VC Dimension: Examples and Tools

Carlos C. Rodríguez http://omega.albany.edu:8008/

October 5, 2004

Recall the Definitions

Let $\mathcal A$ be a class of subsets of R^d . The shatter coefficients of $\mathcal A$ are denoted by $\mathcal S$ $(n,\mathcal A)$ and defined as the maximum number of subsets of a set of n elements that appear in the elemts of $\mathcal A$. We say that the class $\mathcal A$ shatters a given set of n elements if each of its 2^n subsets are picked by the members of $\mathcal A$. The Vapnik-Chervonenkis (VC) dimension of $\mathcal A$ is the size of the largest set that can be shattered by $\mathcal A$. It is denoted by $V=V(\mathcal A)$. Thus, if $V<\infty$ we must have $\mathcal S$ $(n,\mathcal A)=2^n$ for each $n\leq V$ and $\mathcal S$ $(V+1,\mathcal A)<2^{V+1}$. In words: If the VC dimension is V the class $\mathcal A$ shatters some sets with V elements but it shatters no set with V+1 (or more) elements. Here are the simplests examples.

Simplest Examples

Half lines in $R \mathcal{A} = \{(-\infty, x] : x \in R\}$. Clearly, $\mathcal{S}(n, \mathcal{A}) = n + 1$ and so V = 1. Notice, that,

$$\mathcal{S}(n,\mathcal{A}) = n+1 = \binom{n}{0} + \binom{n}{V}$$

Intervals in R $\mathcal{A} = \{(a,b): a,b \in \mathbb{R}\}$. To compute $\mathcal{S}(n,\mathcal{A})$ just think of the (n+1) spaces defined by n different real numbers. Any choice of two of these spaces corresponds to an (a,b) picking up the points inside. Thus,

$$\mathcal{S}(n,\mathcal{A}) = \binom{n+1}{2} + 1$$

where the extra interval is the one picking none of the n points. Therefore, V=2 and again,

$$\mathcal{S}\ (n,\mathcal{A}\)\ = \frac{n(n+1)}{2} + 1 = \binom{n}{0} + \binom{n}{1} + \binom{n}{V}$$

More Examples

It is not difficult to generalize the previous examples to \mathbb{R}^d .

South-West Intervals in R^d $\mathcal{A} = \{(-\infty, a_1] \times (-\infty, a_2] \dots \times (-\infty, a_d] : a_j \in R\}$. By what we found for the case d=1 and property 5 above, we can deduce that, $\mathcal{S}(n,\mathcal{A}) \leq (n+1)^d$ and looking ahead we guess V=d. This can be shown by noticing that \mathcal{A} shatters the d cannonical vectors $E = \{e_1, \dots, e_d\}$ with $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ (i.e. all zeroes except a 1 in the jth entry). Any $B \subset E$ is picked by a member of \mathcal{A} , e.g., by the one with $a_j = 1 + \epsilon_j/2$ where $\epsilon_j = +1$ if $e_j \in B$ and $\epsilon_j = -1$ otherwise. Furthermore, no set with d+1 points can be shatter by \mathcal{A} since it is imposible to pick only the d points where the first has the largest first coordinate, the second has the largest second coordinate, ..., the dth has the largest dth coordinate, and not the other. Thus, V = d.

All the rectangles in \mathbb{R}^d For this class V=2d. Again the case d=1 and property 5 above shows that,

$$|\mathcal{S}(n,\mathcal{A})| \le \left(\frac{n(n+1)}{2} + 1\right)^d < (n+1)^{2d}$$

and looking ahead we'd guess V=2d. A proof along the lines of the previous example is straight forward.

Power Tools

The following simple result is known as Sauer's Lemma. It provides a way to bound shatter coefficients in terms of the VC dimension.

Sauer's Lemma If $V(A) < \infty$, for all n

$$\mathcal{S}\left(n,\mathcal{A}\;\right)\;\leq\sum_{i=0}^{V}\binom{n}{i}$$

Proof: By induction on n. It is true for $n \leq V$ since for these n,

$$\mathcal{S}(n,\mathcal{A}) = 2^n = \sum_{i=0}^n \binom{n}{i} = \sum_{i=0}^V \binom{n}{i}.$$

Now let us assume the result true for n and deduce it for n+1. Clearly \mathcal{S} $(n+1,\mathcal{A})$ is at most $2\mathcal{S}$ (n,\mathcal{A}) (see property 4 above) but this bound can be reduced by using the fact that the vc dimension is V so we know that \mathcal{A} shatters no set with V+1 points. On the other hand, a set with n+1 points has n choose V more subsets with N+1 elements than a set with N+1 points has, and each of these must hide at least one new subset that cannot be picked out by N+1.