Chapter 7: The VC Dimension

7.1 MOTIVATION

Suppose that, as in the framework of previous chapters, we have a hypothesis space H
defined on an example space X. In Chapter 4 we proved that if H is finite, then it is
potentially learnable. The proof depends critically on the finiteness of H and cannot
be extended to provide results for infinite H. However, there are many situations
where the hypothesis space is infinite, and it is desirable to extend the theory to
cover this case. A pertinent comment is that most hypothesis spaces which occur
‘naturally’ have a high degree of structure, and even if the space is infinite it may
contain functions only of a special type. This is true, almost by definition, for any
hypothesis space H which is constructed by means of a representation Q) — H.

The key to extending results on potential learnability to infinite spaces is the observa-
tion that what matters is not the cardinality of H, but rather what may be described
as its ‘expressive power’. In this chapter we shall formalise this notion in terms of
the Vapnik-Chervonenkis dimension of H, a notion originally defined by Vapnik and
Chervonenkis (1971), and introduced into learnability theory by Blumer et al. (1986,
1989). The development of this notion is probably the most significant contribution
that mathematics has made to Computational Learning Theory.

In order to illustrate some of the ideas, we consider the real perceptron. This is
a machine which operates in the same manner as the linear threshold machine of
Section 2.5, but with real-valued inputs. Thus, as shown in Figure 7.1, there are
n inputs and a single active node. The arcs carrying the inputs have real-valued
weights oy, as,...,q, and there is a real threshold value 6 at the active node. As
with the linear threshold machine, the weighted sum of the inputs is applied to the
active node and this node outputs 1 if and only if the weighted sum is at least the
threshold value 6.
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Figure 7.1: The real perceptron P,

More precisely, the real perceptron P, on n inputs is defined by means of a represen-
tation Q — H, where the set of states 2 is R**'. For a state w = (6500 o + 3y )
the function h, € H, from X = R™ to {0,1}, is given by
o {1 T, e 6
hu(y) = {0, otherwise.
It should be noted that w +— h, is not an injection: for any A > 0 the state Aw defines

the same function as w.

Example 7.1.1 As an example, consider P, the real perceptron with two inputs. In
state w = (ay, @3, 0), P, computes the boolean-valued function h, for which

; hw(y17y2) =1 @ aL Y, + Q2Y2 2 0.

It is useful to describe this geometrically (Figure 7.2). The example y = (y1,92).
considered as a point in the plane R?, is a positive example of A, if and only if y lies
on the straight line I, with equation a,y; + a,y, = 6 or on the side of I, consisting

of points with o y; + azy, > 0.

Figure 7.2: Geometrical interpretation of a hypothesis in P»
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Given a sample of m points in R? the machine P, can only achieve certain classifi-
cations of the sample into positive and negative examples: precisely those for which,
as above, the positive examples are separated from the negative examples by a line
in the plane. When a classification of the sample can be realised in this way, we shall
say that it is linearly separable. The fact that relatively few classifications are linearly
separable is an indication of the restricted ‘expressive power’ of P,. O

7.2 THE GROWTH FUNCTION

Suppose that H is a hypothesis space defined on the example space X, and let
x = (&, 2s,...,2,) be a sample of length m of examples from X. We define I1(x),
the number of classifications of x by H, to be the number of distinct vectors of the
form

(h(xl)> h(x2)’ e h(xm)) )

as h runs through all hypotheses of H. Although H may be infinite, we observe that
H|E,, the hypothesis space obtained by restricting the hypotheses of H to domain
E, = {z),24,...,2,,}, is finite and is of cardinality II;(x). Note that for any sample
x of length m, IT5(x) < 2™. An important quantity, and one which shall turn out to

S

be crucial in applications to potential learnability, is the maximum possible number
of classifications by H of a sample of a given length. We define the growth function
[Ty by

Oy(m) = max {II4(x):x € X™}.

- We have used the notation Il for both the number of classifications and the growth
function, but this should cause no confusion.

Example 7.2.1 Let X = R be the real line and let H be the set of rays, as defined
in Chapter 2. Suppose that m is a positive integer and that x = (z,,,,...,2,) is a
sample of length m, in which the examples are arranged in strictly increasing order:

$1<-'L'2<...<l'm.

Given 8§ € R, ry(x;) = 1 if and only if z; > 6. Therefore, for any h = r, and any &
between 1 and m — 1, h(z;) = 1 implies h(z;4,) = 1. Thus the set of ‘classification
vectors’ (vectors of the form (h(z,), h(z,),...,h(z,)) for some h € H) consists only
of the m + 1 vectors

(111...11), (011...11), (001...11), ..., (000...00).

Now any sample in which the examples are distinct can be obtained from one in which
the examples are in strictly increasing order by a permutation, and this permutation
of the sample will simply give another set of m + 1 classification vectors. If not all
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the examples are distinct, there will clearly be fewer possible classifications. Thus
[Ty (m), the maximum number of classifications, is m + 1. O

In general, it is difficult to find an exact formula for the growth function of a hypoth-
esis space. In the next section we shall define a numerical parameter of a hypothesis
space which is easier to estimate than the growth function, and which can be used to
provide upper bounds for the growth function.

7.3 THE VC DIMENSION :

We noted above that the number of possible classifications by H of a sample of length
m is at most 2™, this being the number of binary vectors of length m. We say that
a sample x of length m is shattered by H, or that H shatters x, if this maximum
possible value is attained; that is, if H gives all possible classifications of x. Note that
if the examples in x are not distinct then x cannot be shattered by any H. When
the examples are distinct, x is shattered by H if and only if for any subset S of E,,
there is some hypothesis h in H such that for 1 <i < m,

S is then the subset of E, comprising the positive examples of A.

Based on the intuitive notion that a hypothesis space H has high expressive power
if it can achieve all possible classifications of a large set of examples, we use as a
measure of this power the Vapnik-Chervonenkis dimension, or VC dimension, of H,
defined as follows. The VC dimension of H is the maximum length of a sample
shattered by H; if there is no such maximum, we say that the VC dimension of H is
infinite. Using the notation introduced in the previous section, we can say that the

VC dimension of H, denoted VCdim(H), is given by
VCdim(H) = max {m : [Iz(m) = 2™},

where we take the maximum to be infinite if the set is unbounded.

Example 7.3.1 Consider again the case in which X is the real line and H is the
space of rays. Given a sample (y,y’) of length 2, we may suppose without loss that
y < y’. Then there is no ray h = ry such that A(y) =1 and h(y’) = 0, because if such
a ray were to exist, we should have y’ < § < y. Therefore H shatters no sample of

length 2. Clearly H shatters any sample consisting of just one example, and therefore
VCdim(H) = 1. O

Example 7.3.2 Let X be the plane R*, and H the hypothesis space of P,. Suppose
that x = (z,,2,,x3) is any sample consisting of three distinct non-collinear points.
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We observed earlier that H can achieve precisely those classifications of a sample
into positive and negative examples which are linearly separable. Thus, x is shat-
tered by H if and only if for any subset S of Fy = {z1,2,,25}, S and E, \ S are
linearly separable. This is easily seen to be true in this case (Figure 7.3), and hence

VCdim(H) > 3.
— \\ \ + +
_ — / ofe

+ - ~ + + - + +

Figure 7.3: P, shatters three non-collinear points

In order to prove that VCdim(H) = 3, we have to show that no sample of length 4 is
shattered by H. Suppose, by way of contradiction, that the sample x = (z,, z4, 3, Z4)
of length 4 is shattered by H. Then for every S C E,, S and E, \ S are linearly
separable and so, in particular, no three of z,, z,, x5, T, can be collinear. There are two
cases to consider: either all four points are boundary points of the smallest closed
polygonal region containing Ey, or one of the points (without loss, z,) lies in the
interior of this region. Typical examples of these cases are illustrated in Figure 7.4.

In the first case, {z,,z3} and {z,,z4} (for example) are not linearly separable, while
in the second case {z,} and {z,,z,,75} are not linearly separable. Therefore H
shatters no sample of length 4 and, consequently, as claimed, VCdim(H) = 3. a

o5

23
e

o R
LIRS

Figure 7.4: The two cases for a sample of four points
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When the hypothesis space H is the set of functions defined by some representatior
) — H, we shall take the VC dimension of the representation to be the VC dimensior
of H. Thus, we have shown that the VC dimension of P, is 3.

The following simple result on finite hypothesis spaces is often useful. | ,

Proposition 7.3.3 If H is a finite hypothesis space, then
VCdim(H) < Ig|H|.

Proof The VC dimension of H is the greatest integer d for which II5(d) = 2. Bu
the number of classifications by a finite hypothesis space H of a sample of any lengt}
is certainly at most the number of distinct hypotheses in H. Hence, for any positive
integer m, IIy(m) < |H|. In particular,

Taking logarithms gives the result. C

Example 7.3.4 Using the foregoing Proposition, we can obtain an upper bounc
on the VC dimension of M, the hypothesis space of monomial concepts defined o1
{0,1}". Recall that |M,| = 3" and therefore, by the Proposition, the VC dimensios
of M, is at most lg3™. That is

VCdim(M,) < (Ig3) n.

In order to get a lower bound, we claim that M, shatters the sample (e, e€,,..., €,
where, for : between 1 and n, ¢, is the point in {0,1}" with 1 as entry in position ¢ an
with all other entries 0. It will follow immediately from this that the VC dimensio:
of M, is at least n. To prove our claim, suppose that

q = (Q1,Q2,---’Qn) € {0’1}71
We have to show that there is h in M,, such that
h(e)) = qi, h(€es) = qay ..., h(€n) = ¢n.

If ¢ is the all-1 vector, we take h to be the empty monomial in which no liter:
appears; otherwise we take h to be the conjunction of those literals @; for whic
¢; = 0. Summarising, we have

n < VCdim(M,) < (lg3)n

for any n.
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7.4 THE VC DIMENSION OF THE REAL PERCEPTRON

We have seen that the VC dimension of P, is 3. Furthermore, if one interprets P; in
the obvious way (Exercise 2), then it is easy to verify that P, has VC dimension 2.
We shall prove in this section that, more generally, for any positive integer n, the VC
dimension of P, is precisely n 4+ 1. In order to do so, we need some geometrical ideas.

Consider the perceptron P, with n inputs. In state
w= (a,az,...,a,,0),
the function h, computed by the perceptron is the {0,1}-function such that
ho(y) =1 <= a1ys + @oya + ... + apyn > 0.

Thus the set of positive examples of h, is the closed half-space

Zaiyi 2 0} )
i=1

E={yER"

bounded by the hyperplane

zn:a,-y,- = 0} .
i=1

h={yER"

The set of negative examples of h, is then the open half-space

Za,-y,- < 0} i
i=1

C={y€R"

Roughly speaking, [, divides R” into the set of positive examples of A, and the set
of negative examples of h,

A subset C of R" is convez if, given any two points z, y of S, the line segment between
r and y lies entirely in C. More formally, C' is convex if given any z,y in C and any
real number A with 0 < A <1, the point Az + (1 — A)y belongs to C. (The notation
here is the standard one for the real vector space R".) It is clear that the intersection
of any number of convex sets is again convex and therefore for any non-empty set S
of points of R", there is a smallest convex set containing S. This set, denoted by
conv(S), is called the conver hull of S; conv(S) is the intersection of all convex sets
containing S. For example, suppose that S is any finite set of points in the plane R2.
Then conv(.S) is the smallest closed region which is bounded by a polygon and which
contains S. : '
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We shall find the following result, known as Radon’s Theorem, extremely useful. Le
n be any positive integer, and let E be any set of n + 2 points in R*. Then there i
a non-empty subset S of E such that

conv(S)Nconv(E \ S) # 0.

A proof is given by Grunbaum (1967).

Theorem 7.4.1 For any positive integer n, let P, be the real perceptron with -

inputs. Then
VCdim(P,) =n + 1.

Proof Let x = (z,,23,...,%,42) be any sample of length n + 2. As we have notec
if two of the examples are equal then x cannot be shattered. Suppose then that th
set F of examples in x consists of n+ 2 distinct points in R". By Radon’s Theorenr
there is a non-empty subset S of F, such that

conv(S)Nconv(E, \ S) # 0.

Suppose that there is a hypothesis A, in P, such that S is the set of positive example
of h, in E.. Then we have

SClt, E\SCL.
Since open and closed half-spaces are convex subsets of R, we also have
conv(S) CI*, conv(E,\S)CI.

Therefore

conv(S) Nconv(E, \S)CIIniz =40.
We deduce that no such h, exists and therefore that x is not shattered by P,. Thu
no sample of length n + 2 is shattered by P, and VCdim(P,) < n + 1.

It remains to prove the reverse inequality. Let o denote the origin of R" and, fc
1 << n, let e; be the point with a 1 in the z’th coordinate and all other coordinate
0. We shall show that P, shatters the sample

X=(0,61,62,...,6n)

of length n + 1.

Suppose that S is a subset of E, = {0,¢€,...,e,}. Fori =1,2,...,n, let

_ ]., lfe,ES,
& = {—1, if e; & S;



7.5 Sauer’s Lemma 79

and let
9 = -1/2, ifo€ S,
—11/2, ifodS.

Then it is straightforward to verify that if w is the state
w = (ay,asz,...,a,,0)

of P, then the set of positive examples of h, in F, is precisely S. Therefore x
is shattered by P, and, consequently, VCdim(P,) > n + 1. Combining these two
results, we have the stated equality. a

7.5 SAUER’S LEMMA

In this section we assume that H has finite VC dimension. The growth function
[I5(m) is a measure of how many different classifications of an m-sample into pos-
itive and negative examples can be achieved by the hypotheses of H, while the VC
dimension of H is the maximum value of m for which I1g(m) = 2™. Clearly these two
quantities are related, because the VC dimension is defined in terms of the growth
function. But there is another, less obvious, relationship: the growth function Iz (m)
can be bounded by a polynomial function of m, and the degree of the polynomial is the
VC dimension d of H. Explicitly, we have the following theorem, due to Sauer (1972)
and Shelah (1972) independently (see Assouad (1983)). In combinatorial circles it is
usually known as Sauer’s Lemma.

Theorem 7.5.1 (Sauer’s Lemma) Let d > 0 and m > 1 be given integers and let
H be a hypothesis space with VCdim(H) = d. Then

thn)§]f+(qj-+(2)+m.n+<?>,

where the binomial numbers are defined by

(m) :m(m—l)...(m—i+1)
i 12, .. '

a

Before we give the proof, it may be helpful to interpret the result. First, it should
be noted that the explicit definition of the binomial numbers means that (‘;) is zero
whenever b > a > 1. Thus for values of m not exceeding d the result asserts only
that

nﬂm)g1+(T)+.“+(:)+0+0+.”+0=2m
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which is trivial; we already know that II; takes these values in this range. However,
when m is greater than d, the sum

swm = 1+(1)+(3)+-+ ()

is strictly less than 2™: indeed, it follows from the explicit formula for the binomial
numbers that it is a polynomial function of m with degree d.

For convenience, we let ®(d, m) denote this sum of binomial numbers for any d > (
and m > 1. We have:

®0,m)=1 (m>1); ®(d,1)=2 (d>1). 'i
The binomial numbers satisfy the identity f
!

b= (537 Go0)

which can be verified explicitly using the formula. From this we can immediately
derive the identity

O(d,m)=®(d,m—-1)+d(d—1,m—1),

” which is valid for all d > 1 and m > 2 (Exercise 5).

Proof of Sauer’s Lemma If H is a hypothesis space with d = VCdim(H) = 0 then
for any example z, h(z) is the same (either 0 or 1) for all hypotheses h € H. It follow:
that II5(x) = 1 for any sample x of any length m. Thus [Iz(m) = 1 = ®(0,m), anc
the theorem is true in the case d = 0. L

If m =1and d > 1, then for any H we have II5(1) < 2 = ®(d, 1), so the theorem i
true in this case also. '

Using these ‘boundary conditions’ we can prove the theorem by induction on d + m
The case d + m = 2 is covered explicitly by the boundary conditions. Suppose the
result holds for all cases with d + m < k, where k > 2, and let H be a hypothesi:
space of VC dimension d and x a sample of length m, where d + m = k + 1. The
cases (d,m) = (0,k+ 1) and (d,m) = (k,1) are covered by the boundary conditions
so we may assume that d > 1, m > 2.

If the given sample x = (z,,2,,...,2,) contains repeated examples, then we car
remove the repetitions and obtain a shorter sample. The result then follows by th
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induction hypothesis. So we may suppose that x contains m distinct examples. Let
E be the set of examples in x and let Hy = H|E be the hypothesis space on E
obtained by restricting the hypotheses of H to the domain E. Then, as remarked
earlier, Hg is finite and II5(x) = |Hg|. We shall show that |Hg| < ®(d, m).

Let F = E \ {z,,} and consider the hypothesis space Hr = H|F. Two distinct
hypotheses h, g of Hg give, on restriction to F', the same hypothesis of Hp precisely
when h and g agree on F' and disagree on z,,. Denote by H, the set of hypotheses of
Hp which arise in this manner from two distinct hypotheses of Hg. Thus, if h. € H.
then both possible extensions of h, to a {0,1}-function on E are hypotheses of Hg.
It follows that

|He| = [Hr| + |H.|.
We now bound |Hp| and |H.|.

Let x' = (2, 25,...,2,_;) be the sample consisting of the first m — 1 examples of x.
Then Hp is a hypothesis space on F' and therefore '

|Hp| = y(x") < Hg(m - 1).
Using the induction hypothesis we can conclude that
|Hp| < lg(m —1) < &(d,m - 1),
since d + (m — 1) < k.

We claim that VCdim (H.,) is at most d — 1. Indeed, suppose that H, shatters some
sample z = (z,, 2y, . .., 24) of length d of examples from F'. For each h, € H,, there are
hi,hy € Hg such that h; and h, dgree with h, on F, and hy(z,) =0, hy(z,) = 1. It
follows that Hg, and hence H, shatters the sample (zy,...,z4,2,) of length d+ 1, an
impossibility since VCdim(H) < d. Hence VCdim (H,) < d — 1. Using the induction
hypothesis again we have

|H,| =1y, (x) < Mg, (m—1) < O(d-1,m 1),
since (d — 1)+ (m — 1) < k.
Combining the results obtained, we have

g (x) = [He| = |Hp| + |H.

<P(dym—-1)+@(d—1,m—1) = ®&(d,m),

as required. | g
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Example 7.5.2 Let H be the hypothesis space of the real perceptron F,. Then H has
VC dimension n + 1 and therefore for any positive integer m, I[Ig(m) < ®(n + 1, m).
For example, when n = 2

Mp(4) <®(3,4)=1+4+6+4=15.

This corresponds to the fact, illustrated in Figure 7.4, that not all the 2* classifications
of a 4-sample can be realised by P,. In fact, careful analysis of the cases shows that
15 (4) = 14 (Exercise 3). O

We shall now elaborate on the fact that ®(d, m) is bounded by a polynomial function
of m, of degree d. A simple form of this result, ®(d,m) < m? for m > d > 1, is fairly
easy to prove (Exercise 6). But there is some advantage in having a better bound,
as given by the following result of Blumer et al. (1989).

Proposition 7.5.3 Forallm>d>1,

em

O(d,m) < (—d—>d ,

where e is the base of natural logarithms.

Proof The proof is in two stages. First, we claim that for all positive integers d,
O(d,m) < —

for all m > d. This can be proved by an inductive argument, as follows. If d = 1
then ®(d,m)=m+1 < 2m. If m =d > 1 then ®(d,m) = ®(d,d) = 2¢. Now, for
d > 1, we have

<1+1>d>1+d1—2
g) =iteg=e

This justifies the induction step in the following argument:
d+1\* d+1\"d* _(d+1)™
2d+l 2 ¥ i 2d <9 S, 3 il e S
*(d) —(d)d' TESVR

and verifies the claim for m =d > 1.

Suppose that m > d > 1. Since
bd+1,m+1)=90(d+1,m)+ ®(d,m),
it suffices to prove that
md md+1 (m + 1)d+l

2— 4+ 2 <
& T ar ST ar)
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It is straightforward to verify that this is true if and only if

(d - 1) ], % &k

1+ |—) < (1 - —> ;

m m

which follows from the binomial theorem. Thus, for all m > d, ®(d,m) < 2m?/d!.

It remains to show that, for all m > d > 1,

d
2 (fl-) < d!.
(A

The result clearly holds when d = 1. Suppose it holds for a given value of d > 1:
then

(d+1)!=(d+1)d!>(d+1)2(§) .

e

Thus it suffices to prove that

d d+1
ol (22"
€ €
d

1
(”3) se

which is indeed true for any d > 1. The result follows. O

that is,

In conjunction with Sauer’s Lemma, this last result implies that when VCdim(H) = d,

we have
em

() < ()’

for m > d. We shall see in the next chapter that this result is very significant, because
it gives an explicit polynomial bound for Il as a function of m.

The following consequence of the results in this section will be of use to us later.

Proposition 7.5.4 Let H be any hypothesis space consisting of at least two hy-
potheses and defined on a finite example space X. Then

In|H|

Proof Observe that two hypotheses of H are distinct precisely when they give
different classifications of the whole example space X into positive and negative
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examples. Since there are I1y(]|X]) such classifications, we have |H| = Ix(|X]). It
follows from Sauer’s Lemma and Proposition 7.5.3 that

=) < (1)

where d > 1 is the VC dimension of H. Now,

d
|H| < (%) — d(1+1n|X|) = dlnd > In|H]|

In|H|
1+1In|X|’

as required. O

= d >

We remark that if VCdim(H) > 2, then this result can be improved to
In |H|

1 = .
VCdim(H) > x|

using the result ®(d, m) < m? for m > d > 1.

FURTHER REMARKS

For any positive integer n, let G, be the subset of the hypothesis space of P, consisting
of the hypotheses for which the zero vector (the origin) is a negative example. Thus,
G, is the set of characteristic functions of all those closed half-spaces of R* which
do not contain the origin. Then one can show that G = G, has VC dimension n
(Exercise 10) and that for any m, Ilgz(m) = ®(n,m) (see Vapnik and Chervonenkis
(1971)). Thus the major result of this chapter, [I5(m) < ®(d, m) is the best possible
result of its kind. |

EXERCISES
1. Show that if X = R and H is the set of all closed intervals, then

1
Hg(m)=14+m+ §m(m —1).

2. Describe explicitly the hypothesis space of P, and show that the VC dimension o
P, is 2,

3. Show that when H is the hypothesis space of the real perceptron P,, I15(4) = 14

4. Let H be a hypothesis space of finite VC dimension. For A € H, define th
{0, 1}-valued function h by

h(z)=1 < h(z) =0,
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and let the complement of H be the space {/—z | he H}. Prove that this space has
the same VC dimension as H.

5. Prove that ®(d,m) = ®(d,m —1)+ ®(d—1,m —1) ford > 1 and m > 2.
6. Prove that ®(d,m) < m? for allm >d > 1.

7. A monomial is monotone if it contains no negated literals. Prove that the space
of monotone monomials defined on {0,1}" has VC dimension precisely n.

8. A hypothesis space H is linearly ordered if it has at least two hypotheses and if
for any h,g € H, either
h(z)=1= g(z)=1

or

gla) =1 = hiz) = 1.

Prove that if H is linearly ordered then VCdim(H) = 1. (This is a result of Wenocur
and Dudley (1981).) Deduce that the space of rays has VC dimension 1.

9. Suppose that H contains the identically-0 function and the identically-1 function,
and that VCdim(H) = 1. Prove that H is linearly ordered. (This is a result of
Wenocur and Dudley (1981).)

10. Let G, be the set of hypotheses of P, for which the zero vector o is a negative
example. Suppose that the sample x = (z, 2, ..., 2,,) is shattered by G,,. Why can
none of the z; be 07 Prove that the sample (z,,...,z,,,0) is shattered by P,. Using
this, prove that VCdim(G,,) = n.

11. Use the result on G, stated in the Further Remarks to prove that for m > 2,
p,(m) =2®(n,m —1).

[Hint: Let x be a sample of length m for which Ip,(x) = IIp,(m). Without loss of
generality, we may assume that the origin o is one of the examples in x, since clearly
the number of classifications by P, of a vector is unchanged if the vector is translated.
Thus, X = (Z1,...,%Tm-1,0). How are lIp, (x) and Ilg, ((z1,...,Zm-1)) related?]




