Chapter

A Hierarchy of Hilbert Spaces for
Computing with Granular
Semantics by Deep Learning

Enhanced

Vassilis Kaburlasos, George Siavalas and Lola Bris

Abstract

The all-popular Artificial Intelligence (Al) is pursued by deep learning (neural
computing) models implemented in Data Centers (DCs) that require considerable
resources. The aforementioned models are typically developed in the Euclidean (Hil-
bert) space RY, where R is the set of real numbers for an integer N. This work
introduces a Hibert space, namely, space of Generalized Intervals’ Numbers (GINs) G
as a hierarchy of Hilbert spaces stemming from R. Data processing is carried out
in the convex cone F; of G, namely, space of Intervals’ Numbers (INs), which
includes partially ordered, Lebesque space L, distribution functions that may repre-
sent information granules, for example, probability/possibility distributions. It is
detailed how enhanced deep learning models can be developed in F)'. As F; is a strict
superset of R, all the conventional deep learning algorithms in R" are included.
Additional advantages of deep learning in F)’ include (a) accommodation of spoken
language semantics, represented by partial order, (b) potential engagement of axiom-
atic logic all along during data processing, and (c) tuning the number of tunable
parameters toward reducing the demands for DC resources, including energy con-
sumption, by engaging fewer models of greater flexibility without decreasing
performance.

Keywords: deep learning, fuzzy lattice reasoning (FLR), granular semantics
computing, hierarchy, lattice computing (LC), Hilbert space

1. Introduction

The influential review “Deep Learning” [1] is widely acknowledged for solidifying
deep learning (neural computing) models as a foundational paradigm in Artificial
Intelligence (AI). Deep learning is the core technology that has enabled the develop-
ment of such popular technologies as Convolutional Neural Networks (CNNs) [2] for
image recognition and Large Language Models (LLMs) [3] for human-like language
generation. Deep learning models are currently implemented exclusively in the
Euclidean (Hilbert) space R™ by processing vectors of numbers.
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Conventional modeling has been largely initiated by Isaac Newton [4], regarding
the physical world, based on measurements following, in a sense, the ancient Pythag-
orean doctrine that “(rational) numbers is the ultimate reality” — note that numbers
emerge from physical world measurements. The aforementioned modeling has
worked well for centuries in the physical world, for example, Maxwell’s equations
and/or Einstein’s equations, and it has been extended successfully to alternative
application domains such as the economy, physiology, psychology, and others. Lately,
the aforementioned modeling has been extended to AI deep learning (statistical)
models [1], whose remarkable performance can be attributed to the capacity of digital
computer hardware [5] to process vast data fast rather than to compute differently. In
all, conventional modeling deals exclusively with “flat data,” that is, arrays of num-
bers. Nevertheless, when humans are involved, then non-numerical percepts emerge
such as the degree of truth of propositions, data structures and symbols — note that
percepts become data as soon as they are recorded.

Starting with “Industry 3.0,” there has been an increasing demand for models that
involve non-numerical human percepts and, historically, the truth values of proposi-
tions were among the first ones studied resulting in Boolean algebra/logic. It is note-
worthy that Boolean algebra is the “par excellence” instrument for design in the digital
computer industry today. In turn, the study of Boolean algebra has resulted in the
introduction of mathematical Lattice Theory (LT) or, Order Theory, whose preemi-
nent feature is a unifying capacity [6].

It is remarkable that non-numerical data have emerged in Physics as well. For
instance, the 1954 Nobel prize laureate Max Born has instrumentally employed prob-
ability theory in quantum mechanics — note that Andrey Kolmogorov had already
formalized probability theory in 1933 by introducing the notion of Probability Space.
The latter was shown to be a mathematical lattice [6].

The proliferation of computers has triggered a sustained interest in applications of
mathematical lattices [7, 8]. In conclusion, the lattice computing (LC) paradigm has
been proposed [9] as a modeling paradigm shift to a lattice data domain, including RY,
where partial order may represent semantics.

The interest of this work is in a specific lattice, namely, the lattice of (type 1)
Intervals’ Numbers (INs), symbolically (F1,<), where an IN may be interpreted either
as a real number or as an information granule; the latter may be either a probability
distribution or a fuzzy number [10].

The novelty of this work is the introduction of a hierarchy of Hilbert spaces stem-
ming from R, culminating in the introduction of the space of Generalized Intervals’
Numbers (GINs) Gy, where G; D F;, within which F; is a convex cone. Hence, poten-
tially useful mathematical tools are introduced in F; including a similarity cosine function
between vectors of INs. Given the mathematical prerequisites for neurocomputing,
namely (p1) a Hilbert space H, (p2) non-linear operations in H, and (p3) a derivative in
H, this work further proposes a promising extension of deep learning to F}' toward
computing with (granular) semantics; axiomatic logic can also be involved by Fuzzy
Lattice Reasoning (FLR) as explained below. Furthermore, a reduction of energy con-
sumption is proposed (as a conjecture here to be confirmed in future work) by decreas-
ing the total number of neurons in a deep learning architecture without decreasing the
total number of parameters toward retaining performance.

The layout of this paper is as follows. Section 2 introduces the principal contribu-
tion of this work, that is, a novel mathematical background for enhancing conven-
tional deep learning models. Section 3 describes an enhanced neural architecture.
Section 4 delineates potential applications including CNNs and LLMs. Section 5
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concludes by discussing both the proposed techniques and potential future work
extensions. Appendix A includes mathematical proofs; Appendix B includes code
(software) that implements selected functions.

2. The convex cone of intervals’ numbers (INs)

The interest of this work is in complete mathematical lattices (L, C) with minimum
and maximum elements o and i, respectively. A lattice (L, C) is equipped with a
positive valuation (real) function v: L — R, which, by definition, satisfies both a) v
(x) +v(y) =v(xny) +v(xUy) andb) x Cy = v(x) <v(y). A positive valuation results
in a metric distance function d: L x L—R} given by d(x,y) = v(x LUy) —v(x My).

2.1 Fuzzy lattice reasoning (FLR)

An order measure function c: L x L — [0,1] in a lattice (L, C) is defined by the two
axioms: (A1) u Cw < o(u,w) =1and (A2) u Cw < o(x,u) < o(x,w). The following
“reasonable axiom” may also be considered: (A0) 6(x,0) = 0, VxJo and d(x,i) < +o0,
Vx€L. Any employment of order measure function 6(.,.) is called fuzzy lattice reason-
ing, or FLR for short [11-16]. The FLR enables four types of axiomatic reasoning,
namely, 1) inductive reasoning, 2) deductive reasoning, 3) reasoning by analogy, and
4) abductive reasoning.

An order measure function has been defined by function “sigma join” o,,(x,u) = v
(u)/v(x Uu) as well as by function “sigma meet” 6(x,u) = v(x Mu)/v(x), wherev(.) is
a (parametric) positive valuation function. In particular, the order measure o(.,.) is
the well-known “Rule of Bayes”; moreover, both order measures 6(.,.) and o,,(.,.) are
widely (though implicitly) used by Fuzzy Inference Systems (FISs) [12]. Note that
function o(.,.) has emerged from a unified generalization of Adaptive Resonance
Theory’s (ART’s) vigilance parameter and choice (Weber) function [17]. Order measures
are useful toward introducing axiomatic logic/reasoning in deep learning.

Given an order measure o;, in a “constituent” lattice (L;, C;), i€{1, ..., N}, an order
measure ¢ is defined in the Cartesian product lattice (L, E4) X ... X (Ly, En) by the
following convex combination function

(FC(F,E) = klﬁl(Fl,El) + ... -‘rkN(FN(FN,EN), (1)

where ky, ... kx> 0 such that k; + ... + kx = 1, resulting in a capacity for rigorously
fusing, hierarchically, disparate types of data.

It has been shown how an order measure can be extended to the lattice of intervals
in a lattice (L, C) based, in addition, on a dual isomorphic function 6: L — L resulting in
the positive valuation function V([a,b]) = v(6(a)) + v(b) [13]. As much of the work
below involves intervals, an order measure function may also be denoted as o(.,.; v,0)
to indicate explicitly the underlying (parametric) functions »(.) and 6(.).

2.2 The Hilbert space G; of generalized intervals’ numbers (GINs)

The interest here is in complete sublattices (L, C) stemming from the complete,
totally ordered lattice (R,<), where R = RU{—0c0,+c0} and R is the set of real numbers
with minimum and maximum elements o = —co and i = +o0, respectively. A number of
mathematical results are presented next.

First, recall the definition of a (real) vector space [18].
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Definition 1: Consider a set V and the field R of real numbers satisfying the
following two requirements: (i) given an arbitrary pair (a, b) of elements in V, there
exists a unique element a + b (called sum of a, b) in V; (ii) given an arbitrary element x
in R and an arbitrary element 4 in V, there exists a unique element xa (called scalar
multiple of a by «) in V. The set V is called a linear space over R (or, vector space over R)
if the following eight conditions are satisfied: (i) (@ + b) + ¢ =a + (b + ¢); (ii) there
exists an element 0€V, called the zero element of V, such thata + 0 = 0 + a = a for all
a€V; (iii) For any a€V, there exists an element x = —a€V satisfyinga + x =x + a = 0;
(ivya+b=>b+a; (v)k(a +b) =xa + «b; (vi) For A€R, (kd)a = x(Ja); (vii) For A€R,
(k + D)a = ka + Aa; (viii) 1a = a (where 1 is the unity element of R).

An element of V is called vector; furthermore, an element of R is called scalar. R is
called the field of scalars.

Second, recall the definition of a (real) Hilbert space [18].

Definition 2: Let R be the field of real numbers the elements of which are denoted by
a, b, ...; furthermore, let H be a linear space over R. To any pair of vectors x,yeH, let us
correspond a number < x, y > €R satisfying the following five conditions: (i) < x7 + x2,
P> = <X,y >+ <X, y>; (i) <ax,y>=a <x,y>; (iil) <x,y>=<y,x>; (iv) <x,
x>>0;and (v) <x,x>=0<ux=0. Then, H is called a pre-Hilbert space and < x,y > is
called inner product of x and y. With the norm ||x|| = v/ <x,x >, H is a normed linear
space. If H is complete with respect to the metric distance ||x — y|, that s, ||x, —,,|| — 0
(m,n — oo) implies the existence of 7}1_{210 X, = x€H, then H is called a (real) Hilbert space.

A well-known Hilbert space example is the Euclidean space R", where R is the set
of real numbers for an integer N.

An inner product may extend to a Cartesian product as follows.

Lemma 3: Assume the Cartesian product H", where N is integer, of a pre-Hilbert
(inner product) space H. Let the sum X+%, where X = (x1, ... ,xy) and Z = (23, ... ,3n), be
defined as X +& = (o1 + 21, ... XN + 2N); Moreover, let the scalar multiple x% of xeHN by
k€R be defined as k% = (kx1, ... ,kxn). Then, the (real) function <.,.>: HY x HY — R
defined as <X, > = < (X1, . 2 XN), (V15 o 5YN) > = Z§V<xi,yi> is an inner product in H".

The proof of Lemma 3 is shown in Appendix A.

A number of lemmas are considered next.

Lemma 4: Let V; = (R X R, > x <) be the lattice of generalized intervals, where R is
the field of real numbers. Let the addition of two generalized intervals [a4, b;] and [a5,
b,] be defined as [aq, b1] + [aa, b2] = [a1 + a2, by + by]; moreover, let the scalar multiple
of vector [4,h]€R x R by the scalar 1€R be defined as A[a,b] = [Aa, 1b]. Then,

Vi = (R x R, > x <) is a vector space over R.

The proof of Lemma 4 is shown in Appendix A.

Lemma 5: In vector space V; = (R x R, > x <) of generalized intervals, the mapping
<.,>: Vi x Vi — Rgiven by <[ay, b1, [a2, b2] > = %(alaz + b1b,) is an inner product.

The proof of Lemma 5 is shown in Appendix A.

The coefficient % in Lemma 5 is not critical, and it was inserted to align the result,
when both [a4, b1] and [a5, b,] are trivial representing single real numbers, with the
corresponding result between the real numbers. For example, let a,b€R be
represented by the trivial generalized intervals [a, 2] and [b, b], respectively; then, the
(inner) product of the real numbers a and b equals ab; moreover, the (inner) product
of the trivial vectors [, a] and [b, b] equals %< la, al, [b, b] > = %(ub +ab) = ab.

Vi is a pre-Hilbert (normed linear) space with norm ||[a, b]|| = /3 (a% + bz).
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Lemma 6: The inner product space V = (RxR,>x <) of generalized intervals is
complete with respect to the metric distance ||[a,, bn] — [cn> dim] |-

The proof of Lemma 6 is shown in Appendix A.

Based on Definition 2, as well as on Lemmas 4, 5 and 6, it follows that V;is a (real)
Hilbert space.

A Generalized Intervals’ Number (GIN) is defined as a function E: [0,1]— (RxR,
> x <) = V. The value E(k) may, alternatively, be denoted as E),. Let G denote
the set of GINs. It turns out that (G, <) is a complete lattice, as the Cartesian
product (G, <)= x(RxR, > x <)), where 2€[0,1], whose dimension is uncountably
infinite.

The previous results extend to G, next.

Theorem 7: Consider the space G of GINs and let R be the field of real numbers.
Let (a) the addition of two GINs E; and E, be defined as E (k) = E1(h) + E,(h), he[0,1]
and (b) the scalar multiplication of a scalar A€R times a GIN E be defined as E, (k) = 1E
(h), he[0,1]. Then, G is a vector space over R.

The proof of Theorem 7 is shown in Appendix A.

Remark 8: As the interest of this work is in (deep learning) applications rather
than in abstract mathematics, the Lebesgue space L, of square-integrable
functions will be considered here exclusively. Recall that L, is the only Hilbert space
among integrable L, spaces of functions, where p > 0. In particular, the inner product
of two functions f\g€L,, whose domain is the interval [0,1], is defined by <f(k), g

(h) > - }f(h)g(h)dh [18] (168B, 197D).
0

The following Corollary extends the inner product of Lemma 5 to the
vector space G, in a straightforward manner, based on (a) Remark 8 and (b) Lemma 3.

Corollary 9: Let G, = {[a(h), b(h)]:a(.), b()ELL}, F), = [a1(h), b1(h)] and
Ey, = [ax(h), by(h)], he[0,1]. Then, the mapping <.,.>: G; x G; — Rgiven by <F,E > =
Jo (Fny En)dh = =1 [Tlax(R)az (k) + ba(h)ba(h))dh is inner product.

It is pointed out that G; C G is a vector space because it satisfies all the eight
conditions of Theorem 7. The completeness of G; is shown next.

Theorem 10: The inner product space G; of GINs is complete with respect to the
metric distance ||E, — E,, ||, where E;, i = 1,2, ... is a Cauchy sequence.

The proof of Theorem 10 is shown in Appendix A. It is pointed out that any
violation on null sets can be modified without changing the L, class.

Based on Definition 2, as well as on both Corollary 9 and Theorem 10, it follows
that G, is a (real) Hilbert space.

It has been acknowledged that the closest relatives of Euclidean spaces are Hilbert
spaces [19]. Since the utility of Euclidean spaces is well established during millennia of
practice, the potential of the proposed Hilbert space needs to be scrutinized. In
particular, this work considers a result from the theory of inner product spaces, namely,
the Cauchy-Schwarz inequality | <x,y>| < |lx|| ||y|| that computes the similarity
cosine function p: V x V — [-1,1] by

_ <xy> 5
P = T @

toward calculating the angle £(x,y) between any two vectors x,y in an inner product
<x,y>
space Vas £(x,y) = aArCCoS P LT
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2.3 The convex cone F; of intervals’ numbers (INs)

The “resolution identity theorem,” of fuzzy set theory, has shown that a fuzzy set
can be equivalently represented by either its membership function or its a-cuts [12].
Note that the a-cuts of fuzzy numbers are intervals. Recall that the universe of
discourse [0, ] here is a totally ordered, complete lattice (L = [0,i], <) with minimum
element 0€R and maximum element i€R, where R = RU{—00,+00} is the totally
ordered lattice of real numbers with minimum element “-c0” and maximum element
“+00”. The complete lattice of intervals in (L = [0,i], <), denoted by (I;, C), is defined
asI; = {[a,b]le(L x L,> x <):a <b}u{@}, where L = [0,i] € Rwitho <iand (L x L,
> x <) is the lattice of generalized intervals in L. The empty interval in I; is denoted by
[#, 0], and it corresponds to all generalized intervals [a, b] with a > b.

An IN is defined by (CO) a function E: [0,1] — I; such that (C1) hy <h, = Ej;, 2 E,
and (C2) VS C [0,1]: () Ej, = Eys. Note that, typically, in applications, the height of an

hes
IN E equals 1 meaning that the range of IN E: [0,1] — I; does not include the empty
interval [i, o] on a domain of non-zero measure. An IN is a mathematical object which
may represent either a possibility distribution or a probability distribution [10] as
explained next with reference to Figure 1.

Figure 1 displays INs with interval support [1.80, 3.15]. Each IN was induced from
70 samples. In particular, IN F was induced by Algorithm “distrIN” [20], whereas IN
G by Algorithm CALFIN [21]. Note that the interval representation of an IN requires
two numbers per level, that is, the two interval ends. In particular, regarding the
interval representation of IN F in Figure 1(c) only one number is required per level

I < I s
2 2
@ £ o5 3 (b)
V72 247 3 33 7 2 247 3 33
X X
I =f§ I ___G
x . =
(c) 0.5 — (d)

q.? ¥4 247 3 33 qj" 2 247 3 33
Fh) G(h)

Figure 1.

(a) A probability distribution IN F membership-function-representation with horizontal x-axis domain R;
samples are indicated by an “x” mark. (b) A fuzzy number (possibility distribution) IN G membership-function-
representation with hovizontal x-axis domain R; samples are indicated by an “x” mark. (c) The corresponding
probability distribution F interval-representation with L = 32 levels and vertical axis domain [0,1]. (d) The
corresponding possibility distribution (fuzzy number) G interval-representation with L = 32 levels and vertical
axis domain [0,1].
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because all the right interval ends coincide. In conclusion, the IN F in Figure 1(c) is
represented by L = 32 numbers ordered increasingly.

The IN F in Figure 1(a) corresponds to a Cumulative Distribution Function (CDF)
induced from a population of numerical data samples indicated with an “x” mark; it is
F(2.47) = 0.5 [20]. Actually, the IN F in Figure 1(a) represents only part of a CDF
since a CDF in non-decreasing on its domain, whereas function F(x) drops to 0 as
soon as F(x) reaches its largest value of 1. Nevertheless, apparently, there is a bijective
mapping between a proper subset of INs and CDFs. In the aforementioned sense, an
IN represents a CDF. The corresponding interval-representation is shown in Figure 1
(c) with L = 32 levels.

The IN G in Figure 1(b) represents a fuzzy number induced from the
aforementioned population of numerical data samples indicated with an “x”
mark. The membership function G(x) equals G(x) = 2F(x) for 1.80 <x <2.47 and G

(x) = 2(1-F(x)) for 2.47 < x < 3.15 [21]. The corresponding interval-representation is

shown in Figure 1(d).
The similarity cosine function p(x) between two INs E and F is computed as
) — ) F(2)) = <E(t—x),F(t)> _ <E(t—x),F(t)>
Pbx) = PUEG =) FO) = e = TF@I ~ /<BG =), Ee=x)> v/ <F(,F)>
1
[ o)~ ma0) + (s00) -5 ®3)

>

\/ jl [(@1) =) + (ba () — )’ dh ¢ Jl (a3 (k) + b3(1) ]
0 0

and it is demonstrated in Figure 2. In particular, function p(x) takes on values in the
range [—1, 1]. Note that, for z = 0.381, INs G(x-7) and F(x) are orthogonal to one
another because <T'(x-0.381), F(x) > = 0, that is, their inner product equals zero.

In practice, an IN may (approximately) be represented by an L-dimensional vector
of real numbers ordered increasingly. An advantage of an IN is its potential to repre-
sent all-order data statistics to any degree of accuracy depending on the number L of
levels [12]; moreover, an IN represents an information granule. An interval Fj,€ly,
he[0,1] will be denoted either by [a;, b;,] or, equivalently, by [a(k), b(h)], he[0,1].
The set of INs is lattice ordered according to F < G & F;, C Gy, h€[0,1] © F(x) <G
(x), x€R. The corresponding lattice of INs is denoted by (Fy, <).

The interest here is in the lattice (F;, <) of INs, which is a sublattice of (G4, <). In
particular, the set of trivial INs corresponds to the vector space R of real numbers.
However, F; is not a vector space because if EEF; then (—E)¢&F;. It turns out that F; is
a convex cone in Gy in the sense that if x,y€F;, then (Ax + py)€Fy, VA,u > 0.

Figure 3 illustrates the notion of the convex cone I; of intervals in the vector
space V; of generalized intervals. In particular, the closed half-plane “a <b” isa
convex cone. Points on the line “a = b” correspond to trivial intervals. An IN
FEeF,; representation includes a set of points Fj,, h€[0,1], and it is not demonstrated
here.

The inner product in G4, given by Corollary 9, also applies in the convex cone F; of
INs. Furthermore, any Cauchy sequence in F; converges in F; as shown next.

Theorem 11: The convex cone F; of Intervals’ Numbers (INs) is complete.

The proof of Theorem 11 is shown in Appendix A.

In the lattice (I;, C) of intervals, given a strictly increasing function v: L—R as well
as a strictly decreasing function 6: L — L, there follow a metric distance function d;:

I; x Il—>R§ as well as two order measure functions o: L x L — [0,1], respectively, as

7



Computational Semantics — Bridging Language, Logic, and Learning

0.5

(a)

-0.5
-1

ool os- 4 ¥ 3 ] b1l 2:3 # § 6 1

pT(t-x),F(9)

=

IG
O‘SA /
0

-0.5
-1
-7 6 5 4 -3 -2 -1 B 1 T 3 4 5 &6 1

X

(b)

—

p(G(r-x).F(1)

Figure 2.

Similarity cosine function p(x) between the constant IN F and another IN moving along the x-axis. (a) p(x) = p(T(z-
%), F(t)), where the “moving” IN T(t-x) is trivial. (b) p(x) = p(G(7-x), F(t)). For x = 0.381, the “moving” IN G(t-
x) and F(t) are orthogonal to one another because <G(t-0.381), F(t) > = o, that is, their inner product equals zero.

half-plane “a < b”

v

half-plane “a > b”

Figure 3.

A point on the plane corresponds bijectively to a genevalized interval in the set (lattice) Vi = (R x R, > x <). Half-
plane “a < b” corresponds bijectively to the set I of intervals, wheveas the whole half-plane “a > b” corresponds to the
empty interval @ = [i, o] in I, = IU{@}; the latter is a convex cone in Vy, that is, if x,y€l,, then (2% + py)€l,,

Vip > o.

dl([dl, b1], [ﬂz, bz]) = [1)(9(@1/\@2)) — v(6(a1Va2))} + [U(b1Vb2) — U(hl/\bz)] (4)

if [a1,b1]=@
otherwise (5)

1,
on([a1, b1, [a2, b2]) = {v(e(alvaz)) T v(binby)
v(0(ar)) +v(b1)
if a1, b1|=@=[a2, b1
otherwise (6)

ou([a, bal, [a2, b)) = { 0(0(a2) v(b2)
0(9(611/\612)) + v(b1Vb2) ’

Given INs E and F, there follows a metric distance function Dy: F; x F1—R{ as well
as two order measure functions o: F x F — [0,1], respectively, as

8
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1
D,(E,F) = J d1(Ey, Fp;v,0)dh @
0
1
and o.(E,F) = J on(Ey, F;v,0)dh, (8)
0
1
GV(E,F) = J Gu(Eh,Fh;l),e)dh. (9)
0

2.4 Non-linearities in F;

Non-linearities can be introduced in F; by parametric functions »(.) and 0(.) via
metric functions as explained in the following.

A metric is introduced in a Hilbert space by the corresponding inner product. The
previous section has detailed that the inner product of Corollary 9 is available in F;.
Moreover, F; is equipped with additional metric distance functions by Eq. (7). More
metrics can be introduced in FY based on the following result [18]. Given the metric
spaces (X3, d1), ... ,(Xn, dn), a family of metric distance functions can be computed in
the Cartesian product X = X; X ... x Xy as follows:

B0, ¥) = { (o) + o+ (o) 1 (10)

between N-tuples X = (x3, ... ,xn) and Y = (y4, ... ,yn), where p > 1; in particular, p = 1
corresponds to the Manhattan distance, p = 2 corresponds to the Euclidean distance,
furthermore d..(x,y) = max{di(x1,;)> - >dn(Xn,yy) }-

Non-linear transformations can be introduced in the lattice I; of intervals by
extending a strictly increasing (positive valuation) real functionv: L — Rtov: I; — I;
by defining v ([a4,b1]) = [v(a1), v(b1)]. Since a < b = v(a) < v(b), it follows that if [a,
b]el; then v([a,b])€l;. An extension v: F; — F; follows by defining IN G = v(E) such
that G, = v(E,), Vhe[0,1] — note that, for EEFy, it follows 0 </ <h, <1=E; 2 E),
= v(Ey,) 2 v(E),); hence, v(E)€F; [22]. Lattice (v(F1), <) is the filtered image of (Fy,
<). A number of potentially useful mathematical results are presented next.

Lemma 12: Let v(.) be a strictly increasing real function »: R — R. Then, lattices
(I3, €) and (v(1y), C) are order-isomorphic, symbolically (I, €) = (v(I;), €), in the
sense that VA,B€ly, 1) v(.) is bijective (that is, one-to-one and onto), 2) v(AAB) = v
(A)Av(B) and 3) v(AVB) =v(A)Vvo(B).

The proof of Lemma 12 is shown in Appendix A.

Corollary 13 follows.

Corollary 13: Let v(.) be a strictly increasing real function »: R — R. Then, lattices
(F1, <) and (v(Fy), <) are order-isomorphic, symbolically (Fy, <) ~ (v(F;), <), in the
sense of Lemma 12.

Lemma 14: Let v(.) be a strictly increasing (positive valuation) functionv: R — R
such that v(—x) = —v(x), let O(x) = —x and let A,B€(1;, C). Then, (a) d.(A,B;

v,0) =d1(v(A), v(B); x,0); (b) 6(A,B; v,0) = 6(v(A),v(B); x,0); (c) 6,(A,B;
v,0) = 6,(v(A),v(B); x,0).

The proof of Lemma 14 is shown in Appendix A.

Theorem 15: Let v(.) be a strictly increasing (positive valuation) v: R — R such that
v(—x) = —v(x), let O(x) = —x and let E,Fe(F, <). Then, (a) D;(E,F;v,0) = D1(v(E),v
(F); x,0); (b) 6,(E,F;v,0) = 6,(v(E)v(F); x,0); (c) o(E,F; v,0) = o,(v(E),v(F); x,0).

The proof of Theorem 15 is shown in Appendix A.
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Theorem 15(a) indicates that the isomorphic lattices (F;, <) and (v(F;), <) are also
isometric in the sense the distance between any two elements in one lattice equals the
distance between their bijective images in the other lattice.

Previous work [14] has proposed two “reasonable constraints (RC)” regarding a
positive valuation function v(.) in a complete lattice (L, C) with minimum- and
maximum-elements o and i, respectively, namely, (RC1) v(0) = 0 and (RC2) v (i)
< +00, which correspond to axiom (AO0) in the definition of an order measure. In
particular, (RC1) implies on(x, 0) = 0 = o,(x, 0), whereas (RC2) implies d(x,i) < +oo,
VxeL. Theorem 15 implicitly introduces (RC3) v(—x) = —v(x) = v(0) = 0. In applica-
tions, constraints (RC1) and (RC2) are often useful as a neuron’s activation function,
whereas (RC3) is useful as a link’s weight function.

Theorem 15 substantiates that lattice (F;, <), equipped with v(x) = —v(—x) and
O(x) = —x, preserves the distances D;(.,.) as well as the order measures values 6,(.,.)
and o,(.,.) between bijective elements in lattices (F;, <) and (v(F;), <). Hence,
Theorem 15 guarantees that the shapes of the distributions F and E may be kept intact,
thus retaining the corresponding “probabilistic” and/or “possibilistic” interpretations,
nevertheless the distance as well as the order measure between the distributions E and
F may be tuned non-linearly toward optimizing decision-making.

Theorem 16: Let v(.) be a strictly increasing (positive valuation) real function v:
R — R such that v(0) # 0. Let vg(x) = v(x) —v(0). If (either v(x) or vy(x)) and
0(x) = —x is used, then D,(E,F; v,0) = D,(E,F; v,,0).

The proof of Theorem 16 is shown in Appendix A.

Theorem 16 implies that lattices 1) (F;, <) with a strictly increasing positive
valuation function v(x) and 6(x) = —x and 2) (F;, <) with a strictly increasing positive
valuation function v(x)-v(0) and 0(x) = —x are isometric in the sense that the metric
distance between corresponding pairs of elements remains constant. Theorem 16
confirms the aforementioned constraint (RC3), that is, v(—x) = —v(x) = v(0) = 0.
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Figure 4.

(a) The logistic function w(x) = (1 — e *)/(1 + e ) with range [—1, 1], and three INs F,, F, and F;. (b) Effect
of the strictly increasing link function w(x). The domain [—1, 1] INs G, = w(F,), G, = w(F,) and G; = w(F;)
equals the range of w(.).
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Figure 4 demonstrates nonlinear transformation of INs by a strictly increasing link
function w(.). In particular, Figure 4(a) displays the logistic function w(x) = (1 —e~
)/ (1 + ) as well as three INs Fy, F,, and F;. Figure 4(b) shows how the three INs
Fi, F», and F; of Figure 4(a) are filtered by the logistic function w(x) to result in the
INs G; = w(Fy), G, = w(F3), and G; = w(F3), respectively.

3. An enhanced deep learning architecture
3.1 Conventional deep learning in RY

Feedforward deep learning (neural computing) architectures, during their training
phase, operate successively both in a forward mode and in a backward mode; whereas,
during their testing phase, they operate exclusively in the forward mode. The input to a
neuron is computed by the “dot product” weX = (W1, ... W ... SWN)* (X1 - 3Xi5 o0 5XN) =
WiX1 + ... +WX; + ... + WNXN, Where X is a neuron’s input vector and w is the corres-
ponding weight vector. In terms of a Hilbert space, wex is an inner product. In particular,
first, in the forward mode, deep learning (neural computing) models compute the “dot
product” of vectors of real numbers, furthermore the numerical outcome of a dot (inner)
product is transformed non-linearly by a neuron’s activation function. Second, in the
backward mode, the models optimize the values of weights between neurons by deriva-
tives of the output error. Pooling is practiced between layers toward reducing the spatial
dimensions (width/height) of feature maps while preserving important information.

Objects of interest in pattern recognition are represented by vectors of numbers
such that similar objects are “forced,” during the training phase, to be located nearby;
furthermore, the similarity of objects of interest is often quantified by the “similarity
cosine” between their corresponding vector representations. Recall that a similarity
cosine is always available by the inner product in a Hilbert space.

A criterion for training convergence is to keep reducing successive output vector
error to arbitrarily small values. The aforementioned criterion corresponds to a
Cauchy sequence whose convergence is guaranteed in a Hilbert space.

All the above data processing capacities of neural computing exist in a Hilbert
space. The basic idea of this work is to introduce an enhanced Hilbert space that
includes the conventional Euclidean (Hilbert) space; then, develop likewise neural
computing techniques as illustrated next.

3.2 Deep learning enhanced

An inner product exists in the Hilbert space Gy; hence, it is available in its convex
cone F; of INs. The aforementioned “inner product” is a hint toward extending deep
learning from R™ to alternative Hilbert spaces such as GY including F'. However, a
straightforward extension is not possible as explained next.

The set R of real numbers is both a (mathematical) field and a real vector space.
Conventional deep learning models treat the set R indiscriminately both as a (mathe-
matical) field and as a real vector space. In this work, those roles are separated
regarding the vector space G; of generalized intervals.

One way to enable the aforementioned separation of roles is to interpret a link weight
w;€R, regarding a conventional deep learning neuron, as a real linear (link weight)
function, namely w;(x) = wx. Then, for an input x;ER, the corresponding (filtered) link
output is computed as the product w;;. According to Section 2.4, for w; > 0 the input x;

11
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could be a non-trivial IN; furthermore, function w;(x) could be strictly increasing. In all
aforementioned cases, the output w;(x) is an IN. However, a technical problem arises, for
w; < 0 as well as when w;(x) is a strictly decreasing function, for a non-trivial IN input x;;
then, w;(x) is not an IN. The following heuristic solution has been developed.

Forw; < 0, filtering a L-dimentional vector (which represents an IN, say IN E), results
in a L-dimentional vector w;(E) whose entries are ordered decreasingly. Therefore, the
output vector 7(w(E)) was computed; where given a vector X = [xy, ... ,Xn], the entries of
vector y = [y1, ... yn] = 7(x) are in reverse order i.e. y; = Xy , 15> i€{1, ... ,N} [15]. The
abovementioned heuristic is compatible with the multiplication of real numbers in the
sense that the result is the same. Furthermore, a linear weight function can be replaced by
a strictly monotone (either increasing or decreasing) parametric function and handle INs
likewise. In such a manner, link weight filtering can change not only the location of an IN
but also its shape. Figure 5 demonstrates the effect of filtering three non-trivial INs Fy, F>,
and F; by a strictly decreasing link weight function which satisfies constraint (RC3). The
code (software) that produced the graphs in Figure 5 is shown in Appendix B.

As F; is a convex cone in the Hilbert space Gy, an inner product is available for
computing the similarity between N-dimensional vectors of INs. Furthermore, a neu-
ron IN input (i.e., sum of INs) can be transformed non-linearly by a neuron’s activa-
tion function.

Operations such as convolution and/or pooling can be extended to the proposed
deep learning enhancement. In particular, pooling can be implemented by calculating
probabilistic INs (Figure 1) representing all-order data statistics of big data to an
arbitrary degree of accuracy using an appropriate number of L levels to represent an
IN in its interval representation. In particular, the induction of an IN from recorded
data corresponds to a “first level” down-sampling, that is, pooling; further pooling on
INs can be pursued for “higher level” down-sampling.

In the context of the work in [15], the IN Neural Network (INNN) architecture
shown in Figure 6 was used — note that the alternative term “Type-1 Neural Network
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Figure 5.

(a) The logistic function w(x) = (1 — €*)/(1 + €*) with range [—1, 1], and three INs F,, F, and F;. (b) Effect of
the strictly decreasing link function w(x). The domain [—1, 1] INs G, = w(F,), G, = w(F,) and G; = w(F;)
equals the range of w(.).

12



A Hierarchy of Hilbert Spaces for Computing with Granular Semantics by Deep Learning...
DOT: http://dx.doi.org/10.5772/intechopen.1013226

(T1INN)” may be used instead of INNN; however, a conventional deep learning neural
network is called “Type-0 Neural Network (TONN)” because it processes only vectors
of numbers in R".

The sigmoid function ¢: R—R{ given by

Ay

14_6*7\10(’“*“«)) (1)

(p(x;A¢, /Iq,,,u(p) =

is typically used as a neuron activation function; however, the sigmoid function offset
by “-A/2,” namely, the logistic function, is typically used as a link weight i.e.

A, Ay Ay 1—e Mb—h)

Tlde w2 2 1qe teb-m) (12)

w(x;Aw’ ﬂw’ﬂW)

Parameter 4,, could be either positive or negative resulting in a strictly increasing
or a strictly decreasing function.
An input IN s; to a neuron #; activation function is computed (Figure 7) as

N
5j = [Z wji (Opji)
i=1

where w;;(.), i€{1, ... ,N} is an incoming link’s (from the previous layer of neurons)
weight function, O,;, i€{1, ... ,N} is the corresponding output IN of a neuron from the
previous layer regarding pattern p, and b; is the bias IN of neuron #;. For input vectors
in RN the INNN’s (T1NN’s) operation reduces to the operation of a conventional deep
learning neural network TONN.

+ bj (13)

EI EM

bi=vi0(.)

Figure 6.

A three-layer IN neural network (INNN) or, alternatively, Type-1 neural network (T1NN), architecture whose
inputs F,, ... ,Fy are INs. For input vectors in R" the INNN’s (T1NN’s) operation reduces to the operation of a
conventional deep learning neural network ToNN.
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4 0y

b;

L= win(Opin) o= win(Opx)

Figure 7.

A single neuron model “§” of the INNN (T1NN) architecture, with N input INs I, ... . Iojn and 1 output IN Op;
for an input pattern p — the latter is an N-dimensional IN. The activation function ¢(.) as well as all link weights,
w;i(.), 1 {1, ...,N}, ave strictly monotone functions, which filter their input INs s;and Oy, i {1, ... ,N}, respectively.

4. Potential applications

This section presents two application domains where the proposed TINN is
expected to be especially useful.

4.1 Convolutional neural networks (CNNs)

Convolutional Neural Networks (CNNs) are inspired by biological processes. Spe-
cifically, certain neurons, consisting of simple and complex cells, respond differently
in specific visual fields. Those insights from biology have paved the way for computa-
tional approaches to mimic aspects of visual perception based on these principles [2].
In particular, the LeNet-5 was designed to recognize handwritten postal codes and its
architecture, including a backpropagation approach with conventional layers, pooling
(subsampling) layers and dense (fully connected layers) has created a framework that
is still applied by CNNs. A significant improvement was introduced by the AlexNet
model [23], which outperforms all previous approaches by reducing the classification
error by over 10%. AlexNet’s success relies on several factors such as deeper multi-
layered structure, the use of Rectified Linear Unit (ReLU) activation, the use of GPU
to handle large-scale data, the use of max pooling layers, and the use of dropout layers.

Lately, hybrid models like the Interval Neural Networks have been introduced
toward improving decision making under uncertainty in vision tasks [24, 25]. Interval
Neural Networks are “conceptually” the nearest deep learning schemes to IN Neural
Networks (INNNs) as demonstrated in [15], where an INNN was used in cascade with
a YOLO deep learning architecture. Extensions of CNNs to INNNs/T1NNs are
planned at our RIS-Lab especially regarding robot vision applications.

4.2 Large language models (LLMs)

A project is currently under development at IHU’s RIS-Lab at the intersection of
robotics and Al involving the social robot NAO (Figure 8) toward assisting children
with special needs, e.g. children in the autism spectrum, as well as elderly with
dementia. The team is supported by psychologists, sociologists and educators.
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Figure 8.
Social robot NAO integrated with Al at IHU’s RIS-Lab.

Al is integrated with the NAO robot to make it “intelligent” and capable of voice
and image recognition in order to carry out conversations, to recognize faces, ges-
tures, colors, even emotions and to adapt to a patient. The Al integration is pursued
using a pre-trained Large Language Model (LLM) based on the Transformer architec-
ture [3], which is accessed via an Application Programming Interface (API). The
interaction begins when the NAO robot receives an audio/visual input from a human,
through its microphone/camera. The raw data is, first, pre-processed by a local com-
puter, which acts as an interface between NAO and the LLM, to extract meaningful
content toward transforming audio/visual signals to text. Then, it sends a request to
the Al via its API. Hence, it is routed to a remote server hosting the LLM, where the
input is analyzed using deep learning models. In conclusion, it generates a structured
output in a text format, returns it to the local computer and, finally, converts it via
NAO’s text-to-signal engine toward communicating with a human.

A number of improvements are planned for future work, including a tunable
parameterization by TINN also toward filtering the LLM received answers by a user-
defined rule base also to comply with ethics.

5. Conclusion

High technology pioneers are successfully developing algorithms based on TONN
models. This work has introduced a straightforward enhancement of TONN deep
learning models to TINN models. The critical difference is that TONN models are
developed in the Euclidean (Hilbert) space R™, whereas TINN models are developed
in the Hilbert space GY of GINs including the convex cone FY of (Type-1) INs, where
F) 5 RN. An IN is interpreted either as a real number or as an information granule, the
latter may be either a probability distribution or a fuzzy number.

It is interesting to point out that other authors [26] have proposed a “fuzzy
number algebra” in a Banach space — Recall that a Hilbert space is a Banach space but not
always vice versa. The interest in Hilbert spaces here was motivated by the fact that a
Hilbert space is a direct abstraction of the successful in modeling Euclidean space R". A
likewise success is expected by a Hilbert space which may also include semantics.
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The critical difference between classical interval arithmetic and the
arithmetic of generalized intervals regards the definition of the product of an
interval by a scalar. In particular, the classical interval arithmetic defines the
product as c[a, b] = [ca, cb] if ¢ > 0, and c[a, b] = [cb, ca] if ¢ < 0. In contrast,
the arithmetic of generalized intervals defines the product as: ¢[a, b] = [ca, cb]

VceR. The important consequence is the introduction of an inner product and, ulti-
mately, the introduction of a hierarchy of Hilbert spaces including the convex cone F;
of INs.

Since FY > RN it is reasonable to expect that the proposed deep learning (T1INN)
architectures can achieve at least as much as the conventional TONN deep learning
architectures. Additional advantages of neural computing in F}', which summarize the
enhancement of TONN, are enumerated next.

First, partial- (lattice-) order may represent semantics. In the latter sense, the
proposed TINN architectures compute with semantics.

Second, decision-making can be pursued, even at neuron level, by axiomatic logic,
for example, Fuzzy Lattice Reasoning (FLR) toward involving logic all along during
data/information processing.

Third, significant energy savings may be pursued as conjectured next.

Deep learning, that is a workload that currently accounts for 14% of global Data
Center (DC) power, is projected to rise to 27% by 2027 [27].

The good performance demonstrated by a number of Computational Intelligence
models, such as “deep learning” models as well as “type-2 fuzzy systems” models in
function-approximation problems, has been attributed to their large number of tun-
able parameters [16]. In particular, the number of tunable parameters of deep learning
models has been reported in the order of hundreds of billions [28]. Furthermore, the
impressive performance of deep learning models is largely attributed to the capacity
of modern digital computer hardware to process vast data fast [15], not because the
computation itself is fundamentally new or different.

On the one hand, a conventional TONN model employs no more than a single
parameter between two of its neurons; the aforementioned parameter corresponds to
the weight of the link that connects two neurons. On the other hand, a TINN model
uses a parametric, monotone function as a link weight between neurons. Hence, a
tunable number of tunable parameters can be introduced with a smaller number of
neurons resulting in a potentially smaller deep learning architecture of greater flexi-
bility. Based on the previous, we conjecture that a reduction of the energy required by
a DC might be possible, without reducing performance.

Section 2 has developed mathematical tools that satisfy two prerequisites for
neural computing, namely (p1) a Hilbert space G; and (p2) Non-linearities in G;.
Prerequisite (p3), that is, the existence of a derivative in G; toward defining a
backpropagated “delta rule” for optimal parameter estimation is a topic for
future research. Attention will also be given to the development of TINNs with
more layers as well as large scale comparative experiments by novel algorithms. In
addition, the confirmation of the abovementioned conjecture i.e. a reduction of the
energy required by a DC, will be tested. Future work extensions will also consider
alternative lattices with nonnumerical data elements, represented by strings of 1s and
0 s, in the context of the Lattice Computing (LC) paradigm, toward enhancing the
representation of semantics in deep learning (neural computing) applications. An indis-
pensable component of future work regards the inclusion of human ethics at all levels of
data/information processing.
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Appendix A: This Appendix includes the proofs of new mathematical
results

Lemma 3: Assume the Cartesian product H", where N is integer, of a pre-Hilbert
(inner product) space H. Let the sum x+2, where X = (x1, ... ,xn) and +2 = (21, ... ,3N),
be defined as X+z = (x1 + 21, ... ,XN + 2N); moreover, let the scalar multiple xx of xeHY
by xeR be defined as k% = (kxy, ... ,kxn). Then, the (real) function <.,.>: HY x HN - R
defined as <X, > = < (X1, .- »XN), (1, - 5IN) > = lev<xi,yl.> is an inner product in H".

Proof.

The five conditions of Definition 2 are satisfied as shown next.

i. <3_C+2,y> = <(.X'1, ,xN) + (Zl, ... ,ZN), ()’1, yN) > =< (x1 + 215 00 s»XN +ZN),
Oy > = ZI1V<xi +2i,Y;)= 211\](<xi’)’i> +(z1,9;)) = lev<xi>yi> +
SV ziy,)= <%, 7> + <2, >

ii. <ax,y> = <(axi,...,axn); (Y15 - 5IN) > = Z§V<ﬂxiayi>=2¥“<xn3’i>=
ayy (xivy;)=a<x,y>.

iii. <X, 7> = < (X150 2XN)s (15 oo PN) > = Z’f(x,-,y): le\'(yi,x,): <y, x>
iv. <@, >= S0 (x;, %) > 0.

v. <X, &> = 0o YV (x,x) = 06 < x,%,> = 0, i€{1, ... ,N} & x; = 0, i€{1, ... ,N}
< x=0.

Lemma 4: Let V; = (R X R, > x <) be the lattice of generalized intervals, where R is
the field of real numbers. Let the addition of two generalized intervals [a4, b1] and [a5,
b,] be defined as [aq, b1] + [aa, b2] = [a1 + a2, by + by]; moreover, let the scalar multiple
of vector [4,b]€R x R by the scalar 1€R be defined as A[a,b] = [1a, 4b]. Then,

Vi = (R x R, > x <) is a vector space over R.

Proof.

Following Definition 1, (i) given an arbitrary pair ([a1,b1], [42,b,]) of generalized
intervals in V; = (R x R, > x <), the unique element [a1,b1] + [a2,b5] = [aq + ay, by + b))
(called sum of [a4,b1], [a2,b,]) isin V; = (R x R, > x <); (ii) given an arbitrary element
« in R and an arbitrary element [a,b] in V; = (R x R, > x <), the unique element «[a,
b] = [xa,kb] (called scalar multiple of [a,b] by k) isin Vi = (R x R, > x <).
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The following eight conditions are satisfied:

i. ([a1,b1] + [a2,b3]) + [az,b3] = [a1 + aa, by + b)) + [as, b3] = [a1 + a5 + a3,
by + by + b3] = [a1,b1] + [as + a3, by + b3] = [a1,b1] + ([a2,b5] + [a3,b3]);

ii. There exists an element [0,0]€(R x R, > x <), called the zero element of
(R x R, > x <), such that [a, b] + [0,0] = [0,0] + [a, b] = [a, b] for all [a,
bleR x R, > x <);

iii. For any [a, b]€(R x R, > x <), there exists an element -[a, b] = [—a, —
ble(R xR, > x <) satisfying [a, b] + [—a, —b] = [—a, —b] + [a, b] = [0,0];

iv. [a1,b1] + [a2,b2] = [a1 + az, by + by] = [ay + a1, by + bq] = [a2,b5] + [a1,b4];

v. k([a1,b1] + [a2,b3]) = k[aq + az, b1 + by] = [k(aq + a2), k (b1 + by)] = [kaq + kas,
kb1 + kb,] = [kaq, k b1] + [kaz, kby] = k[a1,b1] + k[az,b,];

vi. For €R, (k1) [a1,b1] = [(kA)a1, (kA)b1] = [k(Aa1), k(Ab1)] = k[Aas, Ab4] = k(A[as,
b1l);

vii. For A€R, (x + A)[a, b] = [(x + A)a, (x + A)b] = [xka + Aa, kb + Ab] = [ka, kb] + [Aa,
b] = «la, b] + Ala, b];

viii. 1[a, b] = [1a, 1b] = [a, b] (where 1 is the unity element of R).

Therefore, the set Vi = (R x R, > x <) is a linear space (or, vector space) over R.

Lemma 5: In vector space V; = (R x R, > x <) of generalized intervals, the
mapping <.,.>: Vi x Vi — R given by <[as, b1], [a2, by] > = 3(a1a; + b1b5) is an inner
product.

Proof.

Following Definition 2, let k€R. Furthermore, to any pair ([a1,b1], [22,b5]) of
generalized intervals in (R x R, > x <), the real number < [a4, b1], [a2, by] > = X(a1ar+
b1b,) satisfies the following five conditions:

i < [a1,b1] + [azba], [as,b3] > = < [a1 + az, by + by, [az,h3] > = %((% +a;)
a3 + (by + by)bs) = Haqaz + bibs) + %(ﬂz% + bob3) = <[a1,b1], [a3,b3] > + < [ay,

b1, las,bs] > .

ii. < K[al) bl]: [612, bZ] >=< [Kula Kbl]a [6{2, bZ] > = %(mlﬂz + Kble) =
K%(ﬂlﬂz +b1b2) = k < [aq, b1], [az, b2]>;

iti. < [aq, b1l [a2, bo] > = %(ﬂﬂz + biby) = 3(azay + boby) = <lay, by, [a1, b1]>;
iv. < [a,b], [a,b] > =1 (a® +b*) > 0; and.
v. <[a,b],[a,b] >=0&=1(a®2+b*)=0®a=0=b < [a,b] =[0,0].

Therefore, (R xR, > x <) isa pre-Hilbert space, and < [a4, b1], [42, b>] > is the
inner product of [a4, b1] and [a,, b,].
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Lemma 6: The inner product space V = (RxR,>x <) of generalized intervals is
complete with respect to the metric distance ||[a,, bn] — [cn> dim] |-

Proof.

Recall that a sequence x4, x5, x3, ... of elements from X of a metric space (X, d) is
called Cauchy if for every positive real number & > 0, there is a positive integer N such
that for all integers m, n > N, it is d (x,,, x,) < e. A metric space (X, d) is called
complete if every Cauchy sequence in X converges in X, that is it has a limit in X. Next,
it is shown that every Cauchy sequence [a,,b,] of V| elements has a limit in V;.

Let ||[an, bu] — [am, b ]|| — 0 (m,n — ), thatis, ||[a, — am, by, —bu]|| — 0 (m,

" — oo \/ an— )+ (by — by ))—>0(m,n—>oo),((an—am)2+(bn—bm)2>—>

0 (m, n — o0), both (a, —am)2 — 0 (myn — o) and (b, —bm)2 — 0 (m,n — ). As it
is known that every Cauchy sequence in the Hilbert space of real numbers R con-
verges, with respect to the corresponding norm, to a real number, it follows that

lim [a,,b,] = [a,b]€(R x R, > x <), where a= lima, and b= limb,.

Theorem 7: Consider the space G of GINs and let R be the field of real numbers.
Let (a) the addition of two GINs E; and E, be defined as E, (k) = E1(h) + E;(h), he[0,1],
and (b) the scalar multiplication of a scalar A€R times a GIN E be defined as E, (k) = 1E
(h), he[0,1]. Then, G is a vector space over R.

Proof.

Lemma 4 has proven that the complete lattice V; = (R x R, > x <) of generalized
intervals is a vector space over R. Given INs E, F, and G in G as well as k€R, the eight
conditions of Definition 1 are satisfied as shown next.

iL.(E+F)+G=(E,+F,) +Gyhe[0,1] =E, + (F, + G3,), h€[0,1] = E+(F + G).

ii. There exists an element 0 = [0,0],, 2€[0,1], called the zero element of G such
that E+0 = Ej,, + [0,0],, k€[0,1] = [0,0],, + Ej, he[0,1] = 0 + E = E for all EEG;

ili. For any E€G, there exists an element X = (—E)€&G, specifically -E = —E,
Vhe[0,1], satisfying E + X = Ej, + (—E,), h€[0,1] = (—E}) + E,,
hE[O,l] =X+E-= [0,0]h VhE[O,].] = 0;
iv.E+F=E, + F,, he[0,1] = F, + E;, he[0,1] = F + E;
v.k(E + F) =x(E), + F},), he[0,1] = kE), + kF),, he[0,1] = kE + «F.
vi. For A€R, (kA)E = (kA)E), he[0,1] = k(1E}), he[0,1] = k(AE).
vii. For A€R, (x + )E = (x + A)E},, he[0,1] = kE), + AEj,, h€[0,1] = kE + AE.

viii. 1E = 1E), h€[0,1] = E;, h€[0,1] = E (where 1 is the unity element of R).

Theorem 10: The inner product space G; of GINs is complete with respect to the
metric distance ||E, — E,,||, where E;, i = 1,2, ... is a Cauchy sequence.

Proof.

This Theorem extends the completeness of Lemma 6 to the inner product space G,
based on the fact that every Cauchy sequence E,, in the Hilbert space of real numbers
R converges, with respect to the corresponding norm, to a real number.
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In particular, ||E, — E,|| — 0 (n, m — oo) implies \/(E, —E,,,E, —E,,) =
\/j(}((En —Em)h, (Ey — Ep), )dh — 0 (n,m — o), that is,
f;< En)ps (En)y — (Em)y,)dh — 0 (n,m — o). Given 1. <x-y,x-y > = <x,x > +
<9,y > - 2 <%, Y>3 2. (E )h = an(h),bn(h)]; and 3. (E;), = [am(h), by (h)]; it follows
I0<< n h> n)h>+< m h> En h>_2< n)ha(Em)h>)dh (n, m — o0); hence,
L[ (an(h) — ap(h))?dh + 1[5 (by(h) = by (h))?dh — O (n, m — o0). The latter implies
both [(a,(h) — an(h))’dh — 0 (n,m — o) and [;(by(h) — by (h))’dh — 0 (n, m — ).
Therefore, both . l};lrgw|an(h) —ay(h)| and . lri,,rEOJb" (h) — by (h)| are zero almost every-

where for he[0,1]. In the latter sense, E, — E€G;.

Theorem 11: The convex cone F; of Intervals’ Numbers (INs) is complete.

Proof.

Theorem 10 implies that any Cauchy sequence Ej, E5, Ej, ... of INs converges in the
inner product space G; of GINs — for definition of a Cauchy sequence see in the Proof
of Lemma 6. In the following, it is proven that lim E; is an IN by showing that lim E;

satisfies the definition of an IN.

Let E;(h) = [a;(h), b;(h)], i =1,2,3, ... and h€[0,1]. For a specific h€[0,1], Theorem
10 has shown that a;(%), i = 1,2,3, ... is a Cauchy sequence that converges to, say, a,;
likewise, b;(h), i = 1,2,3, ... is a Cauchy sequence that converges to, say, by,.

a. It has to be a;, < bj,; otherwise, there follows a contradiction as shown next.
Assume a;, > by,. As both lima;(h) — a;, and limb;(h) — by, it follows that
1—00 1—00

Ve = (ay, - by) /8, where & > 2, AN: Vi > N, it holds both |a;(h) —a;| < € and
|bi(h) — by| < €. Hence, a;(h) > b;(h); in other words, F; is not an IN -
contradiction. Therefore, the assumption ), > by, is false. It logically follows
ay, < bh.

b. Let iy < hy. It has to be [ay,,, by, 2 [an,, by, |, otherwise there follows a
contradiction as shown next.

Assume [ay,, by, | C [an,, by,] © either ay, < ajp, < by, < by, or ay, < ap, <by, < by,.
Given that lima;(h;) — a;, and lima;(hy) — aj, and limb;(h1) — by, and
limb;(hy) — by,, it follows Ve = max{(a;, —ay,)/d, (by, —by,)/8}, where & > 2,

3N: Vi > N, it holds that max{|a;(h2) — ap,|, |ai(h1) — ap,|, |bi(h1) — by, |,

|bi(hy) —by,|} < €. Hence, [a;(h1), b;i(h1)] C [a;(hy), b;(h,)]; in other words, F; is
not an IN - contradiction. Therefore, the assumption [a;,,by,] C [ay,, by,] is false.
It follows [ahl s bhl} [ﬂhz , bhz}

c.VS C [0,1]:hﬂs[a(h),b(h)] =Mies [a(h), b(R)] = [Vies a(h), Awes b(h)] =

[a(VS),b(VS)].
In conclusion, the limit E = Iim E; of any Cauchy sequence Ej, E,, Ej, ... of INsisan IN

because (i) a5, < by, (ii) by < hz = [ahl,bh | 2 [an,>by,] and (ii) VS C [0,1]: () [an, bi] =
hesS

[avs, bys]. In other words, the convex cone F; of Intervals’ Numbers (INs) is complete.
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Lemma 12: Let v(.) be a strictly increasing real function »: R — R. Then, lattices
(I3, €) and (v(I;), C) are order-isomorphic, symbolically (I, €) = (v(I;), €), in the
sense that VA,B€l;, 1) v(.) is bijective (i.e. one-to-one and onto), 2) v(AAB) = v(A)Av
(B) and 3) v(AVB) =v(A)Vo(B).

Proof.

Let A = [a4,b1] and B = [a,,b5] be intervals in I;.

1. As function v (.) is strictly increasing, it is bijective.
Next, the following two cases are considered:

v(a1vaz)=v(ay). v(a1Aaz)=v(az).
2 m<ay=va) <vla) = {u(ul)\/v(az):v(az). v(ar)Av(az)=v(as)

v(a1vaz)=v(as). v(a1Aaz)=v(as).
b. a1 >a; = v(ar) > v(a)) :>{ v(a)\Vo(a)=v(a1).  v(a)Av(az)=v(az). *
In either aforementioned case, it is both v(a,Vva,) = v(aq)vv(a,) and v(a1Aa,) = v
(a1)Av(as). Hence,

2.9(AAB) =v([ay,b1]Alaz,b,]) = v([a1vas, b1Ab]) = [v(a1vay), v(b1Aby)] = [v(aq) v
(a2), v(b1)Av(by)] = [v(a1), v(b1)]A[v(a2), v(by)] = v([ar,b1]) Av([az,b3]) = v
(A)Av(B).

3.2(AVB) =v([a1,b1]V[az,b,]) = v([a1Aaz, b1Vb;]) = [v(a1Aa3), v(b1VDL)] = [v(ar) Av
(a2), v(b1)Vo(hy)] = [v(a1), v(b1)]VIv(ay), v(ba)] = v([a1,b1])Vo(lazb,]) = v
(A)vo(B).

Lemma 14: Let v(.) be a strictly increasing (positive valuation) functionv: R — R
such that v(—x) = —v(x), let 0(x) = —x and let A,B€(1;, C). Then, (a) d.(A,B;
v,0) =d1(v(A), v(B); x,0); (b) 6-(A,B; v,0) = 67(v(A),v(B); x,0); (c) 6,(A,B;
v,0) = o,(v(A),v(B); x,0).
Proof.
Let A = [a1,b41] and B = [a,,b5] = v(A) = [v(a1), v(b1)] and v(B) = [v(a,),
v(by)].

a. It follows

1.d1(A, B; v,0) = [v(0(a1Aa3)) - v(0(aVasy))] + [v(b1Vhy) - v(b1AbL)] = [v(—
a1Ad;) - v(—aVaz)] + [v(b1Vhy) - v(b1Ab,)] = [v(ayvas) - v(a1Aal)] + [v
(b1Vhy) - v(b1Aby)] = |U(ﬂ1) - U(ﬂ2)| + |U(b1) - U(b2)|s and

2.d1(v(A), v(B); x,0) =d1([v(a1)w(b1)], [v(az),v(by)]) = [6(v(a)Av(ay)) -
O(w(a)vv(az))] + [v(b)Vo(by) - v(b)Av(b2))] = [—v(a)Av(ay) +v
(a)vo(az)] + [v(b)vo(b,) - v(b)Av(by)] = |v(ar) - v(ad)| + v(be) -
v(b,)|,

Hence, d1(A,B; v,0) = d,1(v(A),v(B); x,0).
b. It follows

. ) — POlarvan) to(burba) _ o~ (asvan) tolbanbs) _ —vlarves) iv(binba)
Lon(4, B, 0) = i) - = ocarny = et
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. _ O(ar)vo(a))+v(b1)Av(by) _ —wv(ar)Vo(az)+v(b1)Av(ba)
2.0n(v(A),0(B);x, 0) = TG00 Rm = ek

There are two cases, regarding the comparison of v(a1va,) and v(a1)vo(a,):

l.a; <a; = [ (i) v(a1va,) =v(ay) and (ii) v(a1) <v(ay) = v(a1)Vo(a,) =v(as)].
2.a1>a; = [ (1) v(avasy) = v(a1) and (i) v(aq) > v(ay) = v(a)Vvo(a,y) = v(ay)].

Hence, v(a1va,) = v(ai)Vvo(as).
There are two cases, regarding the comparison of v(b1Ab,) and v(b1) Av(b,):

1.b1 <by = [ (i) v(b1Ab2) = v(by) and (ii) v(b1) <v(by) = v(b1)Av(b2) = v(b1)].
2.b1> by = [ (i) v(b1Aby) = v(by) and (ii) v(b1) > v(by) = v(b1)Av(by) = v(by)].

Hence, v(b1Abs) = v(b1) Av(bs).
In conclusion, 6(A,B; v,0) = 6,(v(A),v(B); x,0).

c.It follows

. _ (0(ag))+v(by) —ay)+v(b — _ —v(a)+v(bhy)
Lou(A,B;v,0) = 0(0(1;1/\22))+Z})Ebivbz) = v(fﬁilAZ))ﬁv(ﬁivbz) = 7v(a1v/\Z3+thivh2)’
. _ 0 )+o(b _ - +v(ba)
2.04(v(A),v(B); x,0) = a@(m>A<ZEZ§§>+$§£§W@2) = 7v(a1)AzEZ§;+ngi)vv(hz)

There are two cases, regarding the comparison of v(a1Aa,) and v(a1) Av(a,):
l.a, <a; = [ (i) v(a1Aa,) = v(ay) and (i) v(a1) <v(ay) = v(a)Av(az) = v(aq)].
2.a1>a> = [ (i) v(a1Aa,) =v(ay) and (ii) v(a1) > v(a,) = v(a)Av(ay) =v(as)].

Hence, v(a1Aa5) = v(a) Av(as).
There are two cases, regarding the comparison of v(b1Vbh,) and v(b1) Vo (b,):

1.b1 <by = [ (i) v(b1Vh2) = v(by) and (ii) v(b1) <v(by) = v(b1)Vo(b2) = v(b))].
2.b1> by = [ (i) v(b1Vhy) = v(bq) and (ii) v(b1) > v(ba) = v(b1)Vo(b,) = v(b1)].

Hence, v(b1Vbh,) = v(bq)Vo(b,).

In conclusion, 6,,(A,B; v,0) = 6,(w(A),v(B); x,0).

Theorem 15: Let v(.) be a strictly increasing (positive valuation) »: R — R such that
v(—x) = —v(x), let (x) = —x and let E,Fe(F;, <). Then, (a) D;(E,F; v,0) = D;(v(E),v
(F); x,0); (b) 6A(E,F;v,0) = 6,(v(E),v(F); x,0); (c) 6 (E,F; v,0) = 6 (v(E)v(F); x,0).

Proof.

From Lemma 14, it follows.

(2) Dy(E, F; ,6) = [1da(Ey, Fiyv, 0)dh = [1ds (0(Ey), v(F,); %, 0)dh = Dy(v(E),
v(F); x,0).

(D) 0u(E, F5 0,0) = [2on(En Fi;v,0)dh = [Lon(v(E,),0(F,);x,0)dh = 0, (0(E),
v(F); x,0).
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(c) oy (E, F;0,0) = [y0u(Ep, Fi;0,0)dh = [you(0(Ey), v(F)); %, 0)dh = o, (v(E),
v(F); x,0).

Theorem 16: Let v(.) be a strictly increasing (positive valuation) real function
v: R — R such that v(0) # 0. Let vo(x) = v(x) —v(0). If (either v(x) or vy(x)) and
0(x) = —x is used then D+ (E,F; v,0) = D1(E,F; vo,0).

Proof.

Let A = [a1,b1] and B = [a3,b5] = v(A) = [v(a4), v(b1)] and v(B) = [v(as), v(bsy)].
From the Proof of Lemma 14 it follows,

d1(A, B; v0,0) = |[vo(a1) - vo(a2)| + [vo(b1) - vo(b2)| = [v(ay) - v(a2)| + v(bq) -
v(by)| = d1(A, B; v,0). Hence,

Dy(E, F;v,0) = [yd1(Ey, Fi3v,0)dh = [3d1(Ej, Fi300,0)dh = Dy (E, F; vo,0).

Appendix B: This Appendix includes MATLAB software that produced
Figure 5

x = —8:0.01:8;

subplot(2,1,1);

yd. = (2./(1 + exp.(+x)))-1;

pts. =[00.50.91.11.52.172.32.42.52.63.53.84.14.55.75.8 6]’;

[pts1, vall] = fin(pts - 7); vall(1) = 0;

pts. = [0 0.6 0.7 0.751.011.531.872.172.32.42.452.52.62.93.53.84.14.24.55.7
5.85.96]’;

[pts2, val2] = fin((pts/3)-1); val2(1) = O;

pts.=[00.50.9111.151.21.51.6 1.652.172.32.42.52.552.6 2.66 2.76 3.5 3.8 4.1
4.55.75.86]’;

[pts3, val3] = fin((pts/2) +2); val3(1) = 0;

plot(x,yd.,'k-",pts1,vall,'’k-’,pts2,val2,'k-’,pts3,val3,'k-"); hold on;

plot([pts1(length(ptsl)) ptsl(length(pts1))],[0 1],'k-"); hold on;

plot([pts2(length(pts2)) pts2(length(pts2))],[0 1],'k-"); hold on;

plot([pts3(length(pts3)) pts3(length(pts3))],[0 1],'k-"); hold on;

grid.

axis([—8 8-1.2 1.5]);

set(gca,XTick’,-10:1:10);

set(gca,'YTick’,-1:0.5:2);

text(0.7,-0.8,\it{w(x)}");

text(—1.7,1.2\it{F}_1(x)’);

text(0.4,1.2,\it{F}_2(x)’);

text(4.3,1.2,\it{F}_3(x)’);

xlabel (\it{x}");

ylabel(\it{Range}: [-1, 1]’);

subplot(2,1,2);

y1l=(2./(1 + exp.(+ptsl)))-1; y1 = sort(yl,'ascend’);

y2 = (2./(1 + exp.(+pts2)))-1; y2 = sort(y2,'ascend’);

y3 = (2./(1 + exp.(+pts3)))-1; y3 = sort(y3,'ascend’);

plot(y1,vall,'k-’,y2,val2,'k-’,y3,val3,'k-"); hold on;

plot([yl(length(y1)) y1(length(y1))],[0 1],'k-’); hold on;

plot([y2(length(y2)) y2(length(y2))],[0 1],'k-"); hold on;

plot([y3(length(y3)) y3(length(y3))],[0 1],'k-"); hold on;
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grid.

axis([-1.11.101.2]);

set(gca, XTick’,-1:0.25:1);
set(gca,'YTick’,0:0.2:1);

text(—0.90, 1.1,\it{G_3 = w(F_3)});
text(0.30, 1.1\it{G_2 = w(F_2)});
text(0.76, 1.1\it{G_1 = w(F_1)});
xlabel(\it{Domain}: [—1, 1]’);

ylabel(\it{h}’);

function [pts, val] = fin(x).

% [pts, val] = fin(x) computes an IN out of samples in vector ‘x’.

% Column vector ‘pts’ returns the (IN’s) domain points.

% Column vector ‘val’ returns the values on the aforementioned domain points.

epsilon = 0.001;

% no identical points in vector %’ are allowed.

x = sort(x);

if min(abs(diff(x))) == 0, %condition for identifying identical numbers.

for i = L:length(x),

j=i+ 1

while (j < = length(x))&(x(i) == x(j)),
x(j) = x(i) + epsilon;

j =j + 1;

end %while.
end %for.
end %if.

pts. = sort(x);
val = [];

Len = length(x);

fori = 1:Len,

val = [val; i/Len];

end

Notation table
R

(L, <)

v: LR

o:L x L—[0,1]
FLR

6: L—L
<.,.>HxH—R
LI} H—R

Vi

p: VxV—[-1,1]
E: [0,1]—V;

G

L,

Gy
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The set R of real numbers augmented by “-00” and “+00”
A complete mathematical lattice, where L C R = RU{—c0,+0}
A positive valuation (strictly increasing) function in (L, )
An order measure function

Fuzzy lattice reasoning

A dual (strictly decreasing) isomorphic function in (L, C)
The inner product <x, y > of x and y in vector space H
The norm ||x|| of x

The lattice (R x R, >x<) of generalized intervals

A similarity cosine function in an inner product space V

A Generalized Intervals’ Number (GIN)

The set of GINs

The Lebesgue space of square-integrable functions
G1={[a(h), b(h)]: a,beL,}. Itis G, C G
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(I3, €)

[7, 0]

E: [0,1]—1,

Fy

distrIN

CALFIN

CDF

L

dy: XxX—R}

dy: TixL;—R§

Dy: FixF;—R{§
on 11 x 1—[0,1]
o, I; x ;—[0,1]
o Fp x F1—[0,1]
oy: F1 x F1—[0,1]

Author details

The complete lattice of intervals in (L, <)

The empty interval in (I;, C)

A (type 1) Intervals’ Number (IN)

The set of INs. Itis F; € Gy

An algorithm that induces an IN interpreted probabilistically
An algorithm that induces an IN interpreted possibilistically
Cumulative Distribution Function

The number of intervals in an IN’s interval representation
Metric distance in a Cartesian product X = X;x ... xXn, p > 1
Metric distance in the complete lattice (I;, C) of intervals
Metric distance function in the convex cone F; of INs

The sigma meet in the lattice (I, C) of intervals

The sigma join in the lattice (I;, C) of intervals

The sigma meet in the lattice (Fy, <) of INs

The sigma join in the lattice (F;, <) of INs
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