Chapter 1

An Overview of Statistical Learning
Theory

Vladimir Vapnik!

Abstract. Statistical learning theory was introduced in the late 1960’s. Until
the 1990°s it was a purely theoretical analysis of the problem of function esti-
mation from a given collection of data. In the middle of the 1990’s new types
of learning algorithms (called support vector machines) based on the developed
theory were proposed. This made statistical learning theory not only a tool for
the theoretical analysis but also a tool for creating practical algorithms for esti-
mating multidimensional functions. This article presents a very general overview
of statistical learning theory including both theoretical and algorithic aspects
of the theory. The goal of this overview is to demonstrate how the abstract
learning theory established conditions for generalization which are more general
than those discussed in classical statistical paradigms and how the understanding
of these conditions inspired new algorithmic approaches to function estimation
problems. A more detailed overview of the theory (without proofs) can be found
in Vapnik (1995). In Vapnik (1998) one can find a detailed description of the
theory (including proofs).

"This chapter is reprinted with permission from Vladimir Vapnik, “An overview of statistical learning
theory,” IEEE Transactions on Neural Networks, Vol.10, No.5, pp.988-1000, 1999 (Copyright © 1999
IEEE). The author wants to thank Filip Mulier for discussions and help making the published article
imore clear and readable.
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1.1 Setting of the Learning Problem

In this section we consider a model of learning and show that analysis of this model
can be conducted in the general statistical framework of minimizing expected loss using
observed data. We show that practical problems such as pattern recognition, regression
estimation, and density estimation are particular case of this general model.

1.1.1 Function estimation model

The model of learning from examples can be described using three components:

1. A generator of random vectors z, drawn independently from a fixed but unknown
distribution P(z).

2. A supervisor that returns an output vector y for every input vector z, according
to a conditional distribution function® P(y|z), also fixed but unknown.

3. A learning machine capable of implementing a set of functions f(z, «), o € A.

The problem of learning is that of choosing from the given set of functions f(z, @),

« € A, the one which predicts the supervisor’s response in the best possible way. The

selection is based on a training set of ¢ random independently identically distributed
(i.i.d.) observations

(xlayl)v")(ipf)yﬁ) (11)

drawn according to P(z,y) = P(z)P(y|z).

1.1.2 Problem of risk minimization

In order to choose the best available approximation to the supervisor’s response, one
measures the [oss or discrepancy L(y, f(z,a)) between the response y of the supervisor
to a given input 2 and the response f(z, «) provided by the learning machine. Consider
the expected value of the loss, given by the risk functional

R(a) = / L(y, /(z, 0))dP(z, ). (1.2)

The goal is to find the function f(z,aq) which minimizes the risk functional R(«)
over the class of functions f(z,a), a € A in the situation where the joint probability
distribution I’(x,y) is unknown and the only available information is contained in the
training set (1.1).

1.1.3 Three main learning problems

This formulation of the learning problem is rather general. It encompasses many spe-
cific problems. Below we consider the main ones: the problems of pattern recognition,
regression estimation, and density estimation.

*This is the general case which includes a case where the supervisor uses a function y = f(z).
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The Problem of Pattern Recognition. Let the supervisor’s output y take only
values y € {0,1} and let f(zx,a), a € A, be a set of indicator functions (functions
which take on either value zero or one). Consider the following loss-function

s fea)={ ] 120 (1.3

For this loss function, the functional (1.2) provides the probability of classification
error (i.e. when the answers y given by the supervisor and the answers given by the
indicator function f(z,«) differ). Therefore, the problem is to find the function which
minimizes the probability of classification errors when the probability measure P(z,y)
is unknown, but the data (1.1) are given.

The Problem of Regression Estimation. Let the supervisor's answer y be a real
value, and let f(z,a) ,a € A be a set of real functions which contains the regression
function

frao) = / ydP(ylz).

It is known that if f(z, @) € Lo then the regression function is the one which minimizes
the functional (1.2) with the the following loss-function

Ly, f(z,0)) = (y — flz, ). (1.4)

Thus the problem of regression estimation is the problem of minimizing the risk func-
tional (1.2) with the loss function (1.4) in the situation where the probability measure
P(x.y) is unknown but the data (1.1) are given.

The Problem of Density Estimation. Finally, consider the problem of density
estimation from the set of densities p(z,a), a € A. For this problem we consider the
following loss-function

L(p(z,@)) = —log p(z, ). (1.5)

It is known that the desired density minimizes the risk functional (1.2) with the loss-
function (1.5). Thus, again, in order to estimate the density from the data one has
to minimize the risk-functional under the condition that the corresponding probability
measure ’(z) is unknown but i.i.d. data

L1y ey Ty
are given.

The General Setting of the Learning Problem.  The general setting of the
learning problem can be described as follows. Let the probability measure P(z) be
defined on the space Z. Consider the set of functions Q(z,a),a € A . The goal is:
minimize the risk functional

R(a) = / Q(z,0)dP(z), a€A (1.6)
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for the probability measure P(z) unknown but given an i.i.d. sample

Zly ey 20 (L.7)

The learning problems considered above are particular cases of this general problem
of minimizing the risk functional (1.6) on the basis of empirical data (1.7), where z
denotes a pair (z,y) and Q(z, @) is the specific loss function (for example, either (1.3),
(1.4) or (1.5)). In the sequel we will describe results obtained for the general statement
of the problem. When applying this to specific problems, one has to substitute the
corresponding loss-functions in the obtained formulas.

1.1.4 Empirical risk minimization induction principle

In order to minimize the risk functional (1.6) for an unknown probability measure P(z)
the following induction principle is usually employed.
The expected risk functional R(«) is replaced by the empirical risk functional

[4

Remp(@) = 3 3 Qi 0) (L8)

=1

constructed on the basis of the training set (1.7). The principle is to approximate the
function ()(z, ap) which minimizes the risk (1.6) by the function Q(z,a,) which mini-
mizes the empirical risk (1.8). This principle is called the Empirical Risk Minimization
induction principle (ERM principle).

1.1.5 Empirical risk minimization principle and the classical
methods

The ERM principle is quite general. The classical methods for solving a specific learning
problem. such as the least squares method in the problem of regression estimation or
the maximum likelihood method in the problem of density estimation are realizations
of the ERM principle for the specific loss functions considered above.

Indeed, in order to specify the regression problem one introduces an n + 1 dimen-
sional variable z = (x,y) = (z',...,2™,y) and uses loss function (1.4). Using this loss
function in the functional (1.8) ylelds the functional

Ranpl@) = 3 D201 = f(z, )

which one needs to minimize for finding the regression estimate (least square method).

In order to estimate a density function from a given set of functions p(z, @) one uses
the loss function (1.5). Putting this loss function into (1.8) one obtains the maximum
likelihood method with functional

emp a

[4
E p(z;, o

f'slr--l
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which one needs to minimize in order to find the approximation to the density.

Since the ERM principle is a general formulation of these classical estimation prob-
lems, any theory concerning the ERM principle applies to the classical methods as
well.

1.1.6 Four parts of learning theory

Learning theory has to address the following four questions:

1. What are the conditions for consistency of the ERM principle?

To answer this question one has to specify the necessary and sufficient conditions
for convergence in probability®of the following sequences of the random values:

e The values of risks R(ay) converging to the minimal possible value of the
risk R(ag) (where R(ap), € = 1,2,... are the expected risks for functions
((z, a¢) each minimizing the empirical risk Remp(cv))

R(Olc) _>é:oo R(O‘O), (19)

o The values of obtained empirical risks Remp(cw), 7 = 1,2, ... converging to
the minimal possible value of the risk R(ayg)

Remp(ae) —¥ .. R(ap). (1.10)

Equation (1.9) shows that solutions found using ERM converge to the best pos-
sible one. Equation (1.10) shows that empirical risk values converge to the value
of the smallest risk.

2. How fast does the sequence of smallest empirical risk values converge to the small-
est actual risk? In other words, what is the rate of generalization of a learning
machine that implements the empirical risk minimization principle?

3. How can one control the rate of convergence (the rate of generalization) of the
learning machine?

4. How can one construct algorithms that can control the rate of generalization?
The answers to these questions form the four parts of learning theory:

1. The theory of consistency of learning processes.

2. The non-asymptotic theory of the rate of convergence of learning processes.

3. The theory of controlling the generalization of learning processes.

4. The theory of constructing learning algorithms.

3Convergence in probability of values R(cp) means that for any ¢ > 0 and for any n > 0 there
exists a number £y = £y(¢,7) such that for any £ > £y with probability at least 1 — n the inequality
R(ae) — R(ag) < € holds true.
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1.2 The Theory of Consistency of Learning Pro-
CEeSsseSs

The theory of consistency is an asymptotic theory. It describes the necessary and suffi-
cient conditions for convergence of the solutions, obtained using the proposed method,
to the best possible as the number of observations is increased. The following question
arises:

Why do we need a theory of consistency if our goal is to construct algorithms
for a small (finite) sample size?

The answer is:

We need a theory of consistency because it provides not only sufficient but
also necessary conditions for convergence of the empirical risk minimization
inductiwe principle. Therefore, any theory of the empirical risk minimiza-
tion principle must satisfy these necessary and sufficient conditions.

In this section we introduce the main capacity concept (the so-called VC entropy)
which defines the generalization ability of the ERM principle. In the next sections we
show that the non-asymptotic theory of learning is based on different types of bounds
that evaluate this concept for a fixed amount of observations.

1.2.1 The key theorem of the learning theory

The key theorem of the theory concerning the ERM based learning processes is the
following [27]:

Theorem 1 (The Key Theorem) Let Q(z,a), a € A be a set of functions that has
a bounded loss for probability measure P(z)

A< /Q(z,a)P(z) <B Va€A.

Then for the ERM principle to be consistent it is necessary and sufficient that the empir-
ical Tisk Remp(a) converges uniformly to the actual risk R(c) over the set Q(z,a), a €
A as

elim Prob{sup (R(a) = Remp(c)) >} =0, Ve. (1.11)

a€A

This type of convergence is called uniform one-sided convergence. In other words,
according to the Key Theorem, the conditions for consistency of the ERM principle are
equivalent to the conditions for existence of uniform one-sided convergence (1.11). This
theorem is called the Key Theorem because it asserts that any analysis of the conver-
gence properties of the ERM principle must be the worst case analysis. The necessary
condition for consistency (not only the sufficient condition) depends on whether or not
the deviation for the worst function over the given set of of functions

A(auorst) = sup (1(a) — Remp(ar))

acA
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converges to zero in probability. From this theorem it follows that the analysis of the
ERM principle requires an analysis of the properties of uniform convergence of the
expectations to their probabilities over the given set of functions.

1.2.2 The necessary and sufficient conditions for uniform con-
vergence

To describe the necessary and sufficient condition for uniform convergence (1.11), we
introduce a concept called the entropy of the set of functions Q(z,¢), a € A, on the
sample of size £. We introduce this concept in two steps: first for sets of indicator
functions and then for sets of real valued functions.

Entropy of the Set of Indicator Functions. Let Q(z,a), a € A be a set of
indicator functions (i.e. functions which take only the values zero or one). Consider a
sample

21y %0 (112)

Let us characterize the diversity of this set of functions Q(z, @), € A on the given
sample by a quantity NA(zy,.. ., z,) that represents the number of different separations
of this sample that can be obtained using functions from the given set of indicator
functions. Let us write this in another form. Consider the set of ¢-dimensional binary
vectors

Q(O"): (Q(zl,a),...,Q(z,g,a')), a€A

that one obtains when « takes various values from A. Then geometrically speaking
NA(z...., z) is the number of different vertices of the ¢-dimensional cube that can be

obtained on the basis of the sample 21, ..., z¢ and the set of functions Q(z, @), a € A.Let
us call the value

HMz, ... 20) =InN™Mzp, .0 2)

the random entropy. The random entropy describes the diversity of the set of functions
on the given data. H®(z,...,z2¢) is a random variable since it was constructed using
random 1.i.d. data. Now we consider the expectation of the random entropy over the
joint distribution function F(zy,. .., z):

HY(¢) = EInN™(z, ..., zo).

We call this quantity the entropy of the set of indicator functions Q(z,a), @ € A on
samples of size €. It depends on the set of functions Q(z, ), a € A, the probability
measure P(z), and the number of observations ¢. The entropy describes the expected
diversity of the given set of indicator functions on the sample of size ¢.

The main result of the theory of consistency for the pattern recognition problem
(the consistency for indicator loss function) is the following theorem [24]:

Theorem 2 For uniform two-sided convergence of the frequencies to their probabili-
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ties it is necessary and sufficient that the equality

Afp
lim (( ) _ 0, Ve>0 (1.14)

-0

holds.

By slightly modifying the condition (1.14) one can obtain the necessary and suffi-
cient condition for one-sided uniform convergence (1.11).

Entropy of the Set of Real Functions. Now we generalize the concept of entropy
to sets of real valued functions. Let A < Q(z,a) < B, a € A, be a set of bounded loss
functions. Using this set of functions and the training set (1.12) one can construct the
following set of ¢-dimensional real-valued vectors

gle) = (Q(z1, @), ..., Q(ze,)), a €A, (1.15)

This set of vectors belongs to the ¢-dimensional cube with the edge B — A and has a
finite e-net” in the metric C. Let N = N*(g; 2y, ..., z¢) be the number of elements of
the minimal e-net of the set of vectors q(a), @ € A. The logarithm of the (random)
value N*(g1zy, ..., 2¢)

HMe; 21,0y 2¢) = InNA (g5 21, ..., 2¢)

is called the random VC-entropy’® of the set of functions A < Q(z,a) < B on the
sample zy, ..., zp. The expectation of the random VC-entropy

HMe6) = EH &5 2, .00 20)

is called the VC-entropy of the set of functions A < Q(z,a) < B, a € A on the sample
of the size {. Here expectation is taken with respect to product-measure P(zy, ..., z¢) =
P(z) ... Plze).

The main results of the theory of uniform convergence of the empirical risk to the
actual risk for bounded loss functions include the following theorem [24]:

Theorem 3 For uniform two-sided convergence of the empirical risks to the actual
risks

flim Prob{sup (|R(a) — Renp(a)| > ¢} =0, Ve (1.16)

aEA

For sets of indicator functions R{a) defines probability and Remp() defines frequency.

t}lim Prob{sup |R(a) — Remp(e)| > €} =0, Ve (1.13)
— afA
>The set of vectors g(e), o € A has minimal e-net g(a), ..., g(an) if:

L. There exist N = N4(e; 21, ..., z¢) vectors g(a1), ..., g(an), such that for any vector qle*), a* € A
one can find among these N vectors one g(a) which is e-close to this vector (in a given metric).
For a €' metric that means p(g(a*), g(a,)) = max;<;<¢ |Q(z;0%) — Q(z;, o)} < e.

2. N is minimal number of vectors which possess this property.

“Note that VC-entropy is different from classical metrical c-entropy H Ae) = InNA(¢) where NA(e)
is cardinality of the minimal e-net of the set of functions Q(z, ), € A.
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it is necessary and sufficient that the equality

A 4
lim LG

{—o0 ¢

=0, Ve>0 (1.17)

he valid.

By slightly modifying the condition (1.16) one can obtain the necessary and suf-
ficient condition for one-sided uniform convergence (1.11). According to the key as-
sertion this implies the necessary and sufficient conditions for consistency of the ERM
principle.

1.2.3 Three milestones in learning theory

In this section, we consider for simplicity reasons a set of indicator functions Q(z, ), & €
A (i.e. we consider the problem of pattern recognition). The results obtained for sets of
indicator functions can be generalized to sets of real-valued functions. In the previous
section we introduced the entropy for sets of indicator functions

H*(¢) = EInN™(zy, ..., 20).

Now, we consider two new functions that are constructed on the basis of the values
Nz, ..., z¢): the Annealed VC-entropy

HA (6) = mEN(2y, ..., 20)

ann

and the Growth function

GME) =1n sup N(zy, ..., 2¢)-

Z14-,%¢
These functions are determined in such a way that for any ¢ the inequalities

H/\(g) S HA

ann

(0) < GMO)

are valid. On the basis of these functions the three main milestones in Statistical
Learning Theory are constructed. In the previous section we introduced the equation
HA((..')

elinolo ¢ 0

describing the necessary and sufficient condition for consistency of the ERM principle.
This equation is the first milestone in learning theory: any machine that is minimizing
empirical risk should satisfy it.

On the other hand, this equation says nothing about the rate of convergence of
obtained risks () to the minimal one R(«g). It is possible that the ERM principle
is consistent but has an arbitrary slow asymptotic rate of convergence. The question
is then: Under which conditions does one have a fast asymptotic rate of convergence?
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We say that the asymptotic rate of convergence is fast if for any £ > ¢, the exponential
bound

P{R(ar) — R(cx) > ¢} < e~
holds true, where ¢ > 0 is some constant. The equation

A

H
lim mm(é’) -0
{— 00 ¢

describes the sufficient condition for fast convergence’. This constitutes the second
milestone in Statistical Learning Theory: guaranteeing a fast asymptotic rate of con-
vergence. Note that both the equation describing the necessary and sufficient condition
for consistency and the one that describes the sufficient condition for fast convergence
of the ERM 1ethod are valid for a given probability measure P(z) (both VC-entropy
H(() and VC-annealed entropy HA  (£) are constructed using this measure).

However, our goal is to construct a learning machine for solving many different
problems (i.e. for many different probability measures). The next question is then:
Under what conditions is the ERM principle consistent and rapidly converging inde-
pendently of the probability measure? The following equation describes the necessary
and sufficient conditions for consistency of ERM for any probability measure:

A p
clim GO =0.

This condition is also sufficient for fast convergence. This equation is the third mile-
stone in Statistical Learning Theory. It describes the conditions under which the
learning machine implementing the ERM principle has an asymptotic high rate of
convergence, independent of the problem to be solved.

These milestones form a foundation for constructing both distribution independent
bounds and rigorous distribution dependent bounds for the rate of convergence of
learning machines.

1.3 Bounds on the Rate of Convergence of the Learn-
ing Processes

In order to estimate the quality of the ERM method for a given sample size it is
necessary to obtain non-asymptotic bounds on the rate of uniform convergence.

A non-asymptotic bound of the rate of convergence can be obtained using a new
capacity concept, called the VC dimension (abbreviation for Vapnik-Chervonenkis di-
mension), which allows us to obtain a constructive bound for the growth function. The

concept of VC-dimension is based on a remarkable property of the Growth-function
G,

"The necessity of this condition for fast convergence is an open question.



Overview of Statistical Learning Theory 11

1.3.1 The structure of the growth function

Theorem 4 [23-24] Any growth function either satisfies the equality
GM¢) = n2

o1 15 bounded by the inequality
A e
G (0) < h(lnﬁ +1),

where h ts an integer for which
G*h) = hIn2

GMh+1) # (h+1)In2.

In other words the Growth function will be either a linear function or will be
bounded by a logarithmic function. (e.g. it cannot be of the form G*(¢) = cv/¢). We
sav that the VO dimension of the set of indicator functions Q(z, @), a € A is infinite if
the Growth tunction for this set of functions is linear. We say that the VC dimension
of the set of indicator functions Q(z,«),a € A is finite and equals b if the Growth
function is bounded by a logarithmic function with coefficient h.

The finiteness of the VC-dimension of the set of indicator functions implemented by
the learning machine forms the necessary and sufficient condition for consistency of the
ERM method independent of the probability measure. Finiteness of the VC-dimension
also implies fast convergence.

1.3.2 Equivalent definition of the VC dimension

In this section we give an equivalent definition of the VC dimension of sets of indicator
functions and we generalize this definition to sets of real functions.

The VC dimension of a set of indicator functions. The VC-dimension of a set
of indicator functions Q(z,), a € A, is the maximum number & of vectors z, ..., 2,
which can he separated in all 2" possible ways using functions of this set® (shattered by
this set of functions). If for any 7 there exists a set of n vectors which can be shattered
by the set ()(z,«), a € A, then the VC-dimension is equal to infinity.

The VC dimension of a set of real valued functions. Let a < Q(z,0) < A, a €
A, be a set of real valued functions bounded by constants a and A (a can approach —oo
and A can be equal to 0o0). Let us consider along with the set of real valued functions
Q(z,a), a € A, the set of indicator functions

I(z,0,8) =0{Q(z,a) = f}, a € A (1.18)

“Any indicator function separates a set of vectors into two subsets: the subset of vectors for which
this function takes value 0 and the subset of vectors for which it takes value 1.
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where a < 3 < A is some constant, f(u) is a step function:
0 ifu<O
“w“{l if u > 0.

The VO dimension of the set of real valued functions Q(z,a), a € A, is defined to be
the VC-dimension of the set of indicator functions (1.18).

1.3.3 Two important examples

Example 1

I. The VC-dimension of the set of linear indicator functions

n
Qz,a) =0 {Z Qpzp + ag}
p=1
in n-dimensional coordinate space Z = (z),...,2,) is equal to h = n + 1, since
using functions of this set one can shatter at most n+4 1 vectors. Here 6{-} is the
step function, which takes value 1 if the expression between brackets is positive
and takes value 0 otherwise.

o

The VC-dimension of the set of linear functions
n
Qz,a) = Za’pzp+ag, g, ..., 0y € (—00,00)
p=1

in n-dimensional coordinate space Z = (z1,...,2,) is also equal to h = n + 1
because the VC-dimension of the corresponding linear indicator functions is equal
to n+1 (using g — 3 instead of oy does not change the set of indicator functions).

Example 2
We call a hyperplane
(w-2)—=b=0, |w|=1
the A-margin separating hyperplane if it classifies vectors x as follows
1 if(wrea)-b>A
Y= -1 if(w*z)=b< —A.

Classifications of vectors x that fall within the margin (—A, A) are undefined.

Theorem 5 [25, 20-22] Let vectors x € X belong to a sphere of radius R, then the
set of A-margin separating hyperplanes has VC dimension h bounded by the inequality

2
h < min ([%} ,n) + 1.

These examples show that in general the VC dimension of the set of hyperplanes
equals 7 + 1, where n is the dimensionality of the input space. However, the VC
dimension of the set of A-margin separating hyperplanes (with a large value of margin
A) can be less than n + 1. This fact will play an important role towards constructing
new function estimation methods.



Overview of Statistical Learning Theory 13
1.3.4 Distribution independent bounds for the rate of conver-
gence of learning processes

Consider sets of functions which possess a finite VC-dimension h. We distinguish then
between the following two cases:

1. The case where the set of loss functions Q(z,a), a € A is a set of totally bounded
Sfunctions

2. The case where the set of loss functions Q(z,a), « € A is not necessarily a set
of totally bounded functions.

Case 1 [The set of totally bounded functions] Without loss of generality, we
assume that

0 <Q(z,a) <B, a€A. (1.19)

The main result in the theory of bounds for sets of totally bounded functions is the
following [20-22]:

Theorem 6 With probability at least 1 — 7, the inequality

R(a) £ Remp(c) + % (1 +4/1+ ﬁ‘%’é@) : (1.20)

holds true simultaneously for all functions of the set (1.19), where

h(In% + 1) — Inp

=4
© ¢

(1.21)

For the set of indicator functions: B =1

This Theorem provides bounds for the risks of all functions of the set (1.18) (includ-
ing the function Q(z, ) which minimizes the empirical risk (1.8)). The bounds follow
from the bound on uniform convergence (1.13) for sets of totally bounded functions
that have finite VC dimension.

Case 2 [The set of unbounded functions] Consider the set of (nonnegative)
unbounded functions 0 < Q(z,a), a € A. It is easy to show (by constructing an
example) that, without additional information about the set of unbounded functions
and/or probability measures, it is impossible to obtain an inequality of type (1.20).
Below, we use the following information

™
~—
~—
b=

U P12

wch [ Q(z,0)dP(z)

<7< (1.22)
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where p > 1 is some fixed constant®.
The main result for the case of unbounded sets of loss functions is the following
20-22]:

Theorem 7 With probability at least 1 — n the inequality

Remp(a) alp) — p_1_ 2__—1 p-1
T eV, ‘P13z (p_2> (1.23)

holds true simultaneously for all functions of the set, where € is determined by (1.21),
(a)+ = max(a,0).

R(a) <

The Theorem bounds the risks for all functions of the set (1.15) (including the
function Q(z, «x)).

1.3.5 Problem of constructing rigorous (distribution depen-
dent) bounds

To construct rigorous bounds for the rate of convergence one has to take into account
information about the probability measure. Let P be a set of all probability measures
and let P C Py be a subset of the set Py. We say that one has prior information about
an unknown probability measure P(z) if one knows the set of measures P that contains
P(z). Consider the following generalization of the Growth function

Gh(e, €) = lgsup EpN™(g; 21, ..., z¢).
PepP
For indicator functions Q(z,a),a € A and for the extreme case where P = P, the
Generalized Growth function G3(e, €) coincides with the Growth function GA(€). For
another extreme case where P contains only one function P(z) the Generalized growth
function coincides with the annealed VC-entropy.
The following assertion is true [20, 26]:

Theorem 8 Suppose that a set of loss-functions is bounded

—inf <A< Q(z,a0) < B<oo, a€A
Then for sufficiently large € the following inequality

r {sup > 5} <
aEA

9This inequality describes some general properties of distribution functions of the random variables
£ = Q(z. 1), generated by the P(z). Tt describes the “tails of distributions” (the probability of large
values for the random variables £,). If the inequality (1.22) with p > 2 holds, then the distributions
Liave so-called “light tails” (large values do not occurs very often). In this case rapid convergence is
possible. 1f, however, the inequality (1.22) holds only for p < 2 (large values of the random variables
£« occur rather often) then the rate of convergence will be small (it will be arbitrarily small if p is
sulliciently close to one).

4
[are) - 13 @)
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A _ f -2 )
mxp{(GPAa,m(e/fa(gB 4),20 &, IHT() g}‘

holds true.

From this bound it follows that for sufficiently large ¢ with probability 1 — 5 si-
multaneously for all @ € A (including the one that minimizes the empirical risk) the
following inequality is valid:

¢ T 1
/(2(:,(1)(1]7(:) < %ZQ(%&)-F \/gp(v/ﬁ(BA),eZe) 1 17/12‘

However, this bound is non-constructive because the theory does not specify a method
for evaluating the Generalized Growth function. In order to make this bound con-
structive and rigorous one has to estimate the Generalized Growth function for a given
set of loss-functions and a given set of probability measures. This is one of the main
subjects of the current learning theory research.

1.4 Theory for Controlling the Generalization of
Learning Machines

The theory for controlling the generalization of a learning machine is devoted to con-
structing an induction principle for minimizing the risk functional which takes into
account the size of the training set (an induction principle for a “small” sample size'®).
The goal is to specify methods which are appropriate for a given sample size.

1.4.1 Structural risk minimization induction principle

The ERM principle is intended for dealing with a large sample size. Indeed, the ERM
principle can be justified by considering the inequalities (1.20). When ¢/h is large,
the second summand on the right hand side of inequality (1.20) becomes small. The
actual risk is then close to the value of the empirical risk. In this case, a small value
of the empirical risk provides a small value of (expected) risk. However, if ¢/h is
small, then even a small R..,(a¢) does not guarantee a small value of risk. In this
case the minimization for R{a) requires a new principle, based on the simultaneous
winimization of the two terms in inequality (1.20), one of which depends on the value
of the empirical risk while the second depends on the VC-dimension of the set of
tunctions. To minimize the risk in this case it is necessary to find a method which,
along with minimizing the value of empirical risk, controls the VC-dimension of the
learning machine.

The following principle, which is called the principle of Structural Risk Minimization
(SRM), is intended for minimizing the risk functional with respect to both empirical risk
and VC-dimension of the set of functions. Let, the set S of functions Q(z,a), a € A,

107 he sample size £ is considered to be small if £/h is small, say £/h < 20.
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be provided with a structure: so that S is composed of the nested subsets of functions
S, = {Q(z.«), a € A}, such that

S1C S C...C8,.. (1.24)

and S* = J, Sk An admissible structure is one that satisfies the following three
properties:

1. The set S* is everywhere dense in S.
2. The VC-dimension hy, of each set S, of functions is finite.

3. Any element Sy, of the structure contains totally bounded functions 0 < Q(z,a) <
B, a e AL

The SRM principle suggests to do the following: for a given set of observations
Z1, .-, 2¢ choose the element of structure S, with n = n(¢) and the particular function
from 5,, such that the guaranteed risk (1.20) is minimal. The SRM principle actually
suggests a trade-off between the quality of the approximation and the complexity of
the approximating function. As n increases, empirical risk minima decrease, but on
the other hand the term responsible for the confidence interval (summand in (1.20))
increases. The SRM principle takes both factors into account.

The main results of the theory of SRM are the following [9, 22]:

Theorem 9 For any distribution function the SRM method provides convergence to
the best possible solution with probability one.

In other words SRM method is universally strongly consistent.

Theorem 10 [22] For admissible structures the method of structural risk minimization

. o ¢ ‘ . ¢
provides approximations Q(z, a?( )) for which the sequence of risks R(a?( )) converge

to the best one R(w) with asymptotic rate of convergence!!

Roeylné
V((’) = Tn(e) + Bn(g) (Kg (125)
if the law n = n(€) is such that
B2, hyolnf
lim 0 MO _ g (1.26)

In equation (1.25) By is the bound for functions from S, and r,(¢) is the rate of
approrimation

r, = inf /Q(z,a)dP(z) —irellf\/Q(.z,a)dP(z).

a€An |

"'We say that the random variables &, ¢ = 1,2, ... converge to the value £, with asymptotic rate
V{£) if there exists constaut C such that V=1(£) & — & —L . C.

£—o0
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1.5 Theory of Constructing Learning Algorithms

In order to implement the SRM induction principle in learning algorithms one has to
control two factors in the to be minimized bound (1.20):

1. The value of empirical risk
2. The capacity factor (to choose the element S,, with the appropriate value of VC
dimension).
We confine ourselves now to the pattern recognition case and consider two type of
learning machines:

1. Neural Networks (NN) that were inspired on the biological analogy with the brain

2. The support vector machines that were inspired on statistical learning theory.

We discuss how each corresponding machine can control these factors.

1.5.1 Methods of separating hyperplanes and their general-
ization

Consider first the problem of minimizing empirical risk on the set of linear indicator

functions
flz,w)=146 {Zwiwi} , w e W. (1.27)
i=0

Let
(@1,91), - (e e)
be a training set where x; = (x}, ..., 27) is a vector, y; € {0,1}, j=1,..,¢.
For minimizing the empirical rlsk one has to find the parameters w = (wy, ..., wy)

(weights) which minimize the empirical risk functional

1 .
Remp(w) = 5 Z fla,w))2. (1.28)

There are several methods for minimizing this functional. In the case when the min-
imum of the empirical risk is zero one can find the exact solution while when the
minimum of this functional is nonzero one can find an approximate solution. There-
fore, by constructing a separating hyperplane one can control the value of empirical
risk. Unfortunately, the set of separating hyperplanes is not flexible enough to provide
low empirical risk for many real life problems [13].

Two opportunities were considered to increase the flexibility of the sets of functions:

1. to use a richer set of indicator functions which are superpositions of linear indi-
cator functions

o

to map the input vectors into a high dimensional feature space and construct in
this space a A-margin separating hyperplane.

The first idea corresponds to the neural network. The second idea leads to support
vector machines.
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1.5.2 Sigmoid approximation of indicator functions and neu-
ral nets

For describing the idea behind the NN let us consider the method of minimizing the
functional (1.28). It is impossible to use regular gradient-based methods of optimization
for minimizing this functional. The gradient of the indicator function Remp,(w) is either
equal to zero or is undefined. The solution is to approximate the set of indicator
functions (1.27) by so-called sigmoid functions

Flo,w) {szr } (1.29)

where S(u) is a smooth monotonic function such that S(—o0) = 0, S(4+00) = 1. For
example, the functions

1 2arctan(u) + «

Si(u) = THexp ™ Sa(u) = o

are sigmoid functions.
For the set of sigmoid function, the empirical risk functional

¢

Repp(w) Z ?(:Uj, w))? (1.30)

is smooth in w. It has a gradient gradRemp(w) and therefore can be minimized using
gradient-based methods. For example, the gradient descent method uses the following
update rule

Whew = Wold — 7()gra'd Rernz:l(wold)

where the data y(-) = 7(n) > 0 depend on the iteration number n. For convergence
of the gradient descent method to a local minimum, it is enough that y(n) satisfy the
conditions

Thus, the idea is to use the sigmoid approximation at the stage of estimating the coeffi-
cients. and use the indicator functions with these coefficients at the stage of recognition.

The generalization of this idea leads to feedforward neural nets. In order to increase
the flexibility of the set of decision rules of the learning machine one considers a set
of functions which are the superposition of several linear indicator functions (networks
of neurons) [13] instead of the set of linear indicator functions (single neuron). All
indicator functions in this superposition are replaced by sigmoid functions.

A method for calculating the gradient of the empirical risk for the sigmoid approx-
imation of neural nets, called the back-propagation method, was found [15],[12]. Using
this gradient descent method, one can determine the corresponding coefficient values
(weights) of all elements of the neural net. In the 1990s it was proven that the VC
dimension of neural networks depends on the type of sigmoid functions and the number
of weights in the neural net. Under some general conditions the VC dimension of the
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neural net is bounded (although it is sufficiently large). Suppose that the VC dimension
does not change during the neural network training procedure, then the generalization
ability of neural net depends on how well the neural net minimizes the empirical risk
using a sufficiently large number of training data.

The three main problems encountered when minimizing the empirical risk using the
back-propagation method are:

1. The empirical risk functional has many local minima. Optimization procedures
guarantee convergence to some local minimum. In general the function which
is found using the gradient-based procedure can be far from the best one. The
quality of the obtained approximation depends on many factors, in particular on
the initial parameter values of the algorithm.

[N

Convergence to a local minimum can be rather slow (due to the high dimension-
ality of the weight-space).

3. The sigmoid function has a scaling factor which affects the quality of the approx-
imation. To choose the scaling factor one has to make a trade-off between quality
of approximation and the rate of convergence.

Therefore, a good minimization of the empirical risk depends in many respects on
the art of the researcher in this case.

1.5.3 The optimal separating hyperplanes

For introducing the method that serves as an alternative to the neural network, let us
consider optimal separating hyperplanes [25]. Suppose the training data

(41?17?/1)7---,($£,¥l€)a TE Rn) ye {+17 _1}
can be separated by a hyperplane:
(w-z)=b=0. (1.31)

We say that this set of vectors is separated by the Optimal hyperplane (or the Maximal
Margin hyperplane) if it is separated without error and the distance between the closest
vector and the hyperplane is maximal. To describe the separating hyperplane let us
use the following form:

(w-z;)=b>1 ify; =1,

(w-z;)=b< -1 ify,=-1
In the following we use a compact notation for these inequalities:

yllw-z)=b>1, i=1,...,¢L (1.32)

It is easy to check that the Optimal hyperplane is the one that satisfies the conditions
(1.32) and minimizes functional

D(w) = %Hw[l2 = %(w,w). (1.33)
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Lo

The minimization is taken with respect to both vector w and scalar b.
The solution to this optimization problem is given by the saddle point of the La-
grange functional (Lagrangian):

L{w, b, o) = %(w cw) — Z ai{[(zi - w) = bly; — 1}, (1.34)

where the o; are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to w, b and maximized with respect to a; > 0.
In the saddle point, the solutions wy, by, and o should satisfy the conditions

aL(‘on,bo,O’O) -0 6L(’lU0,b0,OtO) -0
ob - ow e

Rewriting these equations in explicit form one obtains the following properties of the
Optimal hyperplane:

(i) The coefficients o for the Optimal hyperplane should satisfy the constraints

[4
dalyi=0, a’>0, i=1,....¢ (1.35)
=1

(1) The parameters of the Optimal hyperplane (vector wy) are a linear combination
of the vectors of the training set with

¢
Wy = Zyioa?:‘ci, >0, i=1,...,¢ (1.36)
i=1

(ili) The solution must satisty the following Kuhn-Tucker conditions,
g {[(z: - wp) = bolys = 1} =0, i=1,...,0( (1.37)

From these conditions it follows that only some training vectors in expansion
(1.36) (called the support vectors) can have nonzero coefficients of in the expan-
sion of wy. The support vectors are the vectors for which, in inequality (1.36),
the equality is achieved. Therefore we obtain

wy = > yiadz;, ol >0. (1.38)
support vectors

Substituting the expression for wy back into the Lagrangian and taking into account
the Kuhn-Tucker conditions, one obtains the functional

¢

4
1
I/V(O.’) = Z Q; — 5 Za,;ajyiyj (.I't . .’L‘j). (139)

i=1 i




Overview of Statistical Learning Theory 21

[t remains to maximize this functional in the non-negative quadrant
>0, i=1,..,¢

under the constraint .
> ay, =0. (1.40)
i=1

Putting the expression for wg in (1.31), we obtain the hyperplane as an expansion on
support vectors

> af(z,m) + bo = 0. (1.41)

=1

To construct the Optimal hyperplane in the case when the data are linearly non-
separable, we introduce non-negative variables & > 0 and the functional

¢
®(¢) = (w,w) + CZ@

=1

which we minimize subject to the constraints
yi((w-x) =b) > 1-&, i=12,... L

Using the same formalism with Lagrange multipliers one can show that the optimal
hyperplane also has an expansion (1.41) on support vectors. The coefficients a; can
be found by maximizing the same quadratic form as in the separable case (1.39) under
slightly different constraints

[4
0< e <C, i=1,....4 and > oy =0. (1.42)

i=1

1.5.4 The support vector network

The support vector network implements the following idea [21]: Map the input vectors
into a very high dimensional feature space Z through some non-linear mapping chosen
a priori. Then construct an optimal separating hyperplane in this space. The goal
is to create the situation as described previously in example 2, where for A-margin
separating hyperplanes the VC dimension is defined by the ratio R2/A2. In order to
generalize well, we control (decrease) the VC dimension by constructing an optimal
separating hyperplane (that maximizes the margin). To increase the margin we use
very high dimensional spaces.

Example. Consider a mapping that allows us to construct decision polynomials in the
input space. To construct a polynomial of degree two, one can create a feature space,
7, which has N= "("TH) coordinates of the form:

TI=EYy ey En=Tp n coordinates ,
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T :xf, . ,z%:'xi , n coordinates ,

n(n—1)
2

ol ST1X2y ey EN=Tppo coordinates ,

where & = (21,...,2y,). The separating hyperplane constructed in this space is a sep-
arating second degree polynomial in the input space. To construct a polynomial of
degree k in an n dimensional input space one has to construct a O(n*) dimensional
feature space, where one then constructs the optimal hyperplane. The problem then
arises of how to computationally deal with such high-dimensional spaces: for construct-
ing a polynomial of degree 4 or 5 in a 200 dimensional space it is necessary to construct
hyperplanes in a billion dimensional feature space.

In 1992 it was noted [5] that both for describing the optimal separating hyperplane
in the feature space (1.41) and estimating the corresponding coefficients of expansion
of the separating hyperplane (1.39) one uses the inner product between two vectors
z(aq) and z(22), which are images in the feature space of the input vectors x; and z,.
Therefore, if one can estimate the inner product of the two vectors in the feature space
z(xy) and z(x3) as a function of two variables in the input space

(zi - 2) = K(z, ),

then it will be possible to construct the solutions which are equivalent to the optimal
hyperplane in the feature space. To get this solution one only needs to replace the
inner product (z;,2;) in equations (1.39) and (1.41) by the function K(z;,z;). In
other words, one constructs nonlinear decision functions in the input space

I(z) = sign > K(zz)+bo |, (1.43)
support vectors

that are equivalent to the linear decision functions (1.33) in the feature space. The
coefficients «; in (1.43) are defined by solving the equation

¢ ¢
r 1 r
Wa) = E % =5 E a0y K (4, 25) (1.44)
=1 7

under constraints (1.42). In 1909 Mercer proved a theorem which defines the general
form of inner products in Hilbert spaces.

Theorem 11 The general form of the inner product in Hilbert space is defined by the
symmetric positie definite function K(x,y) that satisfies the condition

[ K a@et)dady 2 0
for-all functions z(x), z(y) satisfying the inequality

/Z2(;L‘)d:12 < 0.
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Therefore any function K(z,y) satisfying Mercer’s condition can be used for con-
structing rule (1.42) which is equivalent to constructing an optimal separating hyper-
plane in some feature space. The learning machines which construct decision functions
of the type (1.43) are called Support Vectors Networks or Support Vector Machines'?

Using different expressions for inner products K (z,z;) one can construct different
learning machines with arbitrary types of (nonlinear in the input space) decision sur-
faces. For example to specify polynomials of any fixed order d one can use the following
tunctions for the inner product in the corresponding feature space

K(z,2;) = ((z-z:) + D)%

Radial Basis Function machines with decision functions of the form

f(z) = sign (Z Q; exp { o - LV })

can be implemented by using a function of the type

—_ . 2
K(x,z;) = exp {—u} .

[

In this case the SVM machine will find both the centers z; and the corresponding
weights a;.
The SVM possesses some useful properties:

e The optimization problem for constructing an SVM has a unique solution.
o The learning process for constructing an SVM is rather fast.

e Simultaneously with constructing the decision rule, one obtains the set of support
vectors.

¢ Implementation of a new set of decision functions can be done by changing only
one function (kernel K'(x;,x)), which defines the dot product in Z-space.

1.5.5 Why can neural networks and support vectors networks
generalize?

The generalization ability of both Neural Networks and Support Vectors Networks is

based on the factors described in the theory for controlling the generalization of the

learning processes. According to this theory, to guarantee a high rate of generalization
of the learning machine one has to construct a structure

SiCcSc...cS

'“I'his name stresses that for constructing this type of machine, the idea of expanding the solution
on support vectors is crucial. In the SVM the complexity of construction depends on the number of
support vectors rather than on the ditensionality of the feature space.
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on the set of decision functions S = {Q(z, &), a € A} and then choose both an appro-
priate element Sy of the structure and a function Q(z,af) € S) within this element
that minimizes bound (1.20). The bound (1.16) can be rewritten in the simple form

i
R(0%) < Remp(a) + ;) (1.45)
where the first term is an estimate of the risk and the second term is the confidence
interval for this estimate.

In designing a neural network, one determines a set of admissible functions with
some VC-dimension h*. For a given amount ¢ of training data the value h* determines
the confidence interval Q(;f;) for the network. Choosing the appropriate element of
a structure is therefore a problem of designing the network for a given training set.
During the learning process this network minimizes the first term in the bound (1.45)
(the number of errors on the training set). If it happens that at the stage of designing
the network one constructs a network that is too complex (for the given amount of
training data), the confidence interval Q(,—f—) will be large. In this case, even if one
could minimize the empirical risk as small as zero, the amount of errors on the test set
can become big. This case is called overfitting. To avoid overfitting (and get a small
confidence interval) one has to construct networks with small VC-dimension. Therefore,
for generalizing well by using a neural network, one must first suggest an appropriate
architecture of the neural network, and second, find in this network the function that
minimizes the number of errors on the training data. For neural networks these two
problems are solved by using some heuristics (see remarks on the back-propagation
method).

In support vector methods one can control both parameters: in the separable case
one obtains the unique solution that minimizes the empirical risk (down to zero) using
a A-margin separating hyperplane with the maximal margin (i.e., subset with the
smallest VC dimension). In the general case one obtains the unique solution when one
chooses the value of the trade-off parameter C.

1.6 Conclusion

This chapter presented a very general overview of statistical learning theory. It demon-
strates how an abstract analysis allows us to discover a general model of generalization.

According to this model, the generalization ability of learning machines depends
on capacity concepts which are more sophisticated than merely the dimensionality of
the space or the number of free parameters of the loss function (these concepts are the
basis for the classical paradigm of generalization).

The new understanding of the mechanisms behind generalization not only changes
the theoretical foundation of generalization (for example from this new viewpoint,
the Occam razor principle is not always correct), but also changes the algorithmic
approaches to function estimation problems. The approach described is rather general.
It can be applied for various function estimation problems including regression, density
estimation, solving inverse equations and so on.

Statistical Learning Theory started more than 30 years ago. The development of
this theory did not involve many researchers. After the success of the SVM in solving
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real life problems, the interest in statistical learning theory significantly increased. For
the first time, abstract mathematical results in statistical learning theory have a direct
impact on algorithmic tools of data analysis. In the last three years a lot of articles
have appeared that analyze the theory of inference and the SVM method from different
perspectives. These include:

1. Obtaining improved constructive bounds instead of the classical ones described
in this chapter (which are more in the spirit of the non-constructive bound based
on the Growth function than on bounds based on the VC dimension concept).
Success in this direction could lead, in particular, to creating machines that
generalize better than the SVM based on the concept of optimal hyperplane.

2. Extending the SVM ideology to many different problems of function and data-
analysis.

3. Developing a theory that allows us to create kernels that possess desirable prop-
erties (for example that can enforce desirable invariants).

4. Developing a new type of induction inference that is based on direct generaliza-
tion from the training set to the test set, avoiding the intermediate problem of
estimating a function (the transductive type inference).

The hope is that this very fast growing area of research will significantly boost all
branches of data analysis.
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