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Abstract

Rough set (RS) was first proposed by Z. Pawlak in 1982. For over forty years, a large number of RS models have
been developed to solve various data problems. However, most RS models are designed based on inherent rules, and
their mathematical structures are similar and complex. For this reason, the efficiency of RS methods in analyzing
data has not been significantly improved. To address this issue, we propose some new rules to simplify traditional RS
models. These simplified RS models, which are equivalent to traditional RS models, can mine data more quickly. In
this paper, we take Pawlak RS as an example to compare the computational efficiency between the simplified Pawlak
RS (SPRS) and the traditional RSs. Numerical experiments confirm that the computational efficiency of the SPRS is
not only significantly higher than that of traditional Pawlak RS (TPRS) but even higher than that of most existing RS
models. This indicates that RS models could have mined data more quickly, but the computational efficiency of RS
method has been severely underestimated for a long time. Therefore, the research results of this article will greatly
promote the development and application of RS theory.
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1. Introduction

After experiencing the agricultural age, industrial age, and information age, humanity is entering the era of digital
intelligence. In today′s society, data is more massive, complex, and important than ever before. Data has become one
of the very important production factors. Quickly and accurately analyzing data has become an important issue of the
times. This requires us to continuously explore various methods to handle complex and massive data.

1.1. Overview of related works

So far, many methods and theories have been proposed to deal with various types of data. For example, in the 20th
century, with the discovery of maximum likelihood method, hypothesis testing method, trust inference method, and
Bayesian decision theory, statistics rapidly developed and matured [1,2]. Based on the theory of fuzzy sets established
by L.A. Zadeh [3], fuzzy theory is developed to solve fuzzy reasoning and fuzzy decision [4-6]. In addition, quotient
space theory is explored to address complex data and achieve the goal of reducing computational complexity [7].

In 1982, Z. Pawlak proposed rough set (RS) model, which uses two precise sets, namely upper and lower ap-
proximations (ULAs), to approximate a set with fuzzy boundaries [8]. RS theory has undergone over 40 years of
development, and has achieved many results in the establishment of system theory, computational models, and the
development of application systems [9-12]. In RS theory, membership relationship is no longer a primitive concept,
and there is no need to artificially assign a membership degree to an element, which effectively avoids the influence
of subjective factors. When RS is used to analyze data, no prior knowledge is required and all parameters can be

∗Corresponding author is W.H. Xu(E-mail: chxuwh@gmail.com).
Email addresses: kongqingzhao@163.com (Qingzhao Kong), 840223328@qq.com (Conghao Yan), chxuwh@gmail.com (Weihua Xu)

Preprint submitted to Information Sciences March 26, 2024

Manuscript (including abstract) Click here to view linked References

https://www2.cloud.editorialmanager.com/ins/viewRCResults.aspx?pdf=1&docID=106809&rev=0&fileID=3266194&msid=4c84de30-7c34-49f7-8fa1-ebf08a5fbb77
https://www2.cloud.editorialmanager.com/ins/viewRCResults.aspx?pdf=1&docID=106809&rev=0&fileID=3266194&msid=4c84de30-7c34-49f7-8fa1-ebf08a5fbb77


obtained from the sample set of the information table. Therefore, RS method extensively involves many fields such
as knowledge representation and discovery, uncertain reasoning, granular computing, and feature selection [13-17].

Traditional Pawlak RS (TPRS) model, as we all know, is defined by an equivalence relationship or a partition
on the universe. For any target concept X, the union of all equivalent classes contained in X is called the lower
approximation (LA) of X. While the union of all equivalent classes whose intersections with X are not empty is
referred to as the upper approximation (UA) of X. However, in most cases, it is not possible to induce an equivalence
relationship or a partition from the universe. Therefore, many generalized RS models have been developed to address
various data problems [18-21].

Meanwhile, we note that most of the mathematical structures of these generalized RS models are similar to that of
the TPRS model. Therefore, the computational efficiency of most existing models is not significantly different from
that of TPRS model.

1.2. Defects in existing rough sets

Although scholars are constantly trying to improve RS models in order to mine data more quickly, most of the
proposed RS models are constructed based on the methods provided by Z. Pawlak, namely the Pawlak rules. That is
to say, the mathematical structure of most RS models is similar to that of the TPRS model. This has resulted in little
improvement in the computational efficiency of RS theory for over 40 years. There are two reasons why existing RS
models cannot further analyze data quickly.
• For the RS models based on Pawlak rules, too much data needs to be analyzed. When RS method is employed

to represent the target concept, all data in the data set, namely the universe, has to be examined. For example, in the
TPRS model, the equivalent class of each data in the data set must be calculated. This is the main reason that restricts
TPRS from quickly analyzing data.
• The process of calculating ULAs of the existing RS models is cumbersome, which reduces computational

efficiency of RS models. For example, when the UA of TPRS is constructed, it is necessary to first calculate the
equivalence classes of all data in the universe, and then verify whether the intersection of each equivalence class and
the target concept is an empty set.

1.3. Our work

Based on the above analysis, one can find that in order to improve computational efficiency of RS models, we
have to overcome the above two defects, especially the first one. Therefore, the motivation of this study is to propose
some new rules and simplify existing RS models. And these simplified rough set models are not only equivalent to
traditional models but also have higher computational efficiency. Here, taking Pawlak RS as an example, we will
introduce simplified Pawlak RS (SPRS) that is equivalent to TPRS and can process data more efficiently. The main
contributions of this article are listed as follows.

(1) Based on the new rules, the TPRS can be simplified and equivalently defined. Then, SPRS model has two
characteristics: First, calculating the ULAs of SPRS involves less data. Second, the structure of the SPRS model is
simpler. These advantages result in SPRS having higher computational efficiency than TPRS. For example, the time
complexity of algorithms for calculating the ULAs of SPRS is linear in terms of the universe, while that of TPRS is
quadratic.

(2) Although massive RS models have been introduced to solve various data problems, it is not difficult to see that
most of these models can be equivalently redesigned based on these rules proposed in this paper. This means that with
the support of these new rules, the computing efficiency of RS method can be generally improved. This will inevitably
inject new vitality into the development and application of RS theory.

The remaining parts of the paper are arranged as follows. Some basic and important concepts in TPRS are listed
in Section 2. In section 3, The SPRS model and other related results are presented in detail. In Section 4, we study the
relationship between attribute reductions of UA and LA on Pawlak RS. It is proved that these two types of reduction are
actually equivalent. Some algorithms on SPRS are developed in Section 5. In Section 6, some numerical experiments
are designed. The computing efficiency of SPRS is analyzed. Experimental results show that SPRS is more effective
in mining data than traditional RS models. In section 7, the main content of this article is briefly summarized.
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2. Preliminaries

A sequence group
I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }) (1)

is called an information table, where U, AT,Va and fa represent the universe, attribute set, attribute value of attribute
a and information function about attribute a, respectively [22,23]. And U/EAT = {[x]AT |x ∈ U} is the partition on U,
where [x]AT is the equivalence class of x.

Since TPRS model was proposed, it has been extensively and deeply studied. Several equivalent definitions of
TPRS have been listed as follows [8].

Definition 2.1 In an information table represented by Eq.(1), for each target concept X ⊆ U, the UA of X can be
shown as follows.

aprAT (X) ={x ∈ U | [x]AT ∩ X , ∅} (2)
= ∪ {[x]AT ∈ U/EAT | [x]AT ∩ X , ∅}. (3)

And the LA of X (where XC = U − X) can be written as follows.

apr
AT

(X) ={x ∈ U | [x]AT ⊆ X}, (4)

= ∪ {[x]AT ∈ U/EAT | [x]AT ⊆ X} (5)

=(aprAT (XC))C . (6)

Eq.s (2)-(6) show classical methods for constructing TPRS. These methods involve two issues: One is that the equiva-
lence class of each object needs to be calculated. The other is that the relationship between each equivalence class and
the target concept has to be distinguished. Here, these classical methods are referred to as Pawlak rules. To address
various learning tasks, more and more generalized RS models are developed. However, most of these models are de-
signed by Pawlak rules. Therefore, computational efficiency of these models is similar to that of TPRS model. Based
on TPRS model, for any target concept X ⊆ U, all data of the information table can be divided into three disjoint
parts, namely positive, negative and boundary regions, as follows.

PosAT (X) = apr
AT

(X);

NegAT (X) = U − aprAT (X);
BouAT (X) = aprAT (X) − apr

AT
(X).

Attribute reduction, also known as feature selection, is a core issue of RS theory. In order to achieve various learning
tasks, many types of attribute reduction are proposed [8,24-30]. In what follows, two widely used and important kinds
of attribute reduction are shown as follows.

Definition 2.2 In an information table represented by Eq.(1), for any target concept X ⊆ U, if A ⊆ AT satisfies the
following two conditions:

(1) apr
A
(X) = apr

AT
(X),

(2) For any a ∈ A, apr
A−{a}

(X) , apr
AT

(X),
then A is called the LA reduction of AT with respect to X, and is denoted as Reduct(AT )L,X .

Definition 2.3 In an information table represented by Eq.(1), for any target concept X ⊆ U, if A ⊆ AT satisfies the
following two conditions:

(1) aprA(X) = aprAT (X),

(2) For any a ∈ A, aprA−{a}(X) , aprAT (X),
then A is called the UA reduction of AT with respect to X, and is denoted as Reduct(AT )U,X .
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3. Simplified Pawlak rough set (SPRS)

Over the past forty years, more and more RS models have been developed to address various data problems.
However, most of these models are proposed using the same or similar rules. In this part, we come up with some new
rules, and Pawlak RS can be simplified and equivalently redesigned as follows.

Theorem 3.1 In an information table represented by Eq.(1), X ⊆ U is a target concept, then we have

aprAT (X) = ∪x∈X [x]AT , (7)

=U − {x ∈ XC | [x]AT ⊆ XC}. (8)

Proof Firstly, let’s prove that Eq. (7) is true.
(⇐:) For each x0 ∈ ∪x∈X[x]AT , there exists x1 ∈ X such that x0 ∈ [x1]AT . Then we have [x1]AT ∩ X , ∅ and

[x1]AT = [x0]AT . So, it can be obtained that [x1]AT ∩ X , ∅. Hence, x0 ∈ {x ∈ U | [x]AT ∩ X , ∅}, i.e., x0 ∈ aprAT (X).
Therefore, we have ∪x∈X[x]AT ⊆ aprAT (X).

(⇒:) For each x0 ∈ {x ∈ U | [x]AT ∩X , ∅}, we have [x0]AT ∩X , ∅. Then there exists x1 ∈ U such that x1 ∈ [x0]AT

and x1 ∈ X. Based on x1 ∈ [x0]AT , one can find that [x1]AT = [x0]AT . Then we have x0 ∈ [x1]AT and x1 ∈ X. Hence,
x0 ∈ ∪x∈X[x]AT , i.e., aprAT (X) ⊆ ∪x∈X[x]AT .

Secondly, let’s prove that Eq. (8) holds.
(⇐:) For each x0 ∈ U − {x ∈ XC | [x]AT ⊆ XC}, we have x0∈{x ∈ XC | [x]AT ⊆ XC}. Then [x0]AT ∩ X , ∅. Hence,

x0 ∈ ∪{[x]AT ∈ U/EAT | [x]AT ∩ X , ∅}. By Eq. (3), it can be obtained that x0 ∈ aprAT (X), i.e., U − {x ∈ XC | [x]AT ⊆

XC} ⊆ aprAT (X).
(⇒:) For each x0 ∈ {x ∈ U | [x]AT ∩ X , ∅}, we have [x0]AT ∩ X , ∅. Then [x0]AT ⊈ XC i.e., x0 ∈ U − {x ∈

XC | [x]AT ⊆ XC}. Therefore, aprAT (X) ⊆ U − {x ∈ XC | [x]AT ⊆ XC}.

Theorem 3.2 In an information table represented by Eq.(1), X ⊆ U is a target concept, then we have

apr
AT

(X) ={x ∈ X | [x]AT ⊆ X}, (9)

=X − ∪x∈XC [x]AT . (10)

Proof Similar to the proof of Theorem 3.1, it is immediate.
According to Theorems 3.1 and 3.2, TPRS can be simplified and equivalently defined based on new rules. That

is, only those equivalence classes of the data in the target concept, rather than the data set, need to be calculated.
Moreover, from Eq.s (7) and (10), the relationship between the equivalence class and the target concept does not need
to be tested.

Theorem 3.3 In an information table represented by Eq.(1), X ⊆ U is a target concept, then we have

BouAT (X) = ∪x∈aprAT (X)−X [x]AT ;
= ∪x∈aprAT (XC )−XC [x]AT ;

Corollary 3.1 In an information table represented by Eq.(1), X ⊆ U is a target concept, then

BouAT (X) = BouAT (XC).

4. Attribute reduction

Attribute reduction aims to remove redundant or unimportant attributes to reduce data dimensionality and com-
plexity. This is of great significance for improving the efficiency of analyzing data and reducing over-fitting phenom-
ena. In the theory of reduction, attribute reductions of UA and LA are very important and representative. So far,
people have paid little attention to the relationship between them. In this part, we try to study the relationship between
them and obtain the following interesting fact.
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Theorem 4.1 In an information table represented by Eq.(1), X ⊆ U is a target concept, then A is a LA reduction of
AT with respect to X if and only if A is an UA reduction of AT with respect to XC .
Proof (⇒:) Suppose that A is a LA reduction of AT with respect to X. Then we have

(1) apr
A
(X) = apr

AT
(X),

(2) For any a ∈ A, apr
A/{a}

(X) , apr
AT

(X).

Because apr
A
(X) ∩ aprA(XC) = ∅ and apr

A
(X) = U − aprA(XC), from equations apr

A
(X) = apr

AT
(X) and

apr
A/{a}

(X) , apr
AT

(X), we can get aprA(XC) = aprAT (XC) and aprA/{a}(X
C) , aprAT (XC). Then, we have

(1
′

) aprA(XC) = aprAT (XC),
(2
′

) For any a ∈ A, aprA/{a}(X
C) , aprAT (XC).

Based on Definition 2.3, A is an UA reduction of AT with respect to XC .
(⇐:) Similarly, it is immediate.
In order to have a more intuitive understanding of Theorem 4.1, a specific example is employed as follows.

Example 4.1 Here is an information table, where U = {x1, x2, · · · , x8}, and AT = {a1, a2, a3, a4}. See Table 1 for
details.

Table 1: An information table

OB a1 a2 a3 a4

x1 1 1 0 1
x2 1 1 0 0
x3 1 0 1 0
x4 1 0 1 0
x5 0 0 0 1
x6 0 0 0 1
x7 0 1 1 1
x8 0 1 1 0

For X = {x2, x3, x5, x7}, based on Definition 2.2, one can find that A = {a3, a4} is a LA reduction with respect to X.
Meanwhile, according to Definition 2.3, it can be seen that A = {a3, a4} is also the UA reduction with respect to XC ,
i.e., Reduct(AT )L,X = Reduct(AT )U,XC .

5. Algorithms

In the previous two sections, we discuss the equivalent characterization of TPRS, and prove that the attribute
reductions of UA and LA are equivalent. Here, based on SPRS, we will design algorithms for calculating ULAs and
reduction, and study the time complexity of these algorithms.

• Algorithm for calculating upper approximation (UA)
Here, two algorithms are designed to compute UA of Pawlak RS based on new rules. From Theorem 3.1, UA of

SPRS can be computed by Eqs. (7) and (8). Based on Eqs. (7) and (8), algorithms 1 and 2 are respectively developed
as follows.

Algorithm 1 An algorithm for computing aprAT (X).

Input: An information table I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), a target concept X ⊆ U;
Output: aprAT (X).
∅ ← aprAT (X)
For i = 1 : |X|; i <= |X|; i + + do

Computing [xi]AT , xi ∈ X
aprAT (X)← aprAT (X) ∪ [xi]AT
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Algorithm 2 An algorithm for computing aprAT (X).

Input: An information table I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), a target concept X ⊆ U;
Output: aprAT (X).

U ← aprAT (X)
For i = 1 : |XC |; i <= |XC |; i + + do

Computing [xi]AT , xi ∈ XC

aprAT (X)← aprAT (X) − [xi]AT

• Algorithms for calculating lower approximation (LA)
Next, the algorithms are developed to calculate LA of Pawlak RS according to new rules. By Theorem 3.2, we

provide two equivalent characterizations of LA of Pawlak RS. Based on Eqs. (9) and (10), algorithms 3 and 4 are
developed for calculating LA of SPRS, respectively.

Algorithm 3 An algorithm for computing apr
AT

(X).

Input: An information table I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), a target concept X ⊆ U;
Output: apr

AT
(X).

∅ ← apr
AT

(X)
For i = 1 : |X|; i <= |X|; i + + do

Computing [xi]AT , xi ∈ X
If [xi]AT ⊆ X, then apr

AT
(X)← apr

AT
(X) ∪ {xi}

Otherwise, i← i + 1

Algorithm 4 An algorithm for computing apr
AT

(X).

Input: An information table I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), a target concept X ⊆ U;
Output: apr

AT
(X).

X ← apr
AT

(X)
For i = 1 : |XC |; i <= |XC |; i + + do

Computing [xi]AT , xi ∈ XC

apr
AT

(X)← apr
AT

(X) − [xi]AT

• Algorithms for calculating attribute reduction
By Theorem 4.1, the LA reduction of the target set X is equal to the UA reduction of XC , i.e., Reduct(A)L,X =

Reduct(A)U,XC . According to SPRS model, algorithms 5 and 6 are studied for computing Reduct(A)L,X and Reduct(A)U,XC ,
respectively.

Algorithm 5 An algorithm for computing Reduct(AT )L,X .

Input: An information table I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), and a target concept X ⊆ U;
Output: Reduct(AT )L,X .

AT ← Reduct(AT )L,X

For i = 1 : |AT |; i <= |AT |; i + + do
If apr

Reduct(AT )L,X/{ai}
(X) = apr

Reduct(AT )L,X
(X), then Reduct(AT )L,X ← Reduct(AT )L,X − {ai}

Otherwise, i← i + 1
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Algorithm 6 An algorithm for computing Reduct(AT )U,XC .

Input: An information table I = (U, AT, {Va|a ∈ AT }, { fa|a ∈ AT }), and a target concept X ⊆ U;
Output: Reduct(A)U,XC .

A← Reduct(AT )U,XC

For i = 1 : |AT |; i <= |AT |; i + + do
If aprReduct(AT )U,XC /{ai}

(X) = aprReduct(AT )U,XC
(X), then Reduct(AT )U,XC ← Reduct(AT )U,XC − {ai}

Otherwise, i← i + 1

Finally, we will study the complexity of all proposed algorithms. And the complexity of these algorithms is shown
in Table 2, where the letter l represents the number of attributes in the information table.

Table 2: The time complexity of Algorithms

Algorithms The time complexity
Algorithm 1 O (|X||U |)
Algorithm 2 O

(
|XC ||U |

)
+ O
(
|XC |2

)
Algorithm 3 O (|X||U |) + O

(
|X|2
)

Algorithm 4 O
(
|XC ||U |

)
Algorithm 5 O (l × |X||U |) + O

(
l × |X|2

)
Algorithm 6 O

(
l × |XC ||U |

)

6. Experimental analysis

In this section, we choose nine data sets in UCI (http://archive.ics.uci.edu/ml/datasets.html) for experimental anal-
ysis. The details of data sets are listed in Table 3. All the experimental processes and results are completed by a private
computer. And Table 4 shows the experimental operating environment including relevant parameters. To distinguish
the time consumption, each of the nine data sets is divided into ten disjoint parts with equal size, and denoted as
U
′

1,U
′

2, . . . ,U
′

10. Here, Ui = ∪
i
j=1U

′

j (i = 1, 2, . . . , 10) are selected as ten universes with increasing sizes in sequence.
And we randomly select 10%, 20%, · · · , 90% of the data in each data set as target concepts with increasing scales and
denote them as X1, X2, · · · , X9, respectively.

Table 3: The basic information of data sets

No. Datasets Objects Attributes
1 Statlog 1000 24
2 OPPORTUNITY 2511 240
3 Seismic-bumps 2584 17
4 Page-blocks 5472 10
5 Thyroid Disease 7200 21
6 Mushroom 8124 23
7 Occupancy-Estimation 10129 17
8 Magic 19020 10
9 Shuttle 57999 9

Table 4: Specific information about the operating environment

Name Model Parameter
CPU Intel(R) Core(TM) i5-6300HQ 2.30 GHz
Platform Python 3.11
System Windows10 64 bit
Memory SAMSUNG DDR4 8 GB; 2666 MHz
Hard Disk SAMSUNG SSD 256 GB
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6.1. Experimental analysis on SPRS
• Experimental analysis on UA

Table 5: The time consumption for computing UA of SPRS by Eq.s (7)-(8).

No.s TC X1 X2 X3 X4 X5 X6 X7 X8 X9

1 7 0.0090 0.0199 0.0309 0.0389 0.0499 0.0598 0.0728 0.0748 0.0997
8 0.1027 0.0888 0.0778 0.0658 0.0529 0.0439 0.0299 0.0189 0.0091

2 7 0.0668 0.1296 0.2014 0.2703 0.3471 0.4169 0.5046 0.5696 0.6483
8 0.7071 0.6264 0.5585 0.4612 0.3790 0.3156 0.2284 0.1417 0.0708

3 7 0.0658 0.1336 0.2035 0.2912 0.3326 0.4374 0.5346 0.5768 0.6565
8 0.7640 0.6570 0.5814 0.4932 0.4079 0.3010 0.2274 0.1496 0.0718

4 7 0.2484 0.5116 0.7486 0.9993 1.6805 1.9774 2.0491 2.5990 2.6419
8 2.6895 2.2616 1.9689 2.1535 1.7150 1.2965 0.9689 0.5934 0.3870

5 7 0.5417 1.3880 1.7297 1.8127 2.3061 2.7377 3.1936 3.7390 4.1542
8 7.5896 5.1389 3.8664 3.0193 2.4611 2.0167 1.4372 0.9515 0.4638

6 7 0.5160 1.0454 1.6720 2.1504 2.6990 3.2607 3.8388 4.4334 5.0225
8 5.7560 5.1187 4.4540 3.6256 3.0050 2.3927 1.7656 1.1779 0.5799

7 7 0.9032 1.8487 2.8131 3.7634 4.7945 5.9183 6.9217 8.1321 12.9093
8 10.6195 10.7996 8.2244 7.0329 5.8968 4.2626 3.1816 2.1081 1.0752

8 7 3.3971 7.4120 10.5654 14.1877 18.2195 22.3109 26.8448 30.9229 36.3427
8 39.6670 35.2671 30.2703 26.0702 21.3641 17.0093 12.8212 7.8749 3.8194

9 7 31.7707 63.9949 95.3883 127.1779 158.7870 188.8332 224.6585 255.5586 286.5385
8 294.7623 260.0291 225.4803 185.2510 161.9970 118.9991 99.2265 66.7298 35.4209

According to Theorem 3.1, UA of SPRS can be calculated by Eq.s (7)-(8), respectively. From Table 5, as the size
of target concept increases, the time consumption for computing UA by Eq. (7) (TC 7) continues to increase, while
the time consumption related to Eq. (8) (TC 8) gradually decreases. Moreover, when the scale of target concept does
not exceed about half of the size of data set, the TC 7 is shorter than TC 8. Otherwise, the TC 7 is longer than TC 8.

• Experimental analysis on LA

Table 6: The time consumption for computing LA of SPRS by Eq.s (9)-(10).

No.s TC X1 X2 X3 X4 X5 X6 X7 X8 X9

1 9 0.0130 0.0260 0.0400 0.0570 0.0730 0.0900 0.1060 0.1250 0.1430
10 0.1300 0.1170 0.1036 0.0882 0.0730 0.0590 0.0460 0.0299 0.0150

2 9 0.0940 0.1966 0.3065 0.4200 0.5410 0.6578 0.7794 0.9018 1.0248
10 0.9337 0.8319 0.7393 0.6364 0.5356 0.4255 0.3215 0.2130 0.1070

3 9 0.0598 0.1237 0.2254 0.2443 0.3271 0.3560 0.4528 0.5535 0.6054
10 0.6054 0.5635 0.4747 0.3969 0.3101 0.2314 0.1945 0.1267 0.0629

4 9 0.3819 0.7745 1.2073 1.6392 2.0800 2.5601 2.9845 3.4683 4.2163
10 3.7238 3.3226 2.8803 2.5276 2.0698 1.6414 1.2713 0.8206 0.4139

5 9 0.6368 0.8477 1.2766 1.7662 2.2872 2.7233 3.3223 3.8874 4.4353
10 5.3591 3.6743 3.2328 2.7668 2.2875 1.8282 1.3843 0.9221 0.4478

6 9 0.6104 1.6915 2.2370 2.6958 3.4318 5.3048 6.0937 6.2573 7.0032
10 6.9305 6.9335 5.5166 4.1609 3.4767 3.1655 2.3198 1.5418 0.6742

7 9 1.2726 2.9893 4.4369 7.3680 9.1030 11.0936 13.6775 12.5804 14.8322
10 13.4269 13.2416 12.2899 10.6051 8.8318 7.9067 4.2511 2.8504 1.7124

8 9 4.0318 8.3645 13.1352 18.1427 22.7474 28.1915 33.6920 39.0301 44.1038
10 40.7255 35.7799 31.4716 26.8861 22.2527 17.8046 13.2332 8.7302 4.3070

9 9 31.6491 64.6309 98.9135 154.3552 196.4386 239.5567 285.4801 327.9593 376.5661
10 333.0028 293.8888 254.0872 213.9053 176.4765 139.8453 102.9273 68.0112 34.0175

According to Theorem 3.2, LA of SPRS can be calculated by Eq.s (9)-(10), respectively. From Table 6, as the
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size of target concept increases, the time consumption related to Eq. (9) (TC 9) continues to increase, while the time
consumption related to Eq. (10) (TC 10) gradually decreases. Moreover, when the scale of target concept does not
exceed about half of the size of data set, the TC 9 is shorter than TC 10. Otherwise, the TC 9 is longer than TC 10.

• Experimental analysis on attribute reduction

Table 7: The time consumption for computing Reduct(AT )L,X and Reduct(AT )U,XC

No.s TC X1 X2 X3 X4 X5 X6 X7 X8 X9

1 RL,X 3.2281 3.5300 3.8876 4.3105 4.7614 5.1209 5.5486 5.9723 6.3550
RU,XC 6.0903 5.7627 5.4615 5.1000 4.7226 4.3464 4.0012 3.6548 3.2454

2 RL,X 206.5144 232.6477 259.0989 286.7574 317.2264 345.0704 373.5206 403.5474 434.0623
RU,XC 414.1914 385.8488 361.9456 335.2094 312.5853 285.2354 259.5804 235.0160 208.0597

3 RL,X 3.7879 5.4664 6.9145 7.7742 9.4039 11.5990 12.0388 13.1311 15.6172
RU,XC 16.2794 12.7419 10.5199 10.8819 8.6798 8.4374 6.7260 5.9700 3.9415

4 RL,X 13.2145 18.4506 23.9634 29.3443 34.8807 40.5286 46.6336 52.6181 61.1621
RU,XC 54.1312 49.1370 44.1046 39.5836 34.6065 29.4209 24.1639 18.5800 13.5845

5 RL,X 33.8745 51.7991 69.4297 84.9461 107.9610 130.3369 152.9633 179.9613 199.6641
RU,XC 183.7521 164.5374 147.4273 125.9613 104.9916 88.9134 61.9469 45.9164 29.4432

6 RL,X 19.6500 31.1298 39.9931 50.7323 61.6621 73.4616 89.0507 98.2216 111.3283
RU,XC 101.8079 96.5438 82.6852 73.2971 62.4609 52.3779 41.2986 30.6839 20.5791

7 RL,X 37.1180 60.2795 81.6254 93.1651 124.1684 159.1916 186.1652 221.9416 263.4631
RU,XC 224.8226 198.5517 175.6727 155.4913 137.4981 103.1916 79.9411 54.9463 31.9493

8 RL,X 71.7859 127.0945 186.7164 246.0780 307.0746 371.3767 441.3410 509.3631 579.4085
RU,XC 520.4219 461.0685 404.9159 350.6180 294.2670 239.1114 185.3126 129.6961 75.8641

9 RL,X 476.8629 917.4517 1482.0596 2046.3941 2469.1228 2930.8462 3377.9134 3801.9231 4394.9441
RU,XC 4677.5042 4086.8970 3533.2387 3091.9463 2631.6583 2049.1631 1599.6134 996.4961 493.4955

Now, let’s analyze the time consumption of attribute reduction. By Theorem 4.1, Reduct(AT )L,X = Reduct(AT )U,XC .
In what follows, we will compare the time consumption with respect to Reduct(AT )L,X and Reduct(AT )U,XC . From
Table 7, as the size of target concept increases, the time consumption related to Reduct(AT )L,X (TC RL,X) continues
to increase, while the time consumption related to Reduct(AT )U,XC (TC RU,XC ) gradually decreases. Moreover, when
the scale of the target concept exceeds about half of that of data set, TC RU,XC is shorter than TC RL,X . Otherwise, TC
RU,XC is longer than TC RL,X .

6.2. Comparative analysis between SPRS and traditional RSs

TPRS, as we all know, is good at analyzing complete symbolic data. When the information table contains certain
errors or important information is missing, TPRS can not make effective analysis. For this reason, variable precision
RS (VPRS) is introduced [27]. As an important extension of TPRS, VPRS can effectively handle data with noise.

We know that TPRS has very strict requirements for knowledge classification and lacks fault tolerance. In order
to address this issue, probabilistic RS (PRS) is proposed [28]. The classification of PRS is not entirely correct or
uncertain, but it has a certain degree of error tolerance.

TPRS divides objects in the universe into known concepts through a single granular structure or an equivalent
relationship, and then the unknown concepts are represented by using the known concepts. However, there are often
multiple granular structures in a data set, so TPRS needs to be promoted, and multi-granulation RS (MGRS) based on
multiple granular structures is developed and widely studied [13].

For TPRS model, all objects in the data set participate in the calculation of ULAs, which leads to low efficiency
in analyzing the data. Y.H. Qian, et al. initially propose the local RS (LRS) [29], in which only the data in the target
concept, rather than all data in the data set, is focused on. This helps greatly improve the computational efficiency of
RS model.

Traditional data mining methods often encounter difficulties in balancing the efficiency and accuracy of data
processing. To tackle this challenge, Q.Z. Kong et al. propose a novel data processing technique called the DMF
strategy, and further introduce a DMF-based RS (DRS) model [30]. The DRS model enables rapid and precise data
analysis.
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The six types of RS models mentioned above have been widely discussed and are very representative. Here, from
the perspective of the computational efficiency, SPRS will be compared and studied with these six types of RSs.

• Comparative analysis on UA

Table 8: The time consumption for computing UA in different universes

No.s U MGRS TPRS VPRS PRS DRS LRS SPRS U MGRS TPRS VPRS PRS DRS LRS SPRS

1

U1 0.0049 0.0010 0.0010 0.0020 0.0007 0.0010 0.0010 U6 0.0770 0.0490 0.0500 0.0500 0.0265 0.0040 0.0040
U2 0.0120 0.0051 0.0045 0.0050 0.0025 0.0020 0.0020 U7 0.0991 0.0680 0.0700 0.0690 0.0381 0.0040 0.0046
U3 0.0219 0.0110 0.0110 0.0120 0.0057 0.0020 0.0020 U8 0.1240 0.0900 0.0910 0.0909 0.0461 0.0050 0.0050
U4 0.0376 0.0201 0.0210 0.0199 0.0100 0.0019 0.0020 U9 0.1540 0.1170 0.1150 0.1165 0.0683 0.0060 0.0050
U5 0.0550 0.0330 0.0340 0.0330 0.0170 0.0040 0.0030 U10 0.1879 0.1405 0.1426 0.1420 0.0743 0.0070 0.0060

2

U1 0.0250 0.0080 0.0080 0.0080 0.0045 0.0040 0.0040 U6 0.5098 0.3801 0.3734 0.3739 0.1813 0.0290 0.0280
U2 0.0810 0.0360 0.0380 0.0370 0.0173 0.0090 0.0080 U7 0.6726 0.5129 0.5081 0.5089 0.2502 0.0330 0.0330
U3 0.1584 0.0900 0.0920 0.0915 0.0403 0.0140 0.0130 U8 0.8550 0.6629 0.6584 0.6570 0.3328 0.0370 0.0375
U4 0.2509 0.1679 0.1676 0.1661 0.0893 0.0190 0.0190 U9 1.0465 0.8189 0.8279 0.8194 0.4132 0.0420 0.0420
U5 0.3584 0.2621 0.2619 0.2625 0.1476 0.0241 0.0230 U10 1.2422 0.9959 1.0035 0.9919 0.4834 0.0465 0.0480

3

U1 0.0302 0.0050 0.0050 0.0050 0.0030 0.0020 0.0020 U6 0.3112 0.1963 0.1926 0.1896 0.0978 0.0151 0.0140
U2 0.0499 0.0219 0.0209 0.0219 0.0102 0.0050 0.0040 U7 0.3880 0.2594 0.2663 0.2563 0.1193 0.0170 0.0170
U3 0.0958 0.0459 0.0473 0.0479 0.0287 0.0080 0.0071 U8 0.4992 0.3505 0.3385 0.3301 0.1721 0.0190 0.0219
U4 0.1561 0.0828 0.0840 0.0859 0.0462 0.0101 0.0092 U9 0.5966 0.4260 0.4220 0.4169 0.2803 0.0219 0.0209
U5 0.2176 0.1410 0.1388 0.1366 0.0794 0.0121 0.0120 U10 0.7081 0.5339 0.5302 0.5097 0.3102 0.0251 0.0239

4

U1 0.1150 0.0410 0.0412 0.0407 0.0183 0.0200 0.0170 U6 1.9470 1.3870 1.3723 1.3757 0.6284 0.1020 0.1009
U2 0.3229 0.1669 0.1665 0.1660 0.0815 0.0380 0.0369 U7 2.5303 1.8849 1.8628 1.8292 0.9313 0.1170 0.1220
U3 0.6244 0.3667 0.3656 0.3645 0.1832 0.0549 0.0530 U8 3.2035 2.4287 2.3960 2.3846 1.2937 0.1360 0.1311
U4 0.9664 0.6284 0.6166 0.6160 0.3144 0.0710 0.0680 U9 3.9808 3.0246 2.9997 3.0129 1.6004 0.1500 0.1471
U5 1.4498 0.9914 0.9785 0.9823 0.4896 0.0879 0.0860 U10 5.0190 3.7553 3.7307 3.7035 1.8269 0.1629 0.1639

5

U1 0.2786 0.0600 0.0610 0.0620 0.0321 0.0300 0.0250 U6 12.2507 2.7163 2.8290 2.9292 1.3346 0.0327 0.0279
U2 1.5709 0.3043 0.3877 0.3819 0.1612 0.0301 0.0247 U7 17.4931 3.8275 3.9450 4.0489 1.8659 0.0334 0.0286
U3 3.5782 0.7661 0.6369 0.6391 0.3771 0.0298 0.0257 U8 23.0251 5.1581 5.2554 5.2603 2.4264 0.0335 0.0300
U4 5.5122 1.0001 1.0552 1.1778 0.5013 0.0316 0.0263 U9 29.3175 6.2707 6.4650 6.4835 3.2331 0.0351 0.0296
U5 8.9810 1.8186 1.9186 1.8351 0.9616 0.0327 0.0276 U10 36.1035 7.8360 7.9989 8.0053 3.6435 0.0347 0.0303

6

U1 0.4119 0.0888 0.0947 0.0768 0.0435 0.0369 0.0339 U6 8.5212 2.5851 2.5761 2.5951 1.2106 0.1935 0.2014
U2 1.8800 0.3760 0.3201 0.4757 0.1731 0.0708 0.0778 U7 11.3865 3.5714 3.5216 3.5415 1.7320 0.2214 0.2184
U3 3.3411 0.6772 0.6712 0.6892 0.3332 0.0977 0.0987 U8 14.0334 4.6316 4.5429 4.5977 2.1153 0.2603 0.2892
U4 5.0346 1.1719 1.1619 1.2128 0.6106 0.1316 0.1306 U9 16.8270 5.8214 5.7835 5.7606 2.8113 0.2932 0.2833
U5 6.7070 1.8500 1.8331 1.8610 0.9348 0.1626 0.1726 U10 20.2518 7.1499 7.1419 7.0641 3.4301 0.3221 0.3141

7

U1 0.2972 0.1139 0.1118 0.1117 0.0503 0.0529 0.0459 U6 9.4652 3.1655 3.1641 3.1946 1.6240 0.0821 0.0633
U2 1.1941 0.3491 0.3164 0.3116 0.1691 0.0649 0.0503 U7 13.6133 4.1694 4.1946 4.1550 2.0133 0.0860 0.0684
U3 2.5913 0.8496 0.8913 0.8794 0.4182 0.0694 0.0543 U8 15.9950 5.6943 5.6114 5.6344 2.7217 0.0896 0.0731
U4 4.9613 1.4961 1.4891 1.4613 0.7015 0.0764 0.0561 U9 18.9160 7.6131 7.8123 7.7994 3.6532 0.0934 0.0811
U5 7.6616 2.3691 2.4316 2.3112 1.1823 0.0799 0.0598 U10 22.2164 9.3465 9.2613 9.3946 4.1694 0.1005 0.0901

8

U1 1.1481 0.4098 0.4155 0.4129 0.1913 0.1925 0.1866 U6 19.2992 14.3993 13.7654 13.9201 7.8642 1.0942 1.0500
U2 3.1771 1.5618 1.5779 1.5644 0.8133 0.3762 0.3642 U7 25.3074 18.9473 18.9159 18.9259 9.6641 1.2554 1.2594
U3 5.9791 3.3784 3.3794 3.6787 1.6217 0.5490 0.5238 U8 32.4064 24.5154 24.7594 24.6844 12.9143 1.5232 1.4393
U4 9.7787 6.2244 6.0717 6.0702 3.2132 0.7220 0.7063 U9 40.4706 32.7425 31.8664 32.3235 16.0019 1.6790 1.6452
U5 14.4554 9.5321 9.5351 9.7534 4.7648 0.9175 0.8798 U10 49.3040 39.9544 40.6798 40.1505 20.8746 1.8429 1.8382

9

U1 11.0993 3.9320 3.6834 3.6783 1.8065 1.7979 1.6558 U6 507.7071 178.0702 166.2304 164.1308 85.9466 2.1563 1.6566
U2 53.2522 29.0141 15.8673 24.6637 15.4168 1.8200 1.6574 U7 700.6612 244.7367 239.6338 231.2859 118.6937 2.1447 1.6866
U3 142.3747 50.4673 47.6812 40.3657 24.2210 1.8531 1.6509 U8 931.4923 339.6167 304.4991 312.5235 167.9433 2.2124 1.7551
U4 206.6796 72.2806 64.6249 66.3744 38.3385 1.9314 1.6792 U9 1190.5097 421.6650 388.0410 387.2271 204.6150 2.2606 1.7206
U5 354.5460 120.9333 112.4814 105.2692 63.1389 2.0435 1.6780 U10 1462.7969 505.6805 474.1353 482.3979 267.7736 2.3278 1.7996

(a) (b) (c)

Figure 1: The time consumption for computing UA in different universes.

Now, let’s analyze the impact of data size on the time spent calculating UA. Figure 1 can be obtained by Table 8.
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From Figure 1 and Table 8, we can observe the following phenomenas.
(1) When calculating the UA of Pawlak RS, the computational efficiency of SPRS is much higher than that of

TPRS. And as the size of universe increases, the advantage of SPRS in terms of computational efficiency become
increasingly apparent. For example, in the first data set, if U10 is taken as the universe, the time consumption of SPRS
is only 1/23 of that of TPRS. In the ninth data set, when considering U10 as the universe, the computing efficiency of
SPRS model is 280 times that of TPRS.

(2) Regardless of the size of the universe, calculating the UA of SPRS always takes less time than that of MGRS,
VPRS, PRS, and DRS. For the SPRS and LRS models, regardless of whether the size of universe is large or small, in
most cases, SPRS is more effective in analyzing data than LRS.

Table 9: The time consumption for computing UA in different target concepts

No.s X MGRS TPRS VPRS PRS DRS LRS SPRS X MGRS TPRS VPRS PRS DRS LRS SPRS

1

X1 0.2190 0.1519 0.1545 0.1540 0.0802 0.0130 0.0125 X6 0.5421 0.1629 0.1649 0.1641 0.0872 0.0959 0.0529
X2 0.2835 0.1536 0.1562 0.1560 0.0811 0.0280 0.0270 X7 0.6045 0.1640 0.1661 0.1649 0.0885 0.1150 0.0439
X3 0.3496 0.1550 0.1582 0.1589 0.0848 0.0440 0.0439 X8 0.6620 0.1653 0.1709 0.1689 0.0893 0.1340 0.0299
X4 0.4185 0.1605 0.1629 0.1630 0.0850 0.0610 0.0570 X9 0.7024 0.1679 0.1706 0.1655 0.0910 0.1490 0.0189
X5 0.4850 0.1619 0.1649 0.1635 0.0861 0.0786 0.0720

2

X1 1.4368 1.0338 1.0189 1.0190 0.5105 0.0939 0.0929 X6 3.2466 1.0845 1.0968 1.0883 0.5312 0.6417 0.3790
X2 1.8116 1.0428 1.0486 1.0449 0.5184 0.1999 0.1923 X7 3.6496 1.0896 1.1179 1.1186 0.5294 0.7571 0.3156
X3 2.2238 1.0528 1.0595 1.0554 0.5213 0.3075 0.2939 X8 4.0151 1.0976 1.1013 1.1017 0.5241 0.8870 0.2284
X4 2.6179 1.0598 1.0679 1.0699 0.5225 0.4148 0.3974 X9 4.3131 1.1228 1.1388 1.1330 0.5388 1.0140 0.1417
X5 2.9562 1.0894 1.1022 1.1026 0.5274 0.5248 0.4888

3

X1 0.8559 0.5416 0.5534 0.5326 0.2684 0.0511 0.0531 X6 2.0562 0.6025 0.5966 0.6003 0.2794 0.3626 0.2231
X2 1.1780 0.5615 0.5591 0.5545 0.2735 0.1097 0.1009 X7 2.3434 0.6031 0.6107 0.5974 0.2736 0.4121 0.1874
X3 1.3364 0.5527 0.5663 0.5575 0.2717 0.1614 0.1528 X8 2.5706 0.6164 0.6197 0.6543 0.2801 0.4983 0.1296
X4 1.6257 0.5595 0.5771 0.5744 0.2798 0.2154 0.2064 X9 2.7953 0.6313 0.6212 0.6124 0.2818 0.5510 0.0718
X5 1.8690 0.5905 0.5867 0.5836 0.2742 0.2894 0.2543

4

X1 5.8792 3.9184 3.9150 3.9308 1.7901 0.3745 0.3599 X6 12.9475 4.2426 4.1931 4.2610 2.0311 2.4893 1.7150
X2 7.1308 4.0589 4.0237 4.0311 1.8053 0.7730 0.7555 X7 14.4307 4.2722 4.2547 4.2610 2.0374 2.9795 1.2965
X3 8.5756 4.0830 4.1097 4.1589 1.8732 1.1765 1.1254 X8 15.5098 4.3396 4.3514 4.3490 2.1391 3.4743 0.9689
X4 10.1202 4.1113 4.1213 4.1734 1.9346 1.6080 1.5308 X9 16.8898 4.5493 4.5380 4.5328 2.0413 4.0861 0.5934
X5 11.6150 4.1820 4.1949 4.2004 2.0235 2.0695 1.9548

5

X1 29.3222 5.5314 5.5237 5.5177 2.8105 0.5290 0.5243 X6 32.2922 6.2811 6.2094 6.1037 2.9174 3.1774 2.0167
X2 29.7587 5.8425 5.5441 5.5236 2.8163 1.0573 1.0489 X7 32.2420 6.2127 6.4682 5.9901 2.9590 3.7122 1.4372
X3 30.2514 5.7976 5.6540 5.7032 2.8291 1.5943 1.5788 X8 32.1920 6.5345 6.7246 5.9503 2.8313 4.2409 0.9515
X4 31.4110 6.0991 5.9335 6.0396 2.8312 2.1180 2.0924 X9 33.9809 6.7528 6.9122 6.2283 2.9385 4.7672 0.4638
X5 31.0091 6.3089 6.1935 6.1457 2.8646 2.6527 2.6198

6

X1 21.4891 8.4300 8.2789 8.3985 4.7103 1.0334 0.7650 X6 36.9082 10.1321 10.7052 8.8166 5.1191 5.2819 3.0050
X2 23.5530 12.8912 7.8919 7.2885 5.3236 1.2816 1.7124 X7 37.7108 9.3622 9.8598 9.3485 5.3015 6.4037 2.3927
X3 23.1451 6.7808 6.7559 6.8367 5.3325 2.3507 1.9488 X8 44.6270 11.9871 9.4324 9.6242 5.1039 7.5806 1.7656
X4 27.9014 8.2091 10.8613 8.3506 5.6181 4.6526 3.1256 X9 51.0729 9.4170 9.3907 9.4876 5.0014 12.1351 1.1779
X5 38.4137 12.0418 8.9448 10.8121 5.1380 4.8243 3.6034

7

X1 15.5571 11.4820 11.2153 11.0492 5.1362 0.9994 1.0031 X6 16.2100 12.1670 11.4517 11.3014 5.2349 6.0975 4.2626
X2 15.7440 11.3704 11.2327 11.0889 5.1391 2.1382 2.2145 X7 16.4182 12.3213 11.6579 11.7709 5.2147 6.9636 3.1816
X3 16.4055 11.3409 11.6087 10.8678 5.3152 3.0852 3.0070 X8 17.3124 12.5252 12.0586 12.1253 5.2310 8.1085 2.1081
X4 16.3423 11.9241 11.3843 10.8805 5.1664 4.1724 3.9634 X9 17.3570 12.4472 12.2906 12.5973 5.2734 9.1771 1.0752
X5 16.4115 12.0695 11.3687 11.2634 5.2135 5.2014 5.2337

8

X1 56.3389 43.6799 42.9756 42.9810 22.6234 4.1339 4.0143 X6 131.2026 47.3810 47.8464 47.6750 23.9642 27.9608 17.0093
X2 71.2648 43.3129 43.3171 43.3921 22.2294 8.3645 8.1209 X7 145.2854 47.9516 47.8703 47.8510 24.4638 33.1917 12.8212
X3 86.6800 45.8092 46.0380 45.8538 23.5320 13.2110 12.4836 X8 156.5767 48.2574 48.4319 48.4312 24.5546 38.6455 7.8749
X4 101.6271 46.2532 46.4191 46.3489 23.1056 18.1639 16.6935 X9 169.8781 48.9584 49.1646 49.2505 24.5188 44.1797 3.8194
X5 116.5740 46.9581 47.3378 46.8932 23.1946 23.1492 21.3188

9

X1 572.8750 344.4470 343.0540 338.9970 169.1543 32.1548 31.7707 X6 673.0085 364.1453 366.8894 367.1577 178.9563 192.7906 118.9991
X2 570.1477 350.3151 356.3165 343.3970 171.2638 64.0103 63.9949 X7 711.1030 358.1425 370.6119 378.1878 179.6374 225.3054 99.2265
X3 603.1796 367.6490 357.3666 339.1443 172.1134 96.6496 95.3883 X8 744.4520 365.4627 391.6371 378.8494 180.2652 257.1951 66.7298
X4 629.4101 366.3897 354.2629 359.3774 173.1349 129.1476 127.1779 X9 731.1933 361.8157 393.9296 371.8013 181.2564 289.2644 35.4209
X5 663.2179 368.8275 353.2547 370.7721 177.1946 160.6731 158.7870

Next, let’s analyze the impact of the size of target concept on the time spent calculating UA. According to Table
5, if the scale of the target concept is smaller, Algorithm 1 is chosen to analyze the data. Otherwise, Algorithm 2 is
used to process the data. From Figure 2 and Table 9, we can get the following conclusions.

(1) The time taken to obtain the UA by using SPRS is always shorter than that by using TPRS, which is not
affected by the size of the target concept. And the less data the target concept contains, the greater the advantage of
the SPRS model is. For example, if the target concept is X1, the efficiency of SPRS often exceeds that of TPRS by
more than ten times.

(2) Regardless of the size of target concept, calculating the UA of SPRS always takes less time than that of MGRS,
VPRS, PRS, and DRS. Additionally, in the vast majority of cases, SPRS analyzes data faster than LRS.

• Comparative analysis on LA
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Figure 2: The time consumption for computing UA in different target concepts

Table 10: The time consumption for computing LA in different universes

No.s U MGRS TPRS VPRS PRS DRS LRS SPRS U MGRS TPRS VPRS PRS DRS LRS SPRS

1

U1 0.0050 0.0010 0.0010 0.0010 0.0005 0.0010 0.0010 U6 0.2665 0.0480 0.0500 0.0500 0.0243 0.0030 0.0040
U2 0.0240 0.0039 0.0050 0.0050 0.0021 0.0010 0.0010 U7 0.3659 0.0680 0.0689 0.0690 0.0343 0.0050 0.0040
U3 0.0590 0.0110 0.0110 0.0111 0.0057 0.0020 0.0020 U8 0.4890 0.0890 0.0910 0.0915 0.0427 0.0050 0.0050
U4 0.1120 0.0199 0.0211 0.0210 0.0102 0.0030 0.0020 U9 0.6148 0.1160 0.1160 0.1160 0.0543 0.0060 0.0060
U5 0.1826 0.0319 0.0340 0.0340 0.0171 0.0030 0.0030 U10 0.7518 0.1395 0.1443 0.1420 0.0774 0.0060 0.0070

2

U1 0.0260 0.0080 0.0080 0.0090 0.0050 0.0040 0.0040 U6 1.6108 0.3761 0.3749 0.3721 0.1984 0.0280 0.0280
U2 0.1556 0.0360 0.0370 0.0379 0.0172 0.0090 0.0090 U7 2.2093 0.5128 0.5088 0.5065 0.2513 0.0330 0.0330
U3 0.3829 0.0890 0.0920 0.0910 0.0430 0.0140 0.0140 U8 2.9138 0.6548 0.6596 0.6568 0.3135 0.0370 0.0370
U4 0.7013 0.1639 0.1677 0.1656 0.0812 0.0189 0.0180 U9 3.7019 0.8205 0.8213 0.8278 0.4002 0.0420 0.0417
U5 1.1064 0.2629 0.2605 0.2574 0.1402 0.0239 0.0240 U10 4.5288 0.9898 1.0048 0.9900 0.4950 0.0470 0.0450

3

U1 0.0180 0.0050 0.0040 0.0050 0.0030 0.0020 0.0030 U6 1.0165 0.1846 0.1876 0.1876 0.0947 0.0160 0.0172
U2 0.1077 0.0199 0.0229 0.0210 0.0057 0.0071 0.0050 U7 1.3892 0.2594 0.2593 0.2543 0.1335 0.0180 0.0170
U3 0.2374 0.0476 0.0481 0.0550 0.0210 0.0081 0.0070 U8 1.8383 0.3439 0.3407 0.3281 0.1785 0.0199 0.0199
U4 0.4318 0.0846 0.0952 0.0798 0.0448 0.0110 0.0100 U9 2.3718 0.4221 0.4109 0.4213 0.2294 0.0219 0.0219
U5 0.6899 0.1318 0.1366 0.1355 0.0620 0.0130 0.0122 U10 2.9907 0.5128 0.5147 0.5136 0.2613 0.0249 0.0235

4

U1 0.1210 0.0406 0.0420 0.0411 0.0220 0.0190 0.0185 U6 6.2284 1.3585 1.3809 1.3715 0.7024 0.1010 0.1010
U2 0.6325 0.1650 0.1681 0.1659 0.0835 0.0379 0.0380 U7 8.5080 1.8535 1.8419 1.8319 0.9164 0.1170 0.1230
U3 1.4995 0.3619 0.3659 0.3640 0.1923 0.0550 0.0550 U8 11.1829 2.3813 2.3863 2.3835 1.1438 0.1329 0.1320
U4 2.7089 0.6149 0.6184 0.6160 0.3152 0.0700 0.0680 U9 14.1754 2.9705 3.0201 3.0029 1.5130 0.1470 0.1470
U5 4.4209 0.9915 0.9775 0.9734 0.4729 0.0870 0.0870 U10 17.5238 3.7074 3.7334 3.6828 1.8842 0.1636 0.1651

5

U1 0.2808 0.0600 0.0620 0.0606 0.0311 0.0309 0.0300 U6 13.0299 2.7716 2.8590 2.7395 1.3346 0.0341 0.0326
U2 1.1154 0.3343 0.4135 0.2764 0.1715 0.0305 0.0310 U7 17.9720 3.7608 3.9544 3.8145 1.8463 0.0345 0.0332
U3 3.4531 0.7923 0.6667 0.6232 0.4158 0.0308 0.0306 U8 23.2303 5.0701 5.2937 5.0037 2.4928 0.0357 0.0350
U4 5.5952 1.0756 1.1725 1.0225 0.5131 0.0322 0.0321 U9 29.9894 6.3045 6.4840 6.4924 3.1130 0.0374 0.0355
U5 9.1162 1.8634 1.9079 1.7498 0.9134 0.0326 0.0327 U10 36.9910 7.9271 8.0496 7.9273 3.9483 0.0383 0.0349

6

U1 0.4029 0.0847 0.0778 0.0788 0.0412 0.0369 0.0359 U6 14.1641 2.6111 2.5960 2.6110 1.3510 0.2025 0.1967
U2 1.6556 0.3591 0.3112 0.4249 0.1873 0.0798 0.0708 U7 19.1079 3.4917 3.4817 3.5266 1.8749 0.2284 0.2169
U3 3.5694 0.6652 0.6872 0.6662 0.3318 0.0998 0.1017 U8 25.3263 4.6177 4.5389 4.5838 2.2612 0.2573 0.2647
U4 6.2642 1.1898 1.2208 1.1718 0.6135 0.1426 0.1406 U9 31.6424 5.7885 5.7217 5.7526 2.8485 0.2862 0.2796
U5 9.7829 1.8580 1.7843 1.8281 0.9943 0.1695 0.1735 U10 39.4814 7.1958 7.0980 7.1649 3.5601 0.3271 0.2963

7

U1 0.3318 0.1068 0.1117 0.1057 0.0523 0.0509 0.0519 U6 15.5003 4.7125 4.8973 4.6142 2.8466 0.0551 0.0563
U2 2.3630 0.6663 0.6940 0.4025 0.3108 0.0528 0.0533 U7 21.4162 6.6403 7.1164 6.6993 3.1523 0.0547 0.0575
U3 3.6491 1.1162 1.4980 1.2518 0.5613 0.0520 0.0530 U8 28.1018 9.0520 9.4185 8.8016 4.6618 0.0547 0.0577
U4 5.9008 1.9729 1.9632 2.0504 0.9498 0.0531 0.0545 U9 35.8657 11.2129 11.8464 11.3731 5.9470 0.0563 0.0592
U5 10.1097 3.2351 3.6260 3.2969 1.5419 0.0532 0.0543 U10 43.3040 14.0223 14.5950 13.9979 7.1352 0.0572 0.0598

8

U1 1.1740 0.4079 0.4159 0.4009 0.2103 0.2031 0.2045 U6 62.9391 14.0041 13.9084 13.8596 7.1195 1.0801 1.0774
U2 6.1734 1.5687 1.5919 1.5666 0.7620 0.3699 0.3787 U7 86.6728 19.0267 18.8800 18.7875 10.0050 1.2665 1.2488
U3 14.8452 3.4008 3.3973 3.4698 1.7864 0.5415 0.5366 U8 114.7233 24.9118 24.7363 24.8067 12.2230 1.4619 1.4528
U4 27.1244 6.0785 6.0613 6.0709 3.1213 0.7135 0.7141 U9 145.6670 32.8464 32.1774 31.9250 17.2584 1.6612 1.6778
U5 44.0745 9.5278 9.5214 9.7638 4.7908 0.9077 0.9057 U10 184.3387 39.3288 40.3632 40.8053 20.3610 1.8424 1.8735

9

U1 11.4280 3.6820 3.6749 3.6788 1.9920 1.8048 1.7747 U6 522.1018 163.1812 165.0964 162.3380 86.9923 1.8692 1.9358
U2 80.7595 24.8117 17.3029 21.7718 13.4639 1.7977 1.7907 U7 738.1480 237.7911 239.7231 239.3652 138.3218 1.9794 2.0171
U3 111.0100 47.0233 35.2241 45.3361 25.1316 1.8677 1.8748 U8 963.4279 311.7575 308.5283 314.5960 175.3361 2.0969 2.0003
U4 215.2603 66.2718 61.3860 61.5526 35.5612 1.8531 1.8826 U9 1199.0236 392.6148 388.5916 391.1647 201.6610 2.1103 2.0647
U5 332.3774 114.1196 112.7446 109.4021 61.1653 1.8374 1.8675 U10 1489.4470 480.9877 476.7899 477.0074 248.3395 2.2336 2.0822

Here, Figure 3 can be obtained by the data in Table 10. From Table 10 and Figure 3, we can get two important
results as follows.

(1) SPRS model always takes less time to compute LA of Pawlak RS than TPRS model, which is independent
of the scale of universe. And the more data there is, the more prominent the computational efficiency of SPRS is.
For example, for the universe U10 in the ninth data set, the time consumption of SPRS and TPRS models is 2.0822
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Figure 3: The time consumption for computing LA in different universes

seconds and 480.9877 seconds, respectively. Obviously, there is a gap of approximately 240 times between them.
(2) Regardless of the number of data in universe, compared to all models except LRS, SPRS model always takes

less time to obtain the LA. While the computational efficiency of SPRS and LRS is similar, and the size of universe
has no significant impact on this result.

Table 11: The time consumption for computing LA in different target concepts

No.s X MGRS TPRS VPRS PRS DRS LRS SPRS X MGRS TPRS VPRS PRS DRS LRS SPRS

1

X1 0.7319 0.1521 0.1529 0.1539 0.0708 0.0150 0.0137 X6 0.8447 0.1639 0.1676 0.1639 0.0739 0.0950 0.0640
X2 0.7519 0.1536 0.1559 0.1559 0.0711 0.0280 0.0270 X7 0.8537 0.1629 0.1659 0.1639 0.0742 0.1150 0.0470
X3 0.7413 0.1561 0.1579 0.1570 0.0713 0.0430 0.0430 X8 0.8651 0.1661 0.1699 0.1686 0.0753 0.1331 0.0310
X4 0.7768 0.1610 0.1629 0.1640 0.0724 0.0615 0.0611 X9 0.9167 0.1659 0.1669 0.1659 0.0795 0.1490 0.0150
X5 0.8173 0.1631 0.1649 0.1639 0.0731 0.0812 0.0790

2

X1 4.3714 1.0115 1.0187 1.0197 0.5301 0.0946 0.0930 X6 4.7656 1.0822 1.0876 1.0886 0.5684 0.6373 0.4154
X2 4.4310 1.0419 1.0468 1.0463 0.5432 0.1995 0.1989 X7 4.7323 1.1045 1.1058 1.1147 0.5763 0.7550 0.3182
X3 4.6743 1.0495 1.0567 1.0578 0.5486 0.3062 0.3049 X8 4.7018 1.0985 1.1108 1.1078 0.5811 0.8868 0.2059
X4 4.5873 1.0609 1.0740 1.0730 0.5513 0.4159 0.4145 X9 4.8452 1.1220 1.1353 1.1338 0.5891 1.0118 0.1040
X5 4.5629 1.0919 1.1044 1.1001 0.5594 0.5270 0.5258

3

X1 2.8633 0.5536 0.5427 0.5450 0.3003 0.0518 0.0509 X6 3.0481 0.5834 0.5860 0.5926 0.3294 0.3559 0.2277
X2 2.8830 0.5610 0.5577 0.5610 0.3087 0.1124 0.1140 X7 3.2082 0.6038 0.6092 0.6084 0.3335 0.4169 0.1616
X3 2.8404 0.5596 0.5637 0.5585 0.3132 0.1647 0.1666 X8 3.3706 0.6014 0.6245 0.6044 0.3396 0.4859 0.1067
X4 2.9114 0.5757 0.5717 0.5595 0.3185 0.2263 0.2145 X9 3.5347 0.6164 0.6045 0.6260 0.3408 0.5616 0.0578
X5 2.9335 0.5934 0.5991 0.5974 0.3264 0.2852 0.2832

4

X1 17.0027 3.9240 3.9235 3.9263 1.7911 0.3741 0.3683 X6 19.4429 4.2517 4.2456 4.2587 2.1273 2.5002 1.6478
X2 18.0133 4.0533 3.9701 4.0293 1.8098 0.7735 0.7703 X7 20.4778 4.2824 4.2598 4.2671 2.1419 2.9761 1.2310
X3 18.6551 4.0403 4.1828 4.1444 1.8504 1.1786 1.1695 X8 20.3463 4.3310 4.3538 4.3434 2.1596 3.4081 0.8225
X4 19.0479 4.0997 4.1354 4.1769 1.9113 1.6073 1.5976 X9 20.4050 4.5681 4.5499 4.5397 2.1675 4.0965 0.4115
X5 18.6920 4.1962 4.1780 4.2197 2.0815 2.0698 2.0567

5

X1 30.7627 5.5124 5.5242 5.5295 2.8337 0.5284 0.5278 X6 33.1671 6.1358 6.2748 5.8240 3.1438 3.1667 2.6481
X2 32.6039 5.6659 5.4821 5.4204 2.8342 1.0544 1.0508 X7 34.5047 6.0835 6.2619 5.9730 3.1498 3.7051 2.1144
X3 32.3583 5.7222 5.7435 5.6651 2.9357 1.5955 1.5888 X8 36.1980 6.0353 6.4435 6.2167 3.1530 4.2259 1.5789
X4 32.2079 5.6138 5.9440 5.8385 2.9365 2.1223 2.1074 X9 37.5642 6.2385 6.7772 6.4000 3.1584 4.7518 1.0658
X5 32.7192 5.8597 6.0084 5.7246 3.0394 2.6400 2.6457

6

X1 29.0113 8.3836 8.2320 8.2620 4.6714 1.2088 0.7660 X6 34.1967 10.0151 9.9014 8.8605 4.2105 5.4452 3.9339
X2 35.7733 9.1755 7.8859 6.9175 4.6733 1.2826 1.4571 X7 40.3092 11.1710 9.4409 10.7128 4.0384 6.5520 2.7059
X3 35.0453 6.7609 6.7979 6.9454 4.6852 2.1842 1.9967 X8 47.9954 13.0692 9.5062 9.5105 4.9431 7.4590 1.8287
X4 36.0703 9.0179 10.5554 8.3936 4.6877 4.5877 3.8936 X9 49.2934 9.3256 9.3073 9.7312 4.9658 9.8900 0.8712
X5 35.9687 11.7476 9.6988 11.1228 4.1913 4.9620 3.7709

7

X1 50.1704 11.1899 11.1159 11.0163 6.2218 1.1084 1.1041 X6 55.7775 11.9894 10.7806 12.3604 6.4953 6.1297 5.5388
X2 50.1635 11.6925 11.0451 10.9699 6.2384 2.0615 2.4735 X7 56.5947 11.9180 10.5998 12.2829 6.5318 7.1319 4.5646
X3 52.2432 11.8952 10.9438 11.4947 6.2643 3.1661 3.5252 X8 58.4985 12.2773 11.0206 12.2596 6.5713 8.3816 3.5133
X4 54.3069 11.7440 10.8478 11.2798 6.2334 4.5208 4.3841 X9 58.4892 12.4897 10.9204 12.3455 6.5106 9.3048 2.3714
X5 56.1519 11.9410 10.8038 11.7731 6.4316 5.0747 5.5963

8

X1 171.1221 44.0022 42.8408 43.1613 23.7915 4.2631 4.1663 X6 175.4944 47.4940 47.6369 47.7284 24.6984 27.8994 17.8496
X2 170.3744 43.3608 43.5247 43.1948 23.6648 8.5301 8.4258 X7 183.4739 47.8719 47.9399 48.1898 24.8912 33.0647 13.3864
X3 173.0614 45.9732 45.9559 45.7759 23.6194 13.2615 13.6250 X8 181.7856 48.1872 48.4805 48.4289 24.7769 38.5688 8.8134
X4 179.1732 46.1807 46.3589 46.1769 23.7613 18.1234 18.0109 X9 186.4951 49.2353 48.9710 49.2636 24.1140 44.1506 4.3554
X5 177.6678 47.0834 46.9392 46.9619 24.4691 23.1530 22.8880

9

X1 1630.0957 344.4836 341.4052 340.5702 167.3340 35.2002 34.6222 X6 1855.9502 361.2939 377.6293 367.1202 173.6140 193.2551 173.0095
X2 1673.4235 347.2022 360.6339 350.6613 168.1946 64.5283 61.2282 X7 1928.5680 363.6652 381.9210 379.7134 175.0048 225.8352 139.1737
X3 1674.3552 356.9558 358.1380 350.2956 169.6648 96.4172 103.6314 X8 2027.6925 367.8221 393.3836 388.7150 175.9762 258.1618 103.8976
X4 1731.0074 361.2274 357.0676 358.9260 171.3644 128.4805 138.6131 X9 2021.7360 361.6415 412.3720 389.3733 176.2843 290.3578 69.7588
X5 1763.5885 360.3457 369.8323 370.5823 172.9465 160.8882 173.2931

Note that the LA of SPRS can be obtained by algorithms 3 and 4. According to Table 6, if the number of data in
the target concept does not exceed half of the total number of data, we use algorithm s to calculate the LA. Otherwise,
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Figure 4: The time consumption for computing LA in different target concepts

algorithm 4 will be selected.
Based on Table 11 and Figure 4, the following results will be obtained.
(1) For any target concept, SPRS is able to calculate LA faster than TPRS. And the efficiency of SPRS can even

be more than ten times higher than that of TPRS.
(2) For any target concept, compared to other models except LRS, SPRS always takes less time. If the number of

data in the target concept does not exceed half of the number in the data set, SPRS and LRS take similar amount of
time to compute the LA. If the scale of the target concept is larger, the calculation speed of SPRS increases rapidly.
At this point, the efficiency of SPRS can be about ten times of that of LRS.

• Comparative analysis on attribute reduction
In this section, compared with other traditional RSs, we will verify the efficiency of feature selection with respect

to SPRS.

(a) (b) (c)

Figure 5: The time consumption for computing reductions Reduct(AT )L,X of RS models in different universes

From Table 12 and Figure 5, we have the following important results.
(1) For any universe, calculating Reduct(AT )L,X by using SPRS takes less time than that by using TPRS. Moreover,

as the size of the universe increases, the advantage of SPRS becomes more apparent. For example, for the universe
U10 in the ninth data set, the time taken by TPRS and SPRS is 6754.9284 seconds and 32.9951 seconds, respectively.
Obviously, the efficiency of SPRS is more than two hundred times higher than that of TPRS.

(2) No matter how much data the universe contains, we can use the SPRS instead of MGRS, VPRS, PRS and DRS
to select the desired attributes or features faster. While for the universe of any size, the efficiency of using SPRS and
LRS to select attributes is similar.

Here, we will verify that using SPRS can quickly select attributes in different scales of target concept. According
to Table 7, if the scale of the target concept is less than half of the scale of the universe, algorithm 5 will be employed
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Table 12: The time consumption for computing reductions Reduct(AT )L,X of RS models in different universes

No.s U MGRS TPRS VPRS PRS DRS LRS SPRS U MGRS TPRS VPRS PRS DRS LRS SPRS

1

U1 1.9779 0.3359 0.3351 0.3369 0.2846 0.3195 0.3185 U6 17.6356 2.9171 2.9495 2.9419 1.8469 1.8411 1.8317
U2 4.2842 0.7054 0.7124 0.7104 0.4515 0.6173 0.6191 U7 22.2072 3.7088 3.7474 3.7534 2.2516 2.1498 2.1590
U3 6.9453 1.1365 1.1407 1.1394 0.9819 0.9165 0.9145 U8 26.8004 4.5032 4.5589 4.6306 2.5849 2.5455 2.4472
U4 10.2135 1.6430 1.6629 1.6679 1.2222 1.2312 1.2168 U9 31.9407 5.4503 5.4640 5.4384 2.9915 2.7805 2.7724
U5 13.6863 2.2478 2.2805 2.2429 1.6051 1.5310 1.5431 U10 37.3944 6.3865 6.4437 6.4351 3.5163 3.1253 3.0499

2

U1 100.6286 20.2101 20.1839 20.0377 13.2169 19.4126 19.2153 U6 977.3303 201.3501 201.5366 203.0291 135.1630 116.4785 118.0968
U2 227.9829 45.4617 45.7109 45.6978 39.0519 38.5437 38.8345 U7 1232.8326 252.6657 252.7511 253.0056 158.3361 138.7830 137.4041
U3 382.8443 76.5307 77.1198 77.4911 59.3318 58.5431 58.5879 U8 1517.3755 309.4786 310.5106 310.8196 194.3310 158.2086 158.6285
U4 555.9708 113.0485 114.2998 114.1692 84.9493 78.4673 78.2905 U9 1783.3055 371.4025 368.7235 371.2445 212.7920 177.0298 176.8607
U5 759.2833 153.9150 155.1204 157.1008 107.9964 97.7969 98.4999 U10 2109.7167 433.9403 433.1682 436.4988 237.9943 195.8267 196.9899

3

U1 2.3448 0.3845 0.3692 0.3835 0.2120 0.3182 0.3251 U6 32.4027 5.3299 5.3697 5.3578 2.6618 1.8810 1.8701
U2 5.9820 0.9581 0.9375 0.9305 0.6505 0.6933 0.6263 U7 42.5744 6.9237 6.9112 6.9863 3.7418 2.1773 2.2650
U3 10.8655 1.7318 1.7447 1.7043 0.9518 0.9473 0.9327 U8 53.2691 8.6211 8.6415 8.6586 4.3695 2.5098 2.4596
U4 16.8820 2.7202 2.7017 2.8146 1.4582 1.2558 1.2880 U9 65.5783 10.6539 10.6074 10.6015 5.9521 2.7826 2.8167
U5 24.3041 3.9316 3.8943 3.9962 1.6485 1.5570 1.5850 U10 78.6739 12.9308 12.8763 12.8952 7.0031 3.1522 3.0708

4

U1 7.1124 1.3868 1.4027 1.4008 1.1416 1.0909 1.0895 U6 117.8792 23.6177 23.6145 23.6868 12.3628 6.4589 6.4405
U2 19.7804 3.8887 3.7980 3.8720 2.2015 2.1983 2.1702 U7 152.6920 31.2871 31.1298 31.3798 17.3361 7.4211 7.5341
U3 36.8090 7.2988 7.2948 7.4388 3.3594 3.2690 3.2764 U8 195.9262 39.6968 39.3769 39.5869 22.3138 8.6261 8.6863
U4 59.3925 11.5999 11.6955 11.7943 5.9352 4.3531 4.3153 U9 240.0504 49.4151 49.1823 49.8309 27.9634 9.6458 9.6726
U5 86.0120 16.9463 16.7618 17.4464 8.9920 5.3981 5.3997 U10 291.0619 59.8983 59.0401 59.4777 31.6923 10.7743 10.6920

5

U1 20.6443 3.5360 3.6239 3.6083 1.9253 2.6577 2.6569 U6 975.8524 164.4130 171.9525 163.8341 83.3195 2.7432 2.8917
U2 96.6143 22.0668 18.9024 21.0557 11.3816 2.7743 2.7294 U7 1275.1843 224.4869 235.0553 225.9584 123.3284 2.9064 2.9454
U3 264.5088 41.0548 36.9027 39.7906 21.0390 2.7219 2.6764 U8 1714.9532 301.0812 305.8039 307.3761 156.3294 2.8555 2.9390
U4 405.9342 70.7401 64.3878 72.7310 36.0417 2.7972 2.7752 U9 2181.5346 371.2047 392.9681 385.5737 189.9581 2.9795 2.9148
U5 643.6298 111.4719 106.3475 112.7508 66.1305 2.7496 2.9021 U10 2689.2521 468.3123 469.4291 474.9613 253.4916 2.9716 2.9401

6

U1 12.8167 2.4565 2.4684 2.4943 1.8284 2.1592 1.7087 U6 270.9167 49.8823 50.8008 50.6991 26.3185 10.7799 10.4591
U2 40.5705 8.3469 7.8041 7.7606 4.1862 3.6922 3.7688 U7 365.1541 68.0164 68.4200 74.3691 35.0054 12.3654 13.0020
U3 80.9539 15.1405 15.4318 15.3322 8.3943 5.6501 5.5185 U8 473.6454 86.8257 88.4165 87.5879 45.2196 14.1692 14.2394
U4 131.9679 25.4511 26.4354 29.7980 15.7267 7.3514 8.5615 U9 584.4860 121.9329 124.1139 120.4576 68.7492 16.7660 17.6591
U5 197.0504 36.1992 36.9141 38.5243 19.5299 8.7986 8.8738 U10 715.0972 144.9191 135.7756 140.0772 79.9354 17.9041 18.6892

7

U1 16.7028 3.6453 3.6167 3.6122 2.6035 2.5894 2.5577 U6 761.5143 164.0647 166.2291 167.3956 87.9463 3.1818 3.0035
U2 124.6810 15.3193 18.1436 21.7701 8.9150 2.7373 2.7078 U7 1089.9647 232.8319 223.4652 227.3333 143.1963 3.2594 2.9563
U3 195.1641 48.0178 43.6077 39.8954 23.3715 2.8849 2.8254 U8 1414.8439 312.1140 305.5933 300.6888 168.3619 3.2701 3.1131
U4 283.7433 71.1940 67.3844 65.0703 37.3945 2.9010 2.8018 U9 1766.4422 382.6400 388.1786 384.2412 199.1846 3.2200 3.1008
U5 527.2490 115.7854 108.3916 112.2698 71.6943 3.0640 2.8904 U10 2187.3225 475.9421 475.5046 474.7412 251.1846 3.3784 3.1325

8

U1 30.9783 6.7044 7.0081 6.9521 4.7831 5.0569 4.5411 U6 393.9685 97.3524 99.3949 97.3398 48.3608 5.9950 5.3016
U2 89.6357 17.7656 18.4361 20.3665 8.9258 5.1388 4.7319 U7 488.6349 142.3664 145.3918 142.3145 72.5492 6.0206 5.5639
U3 143.8557 30.4397 31.4919 34.6971 16.6662 5.3954 4.8391 U8 580.3518 193.6324 199.3916 194.3125 99.0876 6.1235 5.8638
U4 214.9678 46.1064 48.1973 48.3696 24.1825 5.6421 5.0135 U9 691.3495 268.1507 275.8835 271.6351 137.9635 6.3597 6.1101
U5 283.5630 68.3429 69.7648 72.4397 35.0051 5.8499 5.1394 U10 814.6642 377.4193 384.3662 379.3334 194.8053 6.6327 6.2934

9

U1 187.7466 52.1803 51.9674 52.3225 28.9915 28.7635 28.4988 U6 8406.0183 2330.0022 2355.2028 2419.2097 1184.0925 33.1301 31.2958
U2 1072.1137 192.6647 337.7399 259.6502 85.9302 29.9961 28.6983 U7 12033.6405 3354.0526 3259.1054 3347.7882 1125.2919 33.5955 32.2933
U3 1850.0787 555.2914 601.0041 614.8871 276.0310 31.7183 29.4750 U8 15713.1725 4456.5791 4288.2954 4484.7732 2194.3308 33.4276 32.2024
U4 3635.8027 1045.2326 882.6127 939.8061 486.1258 32.7094 29.3204 U9 20195.0603 5571.7179 5444.6125 5580.2068 2126.2915 35.3680 31.9831
U5 5413.6783 1590.1432 1611.5565 1624.5019 749.3633 32.3746 30.6001 U10 24729.2719 6754.9284 6743.0026 6772.4598 3334.1389 37.0082 32.9951

(a) (b) (c)

Figure 6: The time consumption for computing reductions Reduct(AT )L,X of RS models in different target concepts

to select attributes more quickly. Otherwise, algorithm 6 will be used. From Table 13 and Figure 6, we have the
following basic facts.

(1) For target concepts containing any amount of data, the efficiency of using SPRS to calculate reduction is higher
than that of TPRS. Specifically, when the scale of the target concept is particularly small or large, the advantage of
SPRS will be greater.

(2) For target concepts containing any amount of data, compared to models such as MGRS, VPRS, PRS, and DRS,
SPRS can be used to select the required attributes more quickly. If the size of the target concept does not exceed half
of that of the data set, both SPRS and LRS can be used to quickly select attributes, and the speed of attribute selection
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Table 13: The time consumption for computing reductions Reduct(AT )L,X of RS models in different target concepts

No.s X MGRS TPRS VPRS PRS DRS LRS SPRS X MGRS TPRS VPRS PRS DRS LRS SPRS

1

X1 36.6976 6.3570 6.4181 6.4633 3.2715 0.3187 0.2415 X6 40.5543 6.6884 6.7518 6.6676 3.3548 2.1379 1.3362
X2 36.9369 6.3971 6.5099 6.5072 3.2944 0.5356 0.5691 X7 40.0751 6.7108 6.7314 6.7749 3.3394 2.6808 0.9988
X3 36.4261 6.5999 6.6413 6.6659 3.3087 0.9684 0.9661 X8 42.3422 6.7617 6.7369 6.7927 3.3692 2.9979 0.6440
X4 38.5049 6.6767 6.9831 6.8222 3.3490 1.5381 1.4029 X9 44.8270 6.7547 6.7460 6.7251 3.3947 3.4798 0.2715
X5 38.2665 6.8089 7.0607 6.9301 3.3615 1.7199 1.8328

2

X1 1558.3150 353.0747 318.7862 318.5877 170.3321 33.6243 32.4814 X6 1754.5069 389.9895 351.3492 343.8250 180.9940 201.6716 162.9441
X2 1566.5049 354.4419 322.2124 324.9994 170.9161 66.9818 64.8106 X7 1743.7193 411.4860 369.7579 361.4088 181.9463 235.6558 129.6087
X3 1650.3223 354.5530 339.9732 340.9205 172.2494 100.8934 97.9332 X8 1765.9133 435.2008 375.8752 358.0608 183.9466 268.7840 97.7098
X4 1657.3133 364.5605 347.9727 335.7244 177.1699 134.5093 130.4178 X9 1757.5781 452.3873 382.8376 372.6655 188.1993 302.7991 64.7813
X5 1737.2826 378.7818 345.7079 333.5758 179.1386 168.3706 162.9361

3

X1 76.9023 12.8012 13.0222 13.1424 7.8815 3.6059 3.7072 X6 84.3162 13.8513 14.0753 14.0545 7.0845 9.1126 6.7749
X2 75.9403 13.2355 13.2290 13.1110 7.1182 4.7590 4.6737 X7 89.3120 13.9320 13.9592 13.9304 7.2193 10.4728 5.7985
X3 78.8868 13.2508 13.1984 13.3640 7.0039 5.7359 5.7318 X8 90.8558 14.0185 14.2639 14.3055 7.1547 11.7073 4.6466
X4 80.2481 13.5575 13.3149 13.3389 7.9715 6.8240 6.7746 X9 94.6658 14.0827 14.4346 14.3467 7.2039 13.1698 3.6680
X5 80.8297 13.8663 13.8763 13.7970 7.9736 8.2251 7.9095

4

X1 285.2071 58.4628 60.5482 59.5794 31.8463 13.0875 13.2844 X6 342.8252 63.0736 62.3146 63.2298 34.1659 40.3239 29.0808
X2 284.2664 60.2019 59.7857 60.5526 32.0847 18.2386 18.1849 X7 336.6062 63.5545 63.4349 64.0174 34.2510 47.1661 24.0633
X3 300.2404 62.6885 61.5584 62.1608 32.8431 23.7387 23.7922 X8 343.3722 64.1137 63.8781 64.7815 34.3371 52.7976 18.9477
X4 316.5769 61.9780 62.5330 62.8432 33.6492 29.4428 29.0348 X9 353.9865 67.6782 67.3194 67.2840 35.5208 61.7055 13.8391
X5 329.6314 62.3464 62.3722 63.0661 34.1158 34.8761 34.0965

5

X1 1103.1636 190.0786 188.3967 188.7906 137.1884 34.1252 33.7407 X6 1233.1709 212.4663 194.1113 203.5311 146.4746 204.5030 145.6793
X2 1160.0605 186.9908 188.1185 185.9338 139.5846 68.2179 67.5618 X7 1260.2580 218.6874 205.0760 212.9481 148.1515 238.7675 134.7203
X3 1184.5200 193.6015 190.7185 183.9317 141.2895 102.3790 101.4878 X8 1260.9376 231.5135 213.4035 216.6183 148.9969 272.9597 100.8924
X4 1181.6863 203.3043 187.1390 189.5278 143.0039 136.3649 135.0409 X9 1330.2879 231.1615 211.3668 229.4246 149.1188 306.9996 67.3597
X5 1194.5794 206.0728 195.0831 196.2439 154.3945 170.3137 169.2146

6

X1 855.4559 160.0473 165.9921 178.2074 77.1149 18.6897 19.2900 X6 827.4491 182.7963 183.2563 182.6594 80.8462 52.7042 37.2372
X2 861.9443 162.7748 178.9630 179.1662 78.3210 20.8384 20.8798 X7 829.2313 186.4313 186.8101 187.4526 80.4467 62.9507 29.5238
X3 848.7194 173.4052 180.2783 180.5365 78.9748 28.3523 28.6860 X8 830.1124 186.2462 187.5965 187.6538 79.4823 70.7800 22.2942
X4 840.5062 174.3291 180.1227 180.9620 79.1185 36.3034 36.0996 X9 835.3485 188.6488 187.2941 188.2406 81.1118 80.4747 18.8348
X5 844.4260 179.3587 181.7937 181.5853 79.4973 44.1849 44.1034

7

X1 1064.8504 214.6636 213.4953 222.7989 149.8846 34.7949 34.3372 X6 1169.4624 227.0727 231.8097 246.8540 166.1482 211.3620 161.4476
X2 1076.7798 212.4903 221.9402 226.0558 152.3394 69.2732 74.8744 X7 1226.3268 240.2356 238.9211 255.8232 157.1184 244.7919 139.1706
X3 1113.6156 216.4481 221.3506 229.1921 153.1984 103.4834 109.2443 X8 1205.3031 249.9577 239.1399 259.3642 159.1365 286.7189 110.1145
X4 1133.6313 223.9889 225.3332 241.7506 157.1195 141.3913 139.7951 X9 1197.1494 264.2096 250.0322 271.6758 162.8432 316.5978 68.3396
X5 1192.9256 224.7330 221.8434 237.9962 164.2949 175.4007 179.1545

8

X1 1958.4032 435.6568 437.9733 439.5902 287.1184 60.2578 59.7765 X6 2178.4571 503.7325 495.6582 532.5266 300.1846 360.3527 299.4760
X2 2035.8204 458.8927 450.3599 463.2823 290.1846 123.6486 125.7950 X7 2178.0859 525.5329 510.7796 556.7030 303.9160 434.3821 238.7361
X3 2152.7371 453.0280 445.7574 479.7848 293.2250 188.4903 185.0951 X8 2268.2912 541.8812 537.0639 551.6403 304.8483 480.5918 191.3652
X4 2204.1050 469.2585 463.2361 492.5314 295.9358 250.7031 244.5664 X9 2283.0185 552.6304 534.2221 577.1697 309.8318 552.5698 120.6071
X5 2222.7111 481.0586 473.8532 509.6513 297.9997 309.4499 297.3803

9

X1 27316.4933 8492.3923 8645.3194 8162.5904 4301.9465 832.4462 813.3551 X6 28223.2803 9163.7391 10247.2112 8149.1764 4449.4948 4988.1445 4065.1261
X2 27180.1935 8337.7764 8957.1113 8051.9014 4372.6314 1675.9883 1639.5053 X7 29078.0570 9543.6098 10482.8324 8077.2799 4455.1795 5819.0437 3261.9712
X3 26817.8140 8185.6473 9438.7109 8129.3370 4367.4968 2491.5197 2438.1044 X8 29104.8873 9786.1992 10697.5849 8537.8249 4489.6330 6675.5628 2449.4604
X4 27163.1290 8610.9773 9694.5904 8409.8733 4395.6540 3329.3511 3258.1633 X9 30578.5750 9992.9319 10517.2861 8597.4188 4396.4487 7496.7497 1633.8596
X5 26876.4928 8889.4180 9949.4720 8263.6673 4369.1182 4164.5351 4061.5215

is similar. However, if there is a large amount of data in the target concept, the speed of selecting attributes by using
SPRS is significantly faster than that by using LRS.

Here, all comparative results between SPRS and other models are summarized in Table 14. The letter H indicates
that the computational efficiency of SPRS model is higher than that of the compared model. The letter S means that
the computational efficiency of SPRS model and the compared model is similar. And the sizes of universe and target
concept are denoted by |U | and |X|, respectively. From Table 14, regardless of the sizes of U and X, the efficiency of
SPRS in calculating UA is always higher than that of other models. When calculating LA and attribute reduction, two
conclusions can be drawn: First, for any U and X, the efficiency of SPRS is always significantly higher than that of
TPRS, MGRS, VPRS, PRS and DRS. Second, regardless of whether the size of U is larger or smaller or the size of X
is smaller, the speed of SPRS and LRS analyzing data is similar; When X is large in scale, SPRS is much faster than
LRS in mining data. In summary, SPRS is more effective in analyzing data than all other models.

7. Conclusion

So far, although many RS models have been proposed, most of them are developed based on Pawlak rules. There-
fore, the mathematical structures of most RS models are similar, and the computational efficiency of RS methods has
not been significantly improved. The main conclusions of this paper include:

(1) TPRS can be simplified and equivalently redesigned based on some new rules. Experimental analysis demon-
strates that the computational efficiency of SPRS is extremely excellent, usually several hundred times higher than
that of TPRS. Compared with several representative existing RSs, one can find that in most cases, SPRS can analyze
data faster than most RSs.

(2) The attribute reductions of UA and LA play an important role in RS theory. In this article, it is proven that
the LA reduction for any target concept is equal to the UA reduction of the complement set of that target concept. It
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Table 14: Comparative analysis between SPRS and other RS models

Measures RS models |U | is smaller |U | is larger |X| is smaller |X| is larger

Upper approximation

TPRS H H H H
MGRS H H H H
VPRS H H H H
PRS H H H H
DRS H H H H
LRS H H H H

Lower approximation

TPRS H H H H
MGRS H H H H
VPRS H H H H
PRS H H H H
DRS H H H H
LRS S S S H

Attribute reduction

TPRS H H H H
MGRS H H H H
VPRS H H H H
PRS H H H H
DRS H H H H
LRS S S S H

means that these two reductions are essentially the same.
Fortunately, according to the rules proposed in this paper, most existing rough set models can be equivalently

redesigned. This will greatly improve the computational efficiency of RS theory in processing various data problems.
This discovery will change people’s inherent views on the computational efficiency of RS for over forty years, and
effectively promote the development of RS theory.
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