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Abstract 

The all-popular Artificial Intelligence (AI) is pursued by deep learning (neural 
computing) models implemented in Data Centers (DCs) that require considerable 
resources. The aforementioned models are typically developed in the Euclidean (Hil-
bert) space RN , where R is the set of real numbers for an integer N. This work 
introduces a Hibert space, namely, space of Generalized Intervals’ Numbers (GINs) G 
as a hierarchy of Hilbert spaces stemming from R. Data processing is carried out 
in the convex cone F1 of G, namely, space of Intervals’ Numbers (INs), which 
includes partially ordered, Lebesque space L2 distribution functions that may repre-
sent information granules, for example, probability/possibility distributions. It is 
detailed how enhanced deep learning models can be developed in FN 

1 .  As  F1 is a strict 
superset of R, all the conventional deep learning algorithms in RN are included. 
Additional advantages of deep learning in FN 

1 include (a) accommodation of spoken 
language semantics, represented by partial order, (b) potential engagement of axiom-
atic logic all along during data processing, and (c) tuning the number of tunable 
parameters toward reducing the demands for DC resources, including energy con-
sumption, by engaging fewer models of greater flexibility without decreasing
performance.

Keywords: deep learning, fuzzy lattice reasoning (FLR), granular semantics 
computing, hierarchy, lattice computing (LC), Hilbert space 

1. Introduction 

The influential review “Deep Learning” [1] is widely acknowledged for solidifying 
deep learning (neural computing) models as a foundational paradigm in Artificial 
Intelligence (AI). Deep learning is the core technology that has enabled the develop-
ment of such popular technologies as Convolutional Neural Networks (CNNs) [2] for 
image recognition and Large Language Models (LLMs) [3] for human-like language 
generation. Deep learning models are currently implemented exclusively in the 
Euclidean (Hilbert) space RN by processing vectors of numbers.
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Conventional modeling has been largely initiated by Isaac Newton [4], regarding 
the physical world, based on measurements following, in a sense, the ancient Pythag-
orean doctrine that “(rational) numbers is the ultimate reality”  –  note that numbers 
emerge from physical world measurements. The aforementioned modeling has 
worked well for centuries in the physical world, for example, Maxwell’s equations 
and/or Einstein’s equations, and it has been extended successfully to alternative 
application domains such as the economy, physiology, psychology, and others. Lately, 
the aforementioned modeling has been extended to AI deep learning (statistical)
models [1], whose remarkable performance can be attributed to the capacity of digital 
computer hardware [5] to process vast data fast rather than to compute differently. In 
all, conventional modeling deals exclusively with “flat data,” that is, arrays of num-
bers. Nevertheless, when humans are involved, then non-numerical percepts emerge 
such as the degree of truth of propositions, data structures and symbols – note that 
percepts become data as soon as they are recorded.

Starting with “Industry 3.0,” there has been an increasing demand for models that 
involve non-numerical human percepts and, historically, the truth values of proposi-
tions were among the first ones studied resulting in Boolean algebra/logic. It is note-
worthy that Boolean algebra is the “par excellence” instrument for design in the digital 
computer industry today. In turn, the study of Boolean algebra has resulted in the 
introduction of mathematical Lattice Theory (LT) or, Order Theory, whose preemi-
nent feature is a unifying capacity [6]. 

It is remarkable that non-numerical data have emerged in Physics as well. For 
instance, the 1954 Nobel prize laureate Max Born has instrumentally employed prob-
ability theory in quantum mechanics – note that Andrey Kolmogorov had already 
formalized probability theory in 1933 by introducing the notion of Probability Space. 
The latter was shown to be a mathematical lattice [6]. 

The proliferation of computers has triggered a sustained interest in applications of 
mathematical lattices [7, 8]. In conclusion, the lattice computing (LC) paradigm has 
been proposed [9] as a modeling paradigm shift to a lattice data domain, including RN , 
where partial order may represent semantics. 

The interest of this work is in a specific lattice, namely, the lattice of (type 1) 
Intervals’ Numbers (INs), symbolically (F1,≼), where an IN may be interpreted either 
as a real number or as an information granule; the latter may be either a probability 
distribution or a fuzzy number [10]. 

The novelty of this work is the introduction of a hierarchy of Hilbert spaces stem-
ming from R, culminating in the introduction of the space of Generalized Intervals’ 
Numbers (GINs) G1, where G1 ⊃ F1, within which F1 is a convex cone. Hence, poten-
tially useful mathematical tools are introduced in F1 including a similarity cosine function 
between vectors of INs. Given the mathematical prerequisites for neurocomputing, 
namely (p1) a Hilbert space H,  (p2)  non-linear  operations  in  H, and (p3) a derivative in 
H, this work further proposes a promising extension of deep learning to FN 

1 toward 
computing with (granular) semantics; axiomatic logic can also be involved by Fuzzy 
Lattice Reasoning (FLR) as explained below. Furthermore, a reduction of energy con-
sumption is proposed (as a conjecture here to be confirmed in future work) by decreas-
ing the total number of neurons in a deep learning architecture without decreasing the 
total number of parameters toward retaining performance.

The layout of this paper is as follows. Section 2 introduces the principal contribu-
tion of this work, that is, a novel mathematical background for enhancing conven-
tional deep learning models. Section 3 describes an enhanced neural architecture. 
Section 4 delineates potential applications including CNNs and LLMs. Section 5
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concludes by discussing both the proposed techniques and potential future work 
extensions. Appendix A includes mathematical proofs; Appendix B includes code 
(software) that implements selected functions. 
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2. The convex cone of intervals’ numbers (INs) 

The interest of this work is in complete mathematical lattices (L, ⊑) with minimum 
and maximum elements o and i, respectively. A lattice (L, ⊑) is equipped with a 
positive valuation (real) function v:  L ! R, which, by definition, satisfies both a) v 
(x)  +  v(y)  =  v(x ⊓ y)  +  v(x ⊔ y) and b) x ⊏ y) v(x) < v(y). A positive valuation results 
in a metric distance function d:  L  L R+ 

0 given by d(x,y)  =  v (x ⊔ y) – v(x ⊓ y).

2.1 Fuzzy lattice reasoning (FLR) 

An order measure function σ:  L X L ! [0,1] in a lattice (L, ⊑) is defined by the two 
axioms: (A1) u ⊑ w ⇔ σ(u,w) = 1 and (A2) u ⊑ w ⇔ σ(x,u) ≤ σ(x,w). The following 
“reasonable axiom” may also be considered: (A0) σ(x,o)  =  0,  ∀x⊐o and d(x,i) < +∞, 
∀x∈L. Any employment of order measure function σ(.,.) is called fuzzy lattice reason-
ing, or FLR for short [11–16]. The FLR enables four types of axiomatic reasoning, 
namely, 1) inductive reasoning, 2) deductive reasoning, 3) reasoning by analogy, and 
4) abductive reasoning. 

An order measure function has been defined by function “sigma join” σ⊔(x,u)  =  v 
(u)/v(x ⊔ u) as well as by function “sigma meet” σ⊓(x,u)  =  v(x ⊓ u)/v(x), where v(.) is 
a (parametric) positive valuation function. In particular, the order measure σ⊓(.,.) is 
the well-known “Rule of Bayes”; moreover, both order measures σ⊓(.,.) and σ⊔(.,.) are 
widely (though implicitly) used by Fuzzy Inference Systems (FISs) [12]. Note that 
function σ(.,.) has emerged from a unified generalization of Adaptive Resonance 
Theory’s (ART’s) vigilance parameter and choice (Weber) function [17]. Order measures 
are useful toward introducing axiomatic logic/reasoning in deep learning. 

Given an order measure σi,  in  a  “constituent” lattice (Li, ⊑i), i∈{1, … , N}, an order 
measure σ is defined in the Cartesian product lattice (L1, ⊑1) X … X (LN, ⊑N ) by the
following convex combination function

σc -F, -E k1σ1 F1,E1 … kNσN FN,EN , (1)

where k1, … ,kN > 0 such that k1 + … + kN = 1, resulting in a capacity for rigorously 
fusing, hierarchically, disparate types of data.

It has been shown how an order measure can be extended to the lattice of intervals 
in a lattice (L, ⊑) based, in addition, on a dual isomorphic function θ:  L! L resulting in 
the positive valuation function V([a,b]) = v(θ(a)) + v(b ) [13]. As much of the work 
below involves intervals, an order measure function may also be denoted as σ(.,.; v,θ) 
to indicate explicitly the underlying (parametric) functions v(.) and θ(.). 

2.2 The Hilbert space G1 of generalized intervals’ numbers (GINs) 

The interest here is in complete sublattices (L, ⊑) stemming from the complete, 
totally ordered lattice (-R,≤), where -R  =  R∪{-∞,+∞} and R is the set of real numbers 
with minimum and maximum elements o = -∞ and i =  +∞, respectively. A number of 
mathematical results are presented next.

First, recall the definition of a (real) vector space [18].
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Definition 1: Consider a set V and the field R of real numbers satisfying the 
following two requirements: (i) given an arbitrary pair (a, b) of elements in V, there 
exists a unique element a + b (called sum of a, b)  in  V; (ii) given an arbitrary element κ 
in R and an arbitrary element a in V, there exists a unique element κa (called scalar 
multiple of a by κ)  in  V. The set V is called a linear space over R (or, vector space over R) 
if the following eight conditions are satisfied: (i) (a + b)  +  c = a +  (b + c); (ii) there 
exists an element 0∈V, called the zero element of V, such that a +  0  =  0  +  a = a for all 
a∈V; (iii) For any a∈V, there exists an element x = -a∈V satisfying a + x = x + a =  0;  
(iv) a + b = b + a; (v) κ(a + b)  =  κa + κb; (vi) For λ∈R, (κλ)a = κ(λa); (vii) For λ∈R, 
(κ + λ)a = κa + λa; (viii) 1 a = a (where 1 is the unity element of R).

An element of V is called vector; furthermore, an element of R is called scalar.  R  is  
called the field of scalars.

Second, recall the definition of a (real) Hilbert space [18]. 
Definition 2: Let R be the field of real numbers the elements of which are denoted by 

a, b, … ;  furthermore,  let  H be a linear space over R. To any pair of vectors x,y∈H, let us 
correspond a number < x, y > ∈R satisfying the following five conditions: (i) < x1 + x2, 
y > = < x1, y > + < x2, y>; (ii) < ax, y > = a < x, y>; (iii) < x, y > = < y, x>;  (iv)  < x, 
x > ≥ 0; and (v) < x, x > =  0  ⇔ x =  0.  Then,  H is called a pre-Hilbert space and < x,y > is 
called inner product of x and y.  With  the  norm  x||  || = 

-----------------
< x, x>

/
, H is a normed linear 

space. If H is complete with respect to the metric distance x- y||  ||,  that  is,  xn - ym
|||| |||| ! 0 

(m, n ∞) implies the existence of lim xn x∈H, thenH is called a (real) Hilbert space.

A well-known Hilbert space example is the Euclidean space RN , where R is the set 
of real numbers for an integer N. 

An inner product may extend to a Cartesian product as follows. 
Lemma 3: Assume the Cartesian product HN , where N is integer, of a pre-Hilbert 

(inner product) space H. Let the sum -x+-z, where -x =  (x1, … ,xN) and -z =  (z1,… ,zN), be 
defined as -x+-z =  (x1 + z1,… ,xN + zN); moreover, let the scalar multiple κ-x of -x∈HN by 
κ∈R be defined as κ-x =  (κx1,… ,κxN). Then, the (real) function < .,.>: HN X HN ! R 
defined as <-x, -y> = <(x1,… ,xN), (y1,… ,yN) > = 

PN xi, y
< >

is an inner product in HN.
The proof of Lemma 3 is shown in Appendix A. 
A number of lemmas are considered next. 
Lemma 4: Let VI =  (-RX -R, ≥ X ≤) be the lattice of generalized intervals, where R is 

the field of real numbers. Let the addition of two generalized intervals [a1, b1] and [a2, 
b2] be defined as [a1, b1]  +  [a2, b2]  =  [a1 + a2, b1 + b2]; moreover, let the scalar multiple 
of vector [a,b]∈-RX -R by the scalar λ∈R be defined as λ[a,b]  =  [λa, λb]. Then, 
VI =  (-R -R, ≥ ≤) is a vector space over R.

The proof of Lemma 4 is shown in Appendix A. 
Lemma 5:  In  vector  space  VI =  (-RX -R, ≥ X ≤) of generalized intervals, the mapping 

<.,.>: VI VI R  given  by  <[a1, b1], [a2, b2] > = 1 2(a1a2 + b1b2)  is  an  inn er product.
The proof of Lemma 5 is shown in Appendix A. 
The coefficient 1 2 in Lemma 5 is not critical, and it was inserted to align the result, 

when both [a1, b1] and [a2, b2] are trivial representing single real numbers, with the 
corresponding result between the real numbers. For example, let a,b∈R  be  
represented by the trivial generalized intervals [a, a] and [b, b], respectively; then, the 
(inner) product of the real numbers a and b equals ab; moreover, the (inner) product 
of the trivial vectors [a, a] and [b, b] equals 1 2<[a, a], [b, b] > = 1 2(ab + ab)  =  ab.

1 2 2( )
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Lemma 6: The inner product space VI =  (-RX -R, ≥ X ≤) of generalized intervals is 
complete with respect to the metric distance an, bn - cm, d m .

The proof of Lemma 6 is shown in Appendix A. 
Based on Definition 2, as well as on Lemmas 4, 5 and 6, it follows that VI is a (real) 

Hilbert space. 
A Generalized Intervals’ Number (GIN) is defined as a function E: [0,1]!(-RX-R, 

≥ X ≤)  =  VI . The value E(h) may, alternatively, be denoted as Eh. Let G denote 
the set of GINs. It turns out that (G, ≼) is a complete lattice, as the Cartesian 
product (G, ≼)= X(-RX-R, ≥ X ≤)h, where h∈[0,1], whose dimension is uncountably
infinite.

The previous results extend to G, next. 
Theorem 7: Consider the space G of GINs and let R be the field of real numbers. 

Let (a) the addition of two GINs E1 and E2 be defined as Es(h)  =  E1(h)  +  E2(h), h∈[0,1] 
and (b) the scalar multiplication of a scalar λ∈R times a GIN E be defined as Ep(h)  =  λE 
(h), h∈[0,1]. Then, G is a vector space over R.

The proof of Theorem 7 is shown in Appendix A. 
Remark 8: As the interest of this work is in (deep learning) applications rather 

than in abstract mathematics, the Lebesgue space L2 of square-integrable 
functions will be considered here exclusively. Recall that L2 is the only Hilbert space 
among integrable Lp spaces of functions, where p > 0. In particular, the inner product 
of two functions f,g∈L2, whose domain is the interval [0,1], is defined by <f(h), gÐ1 

The following Corollary extends the inner product of Lemma 5 to the 
vector space G, in a straightforward manner, based on (a) Remark 8 and (b) Lemma 3. 

Corollary 9: Let G1 =  {[a(h), b(h)]: a(.), b(.)∈L2}, Fh =  [a1(h), b1(h)] and 
Eh =  [a2(h), b2(h)], h∈[0,1]. Then, the mapping < .,.>:  G1 X G1 ! R given by <F,E > =Ð 1 Fh,Eh dh =  =1

Ð 1 a1 h a2 h b1 h b 2 h dh is inner product.
It is pointed out that G1 ⊂ G is a vector space because it satisfies all the eight 

conditions of Theorem 7. The completeness of G1 is shown next.
Theorem 10: The inner product space G1 of GINs is complete with respect to the 

metric distance En -Em , where Ei, i = 1,2, … is a Cauchy sequence.
The proof of Theorem 10 is shown in Appendix A. It is pointed out that any 

violation on null sets can be modified without changing the L2 class. 
Based on Definition 2, as well as on both Corollary 9 and Theorem 10, it follows 

that G1 is a (real) Hilbert space. 
It has been acknowledged that the closest relatives of Euclidean spaces are Hilbert 

spaces [19]. Since the utility of Euclidean spaces is well established during millennia of 
practice, the potential of the proposed Hilbert space needs to be scrutinized. In 
particular, this work considers a result from the theory of inner product spaces, namely, 
the Cauchy-Schwarz inequality < x, y>| |  ≤ x||  ||  y||  ||  that computes the similarity 
cosine function ρ: V V [-1,1] by

ρ(x, y) =  < x, y> 
x y 

, , ( 2)

toward calculating the angle ∡(x,y) between any two vectors x,y in an inner product 
space V as ∡(x,y) = arccos< x, y> .
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2.3 The convex cone F1 of intervals’ numbers (INs) 

The “resolution identity theorem,” of fuzzy set theory, has shown that a fuzzy set 
can be equivalently represented by either its membership function or its α-cuts [12]. 
Note that the α-cuts of fuzzy numbers are intervals. Recall that the universe of 
discourse [o, i] here is a totally ordered, complete lattice (L = [o,i], ≤) with minimum 
element o∈-R and maximum element i∈-R, where -R  =  R∪{-∞,+∞} is the totally 
ordered lattice of real numbers with minimum element “-∞” and maximum element 
“+∞”. The complete lattice of intervals in (L = [o,i], ≤), denoted by (I1, ⊆ ), is defined 
as I1 =  {[a,b]∈(L X L,≥ X ≤): a ≤ b}∪{∅}, where L = [o, i] ⊆ -R with o < i and (L X L, 
≥ X ≤) is the lattice of generalized intervals in L. The empty interval in I1 is denoted by 
[i, o], and it corresponds to all generalized intervals [a, b] with a > b.

An IN is defined by (C0) a function E: [0,1] ! I1 such that (C1) h1 ≤ h2 ) Eh1 ⊇ Eh2 
and (C2) ∀S ⊆ [0,1]: ⋂ 

h∈ S 
Eh = E∨S. Note that, typically, in applications, the height of an 

IN E equals 1 meaning that the range of IN E: [0,1] ! I1 does not include the empty 
interval [i, o] on a domain of non-zero measure. An IN is a mathematical object which 
may represent either a possibility distribution or a probability distribution [10] as 
explained next with reference to Figure 1. 

Figure 1 displays INs with interval support [1.80, 3.15]. Each IN was induced from 
70 samples. In particular, IN F was induced by Algorithm “distrIN” [20], whereas IN 
G by Algorithm CALFIN [21]. Note that the interval representation of an IN requires 
two numbers per level, that is, the two interval ends. In particular, regarding the 
interval representation of IN F in Figure 1(c) only one number is required per level

Figure 1. 
(a) A probability distribution IN F membership-function-representation with horizontal x-axis domain R; 
samples are indicated by an “x” mark. (b) A fuzzy number (possibility distribution) IN G membership-function-
representation with horizontal x-axis domain R; samples are indicated by an “x” mark. (c) The corresponding 
probability distribution F interval-representation with L = 32 levels and vertical axis domain [0,1]. (d) The 
corresponding possibility distribution (fuzzy number) G interval-representation with L = 32 levels and vertical 
axis domain [0,1].
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because all the right interval ends coincide. In conclusion, the IN F in Figure 1(c) is 
represented by L = 32 numbers ordered increasingly.
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The IN F in Figure 1(a) corresponds to a Cumulative Distribution Function (CDF) 
induced from a population of numerical data samples indicated with an “x” mark; it is 
F(2.47) = 0.5 [20]. Actually, the IN F in Figure 1(a) represents only part of a CDF 
since a CDF in non-decreasing on its domain, whereas function F(x) drops to 0 as 
soon as F(x) reaches its largest value of 1. Nevertheless, apparently, there is a bijective 
mapping between a proper subset of INs and CDFs. In the aforementioned sense, an 
IN represents a CDF. The corresponding interval-representation is shown in Figure 1 
(c) with L = 32 levels. 

The IN G in Figure 1(b) represents a fuzzy number induced from the 
aforementioned population of numerical data samples indicated with an “x” 
mark. The membership function G(x) equals G(x)  =  2F(x) for 1.80 ≤ x ≤ 2.47 and G 
(x) = 2(1-F(x)) for 2.47 ≤ x ≤ 3.15 [21]. The corresponding interval-representation is 
shown in Figure 1(d). 

The similarity cosine function ρ(x) between two INs E and F is computed as 

ρ x(  ) = ρ E τ- x(  ),F τ(  )( ) =  
<E τ- x(  ), F τ(  )> 
E τ- x(  )|| ||  F τ(  )||  ||  

= <E τ- x(  ),F τ(  )>----------------------------------------------
<E τ- x(  ),E τ- x(  )>/ ------------------------------

< F τ(  ),F τ(  )>/ 

= 

ð1 
0 

a1 h(  )- x( )a2 h(  ) +  b1 h(  )- x( )b2 h(  )[ dh--------------------------------------------------------------------ð 1

0
a1 h( )- x( )2 + b1 h( )- x( )2

[ ]
dh

/ -----------------------------------------ð1
0
a22 h( ) + b22 h( )[ ]

dh

/ ,
(3)

and it is demonstrated in Figure 2. In particular, function ρ(x) takes on values in the 
range [-1, 1]. Note that, for τ = 0.381, INs G(x-τ) and F(x) are orthogonal to one 
another because <T(x-0.381), F(x) > = 0, that is, their inner product equals zero.

In practice, an IN may (approximately) be represented by an L-dimensional vector 
of real numbers ordered increasingly. An advantage of an IN is its potential to repre-
sent all-order data statistics to any degree of accuracy depending on the number L of 
levels [12]; moreover, an IN represents an information granule. An interval Fh∈I1, 
h∈[0,1] will be denoted either by [ah, bh] or, equivalently, by [a(h), b(h)], h∈[0,1]. 
The set of INs is lattice ordered according to F ≼ G ⇔ Fh ⊆ Gh, h∈[0,1] ⇔ F(x) ≤ G 
(x), x∈R. The corresponding lattice of INs is denoted by (F1, ≼).

The interest here is in the lattice (F1, ≼) of INs, which is a sublattice of (G1, ≼). In 
particular, the set of trivial INs corresponds to the vector space R of real numbers. 
However, F1 is not a vector space because if E∈F1 then (-E)∉F1. It turns out that F1 is 
a convex cone in G1 in the sense that if x,y∈F1, then (λx + μy)∈F1, ∀λ,μ ≥ 0.

Figure 3 illustrates the notion of the convex cone I1 of intervals in the vector 
space VI of generalized intervals. In particular, the closed half-plane “a ≤ b” is a 
convex cone. Points on the line “a = b” correspond to trivial intervals. An IN 
F∈F1 representation includes a set of points Fh, h∈[0,1], and it is not demonstrated
here.

The inner product in G1, given by Corollary 9, also applies in the convex cone F1 of 
INs. Furthermore, any Cauchy sequence in F1 converges in F1 as shown next. 

Theorem 11: The convex cone F1 of Intervals’ Numbers (INs) is complete.
The proof of Theorem 11 is shown in Appendix A. 
In the lattice (I1, ⊆ ) of intervals, given a strictly increasing function v:  L!-R as well 

as a strictly decreasing function θ:  L ! L, there follow a metric distance function d1: 
I1 I1 R+ 

0 as well as two order measure functions σ:  L L [0,1], respectively, as
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Figure 2. 
Similarity cosine function ρ(x) between the constant IN F and another IN moving along the x-axis. (a) ρ(x)  =  ρ(T(τ-
x), F(τ)), where the “moving” IN T(τ-x) is trivial. (b) ρ(x)  = ρ(G(τ-x), F(τ)). For x = 0.381, the “moving” IN G(τ-
x)  and  F(τ) are orthogonal to one another because <G(τ-0.381), F(τ) > = 0, that is, their inner product equ als zero.

Figure 3. 
A point on the plane corresponds bijectively to a generalized interval in the set (lattice) VI =  (R X R, ≥ X ≤). Half-
plane “a ≤ b” corresponds bijectively to the set I of intervals, whereas the whole half-plane “a > b” corresponds to the 
empty interval ∅ =  [i, o]  in  I1 =  I∪{∅}; the latter is a convex cone in VI,  that  is,  if  x,y∈I1,  then  (λx + μy)∈I1,
∀λ,μ ≥ 0.

d1 a1, b1 , a2, b2 v θ a1∧a2 - v θ a1∨a2 v  b1∨b2 - v  b1 ∧b2 (4)

σ⊓ a1, b1[  ], a2, b2[  ]( ) =  
1, if a1, b1[  ]=∅ 

v θ a1∨a2(  )( ) + v  b1∧b2(  )  
v θ a1( )( ) + v b1( ) , otherwise (5)

σ⊔ a1, b1[  ], a2, b2[  ]( ) =  
1, if a1, b1[  ]=∅= a2, b2[  ]  

v θ a2(  )(  ) +  v  b2(  )  
v θ a1∧a2( )( ) + v b1∨b2( ) , otherwise (6)

Given INs E and F, there follows a metric distance function D1:  F1 X F1!R+ 
0 as well 

as two order measure functions σ:  F  F [0,1], respectively, as
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D1 E, F(  ) =
ð1 
0 
d1 Eh,Fh; v, θ( )  dh (7)

σ⋏ E, F(  ) =
ð1 
0 
σ⊓ Eh, Fh; v, θ( )dh, (8)and ð1

σ⋎ E, F(  ) =  
0 
σ⊔ Eh, Fh; v, θ( )dh: (9)

2.4 Non-linearities in F1 

Non-linearities can be introduced in F1 by parametric functions v(.) and θ(.) via 
metric functions as explained in the following. 

A metric is introduced in a Hilbert space by the corresponding inner product. The 
previous section has detailed that the inner product of Corollary 9 is available in F1. 
Moreover, F1 is equipped with additional metric distance functions by Eq. (7). More 
metrics can be introduced in FN 

1 based on the following result [18]. Given the metric 
spaces (X1, d1),… ,(XN, dN), a family of metric distance functions can be computed in 
the Cartesian product X = X1 … XN as follows:

-dp X,Y d1 x1, y1
( )( )p 

… dN xN, yN
( )( )p{ 1=P 

, (10) 

between N-tuples X =  (x1,… ,xN) and Y =  (y1,… ,yN), where p ≥ 1; in particular, p =  1  
corresponds to the Manhattan distance, p = 2 corresponds to the Euclidean distance, 
furthermore -d∞ x, y max d1 x1, y1

( )
, … , dN xN , yN

( ){ }
.

Non-linear transformations can be introduced in the lattice I1 of intervals by 
extending a strictly increasing (positive valuation) real function v:  L ! R  to  v:  I1 ! I1 
by defining v([a1,b1]) = [v(a1), v(b1)]. Since a < b) v(a) < v(b), it follows that if [a, 
b]∈I1 then v([a,b])∈I1. An extension v:  F1 ! F1 follows by defining IN G = v(E) such 
that Gh = v(Eh), ∀h∈[0,1] – note that, for E∈F1, it follows 0 ≤ h1 ≤ h2 ≤ 1 ) Eh1 ⊇ Eh2 
) v(Eh1 ) ⊇ v(Eh2 ); hence, v(E)∈F1 [22]. Lattice (v(F1), ≼) is the filtered image of (F1, 
≼). A number of potentially useful mathematical results are presented next. 

Lemma 12: Let v(.) be a strictly increasing real function v:  R ! R. Then, lattices 
(I1, ⊆ ) and (v(I1), ⊆ ) are order-isomorphic, symbolically (I1, ⊆ ) ≈ (v(I1), ⊆ ), in the 
sense that ∀A,B∈I1,  1)  v(.) is bijective (that is, one-to-one and onto), 2) v(A∧B)  =  v 
(A)∧v(B) and 3) v(A∨B)  =  v(A )∨v(B).

The proof of Lemma 12 is shown in Appendix A. 
Corollary 13 follows. 
Corollary 13: Let v(.) be a strictly increasing real function v:  R ! R. Then, lattices 

(F1, ≼) and (v(F1), ≼) are order-isomorphic, symbolically (F1, ≼) ≈ (v(F1), ≼), in the 
sense of Lemma 12.

Lemma 14: Let v(.) be a strictly increasing (positive valuation) function v:  R ! R 
such that v(-x)  = -v(x), let θ(x)  = -x and let A,B∈(I1, ⊆ ). Then, (a) d1(A,B; 
v,θ)  =  d1(v(A), v(B); x,θ); (b) σ⊓(A,B; v,θ)  =  σ⊓(v(A),v(B); x,θ); (c) σ⊔(A,B; 
v,θ)  =  σ⊔(v(A),v (B); x,θ).

The proof of Lemma 14 is shown in Appendix A. 
Theorem 15: Let v(.) be a strictly increasing (positive valuation) v:  R! R such that 

v(-x)  = -v(x), let θ(x)  = -x and let E,F∈(F1, ≼). Then, (a) D1(E,F; v,θ)  =  D1(v(E),v 
(F); x,θ); (b) σ⋏(E,F; v,θ)  =  σ⋏(v(E),v(F); x,θ); (c) σ⋎(E,F; v,θ)  =  σ⋎(v(E ),v(F); x,θ).

The proof of Theorem 15 is shown in Appendix A.
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Theorem 15(a) indicates that the isomorphic lattices (F1, ≼) and (v(F1), ≼) are also 
isometric in the sense the distance between any two elements in one lattice equals the 
distance between their bijective images in the other lattice. 

Previous work [14] has proposed two “reasonable constraints (RC)” regarding a 
positive valuation function v(.) in a complete lattice (L, ⊑) with minimum- and 
maximum-elements o and i, respectively, namely, (RC1) v(o) = 0 and (RC2) v(i) 
< +∞, which correspond to axiom (A0) in the definition of an order measure. In 
particular, (RC1) implies σ⊓(x, o)  =  0  =  σ⊔(x, o), whereas (RC2) implies d(x,i) < +∞, 
∀x∈L. Theorem 15 implicitly introduces (RC3) v(-x)  = -v(x) ) v(0) = 0. In applica-
tions, constraints (RC1) and (RC2) are often useful as a neuron’s activation function, 
whereas (RC3) is useful as a link’s weight function.

Theorem 15 substantiates that lattice (F1, ≼), equipped with v(x)  = -v(-x) and 
θ(x)  = -x, preserves the distances D1(.,.) as well as the order measures values σ⋏(.,.) 
and σ⋎(.,.) between bijective elements in lattices (F1, ≼) and (v(F1), ≼). Hence, 
Theorem 15 guarantees that the shapes of the distributions F and E may be kept intact, 
thus retaining the corresponding “probabilistic” and/or “possibilistic” interpretations, 
nevertheless the distance as well as the order measure between the distributions E and 
F may be tuned non-linearly toward optimizing decision-making.

Theorem 16: Let v(.) be a strictly increasing (positive valuation) real function v: 
R ! R such that v(0) 6= 0. Let v0(x)  =  v(x) – v(0). If (either v(x)  or  v0(x)) and 
θ(x)  = -x is used, then D1(E,F; v,θ)  =  D1(E,F ; v0,θ).

The proof of Theorem 16 is shown in Appendix A. 
Theorem 16 implies that lattices 1) (F1, ≼) with a strictly increasing positive 

valuation function v(x) and θ(x)  = -x and 2) (F1, ≼) with a strictly increasing positive 
valuation function v(x)-v(0) and θ(x)  = -x are isometric in the sense that the metric 
distance between corresponding pairs of elements remains constant. Theorem 16 
confirms the aforementioned constraint (RC3), that is, v(-x)  = -v(x) v (0) = 0.

Figure 4. 
(a) The logistic function w(x)  =  (1 - e-x )/(1 + e-x ) with range [-1, 1], and three INs F1, F2 and F3. (b) Effect 
of the strictly increasing link function w(x). The domain [-1, 1] INs G1 = w(F1), G2 = w(F2) and G3 = w(F3) 
equals the range of w(.).
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Figure 4 demonstrates nonlinear transformation of INs by a strictly increasing link 
function w(.). In particular, Figure 4(a) displays the logistic function w(x)  =  (1 - e-
x )/(1 + e-x ) as well as three INs F1, F2, and F 3. Figure 4(b) shows how the three INs 
F1, F2, and F3 of Figure 4(a) are filtered by the logistic function w(x) to result in the 
INs G1 = w(F1), G2 = w(F2), and G3 = w(F3), respectively. 

3. An enhanced deep learning architecture 

3.1 Conventional deep learning in RN 

Feedforward deep learning (neural computing) architectures, during their training 
phase, operate successively both in a forward mode and in a backward mode; whereas, 
during their testing phase, they operate exclusively in the forward mode. The input to a 
neuron is computed by the “dot product” -w•-x =  (w1,… ,wi,… ,wN)•(x1,… ,xi,… ,xN)  =  
w1x1 + … + wixi + … + wNxN,  where -x is a neuron’s input vector and -w is the corres-
ponding weight vector. In terms of a Hilbert space, -w•-x is an inner product. In particular, 
first, in the forward mode, deep learning (neural computing) models compute the “dot 
product” of vectors of real numbers, furthermore the numerical outcome of a dot (inner) 
product is transformed non-linearly by a neuron’s activation function. Second, in the 
backward mode, the models optimize the values of weights between neurons by deriva-
tives of the output error. Pooling is practiced between layers toward reducing the spatial 
dimensions (width/height) of feature maps while preserving important information.

Objects of interest in pattern recognition are represented by vectors of numbers 
such that similar objects are “forced,” during the training phase, to be located nearby; 
furthermore, the similarity of objects of interest is often quantified by the “similarity 
cosine” between their corresponding vector representations. Recall that a similarity 
cosine is always available by the inner product in a Hilbert space.

A criterion for training convergence is to keep reducing successive output vector 
error to arbitrarily small values. The aforementioned criterion corresponds to a 
Cauchy sequence whose convergence is guaranteed in a Hilbert space. 

All the above data processing capacities of neural computing exist in a Hilbert 
space. The basic idea of this work is to introduce an enhanced Hilbert space that 
includes the conventional Euclidean (Hilbert) space; then, develop likewise neural 
computing techniques as illustrated next. 

3.2 Deep learning enhanced 

An inner product exists in the Hilbert space G1; hence, it is available in its convex 
cone F1 of INs. The aforementioned “inner product” is a hint toward extending deep 
learning from RN to alternative Hilbert spaces such as GN 

1 including F
N 
1 . However, a 

straightforward extension is not possible as explained next.
The set R of real numbers is both a (mathematical) field and a real vector space. 

Conventional deep learning models treat the set R indiscriminately both as a (mathe-
matical) field and as a real vector space. In this work, those roles are separated 
regarding the vector space G1 of generalized intervals. 

One way to enable the aforementioned separation of roles is to interpret a link weight 
wi∈R, regarding a conventional deep learning neuron, as a real linear (link weight) 
function, namely wi(x)  =  wix. Then, for an input xi∈R, the corresponding (filtered) link 
output is computed as the product wixi. According to Section 2.4, for wi ≥ 0 the input xi

11



could be a non-trivial IN; furthermore, function wi(x) could be strictly increasing. In all 
aforementioned cases, the output wi(x) is an IN. However, a technical problem arises, for 
wi < 0  as  well  as  when  wi(x) is a strictly decreasing function, for a non-trivial IN input xi; 
then, wi(x) is not an IN. The following heuristic solution has been developed.
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Forwi < 0, filtering a L-dimentional vector (which represents an IN, say IN E), results 
in a L-dimentional vector wi(E) whose entries are ordered decreasingly. Therefore, the 
output vector r(w(E)) was computed; where given a vector x =  [x1,… ,xN], the entries of 
vector y =  [y1,… ,yN]  =  r(x) are in reverse order i.e. yi = xN  +  1-i, i∈{1,… ,N} [15]. The 
abovementioned heuristic is compatible with the multiplication of real numbers in the 
sense that the result is the same. Furthermore, a linear weight function can be replaced by 
a strictly monotone (either increasing or decreasing) parametric function and handle INs 
likewise. In such a manner, link weight filtering can change not only the location of an IN 
but also its shape. Figure 5 demonstrates the effect of filtering three non-trivial INs F1, F2, 
and F3 by a strictly decreasing link weight function which satisfies constraint (RC3). The 
code (software) that produced the graphs in Figure 5 is shown in Appendix B. 

As F1 is a convex cone in the Hilbert space G1, an inner product is available for 
computing the similarity between N-dimensional vectors of INs. Furthermore, a neu-
ron IN input (i.e., sum of INs) can be transformed non-linearly by a neuron’s activa-
tion function. 

Operations such as convolution and/or pooling can be extended to the proposed 
deep learning enhancement. In particular, pooling can be implemented by calculating 
probabilistic INs (Figure 1) representing all-order data statistics of big data to an 
arbitrary degree of accuracy using an appropriate number of L levels to represent an 
IN in its interval representation. In particular, the induction of an IN from recorded 
data corresponds to a “first level” down-sampling, that is, pooling; further pooling on 
INs can be pursued for “higher level” down-sampling.

In the context of the work in [15], the IN Neural Network (INNN) architecture 
shown in Figure 6 was used – note that the alternative term “Type-1 Neural Network

Figure 5. 
(a) The logistic function w(x)  =  (1 - ex )/(1 + ex ) with range [-1, 1], and three INs F1, F2 and F3. (b) Effect of 
the strictly decreasing link function w(x). The domain [-1, 1] INs G1 = w(F1), G2 = w(F2) and G3 = w(F3) 
equals the range of w(.).
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(T1NN)” may be used instead of INNN; however, a conventional deep learning neural 
network is called “Type-0 Neural Network (T0NN)” because it processes only vectors 
of numbers in RN.
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The sigmoid function φ:  R  R+ 
0 given by

φ x;Aφ, λφ, μφ
( ) = Aφ 

1 e- λφ x- μφ
(11)

is typically used as a neuron activation function; however, the sigmoid function offset 
by “-A/2,” namely, the logistic function, is typically used as a link weight i.e.

w  x;Aw, λw, μw( ) = Aw 

1 e- λw x- μw( ) -
Aw 

2 
= Aw 

2 
1- e- λw x- μw( )  

1 e- λw x- μw ( ) (12)

Parameter λw could be either positive or negative resulting in a strictly increasing 
or a strictly decreasing function. 

An input IN sj to a neuron nj activation function is computed (Figure 7)  a  s

sj = 
XN 

i 1 

wji Opji
( ) + bj, (13)

where wji(.), i∈{1,… ,N} is an incoming link’s (from the previous layer of neurons) 
weight function, Opji, i∈{1, … ,N} is the corresponding output IN of a neuron from the 
previous layer regarding pattern p, and bj is the bias IN of neuron nj. For input vectors 
in RN the INNN’s (T1NN’s) operation reduces to the operation of a conventional deep 
learning neural network T0NN. 

Figure 6. 
A three-layer IN neural network (INNN) or, alternatively,Type-1 neural network (T1NN), architecture whose 
inputs F1,… ,FN are INs. For input vectors in RN the INNN’s (T1NN’s) operation reduces to the operation of a 
conventional deep learning neural network T0NN.
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Figure 7. 
A single neuron model “j” of the INNN (T1NN) architecture, with N input INs Ipj1,… ,IpjN and 1 output IN Opj 
for an input pattern p – the latter is an N-dimensional IN. The activation function φ(.) as well as all link weights, 
wji(.), i∈{1,… ,N}, are strictly monotone functions, which filter their input INs sj and Opji, i∈{1,… ,N}, respectively. 

4. Potential applications 

This section presents two application domains where the proposed T1NN is 
expected to be especially useful. 

4.1 Convolutional neural networks (CNNs) 

Convolutional Neural Networks (CNNs) are inspired by biological processes. Spe-
cifically, certain neurons, consisting of simple and complex cells, respond differently 
in specific visual fields. Those insights from biology have paved the way for computa-
tional approaches to mimic aspects of visual perception based on these principles [2]. 
In particular, the LeNet-5 was designed to recognize handwritten postal codes and its 
architecture, including a backpropagation approach with conventional layers, pooling 
(subsampling) layers and dense (fully connected layers) has created a framework that 
is still applied by CNNs. A significant improvement was introduced by the AlexNet 
model [23], which outperforms all previous approaches by reducing the classification 
error by over 10%. AlexNet’s success relies on several factors such as deeper multi-
layered structure, the use of Rectified Linear Unit (ReLU) activation, the use of GPU 
to handle large-scale data, the use of max pooling layers, and the use of dropout layers. 

Lately, hybrid models like the Interval Neural Networks have been introduced 
toward improving decision making under uncertainty in vision tasks [24, 25]. Interval 
Neural Networks are “conceptually” the nearest deep learning schemes to IN Neural 
Networks (INNNs) as demonstrated in [15], where an INNN was used in cascade with 
a YOLO deep learning architecture. Extensions of CNNs to INNNs/T1NNs are 
planned at our RIS-Lab especially regarding robot vision applications. 

4.2 Large language models (LLMs) 

A project is currently under development at IHU’s RIS-Lab at the intersection of 
robotics and AI involving the social robot NAO (Figure 8) toward assisting children 
with special needs, e.g. children in the autism spectrum, as well as elderly with 
dementia. The team is supported by psychologists, sociologists and educators.
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Figure 8. 
Social robot NAO integrated with AI at IHU’s RIS-Lab. 

AI is integrated with the NAO robot to make it “intelligent” and capable of voice 
and image recognition in order to carry out conversations, to recognize faces, ges-
tures, colors, even emotions and to adapt to a patient. The AI integration is pursued 
using a pre-trained Large Language Model (LLM) based on the Transformer architec-
ture [3], which is accessed via an Application Programming Interface (API). The 
interaction begins when the NAO robot receives an audio/visual input from a human, 
through its microphone/camera. The raw data is, first, pre-processed by a local com-
puter, which acts as an interface between NAO and the LLM, to extract meaningful 
content toward transforming audio/visual signals to text. Then, it sends a request to 
the AI via its API. Hence, it is routed to a remote server hosting the LLM, where the 
input is analyzed using deep learning models. In conclusion, it generates a structured 
output in a text format, returns it to the local computer and, finally, converts it via 
NAO’s text-to-signal engine toward communicating with a human. 

A number of improvements are planned for future work, including a tunable 
parameterization by T1NN also toward filtering the LLM received answers by a user-
defined rule base also to comply with ethics. 

5. Conclusion 

High technology pioneers are successfully developing algorithms based on T0NN 
models. This work has introduced a straightforward enhancement of T0NN deep 
learning models to T1NN models. The critical difference is that T0NN models are 
developed in the Euclidean (Hilbert) space RN , whereas T1NN models are developed 
in the Hilbert space GN 

1 of GINs including the convex cone FN 
1 of (Type-1) INs, where 

FN 
1 ⊃ RN . An IN is interpreted either as a real number or as an information granule, the 

latter may be either a probability distribution or a fuzzy number.
It is interesting to point out that other authors [26] have proposed a “fuzzy 

number algebra” in a Banach space – Recall that a Hilbert space is a Banach space but not 
always vice versa. The interest in Hilbert spaces here was motivated by the fact that a 
Hilbert space is a direct abstraction of the successful in modeling Euclidean space RN .  A  
likewise success is expected by a Hilbert space which may also include semantics.
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The critical difference between classical interval arithmetic and the 
arithmetic of generalized intervals regards the definition of the product of an 
interval by a scalar. In particular, the classical interval arithmetic defines the 
product as c[a, b]  =  [ca, cb]  if  c ≥ 0, and c[a, b]  =  [cb, ca]  if  c < 0. In contrast, 
the arithmetic of generalized intervals defines the product as: c[a, b]  =  [ca, cb] 
∀c∈R. The important consequence is the introduction of an inner product and, ulti-
mately, the introduction of a hierarchy of Hilbert spaces including the convex cone F1
of INs.

Since FN 
1 ⊃ RN it is reasonable to expect that the proposed deep learning (T1NN) 

architectures can achieve at least as much as the conventional T0NN deep learning 
architectures. Additional advantages of neural computing in FN 

1 , which summarize the 
enhancement of T0NN, are enumerated next.

First, partial- (lattice-) order may represent semantics. In the latter sense, the 
proposed T1NN architectures compute with semantics. 

Second, decision-making can be pursued, even at neuron level, by axiomatic logic, 
for example, Fuzzy Lattice Reasoning (FLR) toward involving logic all along during 
data/information processing. 

Third, significant energy savings may be pursued as conjectured next. 
Deep learning, that is a workload that currently accounts for 14% of global Data 

Center (DC) power, is projected to rise to 27% by 2027 [27]. 
The good performance demonstrated by a number of Computational Intelligence 

models, such as “deep learning” models as well as “type-2 fuzzy systems” models in 
function-approximation problems, has been attributed to their large number of tun-
able parameters [16]. In particular, the number of tunable parameters of deep learning 
models has been reported in the order of hundreds of billions [28]. Furthermore, the 
impressive performance of deep learning models is largely attributed to the capacity 
of modern digital computer hardware to process vast data fast [15], not because the 
computation itself is fundamentally new or different. 

On the one hand, a conventional T0NN model employs no more than a single 
parameter between two of its neurons; the aforementioned parameter corresponds to 
the weight of the link that connects two neurons. On the other hand, a T1NN model 
uses a parametric, monotone function as a link weight between neurons. Hence, a 
tunable number of tunable parameters can be introduced with a smaller number of 
neurons resulting in a potentially smaller deep learning architecture of greater flexi-
bility. Based on the previous, we conjecture that a reduction of the energy required by 
a DC might be possible, without reducing performance. 

Section 2 has developed mathematical tools that satisfy two prerequisites for 
neural computing, namely (p1) a Hilbert space G1 and (p2) Non-linearities in G1. 
Prerequisite (p3), that is, the existence of a derivative in G1 toward defining a 
backpropagated “delta rule” for optimal parameter estimation is a topic for 
future research. Attention will also be given to the development of T1NNs with 
more layers as well as large scale comparative experiments by novel algorithms. In 
addition, the confirmation of the abovementioned conjecture i.e. a reduction of the 
energy required by a DC, will be tested. Future work extensions will also consider 
alternative lattices with nonnumerical data elements, represented by strings of 1 s and 
0 s, in the context of the Lattice Computing (LC) paradigm, toward enhancing the 
representation of semantics in deep learning (neural computing) applications. An indis-
pensable component of future work regards the inclusion of human ethics at all levels of 
data/information processing.
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results 

Lemma 3: Assume the Cartesian product HN , where N is integer, of a pre-Hilbert 
(inner product) space H. Let the sum -x+-z, where -x =  (x1,… ,xN) and +-z =  (z1, … ,zN), 
be defined as -x+-z =  (x1 + z1,… ,xN + zN); moreover, let the scalar multiple κ-x of -x∈HN 

by κ∈R be defined as κ-x =  (κx1, … ,κxN). Then, the (real) function < .,.>: HN X HN ! R 
defined as <-x, -y> = <(x1,… ,xN), (y1, … ,yN) > =

PN xi, y
< >

is an inner product in HN.
Proof. 
The five conditions of Definition 2 are satisfied as shown next. 

i. <-x+-z, -y> = <(x1,… ,xN)  +  (z1,… ,zN), (y1,… yN) > = < (x1 + z1,… ,xN + zN), 
(y1,… yN) > =

PN 
1 xi + zi, yi
< >

=
PN 

1 xi, yi
< >+ zi, yi

< >( )
=
PN 

1 xi, yi
< >

+PN zi, y
< >

= <-x, -y> + <-z , -y>.

ii. < a-x, -y> = <(ax1, … ,axN),(y1, … ,yN) > = N 
1 axi, yi = 

N 
1 a  xi, yi = 

a
PN xi, y

< >
=a<-x,-y >.

iii. <-x, -y> = <(x1,… ,xN), (y1,… ,yN) > = N xi, y = 
N y , xi = <-y, -x> .

iv. <-x, -x>= N xi, xi ≥ 0. 

v. <-x, -x> =  0  ⇔ N 
1 xi, xi<  >  =  0  ⇔ < xi,xi > =  0,  i∈{1, … ,N} ⇔ xi =  0  , i∈{1,… ,N}

⇔ -x= -0.

Lemma 4: Let VI =  (-RX -R, ≥ X ≤) be the lattice of generalized intervals, where R is 
the field of real numbers. Let the addition of two generalized intervals [a1, b1] and [a2, 
b2] be defined as [a1, b1]  +  [a2, b2]  =  [a1 + a2, b1 + b2]; moreover, let the scalar multiple 
of vector [a,b]∈-RX -R by the scalar λ∈R be defined as λ[a,b]  =  [λa, λb]. Then, 
VI =  (-R -R, ≥ ≤) is a vector space over R.

Proof. 
Following Definition 1, (i) given an arbitrary pair ([a1,b1], [a2,b2]) of generalized 

intervals in VI =  (-RX -R, ≥ X ≤), the unique element [a1,b1]  +  [a2,b2]  =  [a1 + a2, b1 + b2] 
(called sum of [a1,b1], [a2,b2]) is in VI =  (-RX -R, ≥X ≤); (ii) given an arbitrary element 
κ in R and an arbitrary element [a,b]  in  VI =  (-R X -R, ≥ X ≤), the unique element κ[a, 
b]  =  [κa,κb] (called scalar multiple of [a,b]  by  κ)  is in VI = (-R -R, ≥ ≤).

17



X X

X X

X X

2 +( )

2 +( )

Computational Semantics – Bridging Language, Logic, and Learning

The following eight conditions are satisfied: 

i. ([a1,b1]  +  [a2,b2]) + [a3,b3]  =  [a1 + a2, b1 + b2]  +  [a3, b3]  =  [a1 + a2 + a3, 
b1 + b2 + b3]  =  [a1,b1]  +  [a2 + a3, b2 + b3]  =  [a1,b1 ] + ([a2,b2] + [a3,b3]);

ii. There exists an element [0,0]∈(-RX -R, ≥ X ≤), called the zero element of 
(-RX -R, ≥ X ≤), such that [a, b] + [0,0] = [0,0] + [a, b]  =  [a, b] for all [a, 
b]∈(-R -R, ≥ ≤);

iii. For any [a, b]∈(-R X -R, ≥ X ≤), there exists an element -[a, b]  =  [-a, -
b]∈(-R -R, ≥ ≤) satisfying [a, b]  +  [-a, -b]  =  [-a, -b] + [a, b] = [0,0];

iv. [a1,b1]  +  [a2,b2]  =  [a1 + a2, b1 + b2]  =  [a2 + a1, b2 + b1]  =  [a2,b 2] + [a1,b1];

v. κ([a1,b1]  +  [a2,b2]) = κ[a1 + a2, b1 + b2]  =  [κ(a1 + a2), κ (b1 + b2)] = [κa1 + κa2, 
κb1 + κb2]  =  [κa1, κ b1]  +  [κa2, κb2]  =  κ[a1, b1] + κ[a2,b2];

vi. For λ∈R, (κλ)[a1,b1]  =  [(κλ)a1,  (κλ)b1]  =  [κ(λa1), κ(λb1)] = κ[λa1, λb1]  =  κ(λ[a 1,
b1]);

vii. For λ∈R, (κ + λ)[a, b]  =  [(κ + λ)a,  (κ + λ)b]  =  [κa + λa, κb + λb]  =  [κa, κb]  +  [λa, 
λb]  =  κ[a, b] + λ[a, b];

viii. 1[a, b]  =  [1a,  1b]  =  [a, b] (where 1 is the unity element of R).

Therefore, the set VI =  (-R -R, ≥ ≤) is a linear space (or, vector space) over R.
Lemma 5: In vector space VI =  (-RX -R, ≥ X ≤) of generalized intervals, the 

mapping < .,.>: VI X VI ! R given by <[a1, b1], [a2, b2] > = 1 2(a1a2 + b1b2)  is  a  n inner
product.

Proof. 
Following Definition 2, let κ∈R. Furthermore, to any pair ([a1,b1], [a2,b2]) of 

generalized intervals in (-RX -R, ≥X ≤), the real number < [a1, b1], [a2, b2] > = 1 2(a1a2+ 
b1b2) satisfies the following five conditions:

i. < [a1,b1]  +  [a2,b2], [a3,b3] > = < [a1 + a2, b1 + b2], [a3,b3] > = 1 2((a1 + a2) 
a3 +  (b1 + b2)b3)  =  1 2(a1a3 + b1b3)  +  1 2(a2a3 + b2b3)  =  <[a1,b1], [a3,b3] > + < [a2, 
b2], [a3 ,b3] > .

ii. < κ[a1, b1], [a2, b2] > = < [κa1, κb1], [a2, b2] > = 1 2(κa1a2 + κb1b2)  =  
κ1 2(a1a2 + b1b2)  =  κ < [a1, b1], [a2, b2 ]>;

iii. < [a1, b1], [a2, b2] > = 1 2(a1a2 + b1b2)  =  1 2(a2a1 + b2b1)  =  <[a2, b2], [a1, b1] >;

iv. < [a, b], [a, b] > = 1 a2 b2 ≥ 0; and.

v. < [a, b], [a, b] > =  0  ⇔ = 1 a2 b2 =  0  ⇔ a =  0  =  b ⇔ [ a, b] = [0, 0].

Therefore, (-RX -R, ≥ X ≤) is a pre-Hilbert space, and < [a1, b1], [a2, b2] > is the 
inner product of [a1, b1] and [a2, b2].
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Lemma 6: The inner product space VI =  (-RX -R, ≥ X ≤) of generalized intervals is 
complete with respect to the metric distance an, bn - cm, d m .

Proof. 
Recall that a sequence x1, x2, x3, … of elements from X of a metric space (X, d)  is  

called Cauchy if for every positive real number ε > 0, there is a positive integer N such 
that for all integers m, n > N,  it  is  d(xm, xn) < ε. A metric space (X, d) is called 
complete if every Cauchy sequence in X converges in X, that is it has a limit in X. Next, 
it is shown that every Cauchy sequence [an,bn]  of  VI elements has a limit in VI.

Let [an, bn]- [am, bm]|| || !  0  (m, n ! ∞), that is, [an - am, bn - bm]|| ||  0  (m, 

n! ∞), 
--------------------------------------------------------
1 
2 an - am( )2 + bn - bm( )2
{ }/

! 0  (m, n! ∞), an - am( )2 + bn - bm( )2
{

! 

0  (m, n ! ∞), both an - am( )2 ! 0  (m,n! ∞) and bn - bm( )2 ! 0  (m, n! ∞). As it 
is known that every Cauchy sequence in the Hilbert space of real numbers R con-
verges, with respect to the corresponding norm, to a real number, it follows that 
lim an, bn a, b ∈( -R -R, ≥ ≤), where a= lim an and b= lim bn.

Theorem 7: Consider the space G of GINs and let R be the field of real numbers. 
Let (a) the addition of two GINs E1 and E2 be defined as Es(h)  =  E1(h)  +  E2(h), h∈[0,1], 
and (b) the scalar multiplication of a scalar λ∈R times a GIN E be defined as Ep(h)  =  λE 
(h), h∈[0,1]. Then, G is a vector space over R.

Proof. 
Lemma 4 has proven that the complete lattice VI =  (-RX -R, ≥ X ≤) of generalized 

intervals is a vector space over R. Given INs E, F, and G in G as well as κ∈R, the eight 
conditions of Definition 1 are satisfied as shown next.

i. (E + F)  +  G =  (Eh + Fh)  +  Gh, h∈[0,1] = Eh +  (Fh + Gh), h∈[0,1] = E+( F + G).

ii. There exists an element 0 = [0,0]h, h∈[0,1], called the zero element of G such 
that E+0 = Eh + [0,0]h, h∈[0,1] = [0,0]h + Eh, h∈[0,1] = 0 + E = E for all E∈G; 

iii. For any E∈G, there exists an element X =  (-E)∈G, specifically -E = -Eh 

∀h∈[0,1], satisfying E + X = Eh +  (-Eh), h∈[0,1] = (-Eh)  +  Eh, 
h∈[0,1] = X + E = [0,0]h ∀h∈[0,1] = 0;

iv. E + F = Eh + Fh, h∈[0,1] = Fh + Eh, h∈[0,1] = F + E; 

v. κ(E + F)  =  κ(Eh + Fh), h∈[0,1] = κEh + κFh, h∈[0,1] = κE + κF .

vi. For λ∈R, (κλ)E =  (κλ)Eh, h∈[0,1] = κ(λEh), h∈[0,1] = κ(λE ).

vii. For λ∈R, (κ + λ)E =  (κ + λ)Eh, h∈[0,1] = κEh + λEh, h∈[0,1] = κE + λE.

viii. 1E =  1Eh, h∈[0,1] = Eh, h∈[0,1] = E (where 1 is the unity element of R).

Theorem 10: The inner product space G1 of GINs is complete with respect to the 
metric distance En -Em , where Ei, i = 1,2, … is a Cauchy sequence.

Proof. 
This Theorem extends the completeness of Lemma 6 to the inner product space G1, 

based on the fact that every Cauchy sequence En in the Hilbert space of real numbers 
R converges, with respect to the corresponding norm, to a real number.
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In particular, En -Em|| || ! 0  (n, m ! ∞) implies 
---------------------------------------
En -Em,En -Em</

=-------------------------------------------------------------Ð 1 
0 En -Em( )h, En -Em( )h
< >

dh
/

! 0  (n,m ! ∞), that is,Ð 1 
0 En(  )h - Em(  )h, En(  )h - Em(  )h
< >

dh ! 0  (n, m ! ∞). Given 1. <x-y, x-y > = < x, x > + 
< y, y > - 2 < x, y>;  2.  En(  )h = an h(  ), bn h(  )[ ]; and 3. Em(  )h = am h(  ), bm h(  )[ ]; it followsÐ 1 
0 En(  )h, En(  )h
< >+ Em(  )h, Em(  )h

< >
- 2 En(  )h, Em(  )h

< >(
dh (n, m ! ∞); hence, 

1 
2 

Ð 1 
0 an h(  )- am h(  )( )2 dh + 1 2 

Ð 1 
0 bn h(  )- bm h(  )( )2 dh ! 0  (n, m ! ∞). The latter implies 

both 
Ð 1 
0 an h(  )- am h(  )( )2 dh! 0  (n, m!∞) and

Ð 1 
0 bn h(  )- bm h(  )  ( )2dh! 0 (n,m!∞).

Therefore, both lim
n,m!∞

an h( )- am h( )| | and lim
n,m!∞

bn h( )- bm h( )| | are zero almost every-

where for h∈[0,1]. In the latter sense, En E∈G1.
Theorem 11: The convex cone F1 of Intervals’ Numbers (INs) is complete.
Proof. 
Theorem 10 implies that any Cauchy sequence E1, E2, E3, … of INs converges in the 

inner product space G1 of GINs – for definition of a Cauchy sequence see in the Proof 
of Lemma 6. In the following, it is proven that lim 

i!∞ 
Ei is an IN by showing that lim 

i!∞ 
Ei 

satisfies the definition of an IN.
Let Ei(h)  =  [ai(h), bi(h)], i = 1,2,3,… and h∈[0,1]. For a specific h∈[0,1], Theorem 

10 has shown that ai(h), i = 1,2,3, … is a Cauchy sequence that converges to, say, ah; 
likewise, bi(h), i = 1,2,3, … is a Cauchy sequence that converges to, say, bh.

a. It has to be ah ≤ bh; otherwise, there follows a contradiction as shown next.

Assume ah > bh. As both lim 
i!∞ 

ai h(  ) ! ah and lim 
i!∞ 

bi h(  ) !  bh, it follows that 

∀ε =  (ah - bh)/δ, where δ > 2, ∃N: ∀i > N, it holds both ai h(  )- ah| |  < ε and 
bi h(  )- bh| |  < ε. Hence, ai(h) > bi(h); in other words, Fi is not an IN – 
contradiction. Therefore, the assumption ah > bh is false. It logically follows
ah ≤ bh.

b. Let h1 ≤ h2. It has to be ah1 , bh1[ ]  ⊇ ah2 , bh2[ ], otherwise there follows a 
contradiction as shown next.

Assume ah1 , bh1[ ]  ⊂ ah2 , bh2[ ]  ⇔ either ah2 < ah1 ≤ bh1 ≤ bh2 or ah2 ≤ ah1 ≤ bh1 < bh2 . 
Given that lim 

i!∞ 
ai h2(  ) !  ah2 and lim 

i!∞ 
ai h1(  ) !  ah1 and lim 

i!∞ 
bi h1(  ) !  bh1 and 

lim 
i!∞ 

bi h2(  ) !  bh2 , it follows ∀ε = max{ ah1 - ah2( )=δ, bh1 - bh2( )=δ}, where δ > 2, 

∃N: ∀i > N, it holds that max{ ai h2(  )- ah2| |, ai h1(  )- ah1| |, bi h1(  )- bh1| |, 
bi h2(  )- bh2| |} < ε. Hence, [ai(h1), bi(h1)] ⊂ [ai(h2), bi(h2)]; in other words, Fi is 
not an IN – contradiction. Therefore, the assumption a h1 , bh1[ ] ⊂ ah2 , bh2[ ] is false.
It follows ah1 , bh1 ⊇ ah2 , bh2 .

c. ∀S ⊆ [0,1]: ⋂ 
h∈ S 

a  h(  ), b  h(  )[ ]  = ∧h∈ S [a(h), b(h)] = [∨h∈ S a(h), ∧h∈ S b(h)] =

a ∨S , b ∨S .

In conclusion, the limit E =  lim  
i!∞ 

Ei of any Cauchy sequence E1, E2, E3,… of  INs is an IN  

because (i) ah ≤ bh, (ii) h1 ≤ h2 ) ah1 , bh1[ ]  ⊇ ah2 , bh2[ ] and (ii) ∀S ⊆ [0,1]: ⋂ 
h∈ S 

ah, bh[  ]  

a∨S, b∨S . In other words, the convex cone F1 of Intervals’Numbers (INs) is complete.
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Next, the following two cases are considered: 

a. a1 ≤ a2 ) v(a1) ≤ v(a2) ) ( )= ( ) ( )= ( )
v a1)∨v(a2( )=v a2( ): v a1)∧v(a2( )=v a1( ):

{
.

b. a > a v(a ) > v(a ) ( )= ( ) ( )= ( )
{

.

1 ( ) = ( )( )+ ( ) = ( )+ ( ) = ( )+ ( )
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Lemma 12: Let v(.) be a strictly increasing real function v:  R  ! R. Then, lattices 
(I1, ⊆ ) and (v(I1), ⊆ ) are order-isomorphic, symbolically (I1, ⊆ ) ≈ (v(I1), ⊆ ), in the 
sense that ∀A,B∈I1,  1)  v(.) is bijective (i.e. one-to-one and onto), 2) v(A∧B)  =  v(A)∧v 
(B) and 3) v(A∨B)  =  v(A )∨v(B).

Proof. 
Let A =  [a1,b1] and B =  [a2,b2] be intervals in I 1.

1.As function v(.) is strictly increasing, it is bijective. 

v  a1∨a2 v  a2 : v  a1∧a2 v a1 :

v  a1∨a2 v  a1 : v  a1∧a2 v a2 :
1 2 ) 1 2 ) 

v  a1)∨v(a2( )=v  a1(  ): v  a1)∧v(a2( )=v  a2(  ): 

In either aforementioned case, it is both v(a1∨a2)  =  v(a1)∨v(a2) and v(a1∧a2)  =  v
(a1)∧v(a2). Hence,

2.v(A∧B)  =  v([a1,b1]∧[a2,b2]) = v([a1∨a2, b1∧b2]) = [v(a1∨a2), v(b1∧b2)] = [v(a1)∨v 
(a2), v(b1)∧v(b2)] = [v(a1), v(b1)]∧[v(a2), v(b2)] = v([a1,b1])∧v([a2,b2]) = v 
(A)∧v(B ).

3.v(A∨B)  =  v([a1,b1]∨[a2,b2]) = v([a1∧a2, b1∨b2]) = [v(a1∧a2), v(b1∨b2)] = [v(a1)∧v 
(a2), v(b1)∨v(b2)] = [v(a1), v(b1)]∨[v(a2), v(b2)] = v([a1,b1])∨v([a2,b2]) = v 
(A)∨v(B ).

Lemma 14: Let v(.) be a strictly increasing (positive valuation) function v:  R  ! R 
such that v(-x)  = -v(x), let θ(x)  = -x and let A,B∈(I1, ⊆ ). Then, (a) d1(A,B; 
v,θ)  =  d1(v(A), v(B); x,θ); (b) σ⊓(A,B; v,θ)  =  σ⊓(v(A),v(B); x,θ); (c) σ⊔(A,B; 
v,θ)  =  σ⊔(v(A),v( B); x,θ).

Proof. 
Let A =  [a1,b1] and B =  [a2,b2] ) v(A)  =  [v(a1), v(b1)] and v(B)  =  [v(a2), 

v(b2)]. 

a. It follows 

1.d1(A, B; v,θ)  =  [v(θ(a1∧a2)) - v(θ(a1∨a2))] + [v(b1∨b2) - v(b1∧b2)] = [v(-
a1∧a2) - v(-a1∨a2)] + [v(b1∨b2) - v(b1∧b2)] = [v(a1∨a2) - v(a1∧a2)] + [v 
(b1∨b2) - v(b1∧b2)] = |v(a1) - v(a2)| + |v(b1) - v(b2)|, and 

2.d1(v(A), v(B); x,θ)  =  d1([v(a1),v(b1)], [v(a2),v(b2)]) = [θ(v(a1)∧v(a2)) -
θ(v(a1)∨v(a2))] + [v(b1)∨v(b2) - v(b1)∧v(b2))] = [-v(a1)∧v(a2)  +  v 
(a1)∨v(a2)] + [v(b1)∨v(b2) - v(b1)∧v(b2)] = |v(a1) - v(a2)| + |v(b1) -
v(b2)|, 

Hence, d1(A,B; v,θ)  =  d1(v(A),v (B); x,θ).

b. It follows

.σ⊓ A,B; v, θ
v(θ a1∨a2)( )+v  b1^b2(  )  

v θ a1 v  b1 
v(- a1∨a2)( )+v  b1^b2(  )  

v - a1 v  b1
- v  a1∨a2( )+v b1^b2( )

- v a1 v b1
,
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) )

) )

) )
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1 ( ) = ^( )( )+ ( ) = ^( )( )+ ( ) = ^( )+ ( )

2 ( ) ( )( ) = ( )^ ( )( )+ ( ) ( ) = ( )^ ( )+ ( ) ( )

) )

) )

) )

) )

Ð Ð
Ð Ð
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.σ⊓ v  A  , v  B  ; x, θ θ v  a1(  )∨v  a2(  )( )+v  b1(  )^v  b2(  )  
θ v a1 v  b1

- v  a  1( )∨v a2( )+v b1( )^v b2( )
- v a1 v b1

.

There are two cases, regarding the comparison of v(a1∨a2) and v(a1)∨v(a2): 

1.a1 ≤ a2 [ (i) v(a1∨a2)  =  v(a2) and (ii) v(a1) ≤ v(a2) v(a1)∨v(a2)  =  v (a2)].

2.a1 > a2 [ (i) v(a1∨a2)  =  v(a1) and (ii) v(a1) > v(a2) v(a1)∨v(a2)  =  v(a 1)].

Hence, v(a1∨a2)  =  v(a1)∨v(a2 ).
There are two cases, regarding the comparison of v(b1∧b2) and v(b1)∧v(b2): 

1.b1 ≤ b2 [ (i) v(b1∧b2)  =  v(b1) and (ii) v(b1) ≤ v(b2) v(b1)∧v(b2)  =  v (b1)].

2.b1 > b2 [ (i) v(b1∧b2)  =  v(b2) and (ii) v(b1) > v(b2) v(b1)∧v(b2)  =  v(b 2)].

Hence, v(b1∧b2)  =  v(b1)∧v(b2 ).
In conclusion, σ⊓(A,B; v,θ)  =  σ⊓(v(A),v(B); x,θ ).

c.It follows 

.σ⊔ A,B; v, θ
v(θ a2)(  )+v  b2(  )  

v θ a1 a2 v  b1∨b2 
v - a2(  )+v  b2(  )  

v - a1 a2 v  b1∨b2
- v  a  2( )+v b2( )

- v a1 a2 v b1∨b2 ,

.σ⊔ v  A  , v  B  ; x, θ θ v  a2(  )(  )+v  b2(  )  
θ v  a1 v  a2 v  b1 ∨v  b2 

- v a2( )+v b2( )
- v a1 v a2 v b1 ∨v b2

There are two cases, regarding the comparison of v(a1∧a2) and v(a1)∧v(a2): 

1.a1 ≤ a2 [ (i) v(a1∧a2)  =  v(a1) and (ii) v(a1) ≤ v(a2) v(a1)∧v(a2)  =  v (a1)].

2.a1 > a2 [ (i) v(a1∧a2)  =  v(a2) and (ii) v(a1) > v(a2) v(a1)∧v(a2)  =  v(a 2)].

Hence, v(a1∧a2)  =  v(a1)∧v(a2 ).
There are two cases, regarding the comparison of v(b1∨b2) and v(b1)∨v(b2): 

1.b1 ≤ b2 [ (i) v(b1∨b2)  =  v(b2) and (ii) v(b1) ≤ v(b2) v(b1)∨v(b2)  =  v (b2)].

2.b1 > b2 [ (i) v(b1∨b2)  =  v(b1) and (ii) v(b1) > v(b2) v(b1)∨v(b2)  =  v(b 1)].

Hence, v(b1∨b2)  =  v(b1)∨v(b2 ).
In conclusion, σ⊔(A,B; v,θ)  =  σ⊔(v(A),v(B); x,θ ).
Theorem 15: Let v(.) be a strictly increasing (positive valuation) v:  R! R such that 

v(-x)  = -v(x), let θ(x)  = -x and let E,F∈(F1, ≼). Then, (a) D1(E,F; v,θ)  =  D1(v(E),v 
(F); x,θ); (b) σ⋏(E,F; v,θ)  =  σ⋏(v(E),v(F); x,θ); (c) σ⋎(E,F; v,θ)  =  σ⋎(v(E ),v(F); x,θ).

Proof. 
From Lemma 14, it follows. 
(a) D1(E, F; v,θ)  =  1 0d1 Eh,Fh; v, θ( )dh = 1 

0d1 v(Eh(  ), v  Fh(  ); x, θ)dh = D1(v(E), 
v(F); x,θ).

(b) σ⋏(E, F; v,θ)  =  1 0σ⊓ Eh, Fh; v, θ( )dh = 1 
0σ⊓ v(Eh(  ), v  Fh(  ); x, θ)dh = σ⋏(v(E),

v(F); x,θ).

22



Ð ( ) = Ð ( ) =

A Hierarchy of Hilbert Spaces for Computing with Granular Semantics by Deep Learning…
DOI: http://dx.doi.org/10.5772/intechopen.1013226

(c) σ⋎(E, F; v,θ)  =
Ð 1 
0σ⊔ Eh,Fh; v, θ( )dh = Ð 1 

0σ⊔ v(Eh(  ), v  Fh(  ); x, θ)dh = σ⋎(v(E ),
v(F); x,θ).

Theorem 16: Let v(.) be a strictly increasing (positive valuation) real function 
v:  R ! R such that v(0) 6= 0. Let v0(x)  =  v(x) – v(0). If (either v(x)  or  v0(x)) and 
θ(x)  = -x is used then D1(E,F; v,θ)  =  D1(E, F; v0,θ).

Proof. 
Let A =  [a1,b1] and B =  [a2,b2] ) v(A)  =  [v(a1), v(b1)] and v(B)  =  [v(a2), v(b2)]. 

From the Proof of Lemma 14 it follows,
d1(A, B; v0,θ)  =  |v0(a1) - v0(a2)| + |v0(b1) - v0(b2)| = |v(a1) - v(a2)| + |v(b1) -

v(b2)| = d1(A, B; v,θ). Hence,
D1(E, F; v,θ)  =  1 d1 Eh, Fh; v, θ dh 1 d1 Eh,Fh; v0, θ dh D1(E, F; v0,θ).0 0 

Appendix B: This Appendix includes MATLAB software that produced 
Figure 5 

x  = -8:0.01:8;
subplot(2,1,1); 
yd. = (2./(1 + exp.(+x)))-1; 
pts. = [0 0.5 0.9 1.1 1.5 2.17 2.3 2.4 2.5 2.6 3.5 3.8 4.1 4.5 5.7 5.8 6]’; 
[pts1, val1] = fin(pts - 7); val1(1) = 0; 
pts. = [0 0.6 0.7 0.75 1.01 1.53 1.87 2.17 2.3 2.4 2.45 2.5 2.6 2.9 3.5 3.8 4.1 4.2 4.5 5.7 

5.8 5.9 6]’; 
[pts2, val2] = fin((pts/3)-1); val2(1) = 0; 
pts. = [0 0.5 0.9 1.1 1.15 1.2 1.5 1.6 1.65 2.17 2.3 2.4 2.5 2.55 2.6 2.66 2.76 3.5 3.8 4.1 

4.5 5.7 5.8 6]’; 
[pts3, val3] = fin((pts/2) + 2); val3(1) = 0; 
plot(x,yd.,'k-’,pts1,val1,'k-’,pts2,val2,'k-’,pts3,val3,'k-’); hold on; 
plot([pts1(length(pts1)) pts1(length(pts1))],[0 1],'k-’); hold on; 
plot([pts2(length(pts2)) pts2(length(pts2))],[0 1],'k-’); hold on; 
plot([pts3(length(pts3)) pts3(length(pts3))],[0 1],'k-’); hold on; 
grid. 
axis([-8  8–1.2 1.5]);
set(gca,'XTick’,-10:1:10); 
set(gca,'YTick’,-1:0.5:2); 
text(0.7,-0.8,’\it{w(x)}’); 
text(-1.7,1.2,’\it{F}_1(x)’); 
text(0.4,1.2,’\it{F}_2(x)’); 
text(4.3,1.2,’\it{F}_3(x)’); 
xlabel(‘\it{x}’); 
ylabel(‘\it{Range}: [-1, 1]’); 
subplot(2,1,2); 
y1 = (2./(1 + exp.(+pts1)))-1; y1 = sort(y1,'ascend’); 
y2 = (2./(1 + exp.(+pts2)))-1; y2 = sort(y2,'ascend’); 
y3 = (2./(1 + exp.(+pts3)))-1; y3 = sort(y3,'ascend’); 
plot(y1,val1,'k-’,y2,val2,'k-’,y3,val3,'k-’); hold on; 
plot([y1(length(y1)) y1(length(y1))],[0 1],'k-’); hold on; 
plot([y2(length(y2)) y2(length(y2))],[0 1],'k-’); hold on; 
plot([y3(length(y3)) y3(length(y3))],[0 1],'k-’); hold on;
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grid. 
axis([-1.1 1.1 0 1.2]); 
set(gca,'XTick’,-1:0.25:1); 
set(gca,'YTick’,0:0.2:1); 
text(-0.90, 1.1,’\it{G_3 = w(F_3)}’); 
text(0.30, 1.1,’\it{G_2 = w(F_2)}’); 
text(0.76, 1.1,’\it{G_1 = w(F_1)}’); 
xlabel(‘\it{Domain}: [-1, 1]’); 
ylabel(‘\it{h}’); 
———————————————————————————————————. 
function [pts, val] = fin(x). 
% [pts, val] = fin(x) computes an IN out of samples in vector ‘x’. 
% Column vector ‘pts’ returns the (IN’s) domain points.
% Column vector ‘val’ returns the values on the aforementioned domain points.
epsilon = 0.001; 
% no identical points in vector ‘x’ are allowed.
x = sort(x); 
if min(abs(diff(x))) == 0, %condition for identifying identical numbers. 
for i = 1:length(x), 
j  =  i  +  1  ;
while (j < = length(x))&(x(i) == x(j)), 
x(j) = x(i) + epsilon; 
j  =  j  +  1  ;
end %while. 
end %for. 
end %if. 
pts. = sort(x); 
val = []; 
Len = length(x); 
for i = 1:Len, 
val = [val; i/Len]; 
end 

Notation table

-R The set R of real numbers augmented by “-∞” and “+∞” 
(L, ≤) A complete mathematical lattice, where L ⊆ -R  =  R∪{-∞,+∞} 
v:  L!R A positive valuation (strictly increasing) function in (L, ⊑) 
σ:  L X L![0,1] An order measure function 
FLR Fuzzy lattice reasoning 
θ:  L!L A dual (strictly decreasing) isomorphic function in (L, ⊑) 
< .,. >: HXH!R The inner product <x, y > of x and y in vector space H 
||.||: H!R The norm ||x|| of x 
VI The lattice (-RX -R, ≥X≤) of generalized intervals 
ρ: VXV![-1,1] A similarity cosine function in an inner product space V 
E: [0,1]!VI A Generalized Intervals’ Number (GIN) 
G The set of GINs 
L2 The Lebesgue space of square-integrable functions 
G1 G1 =  {[a(h), b(h)]: a,b∈L2}. It is G1 ⊂ G
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X !

(I1, ⊆ ) The complete lattice of intervals in (L, ≤) 
[i, o] The empty interval in (I1, ⊆ ) 
E: [0,1]!I1 A (type 1) Intervals’ Number (IN) 
F1 The set of INs. It is F1 ⊂ G1 

distrIN An algorithm that induces an IN interpreted probabilistically 
CALFIN An algorithm that induces an IN interpreted possibilistically 
CDF Cumulative Distribution Function 
L The number of intervals in an IN’s interval representation
-dp: XXX!R+ 

0 Metric distance in a Cartesian product X = X1X…XXN, p > 1 
d1:  I1XI1!R+ 

0 Metric distance in the complete lattice (I1, ⊆ ) of intervals 
D1:  F1XF1!R+ 

0 Metric distance function in the convex cone F1 of INs 
σ⊓:  I1 X I1![0,1] The sigma meet in the lattice (I1, ⊆ ) of intervals 
σ⊔:  I1 X I1![0,1] The sigma join in the lattice (I1, ⊆ ) of intervals 
σ⋏:  F1 X F1![0,1] The sigma meet in the lattice (F1, ≼) of INs 
σ⋎:  F1 F1 [0,1] The sigma join in the lattice (F1, ≼) of INs
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