Employing Explanations for Effective Image
Classification
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Abstract—The accurate classification of objects is essential for
numerous real-world applications, including autonomous naviga-
tion, environmental monitoring, and urban planning. However,
standard loss functions for neural network-based image classifi-
cation may cause the learning process to focus on confounding
features that exhibit spurious correlation with the class label of
an image. Incorporating ground-truth segmentations into the loss
functions can address this issue by ensuring that models learn to
recognize and accurately classify images based on the objects they
contain, by ensuring a focus on the features of the actual objects.
This paper introduces segment overlap loss (SO-Loss), a simple
yet novel method to incorporate strong supervision provided by
ground-truth segmentations to improve classification accuracy.
This loss is based on the idea that the explanation of an image
classification, provided by a method such as GradCAM, should be
consistent with the corresponding ground-truth segmentation. We
evaluate our approach on four image classification datasets for
which ground-truth segmentation masks are available, combining
the new segment overlap loss with standard cross-entropy loss.
We also consider a refinement of our approach where the ground-
truth segmentation masks are blurred before the classification
model is trained using this hybrid loss. Our findings indicate that
significant improvements in accuracy can be obtained by using
SO-Loss together with traditional cross-entropy loss, highlighting
the importance of loss function selection in classification tasks.

Index Terms—image classification, convolutional neural net-
works, vision transformers, explainability

I. INTRODUCTION

Deep neural networks, particularly convolutional neural net-
works (CNNs) and vision transformers (ViTs), are able to learn
complex patterns and concepts from training data and have
become the standard approach to tackle image classification
tasks. However, recent studies have highlighted a critical issue:
CNNs and ViTs often learn to discriminate image categories
based on correlated features rather than features of the salient
objects in the images. This can lead to poor generalization, es-
pecially in crowded scenes where multiple objects are present.
Moreover, relying on proxy or confounding features that do
not actually represent the objects of interest can compromise
the models’ robustness and reliability.

Fig. 1 shows some examples of GradCAM [1] explanations
of classifications obtained from a deep image classification
model illustrating cases the model’s (correct) classifications
are based on spurious correlations.
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Fig. 1.
spurious correlations. For classifying an airplane (left), the network focuses
on the runway; for classifying a boat (center), it focuses on the water; for
classifying a bird (right), it focuses on the sky.

Examples of GradCAM explanations on common datasets showing

Providing explanations for the predictions of deep neural
networks has become a key research focus, aiming to enhance
the transparency and trust in these models [2]. Explainability
methods such as GradCAM help visualize the regions of an
image that a model considers important for classification.
These methods can help identify spurious correlations that the
network may have learned from biased data. In this paper,
we investigate whether we can profitably use such methods
during training: we propose a novel loss function, segment
overlap loss (SO-Loss), designed to increase the alignment
between GradCAM explanations and the actual object masks,
yielding a strongly supervised training approach that leverages
segmentation masks to improve image classification.

The objective of our approach is to enhance the reliability
and robustness of neural network decision-making processes,
thereby increasing the trustworthiness of these models. It is
important to acknowledge that the outputs of interpretability
methods such as GradCAM can exhibit sensitivity to minor
perturbations in the input image (see Fig. 2). Our method
explicitly mitigates this issue by incorporating explanations
derived from multiple views of an image, ensuring a more
stable and consistent result.



Fig. 2. Changes in the saliency map of the GradCAM explanation resulting from rotations and flips of the input image.

We evaluate the proposed SO-Loss on a variety of image
classification datasets, demonstrating its efficacy in enhanc-
ing both classification accuracy and the alignment between
GradCAM explanations and ground-truth masks. Our principal
contributions in this paper are summarized as follows:

1) We introduce a novel loss function, SO-Loss, designed
to provide strong supervision in image classification
tasks.

2) We demonstrate that our method significantly improves
classification accuracy across multiple datasets.

3) We demonstrate that SO-Loss better aligns the Grad-
CAM explanations with the salient objects in the images.

4) We conduct comprehensive ablation studies to investi-
gate the impact of various hyperparameter choices on
the performance of our approach.

By enabling the use of explanations in conjunction with
ground-truth segmentations when training deep image classi-
fication models, our work aims to support the applicability of
such models in tasks where correct explanations of classifica-
tions are critical.

The rest of the paper is organized as follows: Section II
presents the related work, providing an overview of exist-
ing methods in saliency-based interpretation and explanation-
guided learning. Section III details our proposed methods,
including the formulation of the SO-Loss. Section IV describes
the datasets, model architectures, and training procedures.
Section V presents the results. Section VI conducts an ablative
study, analyzing the impact of various hyperparameters on the
effectiveness of our approach. Finally, Section VII provides
a discussion of the findings, and Section VIII concludes the
paper summarizing the contributions.

II. RELATED WORK

A. Saliency-Based Interpretation Methods

Saliency-based interpretation methods aim to identify and
highlight the regions of an image that are most relevant to a
neural network’s decision-making process. These methods in-
clude Layer-wise Relevance Propagation (LRP) [3], DeepLIFT
[4], Integrated Gradients [5], Occlusion Sensitivity [6], and
Guided Backpropagation [7]. Among these methods, Grad-
CAM is one of the most popular approaches for visualizing the
salient features used for classification by generating a heatmap
of the relevant pixels.

GradCAM was introduced by Selvaraju et al. [1] which was
built upon earlier work by Zhou et al. [8]. By backpropagating
the gradients of a target class through the network, GradCAM
produces a coarse localization map of the important regions
in the image. Some shortcomings of GradCAM include its
dependency on noisy gradients, especially in very deep neural
networks. This issue is addressed by variants of GradCAM,
such as Score-CAM [9], GradCAM++ [10], and Smooth
GradCAM [11].

o Score-CAM: Eliminates the dependency on gradients
by using the model’s output scores to generate saliency
maps, leading to more robust and less noisy interpreta-
tions.

o GradCAM++: Improves upon GradCAM by providing
better visual explanations for images containing multi-
ple instances of the target object and producing higher
resolution maps.

« Smooth GradCAM: Combines GradCAM with Smooth-
Grad to reduce noise by averaging the saliency maps
obtained from multiple noisy versions of the input image.
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Fig. 3. Weak and Strong supervision in terms of task vs. annotation level.

While GradCAM and its variants have been applied in
various domains, including medical imaging [12], autonomous
driving [13], and remote sensing [14], these methods still have
limitations. One significant limitation of GradCAM is the sen-
sitivity of the saliency maps to input perturbations, and while
the variants of GradCAM such as GradCAM++, Score-CAM
and Smooth GradCAM tends to be more robust, the improved
robustness comes at the cost of increased computation cost.
Fig. 2 illustrates the changes in the saliency map of GradCAM
interpretations due to rotations and flips in the input image.

B. Explanation-guided learning

Explanation-guided learning leverages explainability meth-
ods to improve model performance by incorporating human-
understandable explanations into the training process. Work
by Jia et al. [15] shows that the correlation between model
explanations and expert human annotations can be used for
model selection, resulting in models with improved general-
izability. This approach enhances trust in the reliability of the
model and aids in debugging and refining neural networks.

Strong supervision utilizes detailed annotations, such as seg-
mentation masks, to guide the learning process. Although less
prevalent than weakly-supervised learning, strong supervision
offers precise guidance that can substantially enhance model
performance. Fig. 3 illustrates the distinctions between strong
supervision and weak supervision.

Other explainability-integrated learning methods have been
explored to improve model performance. Rieger et al. [16]
investigated the use of contextual decomposition as the ex-
planation function and achieved improved AUC-ROC and test
accuracy on the ISIC [17] and DecoyMNIST [18] datasets. By
aligning model predictions with human-interpretable features,
these methods enhance both the accuracy and transparency
of neural networks. For example, using loss functions that
penalize deviations from expected saliency maps can help
models learn more robust and interpretable representations.

GradCAM explanations have also been wused in
explainability-integrated learning. Research by Caforio

et al. [19] demonstrates that the GradCAM explanations of
a LeNet-5 CNN can be used to improve the accuracy for
network intrusion detection. In their approach, they used
K-Nearest Neighbour classification of the k-means clustered
output of the GradCAM activations to achieve improved F1
scores on three network intrusion datasets. A more related
work by Ahmadi et al. [20] introduces the Region of Interest
Activation Loss (RIA Loss), which incorporates GradCAM
explanations to enhance model training. While Ahmadi et
al. uses a similar idea of incorporating GradCAM as a loss,
our approach to formulating the loss is significantly different
and was developed independently. As readers might note
in Section IIl, we applied a Gaussian blur to the target
mask, and derived the GradCAM explanations using the
pooled maximum of multiple views. Furthermore, we use
cosine similarity as opposed to using the IoU on a binarized
thresholded GradCAM as done by Ahmadi et al.

III. METHODS

Our approach focuses on defining a differentiable loss that
improves the alignment of model explanations with segmen-
tation masks, enhancing the coincidence of the explanation
with the segmentation annotations. To this end, we propose
Segment Overlap Loss (SO-Loss), which is defined as the
cosine similarity between the GradCAM explanations of the
penultimate convolutional layer (or encoder layer in the case of
ViTs) and the ground-truth segmentations. Section VI presents
results from our ablative study, discussing the rationale behind
the choices made in defining SO-Loss and our intuition on
why these choices improve the performance of neural networks
trained with SO-Loss.

Let ¢t be the target label for the classification, X be the
input to the network, Y be the output logits for class ¢, M?
be the annotated pixel mask for class ¢, and 7, j be the spatial
coordinates with respect to the input.

As defined by Selvaraju et al. [1], the GradCAM outputs
are weighted by the spatially averaged partial derivatives of the
predicted output with respect to the activation of convolutional
layer channel k. Mathematically, the weights are defined as
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where Af ; 1s the activation of the convolutional layer for
channel £ at pixel locations 4, j, and Z a normalizing constant.
The GradCAM output is then defined as

GradCAM] ; = ReLU() _ af A¥ ),
k
where ReLU is the Rectified Linear Unit function.

We leverage the sensitivity of GradCAM explanations to
input perturbations by presenting the neural network with
multiple views of the image. In this work, we consider only
Euclidean transformations for these multiple views, though
other affine transformations could also improve the neural
network’s performance. We define GC!, as the GradCAM
explanation for view m applied under transformation 7,,.
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Specifically, our family of 7,, consists of the eight combina-
tions of horizontal flips, vertical flips, and 90° clockwise and
counterclockwise rotations of the input image. Let us define

GO = GradCAM(T,, (X ;).

Inspired by max-pooling, we calculate the pixel-wise soft-
max of the GradCAM explanations over these multiple views,
returning the maximum GradCAM explanation for each pixel
while maintaining the differentiability of the loss function.

PooledGC; ; = SoftMax(%ﬁl(GC;’?), L THHGCET))

We found that applying a Gaussian blur to the target
segmentation mask improves the performance of the network
trained with SO-Loss. Our intuition suggests that this may be
due to the regularizing effect of blurring the target mask.In
our approach, we propose applying a Gaussian blur with a
kernel size of 23 roughly 1/10-th of the input dimension of
the neural networks. We thereby define

M*' = GaussianBlur(M?, 23)

Finally, we calculate cosine similarity between pooled Grad-
CAM explanations and blurred target segmentation masks:

;. (PooledGC] ;- M)
V3., (PooledGC! )2\ /3, (M)

We define the hyperparameter [ as the mixing factor
between the cross-entropy loss and SO-Loss:

Liota = BLcE + (1 — B)Lso.

Algorithm 1 and Fig. 4 provide a high-level view of the
training process and the definition of SO-Loss.

Lso =

IV. EXPERIMENTS

A. Dataset

For evaluation, we use four different datasets focusing on
different tasks to verify the performance of the deep learn-
ing models trained using the proposed loss functions under
different settings.

The first dataset is the Oxford-IIIT Pet (OPET) dataset. It
is a single-label dataset and consists of 7,349 images of cats
and dogs from 37 different breeds. Each image is annotated
with both a class label and a pixel-level segmentation mask.
This dataset was introduced by Parkhi et al. [21] and it
provides a rich variety of poses, backgrounds, and lighting
conditions, presenting a robust challenge for both classification
and segmentation tasks.

The second dataset we employ is the Caltech-UCSD Birds-
200-2011 (CUB) dataset [22]. It is a prominent benchmark
in fine-grained visual categorization. This dataset comprises
11,788 images of 200 bird species, each accompanied by
detailed annotations including species labels, bounding boxes,
and segmentations. The CUB-200-2011 dataset is designed to
facilitate the development and evaluation of algorithms that
can distinguish between visually similar categories, a task
that is inherently challenging due to the subtle differences
in plumage patterns, colors, and shapes among bird species.
The annotations and high intra-class variability make this
dataset a challenging resource for training and testing models
on fine-grained recognition tasks, which is useful for testing
the robustness and versatility of the proposed deep learning
models.



Algorithm 1 Training with Segment Overlap Loss (SO-Loss)

Require: Neural network model F, training dataset {(X,, M,,t,)}, number of epochs E, learning rate 7, mixing factor j3,

and Gaussian blur kernel size o.
Ensure: Trained model F
1: Initialize model parameters
2: for epoch =1 to F do
3: for each training example (X, M,t) do

4: Yt f(X)
5: Compute GradCAM for multiple views:
6: for each transformation 7, in {79, 71,...,Tm} do
7: X < T (X )
8: Y« F(X™) oy
% ay™ 7 222, Hakm

i,
10: GradCAM;"" + ReLU(Y, o™ AV™)
11: end for
12: PooledGradCAM! ; + SoftMax (7, ' (GradCAMY), ...
13: MY + GaussianBlur(M; ;, 0)

PooledGradCAM" - M*t
14: Lso I
|PooledGrad CAM® ||| M*¢|

15: Lcg « CrossEntropy (Y, t)
16: Liotal < BLce + (1 — B)Lso
17: 0« 6— T]Vthmal
18: end for
19: end for

20: return Trained model F'

> Forward pass to get logits

> Transform the input
> Forward pass on transformed input

> GradCAM on each view of the input
, Ton ' (GradCAM; ™)) > Compute Pooled GradCAM
> Apply Gaussian blur to target segmentation mask

> Calculate SO Loss using cosine similarity

> Calculate crossentropy loss
> Convex combination of CE Loss and SO Loss
> Update model parameter using gradient descent

The third dataset is the PASCAL Visual Object Classes
(VOC) 2012 segmentation dataset [23], which is widely rec-
ognized for its role in advancing object detection and segmen-
tation research. Since we focus on single-label classification
tasks, in this dataset, only the images with a single label are
used for training and evaluation in our experiments. The VOC
dataset contains 20 object classes and comprises of 931 single-
label training images and 925 single-label test images.

The last dataset is an aerial imagery dataset of a region in
New Zealand.! The dataset is also a single-label classification
problem with 12 classes. The classes in this dataset are
balanced, with 8,000 examples of each class in the training
set and 2,000 examples of each class in the test set.

B. Implementation Details

We employ three neural network architectures: ResNetl§,
ResNet50 [24], and ViT-B_16 [25], each pre-trained on the
ImageNet dataset [26].

The training procedure involves a two-stage fine-tuning
strategy. Initially, we freeze the pre-trained weights of all
layers except the top layers and fine-tune the newly added
fully connected layers. Subsequently, we unfreeze the entire
network and continue training with a reduced learning rate,
allowing for fine-tuning of both high-level and low-level
features while preventing large updates that could destabilize
the pre-trained weights.

Thttps://anonymous.4open.science/r/aerial_dataset_for_eval-20E1/

We utilize the Adam optimizer due to its adaptive learning
rate properties, which help stabilize training. During the initial
fine-tuning stage, the learning rate is set to 1 x 103, and it is
reduced to 3 x 10* during the full network training stage. A
batch size of 32 is employed to balance computational effi-
ciency and training stability. The loss functions used include
cross-entropy loss (CE-Loss), SO-Loss, and a combination of
CE-Loss and SO-Loss in different experiment conditions.

As discussed in Section III, we propose two novel loss
functions: SO-Loss-Blur and SO-Loss. In our experiments,
we evaluate the performance of models trained on each of
the selected datasets using the following configurations: i)
CE-Loss alone, ii) SO-Loss-Blur alone, iii) SO-Loss alone,
iv) a combination of CE-Loss and SO-Loss-Blur, and v) a
combination of CE-Loss and SO-Loss. This approach allows
us to determine how well the new loss functions perform on
their own and when combined with the traditional CE-Loss.
The code can be found here?.

V. RESULTS

We present the classification accuracy for the trained
ResNet18, ResNet50, and ViT models on the CUB, OPET,
VOC, and Aerial Imagery datasets, each evaluated using all
five different configurations specified above.

Table I shows the mean accuracy (in %) and the standard
deviations for all the cases. The mean accuracy and the
standard deviations reported are over five runs for all the
models trained on CUB, OPET, and VOC. Due to the extensive
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TABLE I
ACCURACY OF THE TRAINED MODELS WITH THE PROPOSED LOSS FUNCTIONS ON DIFFERENT DATASETS

Model Loss Function cus OPET voc Aerial
Mean SD Mean SD Mean SD Accuracy

CE-Loss 63.27 | 040 | 81.52 | 0.56 | 7597 | 0.85 71.22

SO-Loss 5097 | 043 | 70.87 | 1.59 | 41.62 | 0.86 48.31

ResNet18 CE-Loss + SO-Loss (8 = 0.5) 6492 | 0.60 | 82.68 | 0.56 | 7591 | 0.69 71.85

SO-Loss-Blur 6195 | 043 | 7493 | 0.27 | 50.89 | 1.10 49.44

CE-Loss + SO-Loss-Blur (5 = 0.5) 66.17 | 0.28 | 84.84 | 0.23 | 77.51 | 0.38 76.17

CE-Loss 62.15 | 0.48 | 86.20 | 0.51 | 86.92 | 043 73.25

SO-Loss 40.99 | 0.39 | 83.04 | 055 | 83.75 | 2.12 50.76

ResNet50 CE-Loss + SO-Loss (8 = 0.5) 6391 | 025 | 88.21 | 0.28 | 88.00 | 0.60 74.99

SO-Loss-Blur 4290 | 0.30 | 8498 | 0.40 | 87.59 | 0.35 49.97

CE-Loss + SO-Loss-Blur (5 = 0.5) 65.37 | 033 | 90.14 | 0.25 | 90.30 | 0.52 77.58

CE-Loss 56.18 | 0.56 | 92.59 | 0.51 | 92.81 | 0.25 72.51

SO-Loss 63.02 | 0.44 | 90.62 | 0.64 | 87.73 | 0.46 61.34

ViT CE-Loss + SO-Loss (8 = 0.5) 59.79 | 038 | 93.73 | 049 | 93.01 | 0.70 73.32

SO-Loss-Blur 63.82 | 036 | 92.61 | 0.37 | 89.12 | 0.81 61.36

CE-Loss + SO-Loss-Blur (5 = 0.5) 60.94 | 033 | 96.05 | 0.36 | 94.72 | 043 74.85

Fig. 5. GradCam explanations from a model trained using CE-Loss (left) vs
GradCam explanations from a model trained using a mixture (8 = 0.5) of
CE-Loss and SO-Loss-Blur.

training time required, the accuracy for the aerial imagery
dataset is reported from a single run. From Table I, it is
evident that the models trained using a mixture of CE-Loss and
SO-Loss-Blur (5 = 0.5) outperform those trained with other
loss functions in almost all cases. Additionally, models trained
with a combination of CE-Loss and SO-Loss (5 = 0.5) show
improved performance compared to those trained with CE-
Loss alone. However, these trends do not hold for the vision
transformer (ViTs) trained on the CUB dataset, likely due to
overfitting. Note that to maintain consistency across all models
and datasets, the training regime was not altered.

Fig. 5 shows an example of the explanations from ResNet18
trained using CE-Loss and explanations from a ResNetl8
trained using a mixture (8 = 0.5) of CE-Loss and SO-Loss-
Blur. It can be seen that the ResNetl8 model trained with
the CE-Loss tends to focus more on the confounding features
exhibiting spurious correlations. Incorporating ground-truth
segmentations into the training process, as facilitated by the

SO-Loss-Blur, effectively redirects the model’s focus towards
the object of interest, thereby enhancing its interpretability and
classification robustness.

VI. ABLATION STUDY

To thoroughly evaluate the efficacy of the proposed loss
functions, we conduct a series of ablative studies focusing on
key hyperparameters. These studies aim to isolate the impact
of specific factors on model performance, ensuring a compre-
hensive understanding of each component’s contribution to the
overall effectiveness of the training process.

A. Impact of Mixing Factor

One critical parameter in our approach is the mixing factor
B, which determines the balance between the Cross-Entropy
Loss (CE-Loss) and the Segment Overlap Loss (SO-Loss). We
perform experiments with different values of 3 to observe its
influence on model performance. The values tested range from
0.25 (25% contribution of CE-Loss) to 1 (solely CE-Loss),
with increments of 0.25. As shown in Fig. 6, the performance
metrics across various datasets indicate that an optimal mixture
(8 = 0.5) consistently yields superior accuracy and robustness
compared to extreme values.

B. Number of Views for Explanations

Another parameter we explore is the number of views used
for generating GradCAM explanations in SO-Loss and SO-
Loss-Blur. We experiment with different numbers of views
to determine the optimal number. We evaluated 1, 2, 4, and
8 views, applying transformations such as horizontal and
vertical flips, and 90-degree rotations. Fig. 7 demonstrates
that increasing the number of views generally enhances model
performance, likely by providing more reliable explanations.
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Fig. 6. Test accuracy with differing 3 for ResNet18; observe that the best test accuracy is obtained when mixing the SO-loss and the cross entropy loss.
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C. Gaussian Blur Kernel Size

For the SO-Loss-Blur configuration, the size of the Gaussian
blur kernel applied to the segmentation masks is a significant
factor. We examine the impact of different kernel sizes to
identify the most effective configuration. More specifically,
we considering kernel sizes of 0 (no bluring of the gound-
truth segmentation masks), 11, 23, and 45, corresponding to
1/20th, 1/10th and 1/5th of the input dimensions respectively.
As shown in Fig. 8, a kernel size of 23 provides the best
trade-off between regularization and maintaining segmentation
details, thereby improving model accuracy.
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Fig. 8. Test accuracy with different levels of Gaussian blur.

VII. DISCUSSION

Our results show that a convex combination of SO-Loss
and CE-Loss improves classification accuracy over using only
CE-Loss or SO-Loss alone as training loss. In particular, a
mixing ratio () of 0.5 generally yields the best performance.
The only exception was observed on the CUB200 dataset for
the VIT-B-16 model, where overfitting to the training data may
have occurred; in this case, using only SO-Loss as training loss
yields the more accurate classifier. A propensity for overfitting
on this dataset is evidenced by the training accuracy reaching
100% when using CE-Loss and a noticeable generalization



gap between the training accuracy and the test accuracy.
This also suggests that SO-Loss helps mitigate overfitting
and enhances generalization, especially in complex datasets
or model configurations.

Introducing a Gaussian blur to the target segmentation mask
results in a larger accuracy increase. Our intuition suggests
that blurring the target mask acts similar to a regularization
technique, which helps in smoothing the target distribution,
preventing the model from overfitting to exact pixel-wise
annotations. On the datasets we evaluated, a kernel size of
23 (approximately 1/10th of the input dimension) provided the
best accuracy. This indicates that an optimal level of smoothing
can enhance the performance of SO-Loss.

Our method also improves the alignment of GradCAM
with the salient objects in the images. By ensuring that the
GradCAM explanations are more consistent with the ground
truth segmentation masks, the model’s predictions are better
grounded in causal relationships. The better alignment sug-
gests that the model is focusing on more relevant features
during training, which likely contributes to the observed ac-
curacy improvements.

We found that our method performs better with an increased
number of views for GradCAM. In our experiments, we
utilized Euclidean transformations (horizontal flips, vertical
flips, and 90-degree rotations) to generate these multiple views.
The improvement in performance indicates that incorporating
diverse perspectives helps the model learn more robust and
comprehensive features. In future work, we plan to explore
the effect of other Euclidean transformations (e.g., scaling) and
affine transformations, which may provide additional perfor-
mance benefits by further diversifying the views. Preliminary
results suggest that including a wider range of transformations
could further enhance model performance by providing more
varied training data. We are also planning to evaluate other
CAM-based explainability methods such as GradCAM++,
ScoreCAM, and AblationCAM. However, we note that unlike
using multiple views of GradCAM, for which the computation
can be paralellized at the cost of increased VRAM usage, the
serial nature and computational overhead of these method may
hinder their viability as replacements.

VIII. CONCLUSION

In this paper, we introduced two novel loss functions, SO-
Loss and SO-Loss-Blur, designed to improve the classification
accuracy of a model by exploiting the ground-truth segmenta-
tions of the images in a strongly supervised training process.
The new loss functions encourage alignment of the explana-
tions of the model with the salient features in the objects. Our
experimental results across multiple datasets, including CUB,
OPET, VOC, and an aerial imagery dataset, and considering
multiple neural network architectures, demonstrate that incor-
porating these loss functions enhances classification accuracy
in most cases. Additional results obtained in ablation studies
show the effect of the hyperparameters in our losses, such
as the mixing factor 3, the number of views for GradCAM
explanations, and the Gaussian blur kernel size.

The current work focuses on single-label classification tasks.
In future work, we plan to extend the application of SO-
Loss and SO-Loss-Blur to multi-label classification tasks,
thereby broadening the scope and applicability of our ap-
proach. Additionally, we aim to develop methods for gen-
erating automated segmentation masks in scenarios where
only approximate ground-truth segmentations are available or
where segmentations may evolve over time, such as in the
case of aerial imagery, where the landcover keeps changing
with time. To achieve this, we intend to leverage the model
explanations that align with the salient features of objects to
extract keypoints within the images. These keypoints can then
be used in conjunction with segmentation models, such as the
Segment Anything model [27], to enhance the accuracy and
quality of ground-truth segmentation masks.
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