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Abstract—Cognitive diagnosis aims to quantify students’ learn-
ing status and mastery level of related knowledge concepts based
on their responses to given exercises. This is a fundamental
yet critical research task in the field of intelligent education,
which helps to reveal students’ proficiency on multiple knowledge
concepts they have learned, thereby providing personalized learn-
ing services for each student. In recent years, researchers have
succeed in improving model’s diagnosis accuracy by designing
diagnostic functions based on deep neural networks or integrating
richer contextual features to enhance the representation learning
of students and exercises. However, datasets used for deep
learning-based cognitive diagnosis model training often present
an imbalanced distribution, being a large number of students
only answered a few exercises, and a large number of exercises
were answered by only a few students, which may have a
certain impact on the performance of the model. To verify this
problem, we conducted considerable experiments on four well
known models and two widely used datasets of deep learning-
based cognitive diagnosis in this paper. Firstly, we analyzed the
correlation between the model’s predictive accuracy for individ-
ual student’s response performance and the number of exercises
answered by this student. Secondly, we studied the correlation
between the model’s predictive accuracy for each exercise and
the number of the exercise being answered by students in the
dataset. Finally, we analyzed whether the model’s predictive
accuracy for individual student would be over-fitting1 during
multiple epochs and whether the maximum predictive accuracy
achieved is affected by the number of exercises answered by
this student. The experimental results indicate that there are
no evident statistics supporting the strong correlation between
the model’s predictive accuracy for individual student and the
number of exercises answered by this student. The same case
happens with the correlation between the model’s prediction
accuracy on each exercise and the number of the exercise being
answered by students in the dataset. Notably, we observe that
models are more likely to be over-fitting for students who have
answered a larger number of exercises.

Index Terms—cognitive diagnosis; intelligent education; imbal-
anced distribution

I. INTRODUCTION

Cognitive diagnosis is a fundamental yet critical task in the
field of intelligent education, which helps to reveal students’
proficiency on different knowledge concepts they have learned
and provides personalized learning services for each student.

1In this work, over-fitting refers to the phenomenon that the model’s
predictive accuracy for individual student achieves the maximum accuracy
in a certain epoch during training, but then decreases as the model continues
to train.

Generally, students first answer a set of prepared exercises
and leave a record of their responses. Subsequently, the goal
of cognitive diagnosis is to infer students’ mastery level of
specific knowledge concepts based on their answering logs
and the correlation between exercises and knowledge concepts.
This is a very important task in the daily teaching. With the
help of diagnostic results, we can guide students in a targeted
manner and help them to improve their comprehension of
knowledge concepts.

Early cognitive diagnosis models primarily originated from
the field of educational psychology, with many of these models
relying heavily on statistical methods, such as Item Response
Theory (IRT) [1] and the DINA (deterministic inputnoisy
’and’ gate) model [2]. However, these models are limited
in performance and struggle to address the challenges of
processing large-scale data due to their reliance on manually
designed functions. With the advancement of neural network
technology, many fields have achieved state-of-the-art (SOTA)
performance by applying it, and the field of cognitive diagnosis
is no exception. Deep learning-based cognitive diagnosis mod-
els focus on designing diagnostic functions by neural networks
to better model the complex interaction between students and
exercises, or attempt to integrate richer contextual features and
relationships among multiple knowledge concepts to enhance
the representation learning of students and exercises.

Although current deep learning-based cognitive diagnosis
models have been proven effective, they require large-scale
data of student-exercise interactions for training. However, in
the real world, datasets often exhibit imbalanced distribution.
For most real-world datasets in cognitive diagnosis, many
students answered only a few exercises, and there is a signifi-
cant variation in the frequency of different exercises were an-
swered. Fig. 1 clearly illustrates the distribution of the number
of students considering their interaction frequencies, as well
as the distribution of the number of exercises considering their
frequencies of being answered in ASSIST0910. It is obvious
that numerous students have few interactions, while many
exercises are answered only a few times. Generally speaking,
the model is well trained on the high-resource group with
abundant data, but is poorly trained on the low-resource group
with insufficient data, resulting in models exhibit commend-
able performance in high-resource groups but a significant
decrease in predictive accuracy within low-resource groups.
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Fig. 1: (a) Statistical distribution of student quantity based on the interaction frequency in ASSIST0910; (b) statistical
distribution of exercise quantity based on the number of times they were answered in ASSIST0910.

Thus, in the realm of deep learning-based cognitive diagnosis,
might we encounter a similar phenomenon?

This work aims to deeply analyze the impact of data
imbalance on model performance in the field of deep learning-
based cognitive diagnosis. To the best of our knowledge, it is
the first work studying this issue. We conducted considerable
experiments with four models and two datasets that are famous
and widely used in this field. Main contributions of this paper
can be summarized as follows:

• Firstly, we explored the problem whether the model’s
predictive accuracy for individual student correlates to
the number of exercises answered by the student.

• Secondly, we studied the problem whether the model’s
predictive accuracy for each exercise correlates to the
number of the exercise being answered by students.

• Finally, we analyzed whether the model’s predictive ac-
curacy for individual student would be over-fitting during
multiple epochs and whether the maximum predictive
accuracy achieved is affected by the number of exercises
answered by this student.

Section II reviews the related works. Section III introduces
the research questions and the corresponding experiments.
Conclusions is in Section IV.

II. RELATED WORKS

Early cognitive diagnosis models (CDMs) mainly come
from the field of educational psychology, and they are mainly
based on statistical methods. Among them, IRT [1] and DINA
[2] are the two most classical ones. Many subsequent CDMs
are improved from these two models. IRT used one-dimension
and continuous latent traits (i.e., students’ proficiency on
knowledge concepts, the difficulty of exercises, and the dis-
crimination of exercises) to represent students and exercises.
It predicted the probability of students can answer exercise

correctly through a logistic function. Nevertheless, this model
can only represent students’ abilities on a single dimension.
In contrast, Multidimensional Item Response Theory (MIRT)
model [3] extended students’ latent traits and exercise param-
eters into a multidimensional space to comprehensively rep-
resent students’ abilities across various dimensions. While the
aforementioned two models can only provide an assessment
value of students’ ability, DINA model aligned exercises with
specific knowledge concepts by introducing the Q-matrix so
as to accurately express students’ specific knowledge mastery
states. It used a binary vector to represent students’ mastery
of each knowledge concept, operating on a non-compensatory
assumption that students can only answer correctly when they
have mastered all knowledge concepts related to the exercise.
Additionally, the model incorporated the guessing and slipping
parameters to accommodate noisy data.

CDMs based on statistical methods rely on manually de-
signed functions with limited performance. It is hard to handle
large-scale data using these methods. With the advancement of
neural network technology, many fields have achieved SOTA
performance by applying it, and the field of cognitive diagnosis
is no exception. Deep Item Response Theory (DIRT) model
[4] was based on IRT and used deep learning technology
to enhance the representation of students and exercises by
combining exercise-texts and the relationship between exer-
cises and knowledge concepts. To address the problem that
artificially designed functions cannot fit the complex relation-
ship between students and exercises well, Neural Cognitive
Diagnosis (NeuralCD) framework [5] utilized multiple neural
network layers to model the interaction between students and
exercises and employed the monotonicity assumption to ensure
the interpretability of the model. NeuralCD primarily consid-
ered students’ mastery of knowledge concepts, the difficulty
of knowledge concepts and the discrimination of exercises



during the diagnostic process, but neglected the importance
of knowledge concepts. Thus it was insufficient to capture the
complex interactions between students and exercises. Impor-
tance of Knowledge Point-Based Neural Cognitive Diagnosis
(IK-NeuralCD) model [6] introduced the importance factor of
knowledge concept and utilized the frequency of occurrence
of knowledge concepts to express their significance, thereby
improving the modeling of complex relationships between
students and exercises. The two aforementioned models only
constrained the parameters of the fully connected layer in the
interaction stage to be positive to satisfy the monotonicity
assumption, but did not consider this constraint during the
model optimization process. Item Response Ranking (IRR)
framework [7] introduced pairwise learning into cognitive
diagnosis in order to satisfy the monotonicity assumption
during the process of model optimization. Multitask Based
Group-Level Cognitive Diagnosis (MGCD) framework [8]
simultaneously modeled individual student performance and
group performance. It transformed the information of students’
response records into group representations through shared
student representations, and used the attention mechanism
to model the relationship between them. Previous models
did not take the aggregation of knowledge concepts into
account during the diagnostic process. CDGK [9] model
applied neural networks to capture the nonlinear interaction
among exercise features, students’ scores and students’ pro-
ficiency of knowledge concepts. Furthermore, it performed
the aggregation of knowledge concepts by transforming them
into a graph structure and focusing only on the leaf nodes
of the knowledge concept hierarchy. However, it only ag-
gregated knowledge concepts and did not consider the im-
pact of different knowledge concepts on students’ scores in
answering exercises. Cognitive Diagnostic Model Focusing
on Knowledge Concept (CDMFKC) model [10] focused on
designing the difficulty and discrimination of each knowledge
concept. It utilized multiple neural network layers to model the
complex interactions between students and exercise attributes
to obtain accurate and interpretable diagnostic results. Similar
to previous models, it also overlooked the dependencies among
knowledge concepts. In fact, students master sub-level knowl-
edge concepts first, then parent-level knowledge concepts.
Bayesian Network-Based Hierarchical Cognitive Diagnosis
Framework (HierCDF) [11] utilized a Bayesian network to
reasonably and efficiently model students’ cognitive states
in the attribute hierarchy. Subsequently, a CDM adapter was
designed to bridge the gap between students’ cognitive states
and input features of the diagnosis model. While HierCDF
has certain advantages in the attribute-hierarchy modeling
and the interpretability of diagnosis results, the model faces
challenges due to its high complexity, low computational
efficiency and difficulties in parameter learning. Knowledge-
Sensed Cognitive Diagnosis (KSCD) framework [12] first
mapped students, exercises, and knowledge concepts into em-
bedding representation matrices where intrinsic relationships
among knowledge concepts are reflected. Then, the student
knowledge mastery level was obtained by taking the product

of the knowledge-sensed student knowledge mastery vector,
exercise vector and knowledge vector. This design made
the students’ mastery of non-interactive knowledge concepts
be interpretably inferred. Quantitative Relationship Cognitive
Diagnosis (QRCDM) model [13] assumed that exercises not
only relate to knowledge concepts marked by experts, but
also implicitly relate to some unmarked knowledge concepts.
It calculated the dual contribution matrix of exercises and
knowledge concepts via neural networks. Following this, the
students’ mastery of knowledge concepts and their scores were
predicted based on the contribution matrix and the guessing
and slipping parameters. It assumed that knowledge concepts
are independent with each other and did not consider the
dependencies among them. However, this assumption is not
consistent with the actual situation. Interpretable Cognitive
Diagnosis (ICD) model [14] added a neural network layer to
fit the mutual impact among knowledge concepts.

The interaction relationship among students, exercises and
knowledge concepts naturally presents as a graph structure.
Graph neural network-based CDMs can effectively improve
the representation quality of these three items by aggregating
neighbor features, therefore predicting students’ performance
more accurately through interaction functions. Relation Map
Driven Cognitive Diagnosis (RCD) model [15] constructed the
interactions among the three in a hierarchical graph. The graph
contained a student-exercise interaction graph, a concept-
exercise association graph and a concept dependency graph
extracted from the priori relationships among knowledge con-
cepts. It used a multi-level attention neural network to achieve
the node aggregation of hierarchical graphs. However, RCD
model only simplified the student-exercise interaction into a
binary interaction (i.e., interaction and non-interaction) and
ignored the rich information contained in the different behavior
patterns (correct and incorrect interactions) of students in an-
swering exercises. Graph-based Cognitive Diagnosis (GCDM)
model [16] divided interactions between students and exercises
into two categories (correct answers and incorrect answers),
and designed two graph-based layers (the information transfer
layer and the knowledge aggregation layer). The former was
used to propagate students’ cognitive states through different
types of graph edges, while the latter selectively collected
information from adjacent graph nodes. Multi-Relational Cog-
nitive Diagnosis (MRCD) framework [17] constructed two
student-exercise interaction graphs based on the correctness
of students’ answers. Then, graph convolutional network was
utilized to learn exercise-level representations of students and
exercises based on different interaction graphs with graph
contrastive learning employed to enhance the learning pro-
cess. Considering that the number of knowledge concepts is
relatively small, MRCD directly adopted the attention mecha-
nism to generate concept-level representations of students and
exercises. Afterwards, exercise-level and concept-level repre-
sentations were fused and conveyed to a diagnostic function
to predict student performance. Previous models ignored the
impact of data imbalance in this field on model training, and
discarded student samples with fewer interactions during the



model training process. Self-Supervised Cognitive Diagnosis
(SCD) framework [18] leveraged self-supervised learning to
assist graph-based cognitive diagnosis, removing edges based
on specific rules to generate diverse sparse views. The model
payed more attention to those long-tail students by maximizing
cross-view consistency of node representations. Aforemen-
tioned research on cognitive diagnosis mainly focused on
improving the accuracy of diagnostic results, often ignoring
the important and practical task, being domain-level zero-shot
cognitive diagnosis (DZCD). Transferable Knowledge Con-
cept Graph Embedding Framework for Cognitive Diagnosis
(TechCD) [19] constructed the relationship among students,
exercises and knowledge concepts in a Knowledge Concept
Graph (KCG), and used a graph convolutional network (GCN)
to perform representation learning on the KCG. In order to
capture propagation properties of embeddings, transferable
student cognitive states and exercise features were built by
discarding low-level embeddings of GCN and only aggregating
high-level embeddings.

Although existing researches have achieved great successes,
few works have paid attention to the issue of imbalanced
datasets in this field. For many deep learning-based tasks, such
as image classification or character recognition, usually the
model is well trained on categories with abundant samples, but
is poorly trained on few shot categories. Is this also the case for
deep learning-based cognitive diagnosis? A deep exploration
and analysis is required.

III. EXPERIMENTS

In this section, we will describe the benchmark datasets
and experimental setups in detail. Considerable experiments
are conducted to answer the following research questions:

• RQ 1: Does the model’s prediction accuracy for individ-
ual student correlate to the number of his/her interactions?

• RQ 2: Does the model’s prediction accuracy on a certain
exercise correlate to the frequency of the exercise being
answered in the dataset?

• RQ 3: Whether the model’s predictive accuracy for in-
dividual student’s response performance would be over-
fitting during training epochs? And does the over-fitting
correlate to the number of his/her interactions?

• RQ 4: Whether the maximum prediction accuracy for in-
dividual student achieved during different training epochs
is correlated to the number of his/her interactions?

A. Datasets

We conducted experiments on two real-world datasets:
ASSIST090102 and JunYi3. ASSIST09010 is a public dataset
collected by the online tutoring system ASSISTments, con-
taining students’ response records during the academic year
from 2009 to 2010. Further, the relationship between exercises
and knowledge concepts is available in this dataset. JunYi
originates from the online learning platform Junyi Academy,

2https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-
data/skill-builder-data-2009-2010

3https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198

comprising answering records from October 2012 to January
2015. Each exercise contains only one knowledge concept,
and each knowledge concept is covered by only one exercise.
To ensure adequate training samples, most studies filtered out
student samples with a small number of interactions. In this
work, as we study the problem of imbalanced distribution, only
student samples with less than 5 interactions were filtered.
This criteria was set because we split the dataset into training
and test with an 8:2 ratio. Table I presents the statistics
of two selected public datasets, including the number of
students, the number of exercises, the number of knowledge
concepts, the total number of interactions, the average number
of interactions per student has and the average number of
knowledge concepts per exercise contains.

TABLE I: The statistics of ASSIST0910 and Junyi.

Dataset ASSIST0910 Junyi
#Students 3628 10000
#Exercises 16866 706

#Knowledge concepts 110 706
#Response logs 269269 224380

#Avg logs per student 74.22 22.438
#Avg concepts per exercise 1.18 1.0

B. Experimental Setups

• Experimental settings: We selected four prominent cog-
nitive diagnosis models for experimentation: NCD [5],
RCD [15], SCD4 [18], and ICD [14]. Training epochs
of all models were set to 10 and other hyper-parameters
were set according to their original papers. We imple-
mented all the models using PyTorch and conducted all
experiments on a Windows 10 server equipped with a
3.00 GHz Intel(R) Core (TM) i9-13900K CPU and a RTX
4090 GPU.

• The Pearson correlation coefficient: The Pearson corre-
lation coefficient, also known as the Pearson product-
moment correlation coefficient, is a statistical metric that
measures the linear correlation between two variables.
The closer the absolute value of the coefficient is to 1,
the stronger the linear correlation between two variables,
and vice versa. The Pearson correlation coefficient is cal-
culated based on the covariance and standard deviation,
and can be expressed using the formula:

r =

∑(
Xi − X̄

) (
Yi − Ȳ

)√∑(
Xi − X̄

)2 ∑(
Yi − Ȳ

)2 (1)

where Xi and Yi are the individual data points, X̄ and Ȳ
are the respective means. Through this formula, we can
quantify and comprehend the linear relationship between
variables which is crucial for data analysis and scientific
research. The Pearson correlation coefficient is widely
utilized in various fields such as psychology, social sci-
ences, bio-statistics and economics, aiding researchers in

4Here, we removed the data augmentation module from the original SCD
model to avoid its possible effect on the prediction results.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: The scatter plot depicting the distribution of the model’s prediction accuracy for individual student and the number
of exercises answered by the student. (a-d) Statistical results of four models on ASSIST and (e-h) statistical results of four
models on Junyi dataset.

uncovering potential correlations between variables and
laying a foundation for further causal relationship in-
vestigations. Therefore, we chose the pearson correlation
coefficient as the metric in this work.

TABLE II: The Pearson correlation coefficient between the
model’s prediction accuracy for individual student and the
number of exercises answered by the student.

Dataset
Model NCD RCD SCD ICD

ASSIST0910 0.018793 0.021944 0.012207 0.029801
Junyi 0.030464 0.049657 0.047572 0.046319

TABLE III: The Pearson correlation coefficient between the
model’s prediction accuracy for individual student with over
300 training records and the number of exercises answered by
the student in ASSIST.

Dataset
Model NCD RCD SCD ICD

ASSIST0910 -0.499492 -0.509427 -0.429614 -0.488778

C. RQ 1

To answer research question 1, we selected the predic-
tion results from the epoch with the highest total predic-
tion accuracy (#correct predictions/#all predictions) during
the training process for each of four models. We counted
the model’s prediction accuracy for individual student and
the number of exercises answered by each student. Fig. 2
illustrates the scatter plot depicting their relationships, while
the Pearson correlation coefficient between them is computed

and presented in Table II. The results indicate that there is no
significant correlation between the model’s prediction accuracy
for individual student and the number of exercises answered
by the student. The scatter plot generated based on models’
performance on ASSIST0910 conspicuously illustrates that
there exists a certain degree of negative correlation between
two variables as the number of interactions reaches a certain
threshold. To further validate this observation, we conducted
a statistical analysis of students with over 300 records in the
training set and computed the correlation coefficient between
two variables as shown in Table III.

TABLE IV: The Pearson correlation coefficient between the
model’s accuracy on a certain exercise and the frequency of
the exercise being answered in the training set.

Dataset
Model NCD RCD SCD ICD

ASSIST0910 -0.0093 -0.007092 -0.016533 -0.016679
Junyi 0.137817 0.082181 0.081158 0.126585

D. RQ 2

As same as RQ 1, we use the prediction results of the
epoch with highest total prediction accuracy (#correct pre-
dictions/#all predictions) during the training process. Fig. 3
illustrates the scatter plot depicting the distribution of the
model’s prediction accuracy on a certain exercise and the
number of the exercise being answered in the training set.
We do not observe any evident linear relationship between
these two variables. Further computation of their Pearson
correlation coefficient is presented in Table IV. The results
indicate that there is no significant correlation between the



TABLE V: The proportion of students in each group whose predictive accuracy has achieved the maximum accuracy for
each epoch, (a-d) the statistical results of the predictive performance of the four models on the ASSIST dataset and (e-h) the
statistical results of the predictive performance of the four models on the Junyi dataset

(a) NCD ASSIST
Epoch ≤ 100 >100

1 0.0826 0.2167
2 0.1143 0.3259
3 0.1493 0.4000
4 0.1661 0.4611
5 0.1846 0.4963
6 0.2069 0.5500
7 0.2312 0.6130
8 0.2536 0.6667
9 0.2843 0.7370
10 1.0000 1.0000

(b) RCD ASSIST
Epoch ≤ 100 >100

1 0.1056 0.1685
2 0.1635 0.3389
3 0.2011 0.4556
4 0.2218 0.5074
5 0.2345 0.5352
6 0.2481 0.5630
7 0.2556 0.5852
8 0.2610 0.5926
9 0.2636 0.6037
10 1.0000 1.0000

(c) SCD ASSIST
Epoch ≤ 100 >100

1 0.0512 0.0537
2 0.1496 0.2315
3 0.2021 0.3463
4 0.2222 0.4222
5 0.2438 0.4944
6 0.2594 0.5426
7 0.2801 0.6037
8 0.3025 0.6518
9 0.3332 0.7296

10 1.0000 1.0000

(d) ICD ASSIST
Epoch ≤ 100 >100

1 0.0372 0.0574
2 0.0725 0.1315
3 0.1114 0.2037
4 0.1460 0.2685
5 0.1881 0.3370
6 0.2341 0.4444
7 0.2707 0.5259
8 0.3131 0.6167
9 0.3582 0.6981

10 1.0000 1.0000

(e) NCD Junyi
Epoch ≤ 50 >50

1 0 0
2 0.0013 0.0109
3 0.0437 0.1484
4 0.0556 0.2125
5 0.0735 0.2578
6 0.0999 0.3109
7 0.1138 0.3734
8 0.1251 0.4406
9 0.1487 0.5281
10 1.0000 1.0000

(f) RCD Junyi
Epoch ≤ 50 >50

1 0.0520 0.0625
2 0.0755 0.0797
3 0.0888 0.0984
4 0.0994 0.1156
5 0.1080 0.1328
6 0.1140 0.1563
7 0.1192 0.1766
8 0.1244 0.1906
9 0.1295 0.2109

10 1.0000 1.0000

(g) SCD Junyi
Epoch ≤ 50 >50

1 0.0393 0.0609
2 0.0611 0.0844
3 0.0765 0.1031
4 0.0867 0.1344
5 0.0972 0.1594
6 0.1103 0.2031
7 0.1241 0.2359
8 0.1501 0.3328
9 0.1851 0.4344

10 1.0000 1.0000

(h) ICD Junyi
Epoch ≤ 50 >50

1 0.0337 0.0453
2 0.0583 0.0703
3 0.0721 0.0891
4 0.0872 0.1516
5 0.0964 0.1766
6 0.1099 0.2188
7 0.1262 0.2656
8 0.1472 0.3188
9 0.1885 0.4484

10 1.0000 1.0000

model’s accuracy on a certain exercise and the frequency of
the exercise being answered.

E. RQ 3

In the previous two sections, it was observed that models
within the realm of cognitive diagnosis do not exhibit the simi-
lar behavior as typical deep learning models, namely predictive
capabilities are weaker for categories with fewer samples and
stronger for those with more samples. Surprisingly, there was
no evident correlation observed between the model’s predictive
ability and the quantity of training samples in the realm of
cognitive diagnosis. Opting for the prediction results of the
epoch with the highest overall prediction accuracy during the
training process may also potentially influence the statistical
outcomes. We compared the model’s prediction accuracy for
each student’s response performance across ten epochs, and
discovered that there is an over-fitting phenomenon in the
model’s prediction accuracy for partial students. We divided
students into two groups based on the number of exercises
they answered (split point is 100 for ASSIST0910 and 50
for Junyi). We calculated the proportion of students in each
group whose prediction accuracy has achieved the maximum
accuracy (including those have achieved the maximum accu-
racy before the current epoch) for each epoch, as shown in
Table V. Since the model was trained for only 10 epochs, the
prediction accuracy for some students reached the maximum
value in the last epoch. It remains uncertain whether there
will be an over-fitting phenomenon on these students as the
model continues to train. From the table, we can observe that

the model is more likely to be over-fitting for students with a
larger number of interactions.

TABLE VI: The Pearson correlation coefficient between the
maximum prediction accuracy for individual student achieved
during the training and the number of exercises answered by
the student, only considering students exhibiting over-fitting
phenomenon.

Dataset
Model NCD RCD SCD ICD

ASSIST0910 -0.098165 -0.149055 -0.144242 -0.086246
Junyi -0.074608 -0.152365 -0.127435 -0.071997

F. RQ 4
In Section III-E, we observed an over-fitting phenomenon

in the model’s prediction accuracy for individual student
across multiple epochs. We hypothesized that there might be
a correlation between the maximum prediction accuracy for
individual student achieved during the training and the number
of exercises answered by the student. However, the scatter plot
in Fig. 4 reveals no obvious correlation between these two
variables either. Further calculation of the Pearson correlation
coefficient between them is shown in Table VI. The results
indicate that there is no significant correlation between the
maximum prediction accuracy for individual student achieved
during the training and the number of exercises answered by
the student.

IV. CONCLUSIONS

In this work, we analyzed the impact of data imbalance
on model training in the field of deep learning-based cog-
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Fig. 3: The scatter plot depicting the distribution of the model’s prediction accuracy on a certain exercise and the number of
the exercise being answered in the training set. (a-d) Statistical results of four models on ASSIST and (e-h) statistical results
of four models on Junyi.
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Fig. 4: The scatter plot depicting the distribution of the maximum prediction accuracy for individual student achieved during
the training and the number of exercises answered by the student, only considering students exhibiting over-fitting phenomenon.
(a-d) Statistical results of four models on ASSIST and (e-h) statistical results of four models on Junyi.



nitive diagnosis. The experimental results indicate that the
model’s prediction accuracy for individual student’s response
performance is not significantly correlated to the number of
questions answered by the student. Similarly, the model’s
prediction accuracy on a certain exercise is not clearly cor-
related with the frequency of the exercise being answered.
Notably, we observed that models are more likely to be
over-fitting for students who have answered a larger number
of exercises. Cognitive diagnosis attempts to model human
beings’ cognitive status which is very complicated in fact.
We think the data imbalance problem in this field can not be
defined only from the perspective of the quantity of training
samples.

REFERENCES

[1] Wendy M Yen and Anne R Fitzpatrick. Item response theory. Educa-
tional measurement, 4:111–153, 2006.

[2] Jimmy De La Torre. Dina model and parameter estimation: A didactic.
Journal of educational and behavioral statistics, 34(1):115–130, 2009.

[3] Terry A Ackerman. Multidimensional item response theory models.
Wiley StatsRef: Statistics Reference Online, 2014.

[4] Song Cheng, Qi Liu, Enhong Chen, Zai Huang, Zhenya Huang, Yiying
Chen, Haiping Ma, and Guoping Hu. Dirt: Deep learning enhanced item
response theory for cognitive diagnosis. In Proceedings of the 28th ACM
international conference on information and knowledge management,
pages 2397–2400, 2019.

[5] Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin,
Zai Huang, and Shijin Wang. Neural cognitive diagnosis for intelligent
education systems. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 6153–6161, 2020.

[6] Yan Cheng, Meng Li, Haomai Chen, Yingying Cai, Huan Sun, Gang
Wu, Zhuang Cai, and Guanghe Zhang. Neural cognitive modeling
based on the importance of knowledge point for student performance
prediction. In 2021 16th International Conference on Computer Science
& Education (ICCSE), pages 495–499. IEEE, 2021.

[7] Shiwei Tong, Qi Liu, Runlong Yu, Wei Huang, Zhenya Huang,
Zachary A Pardos, and Weijie Jiang. Item response ranking for cognitive
diagnosis. In IJCAI, pages 1750–1756, 2021.

[8] Jie Huang, Qi Liu, Fei Wang, Zhenya Huang, Songtao Fang, Runze
Wu, Enhong Chen, Yu Su, and Shijin Wang. Group-level cognitive
diagnosis: A multi-task learning perspective. In 2021 IEEE International
Conference on Data Mining (ICDM), pages 210–219. IEEE, 2021.

[9] Xinping Wang, Caidie Huang, Jinfang Cai, and Liangyu Chen. Using
knowledge concept aggregation towards accurate cognitive diagnosis. In
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 2010–2019, 2021.

[10] Sheng Li, Quanlong Guan, Liangda Fang, Fang Xiao, Zhenyu He,
Yizhou He, and Weiqi Luo. Cognitive diagnosis focusing on knowledge
concepts. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 3272–3281, 2022.

[11] Jiatong Li, Fei Wang, Qi Liu, Mengxiao Zhu, Wei Huang, Zhenya
Huang, Enhong Chen, Yu Su, and Shijin Wang. Hiercdf: A bayesian
network-based hierarchical cognitive diagnosis framework. In Proceed-
ings of the 28th ACM SIGKDD conference on knowledge discovery and
data mining, pages 904–913, 2022.

[12] Haiping Ma, Manwei Li, Le Wu, Haifeng Zhang, Yunbo Cao, Xingyi
Zhang, and Xuemin Zhao. Knowledge-sensed cognitive diagnosis
for intelligent education platforms. In Proceedings of the 31st ACM
international conference on information & knowledge management,
pages 1451–1460, 2022.

[13] Haowen Yang, Tianlong Qi, Jin Li, Longjiang Guo, Meirui Ren, Lichen
Zhang, and Xiaoming Wang. A novel quantitative relationship neural
network for explainable cognitive diagnosis model. Knowledge-Based
Systems, 250:109156, 2022.

[14] Tianlong Qi, Meirui Ren, Longjiang Guo, Xiaokun Li, Jin Li, and Lichen
Zhang. Icd: A new interpretable cognitive diagnosis model for intelligent
tutor systems. Expert Systems with Applications, 215:119309, 2023.

[15] Weibo Gao, Qi Liu, Zhenya Huang, Yu Yin, Haoyang Bi, Mu-Chun
Wang, Jianhui Ma, Shijin Wang, and Yu Su. Rcd: Relation map driven
cognitive diagnosis for intelligent education systems. In Proceedings
of the 44th international ACM SIGIR conference on research and
development in information retrieval, pages 501–510, 2021.

[16] Yu Su, Zeyu Cheng, Jinze Wu, Yanmin Dong, Zhenya Huang, Le Wu,
Enhong Chen, Shijin Wang, and Fei Xie. Graph-based cognitive
diagnosis for intelligent tutoring systems. Knowledge-Based Systems,
253:109547, 2022.

[17] Kaifang Wu, Yonghui Yang, Kun Zhang, Le Wu, Jing Liu, and Xin
Li. Multi-relational cognitive diagnosis for intelligent education. In
CAAI International Conference on Artificial Intelligence, pages 425–
437. Springer, 2022.

[18] Shanshan Wang, Zhen Zeng, Xun Yang, and Xingyi Zhang. Self-
supervised graph learning for long-tailed cognitive diagnosis. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 110–118, 2023.

[19] Weibo Gao, Hao Wang, Qi Liu, Fei Wang, Xin Lin, Linan Yue,
Zheng Zhang, Rui Lv, and Shijin Wang. Leveraging transferable
knowledge concept graph embedding for cold-start cognitive diagnosis.
In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 983–992,
2023.


