Chapter 8: Learning and the VO Dimension

8.1 INTRODUCTION

In the previous chapter we discussed the theory of VC dimension, with the promis
that this theory would prove useful in the study of learning. The results to b
proved in this chapter fulfil that promise. We show that, for any hypothesis spac
H, the condition that H has finite VC dimension is both necessary and sufficien
for potential learnability. Thus we have a complete characterisation of potentiall;
learnable hypothesis spaces: they are precisely those of finite VC dimension.

The details of this characterisation provide a general upper bound for the sampl
complexity of a consistent learning algorithm, when the hypothesis space is potentiall;
learnable. We shall also give two general lower bounds for the sample complexity o
pac learning algorithms, one in terms of the VC dimension and accuracy, the othe
in terms of confidence and accuracy.

8.2 VC DIMENSION AND POTENTIAL LEARNABILITY
We shall find it useful to introduce some slight elaborations of our standard notation
We use the notation s = (x,b) for the training sample

s = ((z1,b1), (z2,02)y- - ., (T, bm))

in (X x {0,1})™. If t is a target concept and s is a training sample for ¢ (that is
b; = t(z;) for each i), then we denote s by (x,%(x)). This notation emphasises th
fact that, when s belongs to the set S(m,t) of training samples of length m for ¢, onl;
the values of t on the elements of the sample x are given. However, for the sake o
compactness, we shall denote the subset of H which agrees with s by H[x,t], rathe
than H[(x,t(x))].

Given s = (x,b), the observed error of a hypothesis h € H on s is defined to be

era(h) = = [{i  h(z) # b}

Note that H(s] is the set of hypotheses having observed error zero on s. If s = (x,¢(x)
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to r from the fact that it is ‘small enough’.

This discussion suggests that, for any hypothesis space H = (J H, and for any learning
algorithm L for H, we should define the effective hypothesis space L(m, H,) to be the
set of all hypotheses L(s) obtained as s ranges through all training samples of length

m for hypotheses in H,,
L(m,H,) = U {L(s) | s € S(m,)}.

teEH,

Thus the Occam algorithms for boolean spaces are consistent learning algorithms
which have effective hypothesis spaces with ‘small enough’ cardinalities. The ap-
propriate generalisation to general (and, in particular, real) hypothesis spaces, is to
define an Occam algorithm to be a consistent learning algorithm for which the ef-
fective hypothesis spaces have ‘small enough’ VC dimension. Following Blumer et
al. (1989), we make the following definition.

We say that a learning algorithm L for H is Occam with respect to the representation

Q— Hif

e [ is consistent;
e VCdim (L(m, H,)) < m*r?, where 0 < o < 1 and 8 > 1 are constants.

As for boolean spaces, we have the following result.

Theorem 9.6.1 Let H be a space of real or boolean hypotheses having representatioh
0 — H. If L is an Occam learning algorithm (with respect to the representation)
then, for each r, L is a pac learning algorithm for (H,, H), with sample complexity

my(H,, b, €) polynomial in r,§* and €.

Proof Let t € H, be a given target concept, y any distribution on X, and § and
e given confidence and accuracy parameters. Consider these quantities as fixed but
arbitrary in what follows. For convenience, denote L(m, H,) by H*. By definition of

the effective hypothesis space, L is a learning algorithm for (H,, H*). It is easy to
see that Proposition 8.2.3 can be modified to yield

p™ {s € S(m,t) | H*[s]N B, # 0} < 211 4.(2m)27"/2,

We are given that H* has VC dimension at most D = m®r?. If m > D then, by
Sauer’s Lemma, the quantity on the right-hand side of the inequality is less than

5 (2em)D g-em/2
D
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Let U denote the collection of all subsets of R which can be expressed as a finite
union of closed intervals, and let J = {x. | A € U}, the interval union space.

In order to show that VCdim(J) is infinite, let x = (z;,z,,...,2,,) be any sample
of distinct points in R, and let F, denote the corresponding set of examples. Given
any S C F, we can construct a set A € U such that S C A and (E,\ S)NA =0,
as follows. For each z; € S let A; be a closed interval which contains z; but no other
element of E,, and let A be the union of all such A;. The set A is a finite union
of closed intervals, and x4 is 1 on S and 0 on E, \ S. In other words; J shatters
x. Since this argument works for any finite sample, of whatever length, we conclude

that VCdim(J) is infinite. o

Note that the space H constructed in this example is contained in the space of (char-
acteristic functions of) closed sets in R. Thus the latter space also has infinite VC
dimension. It follows from Theorem 8.2.1 that neither space is potentially learnable.

The converse of the preceding theorem is also true: finite VC dimension is sufficient
for potential learnability. This result can be traced back to the statistical researches
of Vapnik and Chervonenkis (1971) (see also Vapnik (1982)). The work of Blumer et
al. (1986, 1989), showed that it is one of the key results in Computational Learning
Theory. The proof is rather involved, and the details will be given in the next section.
For the moment, we shall describe only the underlying ideas.

Suppose that the hypothesis space H is defined on the example space X, and let ¢ be
any target concept in H, p any probability distribution on X and € any real number
with 0 < € < 1. The objects t,pu, € are to be thought of as fixed, but arbitrary, in
what follows. Define

Qn ={xe X" [H[x,{]NnB, #0}.

The probability of choosing a training sample for which there is a consistent, but
e-bad, hypothesis is
p" {s € S(m,t) | H[s|N B, # 0},

which is, by definition (Section 3.2), u™(Q%,). Thus, in order to show that H is
potentially learnable, it suffices to find an upper bound f(m,¢) for x™(Q¢,) which is
independent of both ¢ and p and which tends to 0 as m tends to infinity. For if there
is such a bound then, given any 6 between 0 and 1, we can use the fact that f(m,e)
tends to 0 to find m, such that for all m > my, f(m,e€) < 8. The value of m, depends
on 6 and ¢ but is independent of ¢ and px. So we have the my(6,€) required in the
definition of potential learnability.
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Note that the m, thus obtained is also an upper bound for the sample complexity of
any consistent learning algorithm for H. The hard part of the proof is to find the
upper bound f(m,e€). In the next section we shall prove the following result, which,
in this specific form, is due to Blumer et al. (1986, 1989), and generalises a result of

Haussler and Welzl (1987).

Proposition 8.2.3 Suppose that H is a hypothesis space defined on an example
space X, and that ¢, u, and € are arbitrary, but fixed. Then

p™ {s € S(m,t)| H[s]N B, # 0} < 215 (2m)2™"/*

for all positive integers m > 8/e. 0

The right-hand side is the bound f(m,e) for u™(Q¢,), as postulated above. We
have to show that it tends to zero as m — oo. If H has finite VC dimension then,
by Sauer’s Lemma, II5(2m) is bounded by a polynomial function of m, and there-
fore f(m,e€) is eventually dominated by the negative exponential term. Thus the
right-hand side tends to 0 as m tends to infinity and, by the above discussion, this
establishes potential learnability for spaces of finite VC dimension. |

8.3 PROOF OF THE FUNDAMENTAL THEOREM

In this section, we present a proof of the key result that finite VC dimension implies
potential learnability. The proof is rather involved, and it is worth giving first a very
informal explanation of the method.

We aim to bound the probability that a given sample of length m is ‘bad’, in the
sense that there is some hypothesis which is consistent with the target concept on the
sample but which has actual error greater than e. We transform this problem into
a slightly more manageable one involving samples of length 2m. For such a sample,
the sub-sample x comprising the first half of the sample may be thought of as a
randomly drawn sample of length m, while the second half may be thought of as a
‘testing’ sample on which to evaluate the performance of a hypothesis consistent with
the target concept on x. We obtain a bound on the probability that some hypothesis
consistent with the target on the first half of the sample is ‘bad’, in the sense that
it has observed error greater than €/2 on the second half of the sample. A given
example is just as likely to occur in the first half as in the second half. A group
action based on this idea enables us to find the required bound by solving a simple

counting problem.

We shall assume some measure-theoretic properties of the hypothesis spaces without
explicit comment. These were mentioned in the Further Remarks of Chapter 3, and
the details are discussed fully by Pollard (1984) and Blumer ef al. (1989).
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Theorem 8.3.1 If a hypothesis space has finite VC dimension, then it is potentiall;
learnable.

Proof We use the notation introduced at the end of the previous section. There are
four stages.
e Bound ™ (Q¢,) by the probability (with respect to u*™) of a certain subset
R¢ of X*™.
e Using a group action, bound the probability of R¢, in finite terms.
e Express this bound in terms of Il by combinatorial arguments.
e Apply the argument given in the last paragraph of Section 8.2 to conclude
that p™(Q¢,) tends to zero as m tends to infinity.

Stage 1 Given samples x,y € X™, let xy € X*" denote the sample of length 2n
obtained by concatenating x and y. With this notation, define
18

| o

R = {xy e X% ‘ 3k € B, for which ery(h) = 0 and er, (k) >

Lemma 8.3.2 For all m > 8/,
p(Qr) < 20 (R,).

Proof Let xqo be the characteristic function of Q¢ ; that is, xo(x) = 1 if x € Q¢
and xo(x) = 0 otherwise. If we define the characteristic function xx similarly, then

Xr(XY) = Xo(X)¥x(¥),

where 1, if 3k € H[x] N B, with ery(h) > ¢/2
_ 1,1 € H{x|N B, with er > €/2;
Yx(y) = {0, otherwise. Y

Now we have
i (B = [xatey) = [ (xa0) [93)).

where the integrals are taken over the whole of the relevant spaces, with respect tc
the product measures. The inner integral is the probability that, given x, there i
some h € B, which is consistent with x and satisfies ery(h) > €/2. This is certainly
not less than the probability that a particular ~ € B, which is consistent with >
satisfies er,(h) > €/2.

Thus it suffices to show that the above-mentioned quantity is at least %, for then we
have

B (Re) 2 [ 3xa(x) = 3um(@5)
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In order to prove this, we use the following bound on the ‘tail’ of the binomial
distribution. Let 0 < p < 1 and let LE(p, m,s) denote the probability of at most s
successes in m independent trials each of which has a probability p of success. Then

LE (p,m,(1 — B)mp) < e™#'m#/?,

for any 0 < B < 1. This is often known as a Chernoff bound, since it follows from a
special case of a result of Chernoff (1952). (See also Angluin and Valiant (1979) and,
for a generalisation of this result, McDiarmid (1989).)

Let h € B, so that er,(h) = ¢, > €. For y € X™, mer,(h) is the number of
components of y on which h and t disagree, and so it is a binomially distributed
random variable. Now, applying the above Chernoff bound, we have

pwr {y ' ery(h) < %} =um {y I mery(h) < %m}

pw {y ‘ mery(h) < 6—hm}
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For m > 8/e, this is at most 1/e. It follows that for any h € B,,

€ 1 1
m h —} 1——=->—-.
y{ylery()>2 > e>2

This completes the proof of Stage 1. 0

Stage 2 The next stage is to bound the probability of RS, by using a group action on
X*™. Following Pollard (1984), we use the ‘swapping group’ to convert the problem
into an easy counting problem.

For ¢ € {1,...,m} let 7; be the permutation of {1,...,2m} which switches 7 and
m + t. There is an induced transformation of X*™ defined by letting 7; act on the
coordinates, and we use 7; to denote this transformation also. Thus, for example, if
m =4,

79(21, 22, 23, 24, 25, Z6, 27, 28) = (21, 26, 23, 24, 25, 22, 27, 28)-

Let G,, be the group generated by the permutations 7; (1 < ¢ < m). As an abstract
group G, is just the direct product of m copies of the group of order 2, so |G,,| = 2™.
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Lemma 8.3.3 Given z € X?", let ['(z) denote the number of o € G,, for which oz
is in Rf,. Then ‘ |
Gl 12™(RS) < maxT(z),

where this maximum is taken over all z € X?™.

Proof The proof is quite general, applying to any finite group G of transformations
of a space X" induced by coordinate-permutations, and any subset S of X". Let xg
be the characteristic function of S. Since G is finite we can interchange summation
and integration as follows (where the integral sign represents integration over the
entire space with respect to the product measure derived from p):

> [xs(on) = [T xs(on)

The left-hand side is the sum over ¢ of the measure of o~*(S), which is the same
as the measure of S, since coordinate-permutations preserve the product measure.
Hence the left-hand side is just |G| x"(S). The integrand on the right-hand side is
just the number of o in G for which 0z € S. Since the total weight of a probability
measure is 1, the integral is bounded by the maximum of this quantity, taken over z.
Putting n = 2m, G = G,,, and S = R;,, the result follows. O

Stage 3 Given any h € B,, let

Rt (h) = {xy € X ' ery(h) =0 and ery(h) > %}

Also, for z € X*™, let I'(h,z) denote the number of o € G,, which transform z to a
vector in R¢ (h). '

Lemma 8.3.4 Suppose that m is any positive integer and that h € B,. Then
L(h,z) < 2m01-</D)

for all z € X,

Proof Suppose that I'(h,z) # 0. If z ¢ R¢,(h), then for some 7 € G,,, 7z € Rt (h).

But the number of o such that oz € R (k) is precisely the number of o for which
otz € R; (k) (since G,, is a group). Hence, we may, without loss of generality,
suppose that z € R¢ (h).

Now, z = xy where er,(h) = 0 and ery(h) > ¢/2. To simplify notation, let us suppose
that the r > me/2 entries of z on which h and the target concept ¢ disagree are

Zm+1’ Zm+23 s sy Zm+r'
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Recall that a transformation o € G,, interchanges some pairs (z;,z,4;). If 0z is
in R¢,(h) then o does not interchange (2;,2,4;) for 1 < j < r. Conversely, any o
which satisfies this condition is in R (k). Since o is uniquely determined by the set
of j for which o(2;) = 2,,4;, the number of such ¢ is just the number of subsets of
{r+1,r+2,...,m}; that is, ['(h,z) = 2™". Since r > em/2, we have

[(h,z) < 2m=m2,

as required. O

Lemma 8.3.5 For any positive integer m,

p*™(RE) < Ty (2m) 2772,

Proof Let z € X" be fixed but arbitrary, and let s = IIp (z). Then there are
hypotheses hy, ..., h, in B, which give s different classifications of z and, further, any
classification of z by a hypothesis in B, is one of these s classifications. We have

s =1p.(2z) < x(z) < Hg(2m).

A

Suppose 0z = ab isin R;,. This means that there is some h € H such that er,(k) =0
and ery(h) > €/2. Since all classifications of z, and hence of its rearrangement
oz = ab, are realised by some h; (1 <7 < s), it follows that oz is in one of the sets
R;,(h;). Thus the set of o for which oz is in R, is the union of the sets of those o for
~which oz is in R (k;). In terms of the notation previously introduced, we therefore
have

['(z) < Zs: ['(h;,2).

The last expression is the sum of s < II;(2m) terms and, by Lemma 8.3.4, each of
them is bounded above by 2m(1=¢/2), Thus, from Lemma 8.3.3, we have

p(RS,) S |G| maxT(z) S 277 0y(2m) 270D = 1y (2m) 2772,

as claimed. O

Stage 4 The bound
p™(Qf) < 2Ty (2m) 27 m/?

follows by combining Lemmas 8.3.2 and 8.3.5. If H has finite VC dimension then, by
Sauer’s Lemma, II5(2m) is bounded by a polynomial function of m. The right-hand
side is eventually dominated by the negative exponential term, and tends to 0 as m
tends to infinity; so it can be made less than any given § > 0 by choosing m > m,(é, €),
a quantity depending only on ¢ and e. Thus H is potentially learnable. O



