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Abstract—We propose a series of data complexity metrics, which
can measure the impact of various data factors on imbalanced
classification before classifier training and testing. Our metrics can
be divided into two categories according to our understanding of
this problem. They are fundamental and non-fundamental factor
metrics. The former is designed for fundamental factors that
can independently impact the performance of imbalanced data
classification, including overlap degree (OD) and noise degree
(ND). The latter is designed for non-fundamental factors that
can influence the performance only when fundamental factors
exist, which include a small disjunct degree based on overlapped
instances (SDO) and an imbalance ratio based on overlapped
instances (IRO). We run experiments on real-world imbalanced
datasets to verify the effectiveness of the proposed metrics. The
correlation analysis of experimental results has shown that our
metrics are valid and can be used to guide the selection of suitable
solving approaches for imbalanced datasets.

I. INTRODUCTION

The classification of imbalanced data is problematic in many
application fields, including medical diagnosis [1], software
detection [2], computer vision [3], bio-informatics [4] and
others [5]. The main characteristic of this problem is the skewed
data distribution of the dataset, which means that most instances
belong to one class (the majority class), and the rest belong to
the other (the minority class). This characteristic leads to the
classification result bias toward the majority class.

Researchers have designed many techniques to handle
this problem that mainly include two kinds: data-level and
algorithm-level strategies. The former [6] aims to solve this
problem by changing the data distribution of the imbalanced
dataset to get a balanced dataset. The latter [7] addresses this
problem by increasing the importance of the minority class
in the model learning or decision process. In summary, these
solving methods aim to decrease the impact of class imbalance.

However, several studies [8], [9] have found that the class
imbalance is not the only factor that makes the classifier not
work well in the imbalanced dataset. Other data factors such
as noise, overlap, and small disjunct are more severe than class
imbalance, which can make imbalanced data classification
more challenging, as shown in Fig. 1. Hence, imbalance-
solving methods that only focus on decreasing the impact of
class imbalance are not effective when the imbalanced dataset
contains other data factors.

Since the performance of the imbalanced data classification
is strongly data-dependent, given an imbalanced dataset with
low performance on the classification, one has no idea which
data factor is the leading cause of the performance loss.
Therefore, we aim to use data complexity metrics to analyze the
relationship between the degradation of classification results

TABLE I
CORRELATION ANALYSIS RESULTS OF THE INFLUENCE OF A SINGLE DATA

FACTOR (SD IS SMALL DISJUNCT.)

Overlap Noise Imbalance SD
SVM −0.863 −0.970 0.260 −0.408
kNN −0.918 −0.978 0.361 −0.412
RF −0.877 −0.976 0.196 −0.401
DT −0.914 −0.952 0.012 −0.474

AdaBoost −0.882 −0.971 0.201 −0.401

and data factors of the training dataset, specifically noise,
overlap, and small disjunct. Although a few studies have
proposed data complexity metrics, their limitations are apparent.
Most of them reflect the overall data complexity, which can
only evaluate the difficulty of addressing this problem. Thus,
they cannot be used to assess the impact of specific data
factors and find the leading cause that makes the performance
loss. To remedy the above limitations, we propose metrics
for imbalanced datasets, which differ from prior works in
two aspects. First, we emphasize measuring the difficulty of
specific data factors for imbalanced data classification rather
than the overall difficulty. Secondly, we provide a new type
of classification for data complexity metrics based on our new
understanding of the nature of this problem.

Our new understanding of this problem originates from
analyzing the impact of various data factors. Based on the
analysis results (Details are shown in Section IV.), we can
divide data factors into two categories according to their
characteristics. The former are fundamental factors that can
independently influence the performance of imbalanced data
classification, such as noise and overlap. The latter are non-
fundamental factors that can only affect performance when
fundamental factors exist, such as class imbalance and small
disjunct. Therefore, an imbalanced data classification can be
seen as a complicated classification mainly influenced by
fundamental factors. Non-fundamental factors can enlarge the
impact of fundamental factors. If an imbalanced dataset does
not have fundamental factors, the effects of non-fundamental
factors will be very limited or even ignored.

Then, we propose two types of data complexity metrics:
fundamental factor metrics and non-fundamental factor metrics.
They are metrics designed to evaluate fundamental factors
and non-fundamental factors, respectively. The former includes
overlap degree (OD) and noise degree (ND). The latter contains
a small disjunct degree based on overlapped instances (SDO)
and an imbalance ratio based on overlapped instances (IRO).
We can use the proposed metrics to analyze the impact of



(a) The imbalanced dataset with-
out other data factors.

(b) The imbalanced dataset with
the overlap factor.

(c) The imbalanced dataset with
the small disjunct factor.

(d) The imbalanced dataset with
the noise factor.

Fig. 1. Imbalanced datasets with various data factors.

TABLE II
CORRELATION ANALYSIS RESULTS OF THE INFLUENCE OF CLASS IMBALANCE AND SMALL DISJUNCT UNDER FUNDAMENTAL FACTORS SCENARIOS

Imbalance and noise Small disjunct and noise Imbalance and overlap Small disjunct and overlap
SVM -0.989 -0.869 -0.636 -0.588
kNN -0.979 -0.720 -0.891 -0.511
RF -0.983 -0.805 -0.585 -0.489
DT -0.947 -0.875 -0.749 -0.502

AdaBoost -0.997 -0.797 -0.689 -0.462

various data factors and determine which suitable approaches
should be utilized before training on the dataset. We conduct
experiments on real-world imbalanced datasets to assess the
effectiveness of proposed metrics. The experimental results
have shown that our metrics are effective and perform better
than competing metrics.

Our main contributions lie in the following aspects: (1) We
provide a new understanding of imbalanced data classification
based on our analysis of the types of data factors. (2) We design
two types of data complexity metrics, including fundamental
factor metrics and non-fundamental factor metrics, which can
be utilized to measure the difficulty of specific data factors for
imbalanced datasets. (3) Our metrics can help researchers select
suitable approaches to tackle imbalanced data classification
before the classifier training.

We organized this paper as follows: In Section II, we provide
a new understanding of the nature of the imbalanced data
classification problem and point out weaknesses of related
work. Section III presents two types of data complexity metrics
for imbalanced datasets, which can be used to evaluate the
difficulty of data factors. We conduct experiments and verify
the effectiveness of our metrics in Section IV. In Section V,
we use specific cases to illustrate that our metrics can guide
imbalanced learning method selection. Section VI draws our
conclusions.

II. THE NATURE OF THIS PROBLEM

Researchers have designed many methods to overcome imbal-
anced data classification. These methods mainly contain data-
level and algorithm-level approaches. Data-level approaches
aim to deal with this problem by changing the data distribution
to obtain a balanced data distribution, such as SMOTE [6]
and ADASYN [10]. Algorithm-level approaches [11] handle
this challenge by increasing the importance of the minority
class in the learning process. Most of these approaches assume

that the leading cause of the deterioration of the classification
performance is class imbalance. However, several studies [8],
[9] have verified that class imbalance is not the only cause.
Other data factors, including noise, overlap, and small disjunct,
are more severe than class imbalance.

The noise appears because real-world data usually have
many inconsistencies that negatively impact the data quality.
The impact of noise is severe in the minority class for
an imbalanced dataset [12]. If we directly oversampled the
imbalanced dataset with noise, more noise will be generated
blindly, which may degrade the classification performance.
The overlap occurs when a region of the data space has a
similar number of instances from each class. It can affect
classification, particularly when the dataset is class-imbalanced.
Prati et al. [13] have found that the loss of performance is
influenced by the overlap and class imbalance. The small
disjunct occurs when instances from the same class do not
belong to a homogeneous region. Previous researchers have
found that errors of classification are concentrated most heavily
in small disjunct [14]. Japkowicz [15] has shown that the small
disjunct is more responsible for the degradation in classification
accuracy than class imbalance.

In this work, we aim to analyze further the impact of these
data factors on imbalanced data classification. We first generate
four groups of synthetic datasets that only change one data
factor and datasets without the influence of other data factors.
(Details of experiments can be seen in Section IV. Then, we
train and test them on five commonly used classifiers. Finally,
we make a correlation analysis to find the relationship between
the impact of the data factor and the performance of classifiers.
Table 1 shows that noise and overlap are strongly correlated
with the performance of classifiers. We define these data factors
as fundamental factors, as shown in Definition 1.

Definition 1: The fundamental factor for imbalanced data
classification (FIDC). The fundamental factor can indepen-



dently influence the performance of imbalanced data classifi-
cation.

By contrast, small disjunct and class imbalance have weak
correlations with the performance of classifiers. We further
analyze the impact of small disjunct and class imbalance
when imbalanced datasets contain fundamental factors. From
Table 2, we can find that if an imbalanced dataset contains
fundamental factors, small disjunct, and class imbalance are
strongly correlated with the performance of classifiers. Then, we
define small disjunct and class imbalance as non-fundamental
factors as shown in Definition 2.

Definition 2: The non-fundamental factor for imbalanced
data classification (NFIDC). The non-fundamental factor can
only influence the performance of imbalanced data classification
when fundamental factors exist.

Algorithm 1 Types of Data Factors
Input: the set of data factor Dfactor =

{factor1, factor2, ..., factorn}, Correlation analysis
results of the impact of the single data factor correlation1,
Correlation analysis results of the impact of the data factor
under fundamental factors scenarios correlation2.

1: for i← 1 to n do
2: if |correlation1| > 0.5 then
3: factori is the fundamental factor;
4: else if |correlation2| > 0.5 then
5: factori is the non-fundamental factor;
6: end if
7: end for

Output: Types of data factors.

Specifically, we use the following Algorithm 1 to distinguish
two types of data factors based on the correlation analysis
results (Details are shown in Section IV). The concepts of FIDC
and NFIDC have two advantages under the class imbalance
scenario. First, it distinguishes data factors according to whether
they can influence the performance of classifiers independently,
which provides a deeper understanding of data factors. Thus,
based on this concept, our proposed data complexity metrics
can be more specific and targeted. By contrast, existing studies
only indicate whether a data factor can affect imbalanced
data classification, but they cannot determine the differences
between the impacts of these data factors. Secondly, we
can select corresponding strategies to tackle imbalanced data
classification according to the categories of data factors that
the imbalanced dataset contains. For example, if an imbalanced
dataset has fundamental factors such as noise, we will first
apply noise-solving methods to address the noise rather than
use imbalance-solving methods directly.

We provide a new understanding of the imbalanced data
classification problem based on these two definitions. This
problem can be seen as a complicated classification mainly
influenced by fundamental factors. Non-fundamental factors
can enlarge the impact of fundamental factors. If an imbalanced

dataset does not have fundamental factors, the effects of non-
fundamental factors will be limited or even ignored.

Since the performance of the imbalanced data classification
is strongly data-dependent, given an imbalanced dataset with
low performance on the classification, one has no idea which
data factor is the leading cause of the performance loss.
Therefore, we aim to use data complexity metrics to analyze
the relationship between the degradation of classification results
and data factors of the training dataset.

The data complexity metrics for the classification problem
originated in 2002. Ho and Basu [16] proposed a seminal work
on the data complexity for classification, which studies 12
metrics that can evaluate the difficulty of the classification
problem. These metrics can help to guide the selection
of suitable classifiers for specific issues. However, studies
[17], [18] have indicated that these data complexity metrics
are ineffective when datasets are class imbalanced because
the majority class denominates the metrics values. Thus,
several researchers [19], [20] proposed complexity metrics
for imbalanced data classification. Paper [21] introduced two
data complexity metrics for the imbalanced data, which help
explain the factors responsible for the deterioration in classifier
performance. A framework complexity measurement (CM)
[20] to study the relationship between the data complexity
and imbalanced data problem was designed, which can be
used to select suitable classifiers and approaches for dealing
with imbalanced data with class overlap. Paper [22] provided a
hardness estimate from the instance level, which can understand
which instance is challenging to classify.

However, their limitations are apparent. Most of them reflect
the overall data complexity, which can only evaluate the
difficulty of addressing this problem. They cannot be used to
assess the impact of specific data factors and find the leading
cause of performance loss. Hence, we design a series of data
complexity metrics to remedy their limitations.

III. PROPOSED DATA COMPLEXITY METRICS

Based on understanding the nature of the imbalanced
data classification in the previous section, we divide our
data complexity metrics into fundamental data complexity
metrics and non-fundamental data complexity metrics. They
can measure the difficulty of fundamental factors and non-
fundamental factors, respectively.

A. Fundamental Data Complexity Metrics

1) Noise Degree (ND): For each instance in the minority
class of the imbalanced dataset, we calculate the Euclidean
distance of its neighbors and find the k nearest neighbors
based on the kNN method [23]. If the labels of all its k nearest
neighbors differ from this instance, it is a noisy instance. The
ND is defined as follows:

ND =
Nnoise

Nmin
(1)

Where Nnoise is the quantity of noisy instances in the
minority class and Nmin is the quantity of minority class



instances. The difference between ND and previous noise
metrics lies in the former, focusing on the noise of the minority
class because the performance of classifiers is mainly influenced
by noise located in the minority class.

2) Overlap Degree (OD): Intuitively, an instance can be
seen as overlapped if it has neighbors with different labels.
Thus, we measure the overlap degree based on the kNN method.
For each instance, we first calculate the Euclidean distance of
its neighbors to find the k nearest neighbors. Then the instance
overlap degree is defined as the percentage of the k neighbors
for an instance that does not have the same class label. In
addition, as we mentioned in noise degree, if the labels of all
its k nearest neighbors differ from this instance, it is noise
rather than overlap. We define instance overlap degree (IOD)
as equation (2).

IOD (xi,j) =
kNN (xi,j , D −Dj)

k − 1
(2)

Then, based on IOD, we further calculate the overlap degree
of the dataset by averaging the IOD of all minority class
instances because the minority class instances mainly influence
the performance of classifiers. We define overlap degree (OD)
as equation (3).

OD =
1

Nmin

Nmin∑
i=1

IOD (xi,j) (3)

Where Nmin is the number of minority class instances and
xi,j is the i−th instances for class j. The details of the overlap
degree are given in Algorithm 2.

Algorithm 2 Overlap Degree (OD)
Input: Dataset D, the quantity of the minority class

samples Nmin, the parameter of kNN method k.

1: for i← 1 to Nmin do
2: Calculate the number of its neighbors that have different

labels with itself: kNN (xi,j , D −Dj);
3: if kNN (xi,j , D −Dj) = k then
4: xi,j is a noise and remove it from D;
5: end if
6: end for
7: Calculate IOD by equation (2);
8: Calculate OD by equation (3);

Output: Overlap Degree (OD).

B. Non-fundamental Data Complexity Metrics

Non-fundamental factors can affect imbalanced data classifi-
cation when the dataset contains fundamental factors. Therefore,
our non-fundamental metrics measure the imbalanced dataset
with fundamental factors.

1) Imbalance Ratio Based on Overlapped Instances (IRO):
We design a metric named IRO to evaluate the imbalance ratio
of the overlapped instances. The definition of IRO is shown
as follows:

IRO =
Nomaj

Nomin
(4)

Where Nomin and Nomaj represent the quantity of over-
lapped instances in the minority and majority classes, respec-
tively.

2) Small Disjunct Degree based on Overlapped Instances
(SDO): Related work on measuring the degree of small disjunct
is very limited. Paper [24] proposed a quantitative metric for
small disjunct, an error concentration curve. However, this
metric is based on the results of classification, which cannot
be used before the classifier training and testing. In this work,
we design a metric named SDO to measure the small disjunct
degree of the overlapped instances. We first use the DBCSAN
method [25], [26] to find disjunct from overlapped instances.
DBCSAN is a density-based non-parametric clustering method
that can group closely packed points. Then, we find that we
cannot determine whether a disjunct is a small disjunct since
the definition of a small disjunct is influenced by the size of
the dataset [24]. Thus, we measure the instance small disjunct
degree (ISD) based on the largest disjunct in the dataset. For
each instance, its disjunct degree is the number of instances
in the largest disjunct divided by the number of instances in
its disjunct, as shown in equation (5). In this way, the smaller
disjunct, the larger the disjunct degree. Finally, we average
ISD for all overlapped instances to get SDO by equation (6).
The details of SDO are shown in Algorithm 3.

ISD (xi) =
disjunctmax

disjunct(xi)
(5)

SDO =
1

N

N∑
i=1

ISD (xi) (6)

C. Guidance of Usage

Table 3 summarizes our proposed data complexity metrics.
We further introduce guidance on utilizing our metrics to handle
imbalanced data classification. For researchers handling an
imbalanced dataset, one can first use our metrics to measure
the impact of various data factors. Then, we can select suitable
approaches to solve according to the metrics values. For
example, if the value of ND is very high (e.g., higher than
0.5), we should apply noise-solving approaches to address this
dataset instead of directly using imbalanced solving approaches.
By contrast, if the values of fundamental metrics are very small
or nearly 0, we can directly apply imbalance-solving approaches
to deal with the imbalanced dataset.



Algorithm 3 Small Disjunct Degree Based on Overlapped
Instances (SDO)

Input: Dataset D, the quantity of instances in the dataset
is N .

1: for i← 1 to N do
2: if IOD > 0 then
3: Use the DBSCAN method to find all clusters;
4: Calculate the number of instances for each cluster;

The number of instances for the disjunct that covers
instance xi is Disjunct(xi);

5: The cluster contains the largest number of instances
is Disjunctmax;

6: end if
7: end for
8: Calculate ISD by equation (5);
9: Calculate SDO by equation (6);

Output: Small Disjunct Degree Based on Overlapped
Instances (SDO).

IV. EXPERIMENTS

Our experiments contain two parts. We first use synthetic
datasets experiments to analyze the effects of various data
factors on imbalanced data classification. Then, we conduct
real-world dataset experiments to assess the performance of
our proposed data complexity metrics.

A. Experiments Setup

1) Baseline Classifiers: In experiments, we utilize five
commonly used classifiers: support vector machine (SVM)
[27], decision tree (DT) [28], kNN with k=5 [29], random
forest (RF) [30], and AdaBoost [31]. All classifiers apply the
default parameter in the scikit-learn library [32].

2) Evaluation Metrics: We use the area under the receiver
operating characteristic curve (AUC) score to assess classi-
fication performance. AUC is a widely used measure for
imbalanced data classification, which makes a trade-off between
misclassified positive and correctly classified negative instances
[33]. Correlation analysis can assess whether data factors
impact imbalanced data classification and the performance of
data complexity metrics. We use Spearman’s rank correlation
coefficient [34] to make a correlation analysis. This correlation
coefficient can measure the rank between two variables with a
monotonic function. The range of correlation is from -1 to 1,
where -1 or 1 illustrates a perfect monotonously decreasing or
increasing relationship, and 0 reflects no correlation between
variables.

3) Competing Data Complexity Measures: We compare our
overlap degree (OD) with three overlap measures: Fisher’s
Discriminant Ratio (F1), Volume of overlap region (F2) [16],
and degOver [19]. The definition of F1 is shown as follows.

f =
(µ1 − µ2)

2

σ2
1 + σ2

2

(7)

where µ1, µ2, σ
2
1 , σ

2
2 are the means and variances of the

two classes, respectively. We use the maximum f over all the
feature dimensions for a multidimensional problem to describe
the overlap level. F2 uses the maximum and minimum values of
each attribute per class to calculate the size of the overlapping
region. For instance, if an attribute whose values for class 0
range from 0.1 to 0.9, and the values for class 1 range from 0.6
to 1.2, then the size of the overlapping region for this attribute
is 0.3. DegOver utilizes the 5-NN approach (k=5), which finds
the 5-nearest neighbors for each sample and evaluates whether
it is located in the overlapping or non-overlapping region.

We compare our noise metric (ND) with the outlier metric [9],
which calculates the ratio of instances that belong to outliers.
Our class imbalance metric (IRO) compares with the imbalance
ratio, representing the ratio of instances in the majority and
minority classes. Our small disjunct metric (SDO) compares
with disjunct size (DS) [35]. DS first uses a slightly modified
decision tree to form disjuncts. Then it calculates the number of
instances in a disjunct divided by the number of cases covered
by the largest disjunct.

B. The Impact of Single Data Factor

In this part, we conduct synthetic datasets experiments to
analyze the impact of single data factors on imbalanced data
classification.

1) Synthetic Datasets: We generate four groups of synthetic
datasets to analyze the impact of four data factors. (1) Synthetic
class imbalance datasets: The imbalance ratio is varied and
datasets without other data factors. (2) Synthetic noise datasets:
The noise level is varied under the class imbalance scenario. (3)
Synthetic overlap datasets: The overlap level is varied under the
class imbalance scenario. (4) Synthetic small disjunct datasets:
The ratio of instances in small disjuncts varies under the class
imbalance scenario. All synthetic datasets are generated by
the scikit-learn library in Python and are binary classification
datasets with four features that follow the same Gaussian
distribution. Next, we provide more details about synthetic
datasets.

For synthetic class imbalanced datasets, the minority class
contains 100 instances, and the amount of instances in the
majority class varies in the set {100, 1000, 2000, 3000, 4000,
5000, 6000, 7000, 8000, 9000, 10000}, where IRs are from
1 to 100. For the rest synthetic datasets, we provide them
with the class imbalance scenario. The amount of instances in
the minority class is 100, and the number of instances in the
majority class varies in the set {500, 1000, 2000, 5000}, where
IRs are 5, 10, 20, and 50, respectively. Then, we describe the
characteristics of these synthetic datasets. We generate synthetic
overlap datasets with different overlap levels by changing the
distances between the centroids of two classes, varying from
completely overlapped to completely separated. The distance in
the set {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. We generate
synthetic noise datasets with different noise levels in the set {0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, where 0.05 means that 5% of the
majority class instances are labeled as the minority class and
the same amount of the minority class instances are marked as



the majority class. The distances between the centroids of two
classes for noise datasets are fixed at 2. We generate synthetic
small disjunct datasets with the ratio of instances in small
disjuncts varying in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, where
disjunct=0.1 means that 10% of the minority class instances
in small disjuncts. We display some of the synthetic datasets
in Fig. 2- 5.

2) Correlation analysis of the impact of the single data
factor: Intuitively, we can find that noise and overlap can
affect the performance of imbalanced data classification from
Fig. 2. By contrast, class imbalance and small disjunct cannot.
We further calculate the correlation analysis results. From Table
1, we can observe that noise and overlap are strongly correlated
with the performance of imbalanced data classification. But
class imbalance and small disjunct have low correlations.
Hence, we conclude that noise and overlap are data factors
that can independently influence the results of imbalanced data
classification. Class imbalance and small disjunct cannot. Thus,
noise and overlap are defined as fundamental factors according
to Algorithm 1.

C. The Impact of the Data Factor under Fundamental Factors
Scenarios

Since class imbalance and small disjunct cannot indepen-
dently decrease the performance of imbalanced data classifi-
cation, we aim to analyze further whether they can impact
performance when the dataset contains fundamental factors.
Therefore, we use four groups of synthetic datasets to analyze
their impact. (1) Synthetic class imbalance datasets with overlap.
(2) Synthetic class imbalance datasets with noise. (3) Synthetic
small disjunct datasets with overlap. (4) Synthetic small disjunct
datasets with noise. The details of the above four groups of
datasets are the same as the previous synthetic datasets, but
we set noise level = 0.1 and overlap level = 1, respectively.

From Table 2, we can find that class imbalance and
small disjunct are highly correlated with the performance of
imbalanced data classification when the dataset contains noise
or overlap. Therefore, class imbalance and small disjunct are
defined as non-fundamental factors according to Algorithm 1.

D. Real-world Datasets Experiments

1) Real-world Datasets: We use 26 real-world imbalanced
datasets from imblearn [36] to conduct experiments. For each
dataset, we calculate its ND, OD, IRO, and SDO. The details
of the datasets are shown in Table 3, S(Samples), F(Features),
IR(Imbalance ratio). From the values of data complexity metrics
on real-world datasets, we can observe that most of them have
high overlap degrees, which means that overlap is the major
cause that makes imbalanced data classification challenging.

2) Results on Real-world Datasets: The results of correlation
analysis on real-world imbalanced datasets are shown in Tables
IV - VII. For noise metrics, we can find that ND shows
high correlation values in all classifiers from Table IV. Fig. 6
provides an intuitive illustration of the correlation results on
noise metrics. ND performs better than the competing noise
metric because ND focuses on noisy instances in the minority

TABLE III
DESCRIPTION OF REAL-WORLD IMBALANCED DATASETS

Dataset S F IR OD ND IRO SDO
ecoli 336 7 8.6 0.550 0.000 12.6 0.000

optical-digits 5620 64 9.1 0.089 0.000 10.4 0.000
satimage 6435 36 9.3 0.370 0.055 8.4 0.000
pen-digits 10992 16 9.4 0.003 0.004 9.9 0.000
abalone 4177 10 9.7 0.830 0.306 10.8 0.336

sick-euthyroid 3163 42 9.8 0.780 0.352 17.6 0.000
spectrometer 531 93 11 0.281 0.111 12.1 0.000
car-eval 34 1728 21 12 0.730 0.074 12.7 0.000

isolet 7797 617 12 0.328 0.008 12.9 0.000
us-crime 1994 100 12 0.706 0.378 15.7 0.147
yeast-ml8 2417 103 13 0.931 0.725 40.3 0.274

scene 2407 294 13 0.842 0.604 22.8 0.000
libras move 360 90 14 0.687 0.000 17 0.485
thyroid-sick 3772 52 15 0.856 0.285 17.4 0.000
coil-2000 9822 85 16 0.946 0.536 36.3 0.027

arrhythmia 452 278 17 1.000 0.750 87 0.000
solar-flare-m0 1389 32 19 0.714 0.461 37.8 0.478

oil 937 49 22 0.875 0.600 44.5 0.000
car-eval 4 1728 21 26 0.825 0.000 33.6 0.000

wine quality 4898 11 26 0.935 0.566 34 0.012
letter-img 20000 16 26 0.082 0.000 26.9 0.026
yeast-me2 1484 8 28 0.750 0.555 72 0.000
webpage 34780 300 33 0.461 0.129 37.2 0.037

ozone-level 2536 72 34 1.000 0.769 165 0.000
mammography 11183 6 42 0.430 0.188 50.7 0.266

abalone-19 4177 10 130 1.000 0.875 828 0.337

TABLE IV
THE CORRELATION RESULTS FOR NOISE METRICS ON REAL-WORLD

DATASETS

outlier ND
SVM −0.549 −0.804
kNN −0.676 −0.767
RF −0.148 −0.302
DT −0.462 −0.607

AdaBoost −0.552 −0.661

TABLE V
THE CORRELATION RESULTS FOR OVERLAP METRICS ON REAL-WORLD

DATASETS

F1 F2 degOver OD
SVM −0.076 0.109 −0.364 −0.613
kNN −0.074 −0.019 −0.634 −0.965
RF −0.339 −0.270 −0.399 −0.521
DT −0.248 0.156 −0.238 −0.508

AdaBoost −0.169 0.204 −0.326 −0.584

TABLE VI
THE CORRELATION RESULTS FOR SMALL DISJUNCT METRICS ON

REAL-WORLD DATASETS

DS SDO
SVM −0.209 −0.280
kNN −0.195 −0.206
RF −0.114 −0.098
DT −0.365 −0.494

AdaBoost −0.364 −0.445



(a) distance=0, IR=5 (b) distance=1.5, IR=5 (c) distance=1.75, IR=5

Fig. 2. Synthetic overlap datasets.

(a) noise=5%, IR=5 (b) noise=10%, IR=5 (c) noise =15%, IR=5

Fig. 3. Synthetic noise datasets.

(a) small disjunct ratio = 10%, IR=5 (b) small disjunct ratio = 20%, IR=5 (c) small disjunct ratio = 30%, IR=5

Fig. 4. Synthetic small disjuncts datasets.

(a) IR=10 (b) IR=20 (c) IR=30

Fig. 5. Synthetic class imbalance datasets.



TABLE VII
THE CORRELATION RESULTS FOR CLASS IMBALANCE METRICS ON

REAL-WORLD DATASETS

IR IRO
SVM −0.253 −0.285
kNN −0.245 −0.280
RF −0.119 −0.112
DT −0.294 −0.334

AdaBoost −0.298 −0.337

class, which is the crucial part that influences the performance
of imbalanced data classification.

OD achieves the highest correlation values in all overlap
metrics, and most correlation values are larger than 0.5, as
shown in Table V. Fig. 7 provides an intuitive illustration of the
correlation results on overlap metrics. By contrast, competing
overlap metrics perform much worse than OD. F1 uses the
means and variances of two classes to calculate overlap levels,
which are dominated by the majority class. The performance
of F2 is terrible because it uses the maximum and minimum
of two classes to find overlapped regions. However, noisy
points and skewed data distribution can make the overlap
region inaccurate. Moreover, degOver assigns the same overlap
degree for all overlapped instances, which is not as accurate
as OD. In summary, OD is a proper metric to describe the
overlap degree for an imbalanced dataset. A dataset with a
high OD value has a serious overlapped issue.

For class imbalance and small disjunct metrics, IRO and
SDO have better performance than competing metrics, as shown
in Table VI and Table VII. However, as we mentioned before,
both class imbalance and small disjunct are non-fundamental
factors; we may not directly use them to measure the dataset.
IRO and SDO can be applied to assess the influence of class
imbalance and small disjunct on imbalanced datasets with
overlap issues.

V. DISCUSSION

This section explicitly studies two real-world imbalanced
datasets from Table IV: letter-img and yeast-ml8. The letter-
img dataset has IR = 26, which is high class imbalanced,
but OD=0.0821 and ND=0, which means that the impact
of overlap and noise is very small. Thus, we can handle
this dataset by considering decreasing the effects of class
imbalance rather than other data factors. This work utilizes four
commonly used data-level class imbalance-solving approaches:
SMOTE [6], ADASYN [10], Random over-sampling (ROS),
and Random under-sampling (RUS). Table VIII shows the
AUC scores of applying imbalance-solving approaches on
various classifiers. We find that most classifiers perform well,
even without using imbalance-solving strategies. Although the
AUC scores in SVM and RF classifiers are low, they improve
significantly by applying imbalance-solving techniques. This
example illustrates that we can use our metrics to evaluate the
impact of fundamental factors on imbalanced data classification.
We can directly apply imbalance-solving methods without

TABLE VIII
THE RESULTS ON LETTER-IMG DATASET

None SMOTE ADASYN ROS RUS
SVM 0.8085 0.9499 0.9261 0.9420 0.9493
KNN 0.9892 0.9984 0.9983 0.9989 0.9582
RF 0.5000 0.9293 0.9526 0.9321 0.9482
DT 0.9643 0.9629 0.9566 0.9536 0.9660

AdaBoost 0.9630 0.9718 0.9794 0.9813 0.9733

TABLE IX
THE RESULTS ON YEAST-ML8 DATASET

None SMOTE ADASYN ROS RUS
SVM 0.5000 0.5194 0.5217 0.5162 0.5215
KNN 0.5091 0.5048 0.5162 0.5120 0.5680
RF 0.5000 0.5742 0.5492 0.5299 0.5783
DT 0.4549 0.5211 0.4801 0.5174 0.5443

AdaBoost 0.5114 0.5096 0.4824 0.4688 0.5576

considering fundamental factors to address this dataset when
values of fundamental factors metrics are low.

In contrast, the yeast-ml8 dataset has IR=13, which is not
high class imbalanced compared with the letter-img dataset,
but OD=0.9318 and ND=0.7250, which means that the dataset
is heavily influenced by overlap and noise. Table IX shows
the AUC scores of using imbalance-solving approaches on
various classifiers. We can observe that all classifiers perform
poorly. The improvement from imbalanced solving techniques
is also minimal. Some are near or equal to 0. This example
shows that traditional imbalance-solving approaches are useless
when imbalanced datasets contain fundamental data factors.
This comparison again verifies that the class imbalance is
not the leading cause of the degradation of imbalanced data
classification since the letter-img dataset has a higher imbalance
ratio than the yeast-ml8 dataset. Still, the former is much more
challenging to solve than the latter.

VI. CONCLUSION

In this study, we propose a new understanding of imbalanced
data classification based on the types of data factors. We
divide data factors into two categories: fundamental and non-
fundamental factors. The former can independently affect
the performance of imbalanced data classification, and the
latter cannot. The latter influences the performance when the
imbalanced dataset contains fundamental factors. Therefore,
imbalanced data classification can be seen as a complicated
problem mainly influenced by fundamental factors, and non-
fundamental factors can enlarge the impact of fundamental
factors. Then we propose data complexity metrics overlap
degree (OD) and noise degree (ND) for fundamental factors.
For non-fundamental factors, we present a small disjunct degree
based on overlapped instances (SDO) and an imbalance ratio
based on overlapped instances (IRO). The experiments on real-
world imbalanced datasets have shown that our metrics can be
applied to analyze the intrinsic data factors for an imbalanced
dataset before training and testing. The values of metrics can
determine which addressing approaches are suitable to handle
this imbalanced dataset.



(a) The correlation results of outlier metric. (b) The correlation results of noise degree.

Fig. 6. The correlation results of Noise metrics.

(a) The correlation results of F1. (b) The correlation results of F2.

(c) The correlation results of degOver. (d) The correlation results of Overlap Degree.

Fig. 7. The correlation results of Overlap metrics.
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