally, we have the following definition.

Definition A code C over an alphabet A is uniquely decipherable if,
for every string x;x; - - - x, over A, there exists at most one sequence of
codewords c;C; - - - €y, for which

CiC2 -+ Cy = X1X3++ Xy
Put another way, a code is uniquely decipherable if no two different
sequences of codewords represents the same string over A, in symbols,
if
ciCy---¢, = didy---d,,
for codewords ¢; and d;, then m = n and
cp =dy,c, =d;...,c, =d, d
Example 1.3.1 Consider the following codes
C; ={¢c, =0,¢c;, = 01,¢c3 = 001}, C, ={d, =0,d, = 10,d; = 110}

Code C; is not uniquely decipherable, since the string 001 represents
either the single codeword c; or the string c,c;. On the other hand, C,
is uniquely decipherable, since any string corresponds to at most one
sequence of codewords. For instance, consider the string

- 1000110

37

38

1. An Introduction to Codes

Reading from left to right, we see that 1 is not, by itseif, a codeword. But
10 is. Furthermore, only one codeword begins with 10 so 10 must be d,

10/00110
d;|

Next, we come to a 0, which must represent d,, since no other code-
word begins with 0. Continuing in this way, we see that this string
represents only one sequence of codewords.

To prove that C; is uniquely decipherable, we will be content with giv-
ing a set of observations that show that any given sequence x of codewords
can be interpreted in only one way. In this case, we have the following
observations, assuming that x is read from left to right.

1. If we encounter a 0, this must represent d;.
2. If we encounter a 1 followed by a 0, this must represent d,.

3. If we encounter a 1 followed by another 1, the next element must be
a 0 and so this must represent d;. 0O

Speaking loosely, if a code is uniquely decipherable, then it cannot
have very many short codewords. To illustrate this point, if the word
010011 of length 6 is a codeword, then the words 010 and 011 of length
3 cannot both be codewords. We can be more precise about codeword
lengths in the following theorem, known as McMillan’s Theorem (first
published in 1956).

Theorem 1.3.1 (McMillan's Theorem) Let C = {cy,¢c3, ..., Cq} be an r-ary
code and let £; = len(c). If C is uniquely decipherable, then its codeword
lengths £, £5,. . ., £5 must satisfy

1
A

Proof The following proof is the usual one given for this theorem, al-
though it is not particularly intuitive. Suppose that ¢; is the number of
codewords in C of length j. Then we have

where m = max;{¢;}.

1.3. Uniquely Decipherable Codes 39

Now let u be a positive integer, and consider the quantity
u
DA [L .
) 14 r 14 rm

Multiplying this out gives

@, o, Z @i &g, - - - &,
i ri1’+--~+i,,

1<ij<m 151')-_<_m

1,12, lu i1,i2,.,ip

Now, since 1 <i; < m, eachsumi; + --- + i, is at least u and at most um.
Collecting terms with a common sum 1i; + --- + i, we get

um 1 um Nk
B F) BN
1 + k

k=u "'+ill=

where

Ny = Z Q; O, * - QG
iy 4ot =k
Now we are ready to use the fact that the code is uniquely decipher-
able. Recalling that «; is the number of codewords in C of length i, we see
that ‘

Oty Qg+« - O,

is the number of possible strings of length k = i; + --- + i, consisting of
a codeword of length i;, followed by a codeword of length i, and so on,
ending with a codeword of length i,.
Hence, the sum Ny is the total number of strings c; - - - ¢, of length
k made up of exactly u codewords. Since C is uniquely decipherable, no
two sequences of u codewords can yield the same string of length k and
so there can be at most r* such sequences of codewords, since r* is the
total number of strings of length k from an r-ary alphabet. In other words,

and so

40

1. An Introduction to Codes

Taking uth roots gives

>
b
%
RS
A
=b—‘

~
N
2
N

=1

Since this holds for all positive integers u, we may let u approach oco. But
u’“m* — 1 as u — oo, and so we must have

m .
> <1 .
k=17
The inequality in McMillan’s Theorem is called Kraft’s Inequality.
McMillan’s Theorem confirms that, for a uniquely decipherable code,
the codeword lengths must be reasonably large. (The numbers £; must be
large in order to make the terms 1/r% small.)

Example 1.3.2 Suppose we desire a binary code consisting of six code-
words, but we restrict the codeword lengths to a maximum of 2. (That
is, ¢, < 2fori = 1,2,...,6.) Since there are precisely six nontrivial
strings over {0, 1} of length at most 2, our code must consist of these six
strings. That is, C = {0,1,00,01, 10, 11}. But this code is not uniquely
decipherable. (The string 01, for example, has two interpretations.) ,
In this case, the “shortness” of the codewords forces us to use code-
words, such as 01, that are made up of smaller codewords (0 and 1) This
prevents the code from being uniquely decipherable.
Of course, we could have used McMillan’s Theorem to tell us that such
a code could not be uniquely decipherable. For, in this case, £; < 2 for all
i. Hence, r% < r? and so
1 1
)

Thus, since r = 2, we have

~1_v1_ ¢l |
>, Al Z i Z 2" 31>1
k=1 k=1
This tells us that Kraft's inequality does not hold for this code, and so it
cannot be uniquely decipherable. O

Note that McMillan’s Theorem cannot tell us when a particular code is
uniquely decipherable, but only when it is not. For the theorem does not
say that any code whose codeword lengths satisfy Kraft's inequality must

Exercises

be uniquely decipherable. Rather, it says that if a code is known to be
‘uniquely decipherable, then its word lengths must satisfy Kraft's inequal-
ity. Hence, if a code does not satisfy this inequality, we may conclude
that it cannot be uniquely decipherable.

Exercises

1. Is the code C = {0, 10,1100, 1101, 1110, 1111} uniquely decipherable?
Justify.

2. Is the code C = {0, 10,110, 1110, 11110, 11111} uniquely decipherable?
Justify. '

3. Is the code C = {0, 01,011, 0111, 01111, 11111} uniquely decipherable?
Justify.

4, Is the code C = {0,10,110, 1110, 1111, 1101} uniquely decipherable?
Justify.

5. Is the code C = {0, 10, 1101, 1110, 1011, 110110} uniquely decipherable?
Justify.

6. Determine whether or not there is a uniquely decipherable binary
code with codeword lengths 1,2,3,3. If so, construct such a code.

7. Determine whether or not there is a uniquely decipherable binary
code with codeword lengths 1,3,3,3,4,5,5,5. If so, construct such a code.

8. Isit possible to construct a uniquely decipherable code, over the alpha-
bet {0, 1, 2,...,9}, with nine codewords of length 1, nine codewords
of length 2, ten codewords of length 3, and ten codewords of length
4?7 :

9. For a given binary code, let N(k) be the total number of sequences of
codewords that contain exactly k bits. For instance, if

C = {Cl = 0, Cz = 10, C3 = 11}
then N(3) = 5, since the five codeword sequences
C1€1Cy, C1C2, C1C3, CyC1, C3C

each contain exactly 3 bits, and no other codeword sequences contain
exactly 3 bits.

41

42

1. An Introduction to Codes

a) Determine N(1) and N(2).

b) Show that N(k) = N(k — 1) + 2N(k — 2), for all k > 3. Hint: a
string of length k > 3 begins with either a codeword of length 1 or
a codeword of length 2. '

c) Solve the recurrence relation in part b). Hint: assume a solution
of the form N(k) = o* and solve for a. Get a general solution of
the form N(k) = aa® + bak and determine the values of a and b.

d) For the code D = {0, 10, 110, 111}, compute N(1), N(2), N(3), N(4),
N(5). Show that these values are consistent with the formula

3 2, 3 2=

4
N(k) = =-2F + = cos ==k + —sin —k
7 7 3 21 3

1.4 Instantaneous Codes and Kraft’s
Theorem

It is clear that unique decipherability is a very desirable property. How-
ever, even though a code may have this property, it may still not
be possible to interpret codewords as soon as they are received. The
following simple example will illustrate this.

Example 1.4.1 The code
C; = {¢; = 0,¢c, = 01}

is easily seen to be uniquely decipherable (by reading strings backwards).
Now suppose that the string 0001 is being transmitted. Just after receiving
the first 0, we cannot tell whether it should be interpreted as the codeword
c; or the beginning of ¢,. Once we receive the second 0 in the message,
we know that the first 0 must represent c;, but we don’t know about
the second 0. Thus, codewords cannot be interpreted as soon as they are
received.
On the other hand, for the code

Cs = {d; = 0,d, = 10}

individual codewords can be interpreted as soon as they are received.
For instance, consider the string 00100. As soon as the first 0 is received,
we know immediately that it must be d;, and similarly for the second 0.

44

1. An Introduction to Codes

Example 1.4.4 The code
C = {0, 10, 110, 1110, 11110, 11111}

is an example of a comma code. This terminology comes from the fact
that the symbol 0 acts as a kind of comma, telling the receiver when a
codeword ends. (The receiver can tell when the last codeword ends by
its length.) ;

Comma codes have the prefix property, and so they are instantaneous.
On the other hand, consider the code obtained by reversing the order of
the bits

D = {0,01, 01,0111, 01111, 11111}

This code does not have the prefix property, and so it is not instantaneous.
But it is uniquely decipherable, since any sequence of codewords can be
deciphered by starting from the end of the message and first picking out
all strings of 1s of length 5, which must represent the codeword 11111,
then picking out strings of 1s of length 4, and so on. ‘ C

Kraft’s Theorem

Now we come to a theorem that tells us precisely when an instantaneous
code exists with given codeword lengths ¢,,£;,...,¢,. This theorem was
first published by L. G. Kraft in 1949.

Theorem 1.4.2

1. (Kraft's Theorem) There exists an instantaneous r-ary code C =
{c1,¢2, ..., Cq), with codeword lengths £y, £;,.. ., £, if and only if these
lengths satisfy Kraft's inequality,

— <1
o =

k=1

2. Let C be an instantaneous r-ary code. Then C is maximal instantaneous,
that is, C is not contained in any strictly larger instantaneous code, if anc
only if equality holds in Kraft's inequality.

3. Suppose that C is an instantaneous code with maximum codeword length
m. If C is not maximal, then it is possible to add a word of length m to C
without destroying the property of being instantaneous.

Kraft’'s Theorem

Proof Let C be a code with codeword lengths £, ..., £,. We refer to the
~ sum on the left side of Kraft's inequality as Kraft's sum. Let us begin
by rewriting Kraft’s inequality in a different form. Suppose that C has u;
codewords oflengthifori = 1,..., m, where mis the maximum codeword
length in C. The the Kraft sum can be written

m 1 m
Z DRI N
and Kraft's inequality can be written in the form

m
E wrm Tt < ™
i=1

=

or
m—1 .
Um + Z wr™t<r™ (1.4.1)
i=1

We can now prove part a). First, we show that an instantaneous code
C must satisfy Kraft's inequality. Let ¢ € C have length i < m — 1. Since
¢ cannot be a prefix of any other codeword in C, none of the words cx,
where x is a string of length m — i, can be in C. Since len(x) = m — i,
there are ¥ words of the form cx, all of which must be excluded from
C. Moreover, if d is another codeword, say of length j, then there are an
additional ™~/ words of length m that must also be excluded from C. (If

= dy for ¢ # d, then one of ¢ or d is a prefix of the other, which is
not possible.) Thus, the total number of excluded words of length m is
precisely equal to the summation on the left side of (1.4.1). Adding the
number u,, of words of length m that are in C must result in a number
that is no greater than the total number ™ of words of length m. Hence,
(1.4.1) holds.

For the converse of part a), we must show that if ¢, £5,.. ., £, satisfy
Kraft's inequality, then there is an instantaneous code C with these code-
word lengths. This can be proved by induction on the number g. If g is
less than or equal to the radix 7, then taking distinct code symbols gives
an instantaneous code of size g, all of whose codewords have length 1.
Certainly, we can extend the length of each codeword to get codewords
of lengths £, ..., ¢4, whilst preserving the prefix property. Hence, the
result is true for g < r. Now assume that it is true for all sets of g or

45

46 .

1. An Introduction to Codes

fewer lengths, and let £1,...,£g+1be g + 1 lengths that satisfy Kraft's in-
equality. We assume, by renumbering if necessary, that £; < £;,, for all

i=1,...,q
By the induction hypothesis, there is an instantaneous code C of size
g with codeword lengths £y, ..., {5. Moreover, these numbers give strict

inequality in Kraft's inequality (1.4.1). Hence, the reasoning that led to
(1.4.1) shows that there is at least one word d of length £ that has notbeen
included in C, but is also not excluded by virtue of having a codeword in
C as prefix. It follows that we may include this word in C and still have an
instantaneous code. Lengthening d (if necessary) by adjoining 0s to the
right end will give a codeword of length £4.,, without violating the prefix
property and so we have an instantaneous code with codeword lengths
€y,...,8g41. |

For partb), suppose first that the codeword lengths of an instantaneous
code C give equality in Kraft’s inequality. If we add any word to C, the
resulting code would not satisfy Kraft's inequality, which implies by what
we have just proved above that it cannot be instantaneous. Hence, C is
maximal instantaneous.

For the converse, we must show that if a code C is maximal instanta-
neous, then equality holds in Kraft's inequality. But this follows easily by
looking at Kraft's inequality in the form (1.4.1). For if equality does not
hold in Kraft's inequality, then the left side of (1.4.1) is less than r™ and so
there is at least one word of length m that has not been included in C but
is also not excluded by virtue of having a codeword as prefix. Hence, we
may include this word in C and still have an instantaneous code. Thus, if
C is maximal, equality must hold in Kraft's inequality. This finishes the
proof of part b) and also proves part c). g

Note that Kraft's Theorem says that, if the lengths £1,€3,. . .,€4 satisfy
Kraft's inequality, then there must exist some instantaneous code with
these codeword lengths. It does not say that any code whose codeword
lengths satisfy Kraft’s inequality must be instantaneous. As we see in the
next example, this is not necessarily the case. '

Example 1.4.5 Considerthebinarycode C = {0, 11, 100, 110}. The code-
word lengths are 1,2, and 3, and since |A| = 2, the left side of Kraft's
inequality is

1 1 1

2ttt

+

[N R

Kraft’s Theorem

Hence, these lengths do satisfy Kraft’s inequality. Nonetheless, this
‘code is not instantaneous, since the second codeword is a prefix of the
fourth. O

Parts b) and c) of Theorem 1.4.2 actually gives us a clue as to how to
construct an instantaneous code with given codeword lengths ¢;, ..., £,.
Suppose that these lengths are arranged so that £ < £, < --- < £, If

we have succeeded in finding k < g codewords ¢, ..., cx with lengths
¢4, ..., 4, then the Kraft sum, using only these lengths, is strictly less
than 1 and so, according to part b) of Theorem 1.4.2, the code {c;, ..., ¢k}
is not maximal. Hence, by part ¢), we may include an additional codeword
¢ of length £ or greater, in particular, of length £, 1. The point is that we
may add any codeword of length £x,; as long as it does not violate the
‘prefix property, for then we can repeat the process until we have a code
of size q. Here is an example.

Example 1.4.6 LetA = {0,1,2}andleté; = 1,4, = 1,43 = 2,£4 = 4,
s = 4, £g = 5. Kraft's inequality is satisfied

1 1 1 1 1 1 34 +3*+33+3+3+1 196

—+ -+ =+ =+ =+ = = = <1
3 3 32 3% 3% 35 35 243
and so there exists an instantaneous code C over A with these codeword
lengths. '

First, we choose the two codewords of the smallest length 1, say
c; =0andc; =1

Then we choose any codeword c; of the next smallest length 2 that does
not cause the prefix property to be violated. Hence, ¢; cannot start with
0 or 1. Let us choose

C3=20

Next we choose any two codewords of length 4 that begin with 2, but not
~ with 20. Let us choose

Cq4 = 2100 and C; = 2101

Finally, we choose any codeword of length 5, not beginning with any
previously chosen codeword. We may pick

ce = 21100

47

48

1. An Introduction to Codes

Thus, C = {0,1,20,2100, 2101, 21100}. Of course, this process is by
no means unique and there are other instantaneous codes with these
codeword lengths. m]

Kraft's Theorem and McMillan's Theorem together tell us something
interesting about the relationship between uniquely decipherable codes
and instantaneous codes. In particular, if there exists a uniquely decipher-
able code with codeword lengths £,,¢,,. . .,£,, then according to McMillan’s
Theorem, these lengths must satisfy Kraft's inequality. But then we may
apply Kraft's Theorem to conclude that there must also exist an instan-
taneous code with these lengths. In summary, we have the following
remarkable theorem.

Theorem 1.4.3 If a uniquely decipherable code exits with codeword lengths
£1,0,.. .4, then an instantaneous code must also exist with these same
codeword lengths. O

Our interest in this theorem will come later, when we turn to the question
of finding desirable codes with the shortest possible codeword lengths. For
it tells us that we lose nothing by considering only instantaneous codes
(rather than all uniquely decipherable codes).

Let us conclude with another application of Kraft’s Theorem.

Example 1.4.7 Let A = {0, 1}. Suppose that we want an instantaneous

code C that contains the codewords 0, 10, and 110. How many additional

codewords of length 5 could be added to this code? '
Since |A| = 2, the three aforementioned codewords contribute

1 1 1 7

2 2Ty |
to the sum on the left side of Kraft's inequality. Thus, we have % left
to work with, so to speak. Now, a codeword of length 5 will contribute
515- = -31—2 to the Kraft sum, and so we cannot add more than four such
codewords, since 4+ (35) = 1. (We may notbe able to add as many as four
codewords, but we cannot add more than 4.) Checking the possibilities
shows that each codeword of length 4 must begin with 111. This leads us
to the only possibilities, namely, 11100, 11101, 11110, and 11111. It is not
hard to check that we may add these four codewords to our code, that is,

that the code
{0, 10, 110, 11100, 11101, 11110, 11111}

Exercises

is instantaneous. O

Exercises

A

. Show that if a code is instantaneous, then it is also uniquely

decipherable.

Is the code C = {0, 10, 1100, 1101, 1110, 1111} instantaneous?
Is the code C = {0, 10, 110, 1110, 1011, 1101} instantaneous?

Can a block code fail to have the prefix property? Explain.

Can you construct an instantaneous binary code with codewords 0,10
and an additional nine codewords of length 5? Explain.

Find an example of a binary code that is uniquely decipherable but
not instantaneous, different from any of the codes in the book.

How many prefixes does a word of length n have?
In Exercises 8 through 14, determine whether or not there is an in-

stantaneous code with given radix r and codeword lengths. If so, construct
such a code.

8.
9.
10.
11.
12.
13.
14.
15.

16.

r

2, lengths 1,2,3,3

2, lengths 1,2,2,3,3

2, lengths 1,3,3,3,4,4

2, lengths 2,2,3,3,4,4,5,5

3, lengths 1,1,2,2,3,3,3

5, lengths 1,1,1,1,2,2,2,2,3,3,3,4,4,4
5,lengths 1,1,1,1,1,8,9

Suppose that we want an instantaneous binary code that contains the
codewords 0, 10, and 1100. How many additional codewords of length
6 could be added to this code? Construct a code with these additional
codewords?

I

.
.
,
,
.
,

Suppose that 3, ..., {4, and 7 give equality in Kraft's inequality. Let C
be an instantaneous r-ary code with these codeword lengths. If L =
max{¢;}, show that C must contain atleast two codewords of maximum
length L.

49

I Information Theory

PART

Efficient Encoding

CHAPTER

2.1 Information Sources; Average
Codeword Length

In order to achieve unique decipherability, McMillan’s Theorem tells us
that we must allow reasonably long codewords. Unfortunately, this tends
to reduce the efficiency of a code, by requiring longer strings to encode
a given amount of data. ,

On the other hand, it is often the case that not all source symbols
 occur with the same frequency within a given class of messages. Thus, it
makes sense to assign the longer codewords to the less frequently used
source symbols, thereby reducing the average number of code symbols
per source symbol, and improving the efficiency of the code.

Our plan in this chapter is to construct a certain class of instantaneous
encoding schemes that are the most efficient possible among all instan-
taneous encoding schemes, in a sense that we shall now make precise.
(An encoding scheme is instantaneous if the corresponding code is in-
stantaneous.) To this end, we will assume that each source symbol has
associated to it a probability of occurrence. This leads us to make the
following definition.

Definition An information source (or simply source) is an ordered
pair S = (S, P), where S = {s1,8,...,8;} is a source alphabet, and P is a

53

54

2. Efficient Encoding

probability law that assigns to each element s; of § a probability P(s;). The
sequence P(s1), ..., P(sy) is the probability distribution for S. O

Often we will be interested only in the probability distribution of the
source, which we may simply write in the form P = {p, ..., pq}.

A source can be thought of as a “black box” that emits source symbols,
one at a time, to form a message. We will assume that the emission of
source symbols is independent of time. In other words, the fact that a
given source symbol is emitted at a given instant has no effect on which
source symbol will be emitted at any other instant.

As a measure of the efficiency of an encoding scheme, we use the
average codeword length.

Definition Let S = (S, P) be an information source, and let (C, f) be

an encoding scheme for § = {sy,...,s;}. The average codeword length
of (C,f)is
. g
Y " len(f(s))P(si) m
i=1

Example 2.1.1 Consider the source alphabet S = {ab,cd}, with
probabilities of occurrence ,

2 2 8 5
= e— = -_— = — d = —
Consider also the two encoding schemes shown below

Scheme 1 Scheme 2

a— 11 a — 01010
b—0 b — 00
c — 100 c— 10
d — 1010 d—1
We have ‘
2 2 8 5 50
Average length forschemel =2- — + 1 — +3:— +4.- — = —
- 17 17 17 17 17
and
’ 2 2 8 5 40
Average length forscheme 2 =5 — + 2. — +2:- — +2- — = —
17 17 17 17 17

Thus, encoding scheme 2 has a smaller average codeword length. In this
sense, it is more efficient than scheme 1. O

Exercises

Example 2.1.2 Table 2.1.1 (see next page) shows the letters of the al-
phabet and the space character, along with approximate probabilities of
occurrence in the English language, based on statistical data. The last
three columns of the table show three different encoding schemes.

The first scheme is a simple fixed length code, using the first 27 bi-
nary numbers. In this case, the codewords all have length 5, which is
the minimum possible codeword length for a fixed length code (since
2% < 27 < 2%). Thus, the average codeword length of this scheme is 5.

The second scheme uses a comma code, discussed in Section 1.4. We
have not written out all of the codewords, since their lengths become
rather large. (The last two codewords have length 26.) Calculation gives
an average codeword length of approximately 7.0607 for this scheme.
Hence, the fixed length code is more efficient.

The third scheme is the Huffman encoding scheme. As we will see,
Huffman encoding produces the most efficient scheme, in the sense of
having the smallest average codeword length, among all instantaneous
codes. In this case, a computation shows that the average codeword length
is approximately 4.1195, a savings of approximately 18% over the fixed
length code.

It is worth noting that the comma code is less efficient than the fixed
length code because the probabilities of occurrence are all fairly close to
each other. Had the probability of occurrence of the space character, for
instance, been much larger compared to the other probabilities, then the
comma code would have been more efficient than the fixed length code
(but not the Huffman code). | O

Exercises

1. LetS = {ab,c,de}andP(a)= },P(b)= 1, P(c)= 3, P(d)= 3, P(e)=
%. Which scheme is more efﬁc1ent
(2) a— 0,b— 10, ¢ — 110, d - 1110, e — 11110, or
(b) a — 000, b — 001, ¢ — 010, d — 011, e — 100?

2. LetS = {ab,c,d,ef}and P(a)= 0.2, P(b)= 0.2, P(c)= 0.3, P(d)= 0.1,
P(e)= 0.1, P(f)= 0.1. Which scheme is more efficient

55

2. Efficient Encoding

TABLE 2.1.1
Symbol Probability Block Code Comma code Huffman code
(Space) 0.1859 00000 0 111 |
E 0.1031 ’ 00001 10 010
T 0.0796 00010 110 1101
A 0.0642 00011 1110 1011
O 0.0632 00100 11110 1001
I 0.0575 00101 111110 0111
N 0.0574 00110 . 0110
S 0.0514 00111 . 0011
R 0.0484 01000 . 0010
H 0.0467 01001 0001
L 0.0321 01010 10101
D 0.0317 01011 10100
U 0.0228 01100 ! 00001
C 0.0218 01101 00000
F 0.0208 01110 110011
M 0.0198 01111 110010
W 0.0175 10000 110001
Y 0.0164 10001 100011
P 0.0152 10010 100010
G 0.0152 10011 ' 100001
B 0.0127 10100 100000
\" 0.0083 10101 1100000
K 0.0049 10110 11000011
X 0.0013 10111 , 1100001011
Q 0.0008 11000 1100001010
J 0.0008 11001 111.--10 1100001001
Z

0.0005 11010 111---11 1100001000

(2) a— 0,b— 10, ¢ — 110, d — 1110, e — 11110, f — 111110, or
(b) a — 000, b — 001, ¢ — 010, d — 011, e = 100, f — 1017

3. Assuming a source with a uniform probability distribution, what is the
average codeword length of a comma code with ten codewords?

4. Assuming a source with a uniform probability distribution, what is the
average codeword length of a comma code with n codewords? ‘

5. How do we minimize the average codeword length of an encoding
scheme for a source with a uniform probability distribution?

2.2. Huffman Encoding

2.2 Huffman Encoding

In 1952, D. A. Huffman published a method for constructing highly ef-
ficient instantaneous encoding schemes. This method is now known as
Huffinan encoding. Before giving an example of Huffman encoding, let us
state the reason why this type of encoding is so important. (A proof will
‘be given in the next section.)

Theorem 2.2.1 Let S = (S, P) be an information source. Then all
Huffman encoding schemes for S are instantaneous. Furthermore, Huff-
man encoding schemes have the smallest average codeword length among
all instantaneous encoding schemes for S. O

The minimum average codeword length, taken over all uniquely deci-
pherable r-ary encoding schemes for $ will be denoted by MinAveCode-
Len,(S). According to Theorem 1.4.3, this is the same as the minimum,
taken over all instantaneous encoding schemes. We also denote the av-
erage codeword length of any r-ary Huffman encoding scheme for S
by AveCodeLenHuff,(S). Then Theorem 2.2.1 can be summarized by
writing

AveCodeLenHuff,(S) = MinAveCodeLen, (S5)

Now let us give an example of Huffman encod'ing. Although r-ary Huff-
man encoding schemes can be constructed for all r > 2, we will restrict

attention to binary Huffman codes. (For information on nonbinary Huff-

man encoding, we refer the reader to Coding and Information Theory, by
this author. See also the exercises for this chapter.)

Before reading this example, you should familiarize yourself with the
terminology on binary trees in Section 0.1.

Example 2.2.1 Consider the source alphabet and probabilities shown
below.

Symbol | Probability
0.35
0.10
0.19
0.25
0.06
0.05

N|—=| Qoo

57

58

2. Efficient Encoding

The Huffman encoding scheme is constructed by constructing a
complete binary tree as follows.

Step 1 Place each symbol inside a node. Then label each node with the
probability of occurrence of the symbol and arrange the nodes in order
of increasing probability of occurrence.

0.05@ 0.06@ 0.10 (b) 0.19@ 0.25@ 0.35@

Step 2 Connect the two leftmost nodes to a new node, as shown below.
Label the new node with the sum of the probabilities associated to the
original nodes. Lower this portion of the figure so that the new node is at
the top row.

0.11 '0.10@ 019(¢) 02@ 0350

0.05 0.06

Step 3 Repeat the process of arranging the figure so that the nodes on
the top level are in increasing order of probabilities, and then connecting
the two leftmost nodes, until only one node remains on the top row. Here
are the steps required in this case.

0.10 @ 0.11 0.19 @ 0.25@ 0.35 @

0.05 0.06

Step 3

59

60

2. Efficient Encoding

0.60()

025(d) 035(a)

Step 4 Discard all of the probabilities, and label each line segment that
slants up (from left to right) with a 0 and each line segment that slants
down (from left to right) with a 1. This is done in Figure 2.2.2. The result
is referred to as a Huffman tree.

To determine the codeword associated to each source symbol, start at
the root and write down the sequence of bits encountered en route to the

FIGURE 2.2.1

Step 4

FIGURE 2.2.2

source symbol. In this case, the Huffman encoding is

Source Symbol Code
11
010
00

10
0111
2 0110

— Q0 O M

We will leave it as an exercise to verify that this is an instantaneous
code, whose average codeword length is 2.32.

Notice that a binary fixed length code would require codewords of
length at least 3 to encode 6 source symbols (22 < 6 < 2%). Hence, the
average codeword length of a fixed length code is 3, and the Huffman
code reduces the average codeword length by 22.7%. O

We should remark that the Huffman encoding scheme need not be unique
for a given source S. This is due to the ambiguity that occurs when two
nodes in the top row have the same probability. Nevertheless, all Huffman
encoding schemes for S have the same average codeword length which,
according to Theorem 2.2.1, is the smallest among all instantaneous
encoding schemes for S. |

61

62

2. Efficient Encoding

Exercises

10.

11.

@ NS ke

In Exercises 1-6, find a Huffman encoding of the given probabil-
ity distribution, using the source symbols A, B, C, ... (in this order).
Determine the savings over the most efficient fixed length code.

P = {0.1,0.2,0.4,0.2,0.1}

P = {0.25,0.25,0.25,0.24, 0.01}

P = {0.1,0.2,0.4,0.1,0.1,0.1}

P = {0.05,0.1,0.55,0.05,0.1, 0.1, 0.05}
P={01,...,0.1}

P = {0.9,0.09, 0.009, 0.0009, 0.0001}

Write a computer program to implement Huffman encoding.

‘State a condition in terms of the sizes of the probabilities that

guarantee uniqueness (up to switching 0s and 1s) in Huffman
encoding.

. Determine all source probability distributions {p, pz, p3, ps} that have

{00, 01, 10, 11} as Huffman codewords. Hint: think about the Huffman
tree. ’

Let (C, f) be a binary Huffman encoding and suppose that the code-
word ¢; has length ¢; for i = 1,...,k. Prove that equality holds in
Kraft's inequality, that is,

1
> =1

Hint: Show that there does not exist an instantaneous code D whose

codeword lengths m; satisfy m; < ¢; for all i and m; < £; for some j.
How does this cause a problem if the Kraft sum is strictly less than 1?

(Huffman codes of radix >2.) When the radix is greater than 2,
Huffman encoding proceeds in a manner entirely analogous to the
case r = 2, with one exception. In each step, we want to group those
r nodes on the top level with smallest probabilities together into a
single node, which is labeled with the sum of these r probabilities.
However, at the penultimate step, we want exactly r nodes, before
combining them into the root node. Thus, the first step may require
that we combine fewer than r nodes. Determine the correct number

2.3. The Proof that Huffman Encoding Is the Most Efficient

12.

13.

of nodes to combine into a single node on the first step, so that we
may combine r nodes into one on each of the subsequent steps and
have exactly r nodes at the penultimate step. How many reduction
steps are necessary to complete the Huffman tree? -

Let (C,f) be a binary Huffman encoding. Let L = max{{;}. Show that
C must contain two codewords ¢ and d of maximum length L with the
property that they differ only in their last positions.

Let (C,f) be a binary Huffman encoding for the uniform probabil-
ity distribution P = {1/n,...,1/n}, and suppose that the codeword
lengths of C are ¢;. ‘

(a) Show that (C,f) has minimum total codeword length T = }_¢;
among all instantaneous encodings for P.

(b) Show that C contains two codewords ¢ and d of maximum
codeword length and that ¢ and d differ only in their last positions.

(c) Show that¢; = Lor{; = L—1foralli.

(d) Letn = a2¥, where 1 < a < 2. Let u be the number of codewords
oflength L — 1 and let v be the number of codewords of length L.
Determine u, v, and L in terms of « and k.

(e) Find MinAveCodeLeny(s, ...,

'ntt

14. Given n source symbols and thinking in terms of using frequencies in

place of probabilities (which does not affect the results of the Huffman
algorithm), what are the minimum possible frequencies (frequencies
must be positive integers) to produce a Huffman code with the largest
possible maximum codeword length? What is this largest length?

2.3 The Proof that Huffman Encoding Is

the Most Efficient

We are now ready to prove the following theorem, first stated in the
previous section.

Theorem 2.3.1 Let S be an information source. Then all Huffman encod-
ing schemes for S are instantaneous. Furthermore, Huffiman encoding schemes
have the smallest average codeword length among all instantaneous encoding

63

64

2. Efficient Encoding

schemes for S. In symbols,

AveCodeLenHuff,(S) = MinAveCodeLen,(S) O

Proof Again, we restrict our attention to binary (r = 2) codes. The
fact that Huffman coding schemes are instantaneous can be seen most .
easily by considering the Huffman tree. If one codeword was the prefix
of another, then it would be possible to get to the second codeword by
traveling from the root to the first codeword, and then continuing down
the tree from there. But codewords come only at the end nodes (the
leaves) of the tree, and so this is not possible. Hence, Huffman encoding
schemes have the prefix property, and so they are instantaneous.

Now we must show that Huffman encoding schemes have the smallest
average codeword length among all instantaneous encoding schemes. Let
(H, f) be a binary Huffman encoding scheme for S, and let (C, g) be any
other instantaneous binary encoding scheme. Let us denote the average
codeword lengths of these schemes by AveLen(H, f) and AveLen(C, g).
Thus, we want to prove that

Avelen(H, f) < Avelen(C, g)
We begin by making several observations. Table 2.3.1 will set the notation.

Of course, we may assume by reordering the source symbols if
necessary that

P12ZP22Z - ZPq

Observation 1 We may assume that the codeword lengths for C satisfy

m =mp=---=MmMy

TABLE 2.3.1 |
Source Huffman | Huffman Other Other
Symbol | Probability | Codeword | Length | Codeword | Length
8)4 h, £ C) m
82 P2 h; £ c2 ma
S3 p3 h; {3 C3 ms
Sq Pq h, 2 Cq my

- e EEE——— |

Observation 2 65

For if not, then we may interchange two codewords and produce an en-
coding scheme with smaller average codeword length, which can be used
in place of (C, g).

We may also assume that the last two codewords ¢, and ¢, of C are of
equallength, thatis, my;_; = my, and differ only in theirlast bits. For if not,
we may again replace (C, g) by an encoding scheme with smaller average
codeword length. To see this, suppose that my,_; < m,, and consider
the codeword c;, obtained by removing the last bit from c,. Since C is
instantaneous, ¢; is not a codeword in C and is too long to be a prefix of a
codeword in C. Hence, we may replace ¢, by the shorter word c;, which
will reduce the average codeword length.

Observation 2 During the initial step of Huffman'’s algorithm, the rel-
ative order in which we place source symbols with the same probability
of occurrence has no effect on the average codeword length of the encod- -
ing scheme, for it amounts to nothing more than a relabeling of source
symbols with the same probability of occurrence. Hence, we may arrange
it so that the source symbols s, and s,_; occupy the first two positions on
the left (in that order).

It is also clear that, since s, and s, are siblings in the Huffman tree,
the codewords ¢, and ¢, have the same length and, in fact, differ only
in their last bits. Hence £, = £,_;. (See the previous exercise set.)

With these observations in mind, a proof can be constructed using
induction on the number g of source symbols. If g = 2, then the Huffman
encoding scheme has average codeword length 1, and so

AveLen(H, f) < AveLen(C, g)

Let us assume that the result is true for all source alphabets of size g — 1,
and then prove that it is also true for source alphabets of size g.
Consider the Huffman scheme (H, f) for the source S. For purposes of
induction, we form a new source S’ by replacing s, and s;—; with a single
source symbol s, with probability of occurrence p; + p,—1. This gives us
a source alphabet 8’ = {s1,8,...,84-2, 8} of size g — 1. To determine the
average codeword length for a Huffman encoding (H’, f’) of this source,
observe that, at the second step in the encoding of the original source S,

-

2. Efficient Encoding

we connect the two leftmost nodes, to get

From this point on, we will get the same tree by replacing this “mini-
tree” with a single node labeled s, with probability p, + p,—1 and then
putting the minitree back at the end. Hence, we can encode the new
source 8’ by encoding the original source and then replacing the minitree
above by the single node s.

Removing this minitree causes the removal of the two nodes for s,
and s;—1, and subtracts

‘ £4-1P4-1 + £gDg
from the average codeword length. But the inclusion of the node for s
adds '
(€g—1 — D)(Pg-1 + Pq)
to the average codeword length. Hence, there is a net change of (smce
€4-1) |
(€g-1 — D)(Bg-1 + Pg) — (€g-1Pg—1 + £4Pg) = —(Pg-1 + Pg)
Thus
AveLen(H',f") = AveLen(H,) — (pg-1 + Pq) (2.3.1)
Now consider the encoding scheme (C, g). The last two codewords of
¢ have the form
Cq = X1X3 -+ - X%,0
and
Cqg—1 = X1X2* 'Xul

Since C is instantaneous, the string ¢ = x1x; - - - %, is not a codeword

in C and so we may encode the new source S’ using ¢ as the codeword

for the source symbol s. This results in a net change in average codeword
length of (because my_; = my)

(Mg—1 — 1)(Pg—1 + pg) — (Mg—1Dg—1 + MgPg) = —(Pg-1 + Dg)

Observation 2

~ which is the same as in the Huffman case. Hence,
AveLen(C',g") = AveLen(C,) — (pg-1 + Pg) (2.3.2)
But, the induction hypothesis implies that
Avelen(H',f") < AveLen(C’ &)
and this, together with (2.3.1) and (2.3.2), shows that
AveLlen(H, f) < AveLen(C, g)

as desired. ‘ |

We should conclude by making a few remarks on how Huffman en-
coding is implemented. Given a message to encode, one does not usually
know ahead of time the proper probabilities of occurrence. Using Table
2.1.1 on the relative frequencies of letters in the English language (com-
piled statistically) may be far from ideal for a given message, and can
even lead to a lengthening of some messages.

Accordingly, a static approach is to first scan the message and compile
a table of frequencies for each source symbol. Since the Huffman algo-
rithm is not affected by a proportional scaling of the probabilities, these
frequences can be used in place of probabilities. (Scaling the frequencies
by dividing by their sum would, of course, yield a probability distribu-
tion but, in practice, these numbers must be stored in a computer and
roundoff errors may actually change the shape of the tree.)

The static approach provides a probability distribution (or set of
frequencies) that statistically models the given message, but has the dis-
advantage that the table of frequencies (or the code itself) must also be
transmitted along with the message, for decoding purposes.

A more efficient approach is to use dynamic (also called adaptive)
Huffman encoding, which involves scanning the message only once
and constantly updating the frequency information after each symbol
is encoded. Thus, the probability model (via frequencies) is constantly
changing. It is important to emphasize that this approach is entirely
outside the theoretical scope of our discussion (both previous and
forthcoming), where we assume that a fixed probability distribution is
given.

67

68 _

2. Efficient Encoding

Exercises

1. A complete binary tree is said to be weighted if a) each node has a
number associated with it, called a weight, and b) the weight of a node
that is not a leaf is the sum of the weights of its two children. If we -
divide each weight in a weighted binary tree by the sum of all of the
weights, the result is a weighted binary tree the sum of whose weights
is 1. Let us refer to such a binary tree as a normalized weighted
complete binary tree. Prove that a graph G is a Huffman tree (thét
is, comes from an application of the Huffman algorithm applied to
some source) if and only if

(a) G is a normalized weighted complete binary tree, and

(b) as we scan the weights of the nodes, going from left to right and
starting on the bottom level and proceeding upward through the
levels, the weights fall in increasing order by size.

} Noiseless Coding

CHAPTER

3.1 Entropy

The results of the previous chapter show that Huffman encoding schemes
“are the most efficient, in the sense of having the smallest average code-
word length, among all instantaneous encoding schemes. Our goal in this
chapter is to determine just how efficient such an encoding scheme can
be. We will see that, to every source S, there is a number, called the en-
tropy of S, that has the property that the average codeword length of any
instantaneous encoding scheme for S must be greater than or equal to
the entropy of S. In other words, the entropy provides a lower bound on
‘the average codeword length of any instantaneous encoding scheme.
The entropy of a source is intended to measure in a precise way the
amount of “information” in the source. In order to motivate the concept of
- the amount of information obtained from a source symbol, let us imagine
that a contest is taking place. Each of two contestants has a “black box” that
- emits source symbols from a source S with source alphabet S = {s;, s,},
and probabilities p; = f, P2 = 155 The winner of the contest is the first
one to name both source symbols, that is, the first one to have complete
information about the set S. (We assume that neither contestant has seen

the source symbols beforehand.)

69

70

3. Noiseless Coding

Now, suppose that on the first round, the first contestant gets source
symbol s;, while the second contestant gets s;. At this point, which
contestant is more likely to win the contest?

Since the first contestant still needs to receive source symbol 82, whose
probability of occurrence is Wlo» whereas the second contestant needs -
to receive s;, whose probability of occurrence is %, it is clear that the
second contestant is more likely to win than the first. In some sense
then, the second contestant has received more information about S from
the source symbol s;, with the smaller probability of occurrence, than
did the first contestant. This motivates the statement that, however we
decide to define the information obtained from a source symbol, it should
have the property that the less likely a source symbol is to occur, the more
information we obtain from an occurrence of that symbol, and conversely.

Because the information obtained from a source symbol is not a
function of the symbol itself, but rather of the symbol’s probability of oc-
currence p, we use the notation I(p) to denote the information obtained
from a source symbol with probability of occurrence p. We will make the
following reasonable assumptions about the function I(p), defined for all
0O<p<l.

Assumption1 I(p) >0

Assumption 2 The function I(p) is continuous in p.

Since we assume that the events of s; and s; occurring (on differ-
ent transmissions) are independent, the information obtained from the
knowledge that both s; and s; have occurred should be the sum of I(p;)
and I(p;). Since the probability of both events occurring is the product

pipj, we get '

Assumption 3 I(pjp) = I(p:) + I(p)
The remarkable fact about these three assumptions is that there is
essentially only one function that satisfies them.

Theorem 3.1.1 A function I(p), defined for all 0< p < 1, satisfies the
previous three assumptions if and only if it has the form

1
I(p) = Clg—
») >

where C is a positive constant and lg is the logarithm base 2. O

Assumption 3

Proof We leave it as an exercise to show that any function of this form
satisﬁes all three assumptions. For the converse, observe first that, by
assumption 3,
I(p*) = I(p-p) = 1(p) + I(p) = 2I(p)
and similarly, .
I(p%) = I(p* - p) = I(p*) + I(p) = 31(p)

In general, for any positive integer n,

I(p™) = nI(p) | (3.1.1)
a statement that can be proved formally by induction. Replacing pbyp’"

gives

1/n 1 '
10" = =) (3.1.2)

Since (3.1.1) and (3.1.2) hold for all positive integers n, we have

1
IpV™ = ~1") = 1)
that is,
10" = al(p)

for all positive rational numbers q.

Since, for any positive real number r, there is a sequence of positive
rational numbers g, for which lim,, g, = 7, and thus lim,, o p? = p’,
the continuity of I(p) implies that

1) = I(lim p™) = lim I(p™) = I(p) lim. g = 71(0)

Now let us fix a value of p for which 0 < p < 1. Since any g satisfying
0 < g < 1 can be written in the form g = p'°% % we have

1
I(q) = Ip°%%) = I(p)log,q = Clg_

for some constant C > 0. Finally, the continuity of the information
function gives I(1) = 0.]

Since the arbitrary multiplicative constant can be absorbed in the
units of measurement of information, the previous theorem justifies the
following definition. ‘ :

71

72

3. Noiseless Coding

Definition The information I(p) obtained from a source symbol s with
probability of occurrence p > 0, is given by

1) =g -
gp

where lg is the base 2 logarithm. O

When it is convenient, we will also use the notation I(s) for the infor-
mation obtained from the source symbol s. However, it is important to
keep in mind that the information I(s) depends only on the probability
of occurrence of s.

The unit of measurement of information is the bit, which is a con-
traction of binary unit. The connection between the binary unit and the
binary digit (also abbreviated bit) comes from the following observation.
If the source is § = {0,1}, P = {3, 3}, then the information given by
either source symbol is I(3) = 1g2 = 1. In other words, if the source
randomly emits 1 binary digit (bit), then the information obtained by a
single emission is 1 binary unit (bit).

Example 3.1.1 A personal computer monitor is capable of displaying
pictures made up of pixels at a resolution of 1024 columns by 768 rows
(and higher). Hence, if each pixel can be in any one of 256 = 28 colors,
there are a total of 28%1024x768 _ 26291456 {ifferent pictures. If each of
these pictures is considered to be equally likely, the probability of a given
picture occurring is 27529146 and so the information obtained from a
single picture is

I = 1g 25291456 _ 6 291 456 bits

On the other hand, let us estimate the information obtained from a ran-
dom speech of 1000 words. (While it is true that most people do not speak
in random sequences of words, politicians often do, for example.) A 10,000
word vocabulary would be considered quite excellent (in fact, quite amaz-
ing), and the probability of speaking a given sequence of 1000 words
from such a vocabulary is 1000071, Hence, the amount of information
obtained by such a speech is

I = 12100001 = 10001g 10000 < 14,000 bits
This proves that a picture is worth more than a thousand words! O

We can now define the concept of entropy.

Assumption 3 73

Definition Let S = (§,P) be a source, with probability distribution
P = {p1,...,pq}. The average information obtained from a single sample
from § is

q g q
HES) = D pile) = Yopile, = =D pilen

The quantlty H(S) is called the entropy of the source. (When p; = 0,
we set p; lg -- = 0.) Since this quantity depends only on the probability
distribution P (and not on the source alphabet S), we also use the notations
H(P) and H(ps, . .., pn) for the entropy. . O

Example 3.1.2 Consider a source S; = (81, P1) for which each source
symbol is equally likely to occur, that is, for which P;(s;) = p; = 1/g, for
alli =1,2,...,9. Then

o 1.1
H(S)) =H(;J-,-- szlg— Zalgq ~ Igq
bi i

On the other hand, for a source S; = (83, P2), wherep; = landp; = 0
foralli = 2,3,...,q, we have

1
H(Sz)=H(1,0,...,O)=pllgp—l=0 O

The previous example illustrates why the entropy of a source is often
thought of as a measure of the amount of uncertainty in the source. The
source &;, which emits all symbols with equal probability, is in a much
greater state of uncertainty than the source S,, which always emits the
same symbol. Thus, the greater the entropy, the greater the uncertainty
in each sample and the more information is obtained from the sample.
(The term disorder is also used in this context.)

Example 3.1.3 IfS = (S, P), where S = {s;, sz, 83} and

1 1
P(s1) = =, P(s2) = 7, P(s3) = 5
4 4
then the entropy is

H(S)—H()—-—1g4+—1g4+—lg2 1.5

4'4' 2

This is compared to an entropy of g3 = 1.585 for a source of size 3 where
each source symbol is equally likely. | O

74

3. Noiseless Coding

Example 3.1.4 The entropy of the source S = (§,P) where § =
{s1, 82,83} and

P(S]) = ,P(Sz) = ,P(S;g) =L 0

1
2

N =

is
11 1 1
H(S) (2,2,0) SlgZ + 21g2 +0=1g

This is the same as the entropy of a two-symbol source, each of whose
symbols is equally likely. This example illustrates the fact that the addi-
tion of a source symbol (or symbols) that cannot occur does not effect
the amount of information obtained from a sampling of the source. O

Example 3.1.5 The first two columns of Table 2.1.1 show the informa-
tion source associated with the letters of the alphabet used in the English
language. A computation shows that the entropy for this source is approx-
imately 4.07991. Thus, on€ gets an average of 4.07991 bits of information
by sampling a single letter from English text.

Note that the average codeword length for the Huffman encoding
scheme in Table 2.1.1 is approximately 4.1195 bits and so there is a small
amount of additional information in the Huffman code beyond what is
contained in the source itself. Recall also that no other instantaneous
binary code can do better in terms of average codeword length. O

Exercises

1. Compute the entropy of the probability distribution {%, -g-}.

113

8’84l

3. Compute the entropy of the probability distribution {1,1,..., 2 2}
where a > 5 is an integer.

4. Show that any function of the form I(p) = Clg % satisfies all three
assumptions for the entropy function.

2. Compute the entropy of the probability distribution {

5. When is the entropy H(S) of a source equal to 0?

6. Suppose a fair coin is tossed and if the outcome is a heads, we toss
it again. How much information do we get if the final outcome is a
heads? A tails? How much uncertainty is there in the final outcome?

3.2. Properties of Entropy

7. Suppose we toss a fair coin and roll a fair die. Do we get more infor-
mation (on the average) from this experiment or from the experiment
of tossing three fair coins? Four fair coins?

8. How much information do we get (on the average) by sampling from
a deck of cards if

(a) each card is equally likely to be drawn?
(b) the black cards are twice as likely to be drawn as the red cards?

9. Suppose that we roll a fair die that has two faces numbered 1, two faces
numbered 2, and two faces numbered 3. Then we toss a fair coin the
number of times indicated by the number on the die and count the
number of heads. How much information is obtained (on the average)
by this procedure?

3.2 Properties of Entropy

In Example 3.1.2, we saw that the entropy of a source S; of size g with
uniform probability distribution is equal to 1g g, and that the entropy of
a source S; where one symbol has probability of occurrence 1 is equal
to 0. These are the two “extreme” cases for the value of the entropy of
any source. In other words, the entropy satisfies 0 < H(S) < 1gq for all

sources of size g.
In order to prove this fact, we must first establish some preliminary
results concerning logarithms, whose proofs are left as exercises.

Lemma 3.2.1

1. Ifln denotes the natural logarithm then, for all x > 0,
Inx<x-1

2. Iflg denotes the logarithm base 2 then, for all x > 0,

lgx <
g_'ln2

In both cases, equality holds if and only if x = 1. O

75

76

3. Noiseless Coding

Lemma 3.2.2 Let P = {p1,p,,...,pq} be a probability distribution. Let
R = {n, 71, ..., 14} have the property that 0 < r; < 1 for all i, and

q
E ;<1
i=1

(Note the inequality here.) Then

2 1 1 1
Zpi lg— < Zpilg —
i-1 pi 4 ri

with equality holding if and only if p; = r; for all 1. O
Proof According to Lemma 3.2.1,

szlg— < é Zpi(}l}: -1)

Thus
t;

pilg— =<0
Z; T

Writing 1g(r:/p;) = 1g(1/p:) — 1g(1/r;) and rearranging gives

1 1 ¢ 1
pilg— <) pilg—
Zl 2 Zl U
Finally, equality holds here if and only if it holds in Lemma 3.2.1, which

happens if and only if r;/p; = 1 for all i. |

With these lemmas at our disposal, we can prove the main result of
this section.

Theorem 3.2.3 ForasourceS = (S, P) of size q, the entropy H(S) satisﬁes
0=<H(S) =lgq

3.2. Properties of Entropy

Furthermore, H(S) = 1gq if and only if all of the source symbols are equally

likely to occur, and H(S) = 0 if and only if one of the source symbols has

probability 1 of occurring. O

Proof LetP = {pi,...,p,;} be the probability distribution of S and let
= {1/g,1/q,...,1/q} be the uniform distribution. Applying Lemma
3.2.2 to P and R gives

q

H(S) = Z lg—<Zpl
Z gq—(lgq)Zpl—lgq

i=1

..QII

Thus, H(S) < 1gg. As for equality, this happens precisely when equal-
ity holds in Lemma 3.2.2, that is, when p; = 1/g for alli. Proof of the final
statement is left as an exercise.]

Theorem 3.2.3 confirms the fact that, on the average, the most infor-
- mation is obtained from sources for which each source symbol is equally
likely to occur.

Let us examine a bit more closely the entropy of the special binary
source S = {0, 1}, with probability distribution of the form P = {p,1—p}.
Thus, the entropy of a binary source is

1 1
HS) =plg-+({1-p)lg—
(S) 7 () 1~
The function on the right is often denoted by H(p)

H(p) = 11+(1—)1L (3.2.1)
rlg nlgT— 2.

. and called the entropy function. Its graph is shown in Figure 3.2.1. (Note
that plg() is defined to be 0 when p = 0.) As expected, the entropy
function reaches its maximum value whenp =1 —-p = 1/2.

A final note. The definition of entropy involves base 2 logarithms, but
it is sometimes convenient to use logarithms to other bases. Accordingly,
for any positive integer r, we define the r-ary entropy of a source S by

q
1
Hy(S) = E pilOgr;
i=1 t

Thus, the entropy H(S) = Hz(S) is the binary entropy.

77

3. Noiseless Coding

172 ! FIGURE 3.2.1 The entropy function H(p)

Exercises

1. Prove Lemma 3.2.1.
2. Compute the derivative of the entropy function H(p) given in (3.2.1).

3. Prove that the entropy function H(p) in (3.2.1) is symmetric about the

line x = —1_,: :

4. Show that
H(S)
Igr

H,(S) =

5. Find a relationship between H,(S) and Hy(S).

6. Let P = {p1,...,pn} be a probability distribution. Suppose that € is a
~ positive real number and that p; —€ > p; + € > 0. Thus, {p1 —€,p; +
€, ...,Pn} is also a probability distribution. Interpret the inequality

H(,plr v ;pn) < H(pl —€,p2 + €,p3,. '.‘:rpn)
in words. Verify this inequality.

7. Use Lemma 3.2.2 to prove that, if {p;,...,p,} is a probability
distribution, then '

1
xﬁ’ ...xﬁ" < p1x + -+ PnXn

where x;, ..., x, are positiVe real numbers. This says that the geomet-
ric mean of the x; is less than or equal to the arithmetic mean. Prove
that equality holds if and only if the x; are all equal. Hint: consider
the expressions r; = pixi/ 3, pjx;.

3.3. Extensions of an Information Source ’7 9

3.3 Extensions of an Information Source

Consider the binary source S = {s1, s}, with probabilities
P(Sl) =pm) = 0.25, P(Sz) =Pz = 0.75
A Huffman encoding for this source is

51 —=>0
S —> 1
with average codeword length 1.
Rather than encoding each symbol from 8, suppose we encode all

strings of length two over S. In other words, consider the source with
alphabet

8% = {8181, 5152, 5281, 5282}
where the probabilities of occurrence are determined by multiplication,

P(s181) = pip1 = (0.25)(0.25) = 0.0625
P(s182) = p1pz = (0.25)(0.75) = 0.1875
P(s251) = papr = (0.75)(0.25) = 0.1875
P(s252) = pap2 = (0.75)(0.75) = 0.5625

The Huffman algorithm gives the encoding

8187 — 010
8183 — 011
8281 —> 00

8282 —> 1
This scheme has average codeword length
(0.0625) - 3 + (0.1875) - 3 + (0.1875) - 2 + (0.5625)-1 = 1.6875

But since each codeword represents two source symbols, the average
codeword length per original source symbol is 1.6875/2 = 0.84375, which
is an improvement over encoding the original source. Continuing this
theme, let $* be the source alphabet consisting of strings of length 3
over S. Each source symbol in 82 is assigned a probability as before. For

3. Noiseless Coding

instance,
P(518281) = pipapr = (0.25)(0.75)(0.25) = 0.046875
A Huffman encoding of this source is
818187 — 11100
81818y — 11101
818281 — 11110
81828, — 100
828181 — 11111
82818 — 101
828287 — 110

§2828, = 0

which has an average codeword length of 2.46875, or an average codeword
length per original source symbol of 2.46875/3 = 0.82292, which is an
additional improvement over the original encoding.

From these examples, we see that it may be possible to improve the
average codeword length per original source symbol by grouping source
symbols to form a new source. While it is true that, in some cases, this
method does not result in improvements, the method is important, and
does lead, as we shall see, to significant theoretical results. This leads us
to make the following definition. ‘

Definition Let S = (S, P) be an information source. The nth exten-
sion of S is the source S™ = (§", P™), where §" is the set of all words of
length n over S, and P" is the probability distribution defined as follows.
Ifs = s;8;,---8;, isaword in §", then
P(s) = P(si8i,* " 8i,) = PiPi; * " D, O
The entropy of an extension & is related to the entropy of § in a very
simple way. In fact, when we think of entropy as the average amount
of information obtained per symbol, it seems intuitively clear that, since
we get n times as much information from a word of length n as from a

single character, the entropy of S” should be n times the entropy of S.
The following theorem confirms this.

Theorem 3.3.1 Let S be an information source, and let S" be its nth
extension. Then H(S™) = nH(S). a

3.3. Extensions of an Information Source

Proof The entropy of the nth extension is

1
HSn = i] iz...pinlg_—_
7 ,22: PP bipi, * * Pi,
0<i.<g
The properties of logarithms give
1
HESY = Y. piba--1, lg— (3.3.1)

11,i2,--,0n

1
+). Dby D, lg

i i
11,12,0in 2

1
"t Z pllplz' plnlgp_

1,12, tn

Now, let us look at the first of these summations

q
> pups- plnlg— pr, lg— XZplz X Y p,

11 2,010 ip=1

Since the sum of the probabilities p; equals 1, this equals
2 1
> plg— = H(S)
i1 b,
Since each of the other sums in the expression (3.3.4) for H(S™) is also
equal to H(S), and since there are n such sums, we get
H(S™ = H(S) + H(S) + -+ + H(S) = nH(S) |

Example 3.3.1 The entropy of the binary source S = {sy, s;}, p1 = 0.25,
p2 = 0.75, is '

H(S) = 0.251 ! + 0.751 ! 0.81128
(0) = 02508555 * 07518575 = 0
Hence, the entropy of the nth extension §" is

H(S™) = nH(S) = 0.81128n

As we will see in the next section, there is a simple relationship between
the entropy of a source (or its extensions) and the average codeword
length of any Huffman encoding of that source (or its extensions.) O

81

82

3. Noiseless Coding

Exercises

1. Consider the S source with alphabet S = {a, b} and probability distri-
bution P(a) = ;,P(b) = 3. Construct a Huffman encoding scheme
for S, 82, and 83 and find the average codeword lengths per source -
symbol. '

2. Repeat the previous exercise with a uniform probability distribution
on §.

3.4 The Noiseless Coding Theorem

When encoding a source S, it certainly seems reasonable that we will
need at least as many bits of information in the encoding as there is
in the source. (For efficient encoding, we also want as few extra bits in
the encoding as possible.) Since the entropy of S measures the amount
of information in &, it should come as no surprise that the minimum
average codeword length of any encoding of S should be at least as great
as the entropy of S. In symbols,

H,(S) < MinAveCodeLen,(S)

This is the content of part of the famous Noiseless Coding Theorem, first
proved by Claude Shannon in 1948. (Noise refers to the introduction of
errors in the code.) ‘

Theorem 3.4.1 (The Noiseless Coding Theorem—Version 1) Let S be
an information source. Then

H,(S) < MinAveCodeLen,(S)

where MinAveCodeLen,(S) denotes the minimum, average codeword length
among all uniquely decipherable r-ary encoding schemes for S. O

Proof Denote the probability distribution of the source § by P =
{P1,p2,...,pq}. Let (C,f) be a uniquely decipherable r-ary encoding
scheme for S, with codeword lengths £;,¢5,...¢, and consider the
numbers

3.4. The Noiseless Coding Theorem

The r; satisfy 0 < r; < 1. Furthermore, since C is uniquely decipherable,
McMillan’s Theorem tells us that

q q 1
;ri:Z;ESl

i=1

Thus, Lemma 3.2.2 implies that
q 1 q 1 q . q
H(S) = Zpilg; < Zpilg; = Y plgrt =) pitilgr
i=1 t i=1 ! i=1 i=1

q
= lgr Z pifi = (Igr)AveCodeLen(C, f)

i=1
Dividing by lg 7, and noting that H,(S) = H(S)/1gr, we get
H,(S) < AveCodeLen(C, f)

Since this holds for any uniquely decipherable r-ary encoding scheme for
S, the result follows. |

Example 3.4.1 Consider the source S = (S, P), where S = {0,1, ..., 9}
and P is uniform. The entropy of this source is 1g10. According to the
Noiseless Coding Theorem, the average codeword length of any uniquely
decipherable ternary encoding scheme (alphabet of size 3) must be at least
H3(S) = H) _ 50059 (3.41) O
1g3
Example 3.4.2 Table 2.1.1 contains an information source correspond-
ing to the letters of the English language. In Example 3.1.5, we noted that
the entropy of this source is approximately 4.07991, and so the Noiseless
Coding Theorem tell us that any uniquely decipherable encoding scheme
must have average codeword length of at least 4.07991.

Table 2.1.1 also shows a Huffman encoding scheme for this source. In
Example 2.1.2, we mentioned that the average codeword length of this
- Huffman encoding scheme is approximately 4.1195, which is quite close
to the minimum possible. O

The first version of the Noiseless Coding Theorem says that the en-
tropy H,(S) provides a lower bound on MinAveCodeLen,(S). Let us now
turn to the issue of finding an upper bound on MinAveCodeLen,(S).
For this, we wish to construct an instantaneous encoding of S with

83

84

3. Noiseless Coding

small codeword lengths. Recall thét if the lengths £, .. ., £, satisfy Kraft's
inequality

£l

ot T
then there is an instantaneous code with these codeword lengths. If P =

{p1,...,pq} is the probability distribution for S, then Kraft's inequality
can be written in the form

Thus, if

for all i, Kraft's 1nequahty will be satisfied. This can be rewritten in the
form

1
log, — < ¢;
i
so let us choose ¢; to be the smallest integer satisfying this inequality. In
other words, if the integers ¢; are chosen to satisfy

i i

1 1
logrl—o— <{¢ <log,— +1 (3.4.1)

for all i, then there is an instantaneous encoding with these codeword:
lengths. An encoding scheme whose codeword lengths ¢; satisfy (3.4.2)
is referred to as a Shannon-Fano encoding scheme. Moreover,

AveCodeLen,(S) = Z pili < Z pl(logr; + 1)

2‘1: og,— + Zp, H,(S) +1

Hence,
AveCodeLen,(S) < H,(S) + 1
from which it follows that

MinAveCodeLen,(S) < H,(S) + 1

3.4. The Noiseless Coding Theorem

Combining this upper bound with the first version of the Noiseless
Coding Theorem gives the second version of this theorem.

Theorem 3.4.2 (The Noiseless Coding Theorem—Version 2) Let S be
an information source. Then

H,(S) < MinAveCodeLen,(S) < H,(S) + 1

where MinAveCodeLenr(S) is the minimum average codeword length among
all uniquely decipherable r-ary encoding schemes for S. O

This theorem tells us that MinAveCodeLen,(S) lies between H,(S)
and H,(S) + 1. However, the difference between these bounds is 1 -
ary unit per source symbol, and this is still quite a lot from a practical
standpoint. Fortunately, better results can be achieved by considering the
encoding of extensions of the source S.

In particular, since the nth extension &" of S is a source in its own
right, we may apply the Noiseless Coding Theorem to S™, to get

H,(S8™) < MinAveCodeLen,(S") < H,(S8™) +1
But H,(S™) = nH,(S), and so
nH,(S) < MinAveCodeLen,(S™) < nH,(S) + 1
Dividing by n gives the final version of the Noiseless Coding Theorem.

Theorem 3.4.3 (The Noiseless Coding Theorem—Final Version) LetS
be an information source, and let S™ be its nth extension. Then
MinAveCodeLen, (S™)

H,(S) < "

1
H, -
< H,(S) + "

where MinAveCodeLen,(S™) is the minimum average codeword length among
all uniquely decipherable r-ary encoding schemes for S™. O

. Since each codeword in the nth extension 8" encodes n source
symbols from S, the number

MinAveCodeLen,(S™)
n

is the minimum average codeword length per source symbol of S, taken
over all uniquely decipherable r-ary encodings of S". Furthermore, since
1/ntends to 0 as n gets large, the upperbound H,(S) + 1/n approaches the
lower bound H,(S), and so, according to the Noiseless Coding Theorem,

85

86

3. Noiseless Coding

the number MinAveCodeLen,(S™)/n can be made as.close to H,(S") as
desired by taking n large enough. ’

In other words, by encoding extensions of S, that is, blocks of source
symbols rather than individual source symbols, we can reduce the aver-
age codeword length per source symbol to as close to the entropy H,(S)
as desired. This is the real essence of the Noiseless Coding Theorem. The
penalty for doing so is that, since |S*| = g", the number of codewords re-
quired to encode the nth extension S grows exceedingly large as n gets
large. As a result, achieving the desired “closeness” to the entropy may
be a practical impossibility.

Exercises

1. Consider the source § = (S, P), where S = {a,b,c} and P(a) = 1/2,
P(b) = 1/4, P(c) = 1/4. What is the binary entropy of this source?
Can we achieve a minimum average codeword length equal to the
entropy for this source?

2. Consider the source § - (S,P), where S = {a,b,c} and P(a) = 2/3,
P(b) = 1/6, P(c) = 1/6. What is the binary entropy of this source?
Can we achieve a minimum average codeword length equal to the
entropy for this source?

3. Let S be a binary source (thus § = {0, 1}). In order to guarantee that
the average codeword length, per source symbol of S, is at most 0.01
greater than the entropy of S, which extension of S should we encode?
How many codewords would we need?

4. In this exercise, we construct an entirely different type of encoding |
scheme. Rather than encoding each source symbol with a fixed code-
word (as in Huffman encoding), source symbols are encoded in groups
in a way that depends on each symbol’s relationship to other source
symbols in the source message. To be specific, let the source alphabet
be § = {0, 1} and suppose that P(0) = p and P(1) = 1 — p. To encode
a string of source symbols, we count the number of Os occurring in
the string before the appearance of a 1. The two encoding rules are

(a) if eight Os appear in a row, encode these 0’s as a 0, that is,

00000000 — O

Exercises

(b) if fewer than eight Os appear (say k 0s) before the next 1, then
determine the 3-bit binary representation of k (say e;eze3) and en-
code the string of k 0s followed by the 1 as the codeword 1e;e;es.
For instance, the source string 0001 (which is three Os followed by
a 1) is encoded as 1011 since 011 is the binary representation of the
number three.

i. Show that the resulting code is instantaneous.

ii. What is the probability that the source will emit k Os followed
by a 1? (Recall that we assume independence of the source
emissions.) '

iii. Define an event as the construction of a codeword. Find the
average codeword length per event.

iv. Find the average number of source bits per event.

- v. For each event, compute the number of codeword bits needed
per source bit. Then compute the average of these numbers.

vi. For p = 0.9, determine the average codeword length per
source bit for a Huffman encoding of the fourth extension
'S*. How does this number compare to the number in part v)?
What significance does this have for the optimality of Huffman
encoding? Does this violate the Noiseless Coding Theorem?

5. Let S be a source and let S2 be its second extension. Is the second
extension of 8% equal to the fourth extension of S? In symbols, is
(82)2 = 84?

87

