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Abstract—Outlier detection plays a dual role in data analysis:
cleansing data to optimize the performance of downstream tasks
and identifying potentially rare valuable events or patterns.
Proximity-based methods, which are independent of data dis-
tribution assumptions, are plagued by parameter selection and
performance challenges when handling datasets with varying
densities. This study proposed a novel unsupervised algorithm
named Adaptive Density Outlier Detection (ADOD) to address
these challenges. The core innovation of ADOD involves two
main aspects: adaptive neighborhood boundaries and density
consistency scoring. First, instead of relying on a predefined
fixed radius, ADOD employs perplexity to calculate the local
scale of each data point and dynamically adjusts the neighbor-
hood boundaries according to this scale to adapt to data with
varying densities. Second, ADOD estimates local density using
a mutual neighbor graph and combines the density differences
between data points and their neighbors for outlier scores,
effectively distinguishing outliers that significantly deviate from
their surroundings. This study evaluated ADOD on one synthetic
and 32 real datasets, and compared it with 14 classical and
state-of-the-art algorithms from different categories. Extensive
experimental results demonstrated the superior performance of
ADOD, achieving the highest average accuracy across ROC,
P@N, and AP metrics. This study promotes the development
of outlier detection techniques and expands their potential for
real-time applications.

Index Terms—Outlier Detection, Unsupervised Learning,
Adaptive Density, Mutual Neighbors Graph

I. INTRODUCTION

Outlier detection identifies rare and suspicious data points
that significantly differ from the majority [1]. On the one
hand, for the majority fitting the expected pattern, outlier
detection serves as data cleaning. By effectively identifying
and removing outliers, data quality can be improved, thus
ensuring the accuracy and reliability of downstream tasks such
as predictive modeling and statistical analysis [2]. On the
other hand, the few outliers often reveal valuable events or
observations [3]. For example, in finance, outliers may indicate
fraudulent transactions, leading to significant economic losses;
in cybersecurity, outliers may imply network intrusion, result-
ing in private data leakage; in healthcare, outliers may indicate
atypical diagnostic observations, resulting in missing the best
time for treatment, or even endangering the patient’s life [3].
Therefore, accurate and efficient outlier detection improves
the quality of data analysis and aids industries in proactively
responding to potential threats and seize opportunities [4].

Outlier detection techniques can generally be divided into
five categories [3]: proximity-based, probabilistic-based, lin-
ear model-based, ensemble-based, and neural network-based
methods [5]. Among them, proximity-based methods [6] have
received considerable attention due to their high interpretabil-
ity and independence from data distribution assumptions.

Fig. 1: Decision boundaries comparison on the ThreeBlob
Outlier dataset using kNN, LOF, and ADOD: Analysis on
a synthetic dataset of 500 points from three Gaussian blobs
(σ = [0.6, 1.2, 0.3]) with 15% outliers, where white dots
represent true inliers and black dots represent true outliers.
Decision boundaries are depicted with inliers (yellow), outliers
(blue), and boundaries (red dashed lines). Error counts noted
for each algorithm.

Proximity-based methods can be further divided into distance
and density methods. Distance methods such as k Nearest
Neighbors (kNN) [7] determines outliers by analyzing the
distance to the k-th nearest neighbor, assuming that points
farther away are more likely to be outliers. However, kNN
uses the same k for all points, which limits its adaptability to
complex density variations. As shown in Fig. 1, kNN incor-
rectly detects certain outliers as inliers, leading to more errors
and the generation of irregular, scattered decision boundaries.

To alleviate this limitation, density methods such as Local
Outlier Factor (LOF) [8] proposes the concept of reachable
distance, which is defined as the maximum distance between
a point and its neighbor, and the k-distance of the neighbor.
This distance metric adjusts for the difference in distances
between points in regions with different densities and re-
duces the misclassification to a certain extent. LOF assesses
outliers by calculating the local density of each point and
its neighbors. However, its accuracy remains a concern in
regions with significant density variations [9]. As shown in
Fig. 1, for boundary points with significant density variations,
their nearest k neighbors are located in both high- and low-
density regions. However, LOF incorrectly estimates their
local densities, resulting in irregular decision boundaries.

To effectively handle data with varying densities, this study
proposed the algorithm ADOD (Adaptive Density Outlier
Detection). Inspired by the concept of perplexity in t-SNE
[10], ADOD adopts perplexity as a smoothing mechanism to
measure the effective number of neighbors, thereby avoiding
the constraints of predefined a fixed k for each point. ADOD
calculates the adaptive local scale of each data point by per-
plexity, and dynamically adjusts the neighborhood boundary
according to this scale. Based on these boundaries, it con-



structs a mutual neighbor graph to estimate the local density
and ensures inliers in regions with different densities have
similar local densities. Finally, density consistency scoring is
performed by combining the local densities of a data point
and the density differences with its mutual neighbors, thus
distinguishing the outliers that significantly deviate from their
surroundings, as shown in Fig. 1. This simple and robust algo-
rithm avoids tedious parameter tuning and exhibits excellent
performance on data from various domains.

The primary contributions include:

1) Adaptive density outlier detection: ADOD, one of the
first outlier detection algorithms, applies perplexity for
density estimation to adapt to varying densities.

2) Efficiency and scalability: ADOD, optimized with
nearest neighbor search, enhances efficiency and scal-
ability for handling large datasets.

3) Generalization to unknown data: ADOD generalizes
to unknown data through comparisons with known data,
extending its utility for real-time applications.

II. RELATED WORK

This section provides a concise overview of the five cate-
gories of outlier detection techniques and discusses represen-
tative classic and state-of-the-art algorithms for each category.

Probabilistic-based methods identify outliers by building
statistical models of data and then calculating the probabilistic
deviation of observations [3]. For example, Angle-Based Out-
lier Detection (ABOD) [11] calculates the angular difference
between each data point and all other points, whereas FastA-
BOD [11] simplifies the computation through nearest neighbor
search (NNS) [12]. Stochastic Outlier Selection (SOS) [13]
uses affinity and binding probabilities between data points to
generate random neighbor graphs but relies on the perplexity
parameter and has high memory requirements. Copula-based
Outlier Detection (COPOD) [14] and Empirical-Cumulative-
distribution-based Outlier Detection (ECOD) [15] assess the
outlierness of data points using an empirical cumulative
distribution function. COPOD models variable dependencies
using Copula models, whereas ECOD focuses on the tail
probabilities of each dimension. Both methods may be limited
in real-time environments due to the lack of relationship
exploitation between known and unknown data.

Linear model-based methods identify outliers by projecting
data into a new space and using linear transformations [3]. For
example, Principal Component Analysis (PCA) [16] assumes
linear relationships and projects data to a low-dimensional
space by analyzing the principal and secondary components,
identifying points that deviate from the principal components
as outliers. Kernel PCA (KPCA) [17] projects data to a high-
dimensional feature space through kernel functions, extracting
principal components for outlier detection. However, KPCA is
computationally expensive and unsuitable for large datasets.
One-Class Support Vector Machines (OCSVM) [18] construct
a hyperplane in a high-dimensional space, assuming that inliers
form a tight group and outliers lie outside this group. However,

OCSVM is sensitive to parameter selection and has a high
computational cost.

Ensemble-based methods improve robustness and accuracy
via the combination of results from multiple base models [3].
For example, Feature Bagging (FB) [19] combines multiple
detections based on random feature subsets but is sensitive to
subset selection. Isolation Forest (IF) [20] constructs random
tree structures to isolate data points using average path lengths.
Deep Isolation Forest (DIF) [21] uses deep learning techniques
to generate random representations and axis-parallel partitions.
However, these representations may not efficiently capture out-
lier patterns in high-dimensional and complex data, resulting
in unstable performance. Locally Selective Combination of
Parallel Outlier Ensembles (LSCP) [22] dynamically selects
the optimal detector in a local region, with its effectiveness
depending on the local region definition and detector selection.

Neural network-based methods employ deep learning mod-
els to capture complex nonlinear relationships and identify
outliers [5]. For example, Single-Objective Generative Adver-
sarial Active Learning (SO-GAAL) [23] generates potential
outliers through a single generator and improves data dis-
crimination boundaries through iterative learning with gen-
erative adversarial network (GAN), but it may encounter
the mode collapse problem. Multiple-Objective GAAL (MO-
GAAL) [23] extends SO-GAAL by using multiple generators
to enhance data diversity and reduce mode collapse risk, but at
a higher computational cost. Adversarially Learned Anomaly
Detection (ALAD) [24] combines reconstruction errors with
features obtained through adversarial learning using a bidirec-
tional GAN. Unifying Local Outlier Detection Methods via
Graph Neural Networks (LUNAR) [25] employs graph neural
networks for message passing and aggregation within local
neighborhoods to generate learnable outlier scores. However,
its performance depends on hyperparameter selection.

Proximity-based methods identify outliers by measuring
the distance or density difference between a data point and
its neighbors [3]. For example, kNN [7] and its variants
AvgKNN and MedKNN [26] identify outliers via the analysis
of distances to the k-th nearest neighbors. kNN uses the k-
th nearest distance, AvgKNN uses the average distance, and
MedKNN uses the median distance. All methods are sensitive
to the parameter k and are affected by density variations. LOF
[8] computes the local density of each data point and compares
it with its neighbors, which is also sensitive to parameter
selection. Connectivity-based Outlier Factor (COF) [27], a
variant of LOF, evaluates outlier scores by calculating the
average link distance between the data point and its neighbors
but requires high memory.

The proposed ADOD algorithm is a proximity-based
method. It determines the adaptive local density of each data
point by perplexity and makes adjustments according to the
local densities of its mutual neighbors. ADOD avoids depen-
dence on a fixed k, improves robustness and applicability,
performs well with varying densities and large datasets, and
quickly adapts to unknown data for real-time processing.
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Fig. 2: Illustration of key ADOD steps on ThreeBlob Outlier
dataset. (a) Ground truth. (b) Gaussian probability density via
adaptive local scales (higher peaks indicate denser regions). (c)
Outlier scores (The higher the bars, the greater the likelihood
of being an outlier).

III. METHODOLOGY

A. Problem Definition

We aim to perform unsupervised outlier detection in a
multidimensional dataset. The dataset is defined as X =
{x1,x2, . . . ,xn}, where each data point xi ∈ Rd is a vector
in d-dimensional space, and n denotes the number of data
points. The objective is to compute an outlier score for each
data point, denoted as si for xi, forming the outlier score
set S = {s1, s2, . . . , sn}. A higher score indicates a higher
probability of being an outlier.

B. Algorithm Description

1) Adaptive Local Scale Estimation: We use the probability
density function of the Gaussian distribution [28] to define the
influence of the neighboring data point xj on the central data
point xi and quantify it using the conditional probability pj|i
with the following expression:

pj|i =
exp(−D2

ij/2σ
2
i )∑

l ̸=i exp(−D2
il/2σ

2
i )

(1)

where Dij = ∥xi − xj∥2 denotes the Euclidean distance
between xi and xj , forming an n × n dissimilarity matrix
D in d-dimensional space. Here, σi represents the local scale
of xi. Based on σi, we can adaptively adjust the neighborhood
boundary of xi to reflect changes in local density. Although
the probability density function of the Gaussian distribution is
used to define pj|i, it does not imply that the entire dataset
conforms to a Gaussian distribution. The bell-shaped curve
of the Gaussian distribution provides a natural weight decay
mechanism [28]. This causes data points further from the
centroid to exhibit a gradually decreasing effect, which is
suitable for quantifying the strength of interactions between
data points, as shown in Fig. 2(b).

In data analysis, perplexity is commonly used as a smooth-
ing mechanism to measure the effective number of neighbors,
excelling in density estimation. It has been widely applied
in techniques such as t-SNE [10] for dimensionality reduc-
tion, DBADV [29] for clustering, and SOS [13] for outlier
detection. In contrast to SOS, which uses perplexity to assess
the affinity between data points and requires careful tuning,
ADOD uses perplexity to obtain the adaptive local scale σi

of xi, improving the adaptability to datasets with varying
densities. Although no explicit guidance is provided for setting
the perplexity, inspired by the rule of thumb in kNN [30], it is
often recommended to use an order of magnitude of

√
n for

k [31]. Similarly, we set the perplexity to correlate with the
order of magnitude of

√
n to ensure reliable density estimation

over sufficient neighbors while avoiding unnecessary computa-
tional costs associated with excessively large neighborhoods.
Experiments on parameter sensitivity analysis in Section IV
verified the effectiveness of this setting, simplifying parameter
selection and enhancing adaptability to data size. Perplexity is
defined as follows:

Perp(Pi) = 2H(Pi) (2)

where H(Pi), the entropy of the conditional probability
distribution centered on xi, is used to quantify the uncer-
tainty of the probability distribution [28]. It is calculated
as H(Pi) = −

∑
j pj|i log2 pj|i, where a higher H(Pi) in-

dicates a more uniform probability distribution within the
neighborhood of the data point, suggesting minimal density
differences. Conversely, a lower entropy signifies significant
density differences within the neighborhood.

The local scale σi is continuously adjusted by fixing the
perplexity and using a binary search [10] to ensure that
the neighborhood complexity (i.e., the number of effective
neighbors) is balanced for each data point. Thus, it adaptively
reflects the true relationships and density variations of the data
points in their local surroundings.

2) Adaptive Neighborhood Boundary Determination:
ADOD employs a quantile function [32] to determine an
adaptive neighborhood boundary for each data point, ensur-
ing that neighbors have similar densities. As the inverse of
the cumulative distribution function, the quantile function
calculates a value such that the probability of a random
variable being less than or equal to this value matches the
specified cumulative probability. This property of the quantile
function renders it suitable for determining the neighborhood
boundaries because it dynamically adjusts to the distributional
characteristics of data. The formula is expressed as follows:

ri = µ+
√
2σi · erf−1(2 · probability− 1) (3)

where erf−1(·) is the inverse of the error function that de-
termines the corresponding critical value based on cumulative
probability. Because the neighborhood is centered on each data
point xi, the mean µ is considered 0, and σi is the local scale
of xi. The probability in the formula represents the specified
cumulative probability that a random variable falls within the
calculated boundary. The cumulative probability should be
(0.5, 1) to ensure that the neighborhood boundaries are mean-
ingful. Here, we set the cumulative probability to 0.999, which
refers to the three-sigma rule [32]. This ensured that almost
all data points were included in the neighborhood of each
data point while effectively identifying and isolating potential
outliers that deviate significantly. Experiments on parameter



sensitivity analysis in Section IV verified the effectiveness of
this setting.

3) Mutual Neighbor Graph Construction: In the ADOD
algorithm, the mutual neighbor graph depicts the adjacency
between data points. This mutual connection reflects the
interactions between data points and helps identify potential
outliers. The mutual neighbor graph G is an undirected graph
consisting of a node set V and an edge set E. The node set
V contains all data points in the dataset, V = {xi | xi ∈ X}.
The edge set E includes all pairs of nodes (xi,xj) that satisfy
the mutual neighbor condition: the data point xj is within the
neighborhood boundary ri of xi, and simultaneously, xi is
within the neighborhood boundary rj of xj . To ensure that
each node pair is considered only once and to avoid self-loops,
we define the set of mutual neighborhood edges as follows,
where i < j ensures that each node pair is unique:

E = {(xi,xj) | Dij ≤ min(ri, rj), i < j} (4)

4) Local Density Estimation: In the ADOD algorithm, the
local density di of xi quantifies the number of neighbors
within its adaptive neighborhood boundary ri, reflecting the
density distribution in that area. It is defined as follows:

di =
deg(i) + 1

ri
(5)

where ri is the adaptive neighborhood boundary of xi, and
deg(i) denotes the degree of xi in the mutual neighbor graph
G, which is the number of mutual neighbors directly connected
to xi. The ”1” indicates that the data point itself is included,
ensuring that each point includes at least itself in estimating its
local density, providing a baseline density for isolated points.
In dense regions, inliers have a relatively small neighborhood
boundary with fewer mutual neighbors, whereas in sparse
regions, they exhibit a larger neighborhood boundary with
more mutual neighbors. Therefore, even if these inliers are
in regions with different densities, their local density results
remain comparable, effectively preventing misclassification
due to density differences. For outliers, which typically have
larger neighborhood boundaries but fewer mutual neighbors,
the local density is significantly lower than that of inliers.

5) Density Consistency Outlier Scoring: The outlier score
is calculated based on the combination of the local density of
the data point and the local density differences with its mutual
neighbors to identify potential outliers. The outlier score si of
xi is defined as follows:

si = d−1
i +

∑
j∈Ni

w′
ij(d

−1
j − d−1

i ) (6)

where d−1
i and d−1

j denote the inverse of the local density
of xi and its neighbor xj , respectively. The inverse of local
density reflects the relative sparsity of a data point, where a
higher value implies lower density. Consequently, such points
typically gain higher outlier scores than inliers. Furthermore,
by calculating d−1

j −d−1
i , ADOD quantifies the density differ-

ence between each data point and its mutual neighbors, thereby

Algorithm 1: ADOD

Input: Dataset X = {x1, . . . ,xn} ∈ Rn×d with n data
points and d features

Output: Outlier scores S = {s1, . . . , sn} ∈ Rn

1 Initialize perplexity = 2 · ⌊
√
n⌋, probability = 0.999

2 Calculate dissimilarity matrix D, where
Dij = ∥xi − xj∥2

3 foreach xi ∈ X do
4 Calculate adaptive local scale σi:

σi ← binary search(Di, perplexity)
5 Determine adaptive neighborhood boundary ri:

ri ←
√
2σi · erf−1(2 · probability− 1)

6 Initialize G = (V,E) with V = X and E = ∅
7 for i, j ∈ {1, . . . , n}, i < j do
8 if Dij ≤ min(ri, rj) then
9 E ← E ∪ {(xi,xj)}

10 foreach xi ∈ V do
11 di ← deg(i)+1

ri

12 foreach xi ∈ V do
13 Ni = {xj | (xi,xj) ∈ E or (xj ,xi) ∈ E}
14 foreach j ∈ Ni do
15 wij ← 1

Dij

16 Normalize weights: w′
ij ←

wij∑
l∈Ni

wil

17 si ← d−1
i +

∑
j∈Ni

w′
ij(d

−1
j − d−1

i )

18 return S = {s1, . . . , sn}

identifying those points that deviate from their surroundings.
If the neighbor of xi is in a sparser surrounding compared to
xi, d−1

j − d−1
i > 0, then its outlier score further increases.

Whereas, if it is in a denser surrounding, d−1
j − d−1

i < 0,
the outlier score further decreases. Finally, if xi is in a
homogeneous surrounding with its neighbors, the outlier score
remains unchanged.

The mutual neighbor set Ni of xi is obtained from the edge
set E as follows: Ni = {xj | (xi,xj) ∈ E or (xj ,xi) ∈
E}. The weights wij are calculated based on the Euclidean
distance Dij between xi and xj , defined by the formula
wij =

1
Dij

. These weights are then normalized to ensure that
the total sum of all neighboring weights equals 1, using the
formula w′

ij =
wij∑

l∈Ni
wil

. This process reflects the distance
relationship between each neighbor point and the current point
(i.e., the closer the distance, the greater the influence), and
balances the contribution of each neighbor to the outlier score,
as shown in Fig. 2(c).

C. Algorithm Overview

The ADOD algorithm is designed to identify potential out-
liers in the data, and its pseudocode is presented in Algorithm
1. The algorithm accepts a dataset X = {x1, . . . ,xn} ∈
Rn×d containing n data points where each data point has
d features and outputs outlier scores for all data points



Algorithm 2: ADOD for Unknown Data
Input: Unknown dataset

Xunk = {xunk
1 , . . . ,xunk

m } ∈ Rm×d with m data
points and d features, Known dataset
Xkn = {xkn

1 , . . . ,xkn
n } ∈ Rn×d

Output: Outlier scores Sunk = {sunk
1 , . . . , sunk

m } ∈ Rm

1 foreach xunk
i ∈ Xunk do

2 Calculate dissimilarity vector Dunk
i for xunk

i with
each xkn

j in Xkn: Dunk
ij = ∥xunk

i − xkn
j ∥2 for

j = 1, . . . , n
3 Calculate adaptive local scale σunk

i :
σunk
i ← binary search(Dunk

i , perplexity)
4 Determine adaptive neighborhood boundary runk

i :
runk
i ←

√
2σunk

i · erf−1(2 · probability− 1)
5 Initialize neighbor set N unk

i ← ∅
6 for j ∈ {1, . . . , n} do
7 if Dunk

ij ≤ min(runk
i , rkn

j ) then
8 N unk

i ← N unk
i ∪ {xkn

j }

9 Estimate local density dunk
i ← |N unk

i |+1

runk
i

10 foreach xkn
j ∈ N unk

i do
11 wunk

ij ← 1
Dunk

ij

12 Normalize weights: wunk′
ij ← wunk

ij∑
xkn
l

∈Nunk
i

wunk
il

13 sunk
i ← 1

dunk
i

+
∑

xkn
j ∈N unk

i
wunk′

ij

(
1
dkn
j
− 1

dunk
i

)
14 return Sunk = {sunk

1 , . . . , sunk
m }

S = {s1, . . . , sn} ∈ Rn. It begins by calculating the Euclidean
distances between all pairs of data points to form a dissimilar-
ity matrix D (line 2). For each data point xi, an adaptive local
scale σi is determined via a binary search based on perplexity
and Di, and the adaptive neighborhood boundaries ri are
computed based on this local scale and the predetermined
cumulative probability (lines 3-5). A mutual neighbor graph G
is constructed, where the edge set E includes only pairs of data
points within the neighboring boundary (lines 6-9). The local
density di of xi is determined by the number of neighbors
within its neighborhood boundary (lines 10-11). Finally, the
outlier score for each data point is calculated based on the local
density and normalized weights of the neighbors w′

ij (lines 12-
17). Through this density-consistent scoring mechanism, the
ADOD algorithm can effectively identify and quantify outlier
patterns in data, thus rendering it adaptive and robust across
various data distributions.

D. Generalization to Unknown Data

In data analysis, unknown data refers to data points added
after the initial training or model construction, which differ
from the known dataset observed during model initializa-
tion. To effectively detect outliers among these unknown
data points, an outlier detection algorithm should not only
accurately identify known data patterns, but also be able to
flexibly adapt to unknown patterns [3]. An efficient outlier

detection algorithm should leverage the known model and data
structure to comprehensively assess the degree of outlierness,
including comparing the unknown data points with known
ones regarding distance or dissimilarity, and computing the
corresponding outlier scores.

Algorithm 2 details how the ADOD algorithm evaluates
potential outliers in an unknown dataset. It receives an un-
known dataset Xunk = {xunk

1 , . . . ,xunk
m } ∈ Rm×d with m data

points, and a known dataset Xkn = {xkn
1 , . . . ,xkn

n } ∈ Rn×d

with n data points. For each unknown data point xunk
i , the

algorithm first computes the Euclidean distance between xunk
i

and all points in the known dataset, forming the dissimilarity
vector Dunk

i (line 2). Next, based on Dunk
i and the same

perplexity as the known dataset, the adaptive local scale
σunk
i for xunk

i is determined by a binary search, and then
adaptive neighborhood boundaries runk

i are calculated based on
σunk
i and the predetermined cumulative probability (lines 3-4).

Subsequently, a set of mutual neighbors N unk
i is constructed

to include the known data points that satisfy the mutual
neighbor conditions (lines 5-8). The local density dunk

i of xunk
i

is determined by the number of neighbors within its adaptive
neighborhood boundary (line 9). The outlier score sunk

i is
computed using the normalized neighbor weights and density
differences, which quantify the degree of outlierness of the
unknown data points with the known data points (lines 10-
13).

E. Complexity Analysis

The time complexity of the ADOD algorithm is analyzed
as follows: First, the adaptive local scale estimation is mainly
affected by the dissimilarity matrix computation, calculating
the Euclidean distance between all pairs of data points. The
time complexity is O(n2), where n denotes the number of data
points. Next, the time complexity of the adaptive neighborhood
boundary determination step is O(n). Mutual neighborhood
graph construction necessitates the comparison of every pair
of data points with a time complexity of O(n2). The local
density estimation iterates over all the data points with a time
complexity of O(n). Finally, the density consistency outlier
scoring step exhibits a time complexity of O(n · kavg), where
kavg is the average number of mutual neighbors used to
compute the density difference between each data point and
its mutual neighbors.

In summary, the overall time complexity of the ADOD
algorithm is O(n2). For the evaluation of unknown data, the
time complexity is similar to that of the above steps, and the
overall time complexity is O(m · n), where m denotes the
number of unknown data points.

F. Efficiency Optimization using NNS

We optimized the efficiency of the ADOD algorithm using
nearest neighbor search (NNS) [12]. This method enables the
algorithm to focus on the primary neighbors of each data point
rather than calculating all pairwise distances, significantly
increasing processing speed and reducing memory usage. As
previously discussed, the number of neighbors is typically



related to the order of magnitude of
√
n [30]. In this study, we

referred to the settings of other algorithms like t-SNE [10] and
set the number of neighbors for NNS to 3

√
n. This ensures

that sufficient local information is captured while maintaining
high computational efficiency. When evaluating unknown data
points, NNS simplifies the querying of neighbors between the
unknown and known data points. This strategy accelerates the
outlier detection process and enables the algorithm to adapt to
real-time responsiveness.

IV. EXPERIMENTS

A. Experimental Setup

1) Experimental Environment: All experiments were con-
ducted on a machine equipped with a 14-core Intel Core
i9 2.50 GHz CPU, 64GB of RAM, and an NVIDIA
GeForce RTX 3080 Ti GPU. The proposed algorithm ADOD
was implemented in Python, utilizing the faiss-gpu li-
brary [33] for NNS. The code repository is available at
https://anonymous.4open.science/r/ADOD-C218 (Anonymous
version).

2) Datasets: Table I summarizes the 32 commonly used
real datasets for outlier detection. These datasets are sourced
from two repositories: 20 from ODDS [34] and 12 from AD-
Bench [35]. They cover various fields, including healthcare,
chemistry, physics, linguistics, finance, astronomy, web, image
processing, and sociology. The total number of samples ranges
from 80 to 567,498, the number of samples after deduplication
ranges from 80 to 286,048, the number of dimensions ranges
from 3 to 500, and the percentage of outliers after dedupli-
cation ranges from 0.03% to 34.90%. To ensure the accuracy
and validity of the experiments, we removed duplicate entries
from the datasets to maintain data uniqueness. As the outlier
detection algorithms discussed in this study are unsupervised,
we used the entire dataset, applying standardized preprocess-
ing to ensure consistency when evaluating their performance
on real datasets. The labels ”1” denote outliers, and ”0” denote
inliers.

3) Baselines: To comprehensively evaluate the performance
of ADOD, we selected 14 state-of-the-art and representative
outlier detection algorithms for comparison. These include
probabilistic-based ECOD [15], FastABOD [11], and SOS
[13]; linear model-based KPCA [17] and OCSVM [18];
proximity-based LOF [8], COF [27], and kNN [7]; ensemble-
based DIF [21], FB [19], and LSCP [22]; and neural network-
based MO-GAAL [23], ALAD [24], and LUNAR [25]. De-
tailed descriptions of these algorithms are provided in Section
II. The implementation code for these algorithms can be
found in the PyOD library [36], a Python toolbox specifically
designed for outlier detection, with all algorithms configured
to use default parameter settings. For the LSCP algorithm,
we used LOF with n neighbors set to {15, 20, 25, 30} as the
detector list.

4) Evaluation Metric: We evaluated the performance by
averaging the scores from 10 independent trials, employing
the area under the receiver operating characteristic (ROC)
[36], Precision@rank n (P@N) [36], and average precision

TABLE I: Characteristics of the 32 real-world datasets.
Datasets with ” OD” and ” AD” suffixes are from ODDS
and ADBench repositories, respectively.

Dataset Total Unique Dim. %Out. Category

Hepatitis AD 80 80 19 16.25 Healthcare
wine OD 129 129 13 7.75 Chemistry
lympho OD 148 148 18 4.05 Healthcare
WPBC AD 198 198 33 23.74 Healthcare
Stamps AD 340 340 9 9.12 Document
WDBC AD 367 367 30 2.72 Healthcare
wbc OD 378 377 30 5.31 Healthcare
arrhythmia OD 452 452 274 14.60 Healthcare
pima OD 768 768 8 34.90 Healthcare
vowels OD 1456 1452 12 3.17 Linguistics
cardio OD 1831 1822 21 9.60 Healthcare
musk OD 3062 3062 166 3.17 Chemistry
Waveform AD 3443 3443 21 2.90 Physics
speech OD 3686 3686 400 1.65 Linguistics
thyroid OD 3772 3656 6 2.54 Healthcare
PageBlocks AD 5393 5393 10 9.46 Document
satimage-2 OD 5803 5801 36 1.19 Astronautics
satellite OD 6435 6435 36 31.64 Astronautics
pendigits OD 6870 6870 16 2.27 Image
annthyroid OD 7200 7062 6 7.56 Healthcare
mnist OD 7603 7603 100 9.21 Image
mammography OD 11183 7848 6 3.22 Healthcare
magic gamma AD 19020 18905 10 34.77 Physics
campaign AD 41188 41176 62 11.27 Finance
shuttle OD 49097 49097 9 7.15 Astronautics
smtp OD 95156 71230 3 0.03 Web
backdoor AD 95329 87020 196 2.16 Network
celeba AD 202599 113983 39 2.55 Image
fraud AD 284807 275661 29 0.17 Finance
cover OD 286048 286048 10 0.96 Botany
census AD 299285 223223 500 8.25 Sociology
http OD 567498 221900 3 0.03 Web

(AP) [15]. These metrics, which compare the ground truth
with the predicted scores, indicate better performance with
higher values. Due to space limitations, the results for AP
were provided in our code repository. Furthermore, we used
the critical difference (CD) diagram [37] to illustrate the statis-
tical differences, where this diagram visualizes the statistical
comparisons using the Wilcoxon signed-rank test with Holm’s
correction, with a default p-value of 0.05.

B. Parameter Sensitivity Analysis

Fig. 3(a) shows the average ROC score performance of
ADOD on 32 real datasets with different probability and per-
plexity settings. The performance was optimal for a probability
value of 0.999, with the ROC score reaching its peak of 0.852
(marked with a yellow star) at 2

√
n perplexity before gradually

decreasing. Fig. 3(b) illustrates the average P@N score perfor-
mance with different probability and perplexity settings. The
performance was also optimal when the probability value was
0.999, with the highest P@N score of 0.467 (marked with a
yellow star) at 3

√
n perplexity, which was only slightly lower

by 0.01 at 2
√
n. The P@N scores remained relatively stable

between 2
√
n and 4

√
n, with a slightly inferior performance

at 5
√
n.

Overall, the probability setting significantly impacted per-
formance. With a probability setting of 0.999, the ROC score

https://anonymous.4open.science/r/ADOD-C218
https://anonymous.4open.science/r/ADOD-C218


(a) Average ROC Score (b) Average P@N Score

Fig. 3: Impact of perplexity and probability on ADOD per-
formance. Sensitivity analysis was performed with probability
values {0.841, 0.933, 0.977, 0.994, 0.999} (1, 1.5, 2, 2.5, and
3 sigma) [32] and perplexity values {1, 2, 3, 4, 5} ×

√
n [30].

changed by 0.022, and the P@N score changed by 0.059.
These results indicate that perplexity variations have a smaller
impact on performance, demonstrating high robustness. Based
on this analysis, we recommend setting the perplexity to 2

√
n

and the probability to 0.999. Throughout the experiments,
we adopted these parameter settings to ensure the optimal
performance of the ADOD algorithm in outlier detection tasks.

C. Decision Boundaries Comparison

Fig. 4 shows the decision boundary and number of errors for
various algorithms on ThreeBlob Outlier dataset. In summary,
ADOD exhibited the lowest number of errors (34) and outper-
formed all the baselines by accurately identifying three Gaus-
sian clusters of different densities with clear decision bound-
aries. LOF, LSCP, and FastABOD exhibited relatively few
errors (36) but featured irregular decision boundaries. LSCP
presented almost the same results as LOF because LSCP is an
ensemble-based method based on LOF detector. OCSVM, with
38 errors, displayed smooth decision boundaries but merged
blobs of different densities into a single region. COF, ECOD,
DIF, MO-GAAL, SOS and ALAD failed to obtain reasonable
decision boundaries. SOS, ALAD, and KPCA reported error
numbers of 106, 120, and 148, respectively. By calculating
the number of errors, we demonstrated the performance of the
algorithms on known data. Additionally, by drawing decision
boundaries on a two-dimensional plane, we effectively high-
lighted the generalization ability of the algorithms on unknown
data points within this plane.

D. Results and Analysis on Real Dataset

Table II shows the ROC scores on real datasets. ROC scores,
or Areas Under the Curve (AUC), are calculated by plotting
ROC curves that contrast the true positive rate with the false
positive rate. ADOD ranked first on 19 out of 32 datasets,
achieving an overall average score of 0.852 and outperforming
all baseline algorithms. ADOD obtained a perfect score (1.0)
on the musk and http datasets. Despite leading only two
datasets, OCSVM achieved second place overall with an
average score of 0.817. Whereas, ECOD led in six datasets
and earned the third overall ranking with a score of 0.803. In
contrast, SOS and MO-GAAL underperformed, ranking low

Fig. 4: Decision boundaries comparison on the ThreeBlob
Outlier dataset using various outlier detection algorithms,
ranked by error counts from lowest to highest.

with average scores of 0.540 and 0.532, respectively. KPCA
performed the worst, with an average score of only 0.483,
ranking 15th. It is worth noting that certain algorithms failed to
complete the computation because of out-of-memory (O/M) or
out-of-time (O/T) issues on specific large or high-dimensional
datasets, with a single runtime limit of 12 hours. For instance,
SOS, KPCA, and COF encountered out-of-memory issues on
certain datasets, whereas LSCP and MO-GAAL were plagued
by timeouts.

Table III shows the P@N scores on real datasets. P@N
measures the proportion of true outliers among the first N
predictions of the model, where N denotes the number of true
outliers in the dataset. ADOD ranked first on 14 out of 32
datasets, with an overall average score of 0.457, significantly
outperforming all the baselines. ADOD achieved a perfect
score of 1.0 on the musk dataset. OCSVM followed in terms
of overall performance, ranking first on four datasets, with
an average score of 0.385. The scores of ADOD improved by
approximately 18.70% compared to the runner-up OCSVM. In
contrast, SOS performed the worst, with an average score of
only 0.126, ranking 15th. Notably, several algorithms scored
zero on specific datasets, which may be attributed to two



TABLE II: ROC performance on real datasets: highest scores in bold; ranking in parentheses (lower is better). Notations: N/A
(No Results), O/M (Out-of-Memory, >64GB), O/T (Out-of-Time, >12h).

Datasets ECOD FastABOD SOS KPCA OCSVM LOF COF kNN DIF FB LSCP MO-GAAL ALAD LUNAR ADOD

Hepatitis 0.739(4) 0.620(10) 0.480(12) 0.431(15) 0.721(5) 0.710(7) 0.479(13) 0.740(3) 0.720(6) 0.709(8) 0.762(2) 0.700(9) 0.479(13) 0.606(11) 0.824(1)
wine 0.733(5) 0.433(12) 0.477(9) 0.291(14) 0.696(6) 0.886(3) 0.302(13) 0.546(8) 0.634(7) 0.883(4) 0.898(2) 0.077(15) 0.476(10) 0.475(11) 0.967(1)
lympho 0.997(1) 0.876(9) 0.617(14) 0.816(11) 0.975(3) 0.970(4) 0.864(10) 0.967(7) 0.793(12) 0.969(6) 0.970(4) 0.583(15) 0.696(13) 0.921(8) 0.981(2)
WPBC 0.481(9) 0.466(13) 0.463(15) 0.471(12) 0.485(8) 0.519(1) 0.474(11) 0.501(7) 0.504(6) 0.514(3) 0.517(2) 0.478(10) 0.465(14) 0.514(3) 0.507(5)
Stamps 0.876(2) 0.731(6) 0.455(15) 0.571(12) 0.872(3) 0.604(11) 0.540(14) 0.833(5) 0.869(4) 0.635(9) 0.698(7) 0.628(10) 0.558(13) 0.684(8) 0.912(1)
WDBC 0.971(7) 0.921(11) 0.501(14) 0.722(12) 0.983(3) 0.982(4) 0.947(8) 0.977(6) 0.922(10) 0.984(2) 0.981(5) 0.068(15) 0.704(13) 0.937(9) 0.992(1)
wbc 0.915(8) 0.915(8) 0.622(13) 0.466(14) 0.949(2) 0.945(5) 0.898(10) 0.951(1) 0.877(11) 0.949(2) 0.945(5) 0.070(15) 0.659(12) 0.939(7) 0.946(4)
arrhythmia 0.805(1) 0.748(11) 0.628(12) 0.589(14) 0.774(3) 0.760(9) 0.772(4) 0.768(6) 0.786(2) 0.757(10) 0.762(7) 0.612(13) 0.533(15) 0.772(4) 0.761(8)
pima 0.594(10) 0.675(4) 0.531(13) 0.492(14) 0.624(6) 0.603(7) 0.591(11) 0.714(2) 0.673(5) 0.602(8) 0.602(8) 0.306(15) 0.537(12) 0.687(3) 0.735(1)
vowels 0.605(11) 0.985(1) 0.652(10) 0.562(12) 0.793(9) 0.943(4) 0.975(2) 0.975(2) 0.536(13) 0.942(5) 0.942(5) 0.100(15) 0.536(13) 0.942(5) 0.860(8)
cardio 0.938(2) 0.548(10) 0.538(13) 0.537(14) 0.935(3) 0.544(12) 0.567(9) 0.710(5) 0.905(4) 0.578(8) 0.548(10) 0.379(15) 0.600(7) 0.618(6) 0.946(1)
musk 0.956(3) 0.054(15) 0.454(13) 0.498(12) 1.000(1) 0.637(6) 0.560(9) 0.759(4) 0.540(11) 0.619(7) 0.612(8) 0.674(5) 0.550(10) 0.236(14) 1.000(1)
Waveform 0.604(11) 0.654(10) 0.595(12) 0.507(14) 0.672(9) 0.708(6) 0.697(7) 0.734(2) 0.693(8) 0.731(3) 0.718(4) 0.436(15) 0.509(13) 0.710(5) 0.786(1)
speech 0.470(12) 0.751(1) 0.648(2) 0.442(15) 0.466(13) 0.508(7) 0.532(5) 0.485(10) 0.472(11) 0.507(8) 0.500(9) 0.455(14) 0.517(6) 0.536(4) 0.620(3)
thyroid 0.976(1) 0.943(5) 0.529(14) 0.060(15) 0.957(4) 0.704(12) 0.609(13) 0.959(3) 0.712(11) 0.750(9) 0.751(8) 0.869(7) 0.717(10) 0.935(6) 0.970(2)
PageBlocks 0.914(3) 0.750(8) 0.512(14) 0.357(15) 0.915(2) 0.725(10) 0.623(13) 0.855(4) 0.814(5) 0.782(6) 0.740(9) 0.719(11) 0.704(12) 0.761(7) 0.937(1)
satimage-2 0.965(4) 0.812(8) 0.493(15) 0.561(11) 0.997(2) 0.534(13) 0.565(10) 0.936(5) 0.995(3) 0.528(14) 0.545(12) 0.899(6) 0.694(9) 0.878(7) 0.998(1)
satellite 0.583(7) 0.555(9) 0.466(15) 0.572(8) 0.664(4) 0.546(11) 0.536(13) 0.672(2) 0.650(5) 0.542(12) 0.554(10) 0.669(3) 0.532(14) 0.639(6) 0.745(1)
pendigits 0.927(3) 0.673(8) 0.505(12) 0.603(9) 0.931(2) 0.499(13) 0.522(11) 0.744(5) 0.912(4) 0.489(15) 0.497(14) 0.713(6) 0.523(10) 0.688(7) 0.940(1)
annthyroid 0.784(4) 0.830(1) 0.624(11) 0.318(15) 0.675(10) 0.743(6) 0.727(8) 0.803(3) 0.546(13) 0.804(2) 0.750(5) 0.624(11) 0.536(14) 0.729(7) 0.697(9)
mnist 0.746(6) 0.774(4) N/A 0.517(14) 0.850(2) 0.679(10) 0.635(11) 0.841(3) 0.730(7) 0.681(9) 0.696(8) 0.559(13) 0.560(12) 0.766(5) 0.877(1)
mammography 0.886(1) 0.756(6) 0.535(14) 0.405(15) 0.844(2) 0.659(10) 0.604(12) 0.797(4) 0.542(13) 0.669(9) 0.677(8) 0.712(7) 0.606(11) 0.788(5) 0.807(3)
magic gamma 0.639(11) 0.798(3) 0.575(12) 0.222(15) 0.675(9) 0.697(8) 0.648(10) 0.815(2) 0.703(6) 0.715(5) 0.700(7) 0.531(14) 0.557(13) 0.819(1) 0.728(4)
campaign 0.770(1) 0.732(4) 0.579(12) 0.529(14) 0.737(3) 0.621(9) 0.595(11) 0.741(2) 0.559(13) 0.605(10) 0.631(7) 0.622(8) 0.529(14) 0.660(6) 0.705(5)
shuttle 0.993(1) 0.617(10) 0.498(15) 0.843(6) 0.992(2) 0.523(12) 0.522(13) 0.640(8) 0.984(3) 0.509(14) 0.525(11) 0.733(7) 0.847(5) 0.623(9) 0.949(4)
smtp 0.907(7) 0.945(3) 0.510(14) 0.181(15) 0.923(5) 0.902(8) 0.730(12) 0.951(2) 0.737(11) 0.894(9) 0.919(6) 0.615(13) 0.787(10) 0.939(4) 0.961(1)
backdoor 0.886(2) 0.717(10) O/M O/M 0.886(2) 0.787(6) 0.739(9) 0.783(7) 0.745(8) 0.796(5) 0.807(4) O/T 0.702(11) 0.566(12) 0.912(1)
celeba 0.701(3) 0.415(11) O/M O/M 0.719(2) 0.489(9) O/M 0.630(4) 0.491(8) 0.507(7) 0.485(10) O/T 0.528(5) 0.527(6) 0.756(1)
fraud 0.947(3) 0.886(7) O/M O/M 0.952(2) 0.506(11) O/M 0.945(4) 0.912(6) 0.508(10) 0.534(9) O/T 0.679(8) 0.930(5) 0.955(1)
cover 0.920(3) 0.750(5) O/M O/M 0.952(2) 0.521(11) O/M 0.779(4) 0.589(7) 0.538(9) 0.527(10) O/T 0.589(7) 0.713(6) 0.970(1)
census 0.488(9) 0.565(1) O/M O/M 0.542(3) 0.532(5) O/M 0.551(2) 0.335(10) 0.518(6) O/T O/T 0.489(8) 0.517(7) 0.535(4)
http 0.995(4) 0.981(6) O/M O/M 1.000(1) 0.638(11) O/M 0.996(3) 0.928(7) 0.806(9) 0.709(10) O/T 0.888(8) 0.985(5) 1.000(1)

average 0.803(3) 0.715(6) 0.540(13) 0.483(15) 0.817(2) 0.676(10) 0.639(11) 0.784(4) 0.713(7) 0.688(9) 0.694(8) 0.532(14) 0.603(12) 0.720(5) 0.852(1)

TABLE III: P@N performance on real datasets: highest scores in bold; ranking in parentheses (lower is better). Notations:
N/A (No Results), O/M (Out-of-Memory, >64GB), O/T (Out-of-Time, >12h).

Datasets ECOD FastABOD SOS KPCA OCSVM LOF COF kNN DIF FB LSCP MO-GAAL ALAD LUNAR ADOD

Hepatitis 0.308(4) 0.000(14) 0.077(12) 0.083(11) 0.231(7) 0.231(7) 0.000(14) 0.308(4) 0.215(9) 0.254(6) 0.354(2) 0.338(3) 0.154(10) 0.069(13) 0.385(1)
wine 0.100(5) 0.000(8) 0.000(8) 0.000(8) 0.000(8) 0.100(5) 0.000(8) 0.000(8) 0.130(4) 0.150(3) 0.200(2) 0.000(8) 0.060(7) 0.000(8) 0.600(1)
lympho 0.833(1) 0.500(8) 0.000(15) 0.167(14) 0.667(2) 0.667(2) 0.500(8) 0.667(2) 0.433(11) 0.667(2) 0.667(2) 0.267(12) 0.217(13) 0.500(8) 0.667(2)
WPBC 0.128(14) 0.128(14) 0.234(2) 0.238(1) 0.170(7) 0.170(7) 0.170(7) 0.170(7) 0.162(12) 0.179(6) 0.181(5) 0.223(3) 0.217(4) 0.160(13) 0.170(7)
Stamps 0.290(2) 0.161(13) 0.032(15) 0.241(3) 0.194(6) 0.194(6) 0.194(6) 0.194(6) 0.374(1) 0.190(12) 0.194(6) 0.229(4) 0.097(14) 0.203(5) 0.194(6)
WDBC 0.400(5) 0.200(10) 0.100(14) 0.400(5) 0.500(2) 0.400(5) 0.200(10) 0.400(5) 0.120(13) 0.470(3) 0.470(3) 0.000(15) 0.180(12) 0.320(9) 0.800(1)
wbc 0.450(8) 0.300(11) 0.100(14) 0.200(12) 0.500(5) 0.550(2) 0.350(10) 0.500(5) 0.360(9) 0.570(1) 0.500(5) 0.000(15) 0.145(13) 0.535(4) 0.550(2)
arrhythmia 0.485(1) 0.379(9) 0.288(13) 0.390(8) 0.424(3) 0.379(9) 0.409(5) 0.409(5) 0.468(2) 0.370(12) 0.379(9) 0.280(14) 0.194(15) 0.417(4) 0.394(7)
pima 0.455(7) 0.530(3) 0.347(13) 0.329(14) 0.478(6) 0.440(8) 0.422(11) 0.545(2) 0.485(5) 0.439(9) 0.434(10) 0.195(15) 0.385(12) 0.526(4) 0.556(1)
vowels 0.174(11) 0.804(1) 0.283(9) 0.100(12) 0.261(10) 0.304(8) 0.609(2) 0.478(4) 0.024(14) 0.322(6) 0.311(7) 0.000(15) 0.035(13) 0.480(3) 0.370(5)
cardio 0.531(3) 0.229(7) 0.109(14) 0.179(10) 0.503(4) 0.160(12) 0.217(8) 0.337(5) 0.535(2) 0.157(13) 0.167(11) 0.082(15) 0.200(9) 0.265(6) 0.651(1)
musk 0.495(3) 0.000(15) 0.062(11) 0.302(4) 1.000(1) 0.258(6) 0.206(9) 0.237(8) 0.012(14) 0.243(7) 0.268(5) 0.068(10) 0.044(12) 0.037(13) 1.000(1)
Waveform 0.040(13) 0.050(10) 0.050(10) 0.138(3) 0.090(9) 0.100(7) 0.100(7) 0.150(2) 0.042(12) 0.128(5) 0.118(6) 0.035(14) 0.032(15) 0.131(4) 0.320(1)
speech 0.033(6) 0.147(1) 0.098(2) 0.049(4) 0.033(6) 0.033(6) 0.016(13) 0.016(13) 0.028(11) 0.061(3) 0.033(6) 0.011(15) 0.021(12) 0.038(5) 0.033(6)
thyroid 0.548(2) 0.237(6) 0.021(14) 0.000(15) 0.387(3) 0.118(9) 0.065(13) 0.269(5) 0.065(12) 0.073(11) 0.139(8) 0.362(4) 0.117(10) 0.222(7) 0.570(1)
PageBlocks 0.431(4) 0.400(5) 0.090(14) 0.071(15) 0.494(2) 0.349(11) 0.304(12) 0.486(3) 0.350(10) 0.374(8) 0.352(9) 0.391(6) 0.303(13) 0.376(7) 0.612(1)
satimage-2 0.609(4) 0.174(7) 0.029(14) 0.129(10) 0.927(1) 0.087(13) 0.159(8) 0.377(5) 0.912(3) 0.096(12) 0.101(11) 0.000(15) 0.201(6) 0.151(9) 0.913(2)
satellite 0.449(7) 0.372(13) 0.262(15) 0.384(8) 0.538(2) 0.376(11) 0.380(9) 0.492(4) 0.482(5) 0.374(12) 0.377(10) 0.493(3) 0.349(14) 0.463(6) 0.604(1)
pendigits 0.359(1) 0.077(11) 0.019(15) 0.136(5) 0.340(2) 0.083(8) 0.070(13) 0.103(6) 0.153(3) 0.085(7) 0.083(8) 0.071(12) 0.053(14) 0.078(10) 0.147(4)
annthyroid 0.305(3) 0.313(1) 0.219(11) 0.073(15) 0.245(7) 0.242(9) 0.229(10) 0.313(1) 0.092(14) 0.254(5) 0.247(6) 0.113(12) 0.107(13) 0.243(8) 0.298(4)
mnist 0.180(11) 0.350(5) N/A 0.167(12) 0.387(3) 0.294(8) 0.264(9) 0.424(2) 0.232(10) 0.297(7) 0.315(6) 0.154(14) 0.155(13) 0.374(4) 0.449(1)
mammography 0.371(1) 0.190(7) 0.047(12) 0.043(13) 0.269(3) 0.182(8) 0.130(10) 0.221(4) 0.003(14) 0.136(9) 0.202(5) 0.000(15) 0.110(11) 0.198(6) 0.285(2)
magic gamma 0.460(11) 0.638(3) 0.414(12) 0.122(15) 0.525(8) 0.523(9) 0.483(10) 0.648(2) 0.550(4) 0.547(6) 0.527(7) 0.409(13) 0.404(14) 0.659(1) 0.549(5)
campaign 0.393(1) 0.296(5) 0.192(10) 0.016(15) 0.367(2) 0.209(9) 0.182(11) 0.328(3) 0.145(14) 0.156(12) 0.222(8) 0.270(6) 0.147(13) 0.255(7) 0.328(3)
shuttle 0.868(3) 0.193(9) 0.076(15) 0.336(6) 0.956(1) 0.125(11) 0.112(13) 0.214(8) 0.952(2) 0.097(14) 0.125(11) 0.280(7) 0.503(4) 0.192(9) 0.408(5)
smtp 0.714(1) 0.095(7) 0.000(10) 0.000(10) 0.571(3) 0.000(10) 0.000(10) 0.286(4) 0.133(6) 0.000(10) 0.143(5) 0.000(10) 0.038(8) 0.029(9) 0.667(2)
backdoor 0.137(11) 0.318(8) O/M O/M 0.548(2) 0.475(3) 0.456(5) 0.436(6) 0.030(12) 0.374(7) 0.475(3) O/T 0.227(9) 0.185(10) 0.549(1)
celeba 0.134(2) 0.000(11) O/M O/M 0.138(1) 0.021(9) O/M 0.051(4) 0.028(6) 0.028(6) 0.021(9) O/T 0.041(5) 0.028(6) 0.069(3)
fraud 0.294(2) 0.046(7) O/M O/M 0.076(6) 0.000(9) O/M 0.093(5) 0.316(1) 0.000(9) 0.000(9) O/T 0.035(8) 0.197(4) 0.271(3)
cover 0.164(2) 0.053(6) O/M O/M 0.076(4) 0.034(8) O/M 0.085(3) 0.013(10) 0.030(9) 0.037(7) O/T 0.005(11) 0.060(5) 0.277(1)
census 0.046(9) 0.097(1) O/M O/M 0.064(6) 0.087(3) O/M 0.095(2) 0.025(10) 0.053(8) O/T O/T 0.081(4) 0.070(5) 0.054(7)
http 0.278(4) 0.250(5) O/M O/M 0.361(2) 0.139(7) O/M 0.292(3) 0.006(11) 0.019(10) 0.111(8) O/T 0.156(6) 0.060(9) 0.875(1)

average 0.358(3) 0.235(7) 0.126(15) 0.165(12) 0.385(2) 0.229(10) 0.231(9) 0.301(4) 0.246(6) 0.225(11) 0.250(5) 0.164(13) 0.157(14) 0.235(7) 0.457(1)

main factors: challenging characteristics of datasets (such as
wine, smtp, and fraud) and inadequate adaptation of some
algorithms (such as FastABOD, SOS, KPCA, COF, and MO-
GAAL). These results further highlight the robustness and

excellent performance of ADOD in handling diverse types of
real datasets.

Fig. 5 shows the CD between the 15 outlier detection
algorithms regarding ROC and P@N scores on 25 datasets



(a) CD diagram of ROC

(b) CD diagram of P@N

Fig. 5: CD diagram illustrating pairwise statistical difference
comparison: ADOD outperforms baselines on ROC and P@N,
with statistically significant results on P@N.

following the removal of those containing N/A, O/T, and
O/M. ADOD ranked first in 13 out of 25 datasets based on
ROC scores and in 10 out of 25 datasets according to P@N
scores, achieving the highest average rank across both metrics.
ADOD demonstrated statistically significant differences in
P@N scores compared to other algorithms, indicated by the
lack of connections between ADOD and the other algorithms
in the CD diagram. kNN, OCSVM, and ECOD also performed
well in both evaluations, usually ranking high. The algorithms
with poor performance included KPCA, COF, MO-GAAL,
ALAD, and SOS, which ranked low on both metrics.

E. Runtime Analysis

As shown in Fig. 6, ECOD exhibited the shortest runtime.
ADOD*, the original ADOD algorithm without NNS, ranked
6th with an average time of 42s but suffered from out-of-
memory errors on datasets exceeding 200k samples. In con-
trast, ADOD optimized with NNS ranked 5th with an average
time of 33s, maintaining a low and stable runtime across
most datasets and demonstrating its efficiency and reliability
in handling large datasets. For example, ADOD (49s) was
approximately 12.8 times faster than ADOD* (629s) on the
celeba dataset (114k). SOS, COF, and KPCA encountered out-
of-memory errors when processing the backdoor (87k) and
celeba (114k) datasets. LSCP (average time: 1288s) and MO-
GAAL (average time: 2628s) ran more than 12 hours on large
or high-dimensional datasets, showing their performance bot-
tlenecks in addressing complex tasks. The complete runtime
table is available from our code repository.

Notably, the performance difference between ADOD and
ADOD* was negligible. Comparing the performance differ-
ence on each dataset (ADOD - ADOD*), we obtained an
average difference of 0.0035 in ROC with a standard deviation
of 0.0171 and an average difference of -0.0054 in P@N

Fig. 6: Runtime comparison of 16 algorithms on 32 datasets.
Boxplot illustrates median, quartiles, and outliers of log-scaled
runtime for each algorithm, sorted by their average runtime.
Time table is available from our code repository.

with a standard deviation of 0.0394. Thus, optimization using
NNS improves efficiency and reduces memory overhead while
remaining consistent in terms of performance compared with
the original algorithm.

F. Visualization on Real Datasets

The first column of Fig. 7 shows the visualization of the
musk dataset. ADOD achieved ROC and P@N scores of
1.0, indicating that it accurately identified all the outliers.
The visualization results show that the outliers detected by
ADOD perfectly matched the distribution of the true labels and
were located in separate clusters far from the main clusters.
The second column of Fig. 7 shows the visualization of the
magic gamma dataset. ADOD achieved ROC and P@N scores
of 0.728 and 0.549, respectively. In the ground truth, outliers
were scattered throughout the data distribution, whereas the
outliers detected by ADOD were primarily located at the edges
of the data distribution. Compared with the outliers in the
ground truth, predicted outliers appeared to better represent the
characteristics of outliers. The third column of Fig. 7 shows
the visualization of the pima dataset. ADOD achieved ROC
and P@N scores of 0.735 and 0.556, respectively. Compared
with the outliers in the ground truth, the outliers predicted
by ADOD better reflected the separation from the inliers, as
indicated by two completely red clusters of outliers.

This is an interesting discovery because we often rely
on evaluation metrics to assess the performance of outlier
detection algorithms. The visualization results revealed certain
cases where the results were more valuable even if the metric
scores were not high. Through visualization, we can intuitively
observe that the outliers detected by ADOD on certain datasets
are more consistent with human intuition and are typically
located at the edges of the data distributions or form separate
small clusters.



Fig. 7: Visualization of musk, magic gamma, and pima
datasets using UMAP [38], comparing ground truth labels (first
row) and ADOD predictions (second row) with inliers in blue
and outliers in red.

V. CONCLUSION

In this paper, we proposed a novel unsupervised Adaptive
Density Outlier Detection (ADOD) algorithm for handling
data with different densities. The primary innovations of
ADOD included adaptive neighborhood boundaries and den-
sity consistency scoring. In addition, we optimized ADOD
using nearest neighbor search to improve its efficiency and
reduce memory usage. The experimental results demonstrated
that ADOD significantly outperformed 14 other outlier detec-
tion algorithms from different categories in key performance
metrics, such as ROC, P@N, AP and execution time. In the pa-
rameter sensitivity analysis, we fixed the values of the optional
parameters and demonstrated their robust performance, which
enabled ADOD to be regarded as a parameter-free method in
practical applications, eliminating the need for users to tune
the parameters manually. ADOD is adaptable and scalable
while maintaining high accuracy, providing an effective outlier
detection solution and expanding its application potential in
real-time data processing.
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