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Abstract—Federated Learning (FL) is a crucial technique in
data mining, enabling machine learning across decentralized
devices while preserving data privacy. A major challenge in FL
is data imbalance, where underrepresented classes lead to biased
models and poor performance. This paper introduces a novel
FL approach incorporating calibration weighting to enhance
model performance and data integrity. Our method addresses
data imbalance through calibration resampling techniques and
calibrated loss functions, aligning model training with true data
distributions. Extensive experiments on datasets like MNIST,
CIFAR10, and Adult Income demonstrate significant improve-
ments in accuracy and loss. These findings provide the potential
of calibration weighting in FL, offering a robust solution for
effective distributed machine learning.

Index Terms—Calibration, Differential Privacy, Federated
Learning, Data Mining, Statistical Heterogeneity

I. INTRODUCTION

FEDERATED learning (FL) represents a significant evolu-
tion in machine learning (ML), addressing contemporary

challenges in data management, privacy, and scalability [1],
[2], [3]. Originating from the need to process large datasets
efficiently while maintaining data privacy, FL has become cru-
cial with the proliferation of IoT devices, social media, and e-
commerce, which generate vast amounts of data unsuitable for
centralized ML models. This decentralized approach enhances
privacy by localizing data, reducing communication overheads,
and improving the scalability of ML systems.

The importance of FL lies in its innovative approach to
model training. Unlike traditional ML approaches that require
data centralization [4], [5], FL enables machine learning
models to be trained across multiple decentralized devices
(such as smartphones, wearable devices, and IoT gadgets)
while keeping the data localized. This method not only ad-
dresses privacy concerns by minimizing data exposure but
also tackles logistical challenges associated with managing
extensive datasets.

As FL progresses, it faces the issue of uneven data distribu-
tion across various devices, known as data imbalance [6]. This
imbalance, reflecting real-world variability, can significantly
affect the accuracy and impartiality of FL-trained models. Ad-
dressing this issue is crucial to fully leverage FL’s capabilities,
as it influences the effectiveness and fairness of the models [3],
[7], [8], [9]. Particularly, it impacts classification performance,
leading to biased models that perform well on majority classes
but poorly on minority classes [10]. Thus, creating solutions
to balance data in FL systems is a key research priority.
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This paper introduces a novel methodology that addresses
data imbalance while enhancing the security and privacy
aspects of FL. By leveraging calibration weighting and re-
sampling techniques, we aim to create a more robust and
equitable FL framework, contributing to the broader field of
data mining and privacy-preserving ML. Our work builds on
recent advances in privacy-preserving FL, such as differential
privacy and homomorphic encryption [11], [12], [13], [14],
[15], highlighting the need for secure and private FL method-
ologies.

II. RELATED WORK

A. FL with Skewed Data Distribution

The pioneering work in Federated Learning (FL) is Feder-
ated Averaging (FedAvg) proposed by McMahan et al. [1].
FedAvg has become a standard in the FL field due to its
simplicity and effectiveness. The core idea of FedAvg is to
train local models on clients’ devices using their own data
and then send these local models to a central server where
they are averaged to update the global model. This process is
iteratively repeated, with the global model being distributed
back to clients for further local training. Despite its initial
success, FedAvg struggles with skewed data distributions [9],
a common scenario in real-world applications where data is not
identically distributed across clients. Addressing this challenge
is crucial for data mining applications that require robust and
unbiased models across diverse datasets.

On the client side, methods such as FedProx [7] and SCAF-
FOLD [16] have been proposed to mitigate the skewed data
issue. FedProx introduces a proximal term to the local training
objective, constraining local models to be closer to the global
model, thereby limiting the impact of data heterogeneity.
SCAFFOLD corrects client updates using control variates,
which helps reduce variance caused by data discrepancies
among clients. Both methods aim to align local model updates
more closely with the global model, enhancing convergence
under imbalanced conditions. These approaches are essential
in data mining to ensure that local patterns and trends are
accurately captured and aggregated into the global model.

Server-side aggregation has also seen significant advance-
ments. FedNova [17] and FedMA [18] are notable methods
addressing client update aggregation. FedNova normalizes
client updates to ensure equitable contribution from each
client, managing diversity in data and computational resources.
FedMA implements layer-wise aggregation of neural network
parameters, aligning and averaging corresponding layers from
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different clients to construct a more representative global
model. However, these methods introduce challenges such
as increased computational complexity and communication
overhead. Addressing these limitations is crucial for scalable
data mining in federated settings.

Our study contributes to this area by proposing a novel
approach tailored to highly-skewed data distributions. We
focus on enhancing server-side aggregation to achieve a more
balanced and representative global model while minimizing
complexity and communication overhead. This addresses cur-
rent gaps in FL research, ensuring that data mining techniques
can be effectively applied in federated environments.

B. Privacy and Data Security in FL

Federated Learning has seen significant advances in privacy
and data security, critical for data mining applications involv-
ing sensitive information. Differential Privacy (DP) adds noise
to data or gradients to protect individual privacy while allow-
ing accurate aggregate analysis [11], [15]. DP ensures that the
contribution of any single data point remains indistinguishable,
thus protecting user privacy.

Homomorphic Encryption (HE) enables computations on
encrypted data without needing decryption, ensuring data
remains confidential throughout the learning process. HE
effectively prevents privacy leakage from gradients, addressing
challenges such as poisoning attacks [13].

Secure Multi-Party Computation (SMC) allows multiple
parties to jointly compute functions over their inputs while
keeping those inputs private. Decentralized FL frameworks
using SMC ensure privacy and verifiability in the learning
process [14]. These techniques are foundational in privacy-
preserving data mining, enabling collaborative analysis with-
out exposing raw data.

Recent studies have explored robust aggregation rules and
anomaly detection mechanisms to enhance security in FL.
ShieldFL integrates model poisoning defenses with privacy-
preserving techniques to protect against malicious attacks
while maintaining model integrity [12]. These advancements
are vital for secure data mining in distributed environments.

Our proposed calibration weighting and resampling tech-
niques further enhance data privacy in FL. By calibrating
weights and resampling data, our method ensures that the
model training process is less influenced by outliers and
malicious data points, which can lead to privacy breaches.

C. Calibration Weighting in FL

Calibration weighting [19] is a sophisticated statistical
technique used to construct adjusting weights in scenarios
where certain groups are underrepresented or over-represented.
Originating from survey methodology [20], [21], calibration
weighting corrects biases in sample data, ensuring each data
point contributes appropriately to the overall analysis. This
technique is vital in data mining for addressing sample bias,
improving data representativeness, and enhancing result relia-
bility. Recent advancements have broadened its application be-
yond traditional survey methodologies, notably in addressing
nonresponse bias within health surveys and refining pollutant

concentration estimates in environmental studies [22], [23],
[24]. These developments demonstrate the technique’s growing
relevance across diverse fields, including data mining.

Recent research has applied calibration weighting to fed-
erated learning. Zhang et al. [25] established a calibrated
loss function to minimize bias in client updates, mainly for
binary classification. Luo et al. [26] addressed data imbalance
by creating virtual data representation following calibration
statistics but retained the conventional FedAvg loss function,
failing to address computation overhead. Shang et al. [27]’s
FEDIC introduces server-side calibration and distillation to
mitigate skewed and long-tailed data distributions, albeit with
challenges such as reliance on auxiliary balanced datasets and
increased computational complexity. Chen et al. [28] present
CalFAT, focusing on Federated Adversarial Training to en-
hance stability and robustness through calibration, particularly
under label skewness. Despite its effectiveness across various
datasets, CalFAT’s specialization in adversarial scenarios may
limit its general applicability in FL.

Our approach, Federated Learning with Feature Calibration
and client Re-sampling (FL-FCR), tackles skewed data dis-
tribution across clients using a two-step process. Initially, we
integrate a calibrated loss function during client updates to re-
duce bias. Next, we compute both local and global calibration
statistics to guide the server in resampling the data before the
next training phase. This ensures that the model trains on data
that more accurately represents the overall distribution, thereby
reducing model bias. Additionally, we perform a thorough
security analysis to ensure that our approach not only improves
performance but also enhances the privacy and robustness of
the federated learning system, crucial for secure and effective
data mining.

III. MOTIVATION AND CONTRIBUTION

The main contributions of this paper are summarized as
follows:

• We addressed the challenge of highly-skewed data distri-
bution, a common issue in data mining, by employing a
resampling technique guided by calibration statistics for
each class. This was followed by server-side retraining
and the introduction of a calibrated loss function to
minimize loss.

• Our analysis revealed the inadequacy of the prevalent
global objective function in handling significant data im-
balance. We propose a revised approach to better manage
such conditions.

• Extensive experiments on real-world datasets demon-
strated superior performance of our approach compared
to other leading FL models under highly imbalanced data.
This highlights its effectiveness in practical data mining
scenarios.

• By integrating calibration weighting and resampling
techniques, our approach improves model accuracy and
strengthens privacy protections, essential for secure data
mining in federated environments.
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IV. PROPOSED METHOD

Our proposed FL-FCR consists of two phases. Initially,
we enhance the local update process at the client level with
an improved loss function (Section IV-C). Subsequently, the
central server performs dataset resampling based on calibration
statistics prior to further training (Section IV-B). The workflow
of FL-FCR is illustrated in Figure 1, showing the interactions
between the server and clients during training, including
local training, local calibration computation, and server-side
resampling and model updating. This approach addresses data
imbalance effectively while enhancing model performance and
maintaining privacy.

The following pseudocode outlines the steps involved in
the Federated Learning with Feature Calibration and Client
Resampling (FL-FCR) algorithm:

A. Standard FL Setting

The FL problem can be considered as a standard supervised
ML problem, mapping input values xk,j to output label yk,j
for prediction. Here, xk,j and yk,j are the j(= 1, . . . , nk)-
th input feature values and outcome values collected at the
k(= 1, . . . ,K)-th client. The input-output pairs (xk,j , yk,j) are
the client k’s samples stored locally, with only intermediate up-
dates sent to the central server periodically. Assume m clients
are selected in each training round; our goal is to minimize the
empirical loss on input-output pairs with model parameters θ.
The global objective function F (θ) is represented as:

min
θ∈Rd

F (θ), where F (θ) :=

m∑
k=1

pkfk(θ), (1)

where pk = nk/n denotes a fraction of data samples collected
at the k-th client, n =

∑m
k=1 nk. The local objective function

for the k-th client over its data samples nk is:

fk(θ) =
1

nk

nk∑
j=1

L(θ;xk,j , yk,j), (2)

where L(θ) is a predetermined loss function evaluated at each
sample. The global objective function Eq. (1) can be inter-
preted as a weighted sum of the local loss functions. Clients
periodically send model updates through an aggregating server
to find the parameter θ that minimizes the empirical loss.

B. Calibrated Statistics

We focus on multi-classification tasks with each client
k ∈ [K] in class c ∈ [C]. Client k has a local dataset
Dk and the entire dataset is D = ∪k∈[K]D

k. Let Dk
c =

{(x, y) ∈ Dk : y = c} be the set of samples with ground-
truth label c in client k. Given a sample pair (x, y), a
function fθ(x) parameterized by θ maps input x into a feature
vector v = fθ(x) ∈ Rd. A linear classifier in the last layer
sw(x) = {wcv}c∈y parameterized by w produces probability
distribution p = σ(s(x)) after the softmax function σ(·). Here,
p = σ(s(x)) is the final prediction for input x.

Let Nc,k = |Dk
c | be the number of samples of class c in

client k, and Nc =
∑K

k=1 Nc,k be the total samples of class

Algorithm 1 Federated Learning with Feature Calibration and
Client Re-sampling (FL-FCR)
Input: T is the maximum number of training rounds, m is
the number of clients selected in each training round, Nepoch

is the number of local epochs, η is the local learning rate, v
is the extracted feature from fθ(x), and Bk is the local batch
size of the k-th client
Output: Global model parameter θG to minimize the
empirical risk

1: [Server-side]:
2: Initialize θ0G ▷ Initialize the global model parameter
3: Select a subset St of m clients at random; broadcast global

parameter θ(t)G to selected clients
4: for each round t from 1 to T do
5: for each client k ∈ St in parallel do
6: θ

(t)
k ← LocalTraining(k, θ(t)G )

7: end for
8: end for
9: [Client-side]:

10: (1) LocalTraining(k, θ):
11: Divide local dataset Dk into several batches; Bk is the set

of the batches in the k-th client
12: for each epoch from 1 to Nepoch do
13: for each batch b ∈ Bk do
14: θ ← θ − η∇LCAL(θ; b) ▷ Update model using

calibrated loss
15: end for
16: end for
17: (2) Local calibration computation (µ, cov):
18: for each client k ∈ [K] do
19: for each class c ∈ [C] do
20: Compute extracted feature vc,k,i = fθ(xc,k,i)
21: Compute calibrated mean (Eq. 3)
22: Compute calibrated covariance (Eq. 4)
23: end for
24: end for
25: return θ

(t+1)
k , µc,k, and covc,k to the server

26: [Server Retraining]:
27: (1) Global calibration computation (µ, cov):
28: for each class c ∈ [C] do
29: Compute calibrated mean (Eq. 5)
30: Compute calibrated covariance (Eq. 6)
31: Resample Dc from N(µc, covc)
32: end for
33: (2) Obtain new global model
34: Receive re-sampled dataset Dc and local parameters

θ
(t+1)
k from each client

35: θ
(t+1)
G =

∑m
k=1 θ

(t+1)
k ▷ Aggregate local models

36: θG = retrain(θ(t+1)
G , Dc) ▷ Re-train global model using

the aggregated parameters and the re-sampled data
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Fig. 1. Illustration of our proposed method

c. During local training, client k generates a feature vector
{vc,k,1, vc,k,2, . . . , vc,k,Nc,k

} for class c. Local sample mean
µc,k and sample covariance covc,k are computed as follows:

µc,k =
1

Nc,k

Nc,k∑
i=1

vc,k,i, (3)

covc,k =
1

Nc,k − 1

Nc,k∑
i=1

(vc,k,i − µc,k)(vc,k,i − µc,k)
⊤ (4)

for Nc,k ≥ 2.
1) Calibrated Global Mean and Covariance: After local

training, client k sends local updates (µc,k, covc,k) to the
server, maintaining data privacy. The server aggregates the
updates and calculates global mean and covariance:

µc =
1

Nc

K∑
k=1

Nc,k∑
i=1

vc,k,i =

K∑
k=1

Nc,k

Nc
µc,k, (5)

covc =

K∑
k=1

Nc,k − 1

Nc − 1
covc,k

+

K∑
k=1

Nc,k

Nc − 1
µc,kµ

⊤
c,k

− Nc

Nc − 1
µcµ

⊤
c .

(6)

We exclude sample covariance estimates of clients with
Nc,k < 2. See Appendix for technical details. The server then
resamples based on these statistics and performs retraining
to enhance model performance, improving data security by
mitigating the influence of outliers and malicious data points.

C. Calibrated Loss Function

Assume the classification model produces predicted label:

ŷ = arg max s(x).

For balanced datasets, the goal is to learn a score function s(·)
that minimizes the misclassification error L(y ̸= ŷ). Softmax
cross-entropy loss is used in multi-class classification tasks:

L(y, ŷ) = L(y, s(x))

= log

 ∑
y′∈[C]

esy′ (x)

− sy(x)

= log

1 + ∑
y′ ̸=y

esy′ (x)−sy(x)

 .

(7)

However, this loss function is unsuitable for highly imbal-
anced datasets [29]. Motivated by [29] and [25], we adopt the
balanced error rate (BER) by averaging per-class error rates
and minimizing the calibrated error:

eCal = min
1

C

∑
y∈[C]

P (y ̸= ŷ), (8)

where c is the class. The calibrated error implies that the
probability function P (y|x) ∝ 1

c · P (x|y), in contrast to
P (y|x) ∝ P (y) ·P (x|y) in Eq. (7). This indicates that varying
P (y) does not impact the optimal results in Eq. (8) [25].

To obtain the test error bound for calibrated error in Eq.
(8), consider a binary classification framework, where [30]
demonstrate that the test error can be bounded by:

1

γp
√
Np

+
1

γq
√

Nq

, (9)

where Np and Nq are the sample sizes of classes p and q, and
γp and γq are the margins of classes p and q. To make γp and
γq optimal, they must satisfy:

1

γp
√

Np

+
1

γq
√
Nq

≥ 1

(γp − δ)
√
Np

+
1

(γq + δ)
√

Nq

, (10)

where γp, γq > 0 and δ ∈ (−γq, γp). Assuming classifiers
s ∈ S can achieve a total sum of margins γp + γq = β, after
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applying margin-based generalization bound (Theorem 2 in
[31]), there exists a classifier s⋆(·) in the last layer:

γ⋆
p =

βN
1/4
q

N
1/4
p +N

1/4
q

, γ⋆
q =

βN
1/4
p

N
1/4
p +N

1/4
q

. (11)

Next, we extend to the multi-class setting of the hinge loss,
where the optimal label margin in class c is:

∆c =
H

N
1/4
c

, for c ∈ {1, · · · , C}, (12)

where H is a hyper-parameter to be tuned. As discussed in
Section IV-C, the calibrated loss can be bounded by Eq. (9).

Inspired by [32], we apply L2 regularization on the weight
vectors of the last fully-connected layer and the last hidden
activation. Assume sc(x) = ŷc is the c-th output of the model
for the c-th class. Then we obtain the calibrated loss with
enforced margins:

LCAL((x, y); s) = − log
eŷc−∆c

eŷc−∆c +
∑

c̸=y e
ŷc
, (13)

where ∆c =
H

N
1/4
c

, for c ∈ {1, · · · , C}. For balanced datasets,
∆c depends on constant C. Conversely, in highly skewed
datasets, the value of ∆c is determined by the variability
in label distribution. The calibrated loss from Eq. (13) is
implemented during client updates to minimize bias.

V. EXPERIMENT

Our study includes two key experiments designed to validate
(i) the calibration method’s effectiveness in managing highly
skewed data and (ii) the robustness of our approach against
leading FL models. The first experiment assesses performance
disparities pre- and post-calibration application. Second, the
second experiment benchmarks our proposed method against
established models. Details of the experimental setup are
outlined in Section V-A, with findings from the calibration
and robustness results presented in Sections V-B1 and V-B2,
respectively.

A. Experimental Setup

1) Dataset: To evaluate the proposed calibration method’s
performance, our experiments were conducted using three
benchmark datasets: MNIST, CIFAR-10, and the Adult Income
dataset. The initial experiment utilized all three datasets, while
the second experiment focused on MNIST and CIFAR-10.

• MNIST [33]: A collection of 28x28 pixel grayscale
images of handwritten digits, comprising 10 classes. The
model uses 2352 features for classification into 10 output
classes.

• CIFAR-10 [34]: This dataset consists of 60,000 32x32
color images in 10 different classes, with 6,000 images
per class.

• Adult Income [35]: A tabular dataset with demographic
attributes to predict whether an individual earns more than
$50K/year, effectively a binary classification task. The
model inputs consist of 14 features to determine 1 output
class for the binary classification.

2) Data Partitioning Strategy: To mirror real-world condi-
tions in federated learning, we partitioned data among clients
using a Dirichlet distribution D(α). The hyperparameter α
controls the level of data imbalance across clients. The Dirich-
let distribution is defined as:

f(p1, . . . , pC ;α1, . . . , αC) =
1

B(α)

C∏
i=1

pαi−1
i I(p ∈ S),

(14)
where S = {pi ∈ [0, 1],

∑C
i=1 pi = 1}, B(α) =

∏C
i=1 Γ(αi)

Γ(α0)
,

and α0 =
∑C

i=1 αi. This allows for varying degrees of
data skewness by adjusting α; higher values lead to uniform
distributions, while lower values result in higher skewness. For
each label c, client data distributions Pc ∼ Dir(α) are sampled
and assigned to clients k. This models realistic scenarios where
client data may be majority, minority, or even missing.

Fig. 2 demonstrates our partitioning strategy on MNIST and
Adult Income datasets under varying α values, showing the
range from nearly uniform (α = 10000) to highly imbalanced
(α = 0.05).

3) Implementation: We used a Multi-Layer Perceptron
(MLP) for MNIST and Adult Income, and a Convolutional
Neural Network (CNN) for CIFAR-10, each suited to their
respective datasets. More specifications are in I.

Clients trained locally on their partitions for 3 epochs in
all experiments. The server aggregated client updates over
10 global epochs for MNIST and Adult Income and 15 for
CIFAR-10. Learning rates were 0.001 for MNIST and Adult
Income, and 0.0003 for CIFAR-10, with a momentum factor
of 0.9 across all experiments. Optimizers were Stochastic
Gradient Descent (SGD) for MNIST and Adam for CIFAR-
10 and Adult Income. Data split ratios were 0.3 for MNIST
and 0.2 for CIFAR-10 and Adult Income, defining the data
proportion each client managed.

TABLE I
NEURAL NETWORK MODEL ARCHITECTURE

Model Architecture

MLP

Input
Hidden-512 + ReLu
Hidden-256 + ReLu
Hidden-128 + ReLu
Hidden-64 + ReLu

Output

CNN

conv3-128 + maxpool
conv3-256 + maxpool

2 x conv3-512
conv3-256 + maxpool

FC-512
FC-256
FC-128

FC-10 + ReLu

4) Baseline: Our approach is first compared to the con-
ventional Federated Averaging (FedAvg) algorithm [1], which
serves as the baseline for this study. The initial experiment
examines the performance of FedAvg before and after applying
our calibration technique, highlighting its direct impact. In the
second experiment, we expand the comparison to include other
advanced federated learning methods such as FedLC [25],
MOON [36], and FedProx [7].
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Fig. 2. Client data distribution under varying α Dirichlet distribution for MNIST (top) and Adult Income (bottom) datasets.

5) Evaluation: We reported accuracy and loss as key met-
rics to assess our global model’s performance. Specifically, we
applied multi-class cross-entropy loss for MNIST and CIFAR-
10 datasets, and binary cross-entropy loss for the Adult Income
dataset. For a detailed analysis, we also generated t-SNE plots
and confusion matrices for clearer visualization. The following
are the metrics used for evaluation:

Accuracy =

∑N
i=1 1(ŷi = yi)

N
, (15)

where N is the total number of samples, yi is the true label for
the i-th sample, ŷi is the predicted label for the i-th sample,
and 1(ŷi = yi) is an indicator function that equals 1 if ŷi = yi
and 0 otherwise.

Lmulti-class = −
N∑
i=1

C∑
c=1

yic log(ŷic), (16)

where N is the number of samples, C is the number of classes,
yic is a binary indicator (0 or 1) if class c is the correct
classification for sample i, and ŷic is the predicted probability
that sample i belongs to class c.

Lbinary = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) , (17)

where N is the number of samples, yi is the true label for the
i-th sample (0 or 1), and ŷi is the predicted probability that
sample i belongs to the positive class (label 1).

B. Experimental Result

1) Calibration Experiment: In the calibration experiment,
we evaluated our method using the MNIST, CIFAR10, and
Adult Income datasets, each with varying skewness levels.
The goal was to assess the impact of our calibration on
model performance by comparing results from the conven-
tional FedAvg algorithm to our proposed method. As shown
in Table II, our calibration significantly improves accuracy,

TABLE II
COMPARISON OF ACCURACY BETWEEN FEDAVG AND OUR PROPOSED
METHOD. IMPROVEMENT IS HIGHLIGHTED IN RED. LOWER SKEWNESS

INDICATES MORE IMBALANCED DATA.

Dataset Method Degree of Skewness
0.05 0.1 0.3 0.5 0.7

MNIST FedAvg 40.11 49.08 84.75 87.68 87.86
Ours 74.16 87.64 90.80 88.23 92.24

Difference +34.05 +38.56 +6.05 +1.17 +3.97
CIFAR-10 FedAvg 7.25 10.00 48.71 69.26 71.38

Ours 19.17 23.04 54.27 70.19 70.31
Difference +11.92 +13.04 +5.56 +0.93 -1.07

Adult Income FedAvg 24.64 52.94 50.09 50.81 66.25
Ours 68.47 67.66 64.37 70.31 73.34

Difference +43.83 +14.72 +14.28 +19.50 +7.09

especially in highly imbalanced data scenarios. For MNIST,
the t-SNE plots (Figure 3a) reveal well-defined clusters post-
calibration, with the most significant accuracy improvement
at α = 0.1, increasing from 49.08% to 87.64%. Similarly,
CIFAR-10 results (Figure 3b) show distinct clusters post-
calibration, with a 13.04% accuracy improvement at α = 0.1.
However, the performance gains diminished as the skewness
decreased. The Adult Income dataset (Figure 3c) exhibited
the most notable improvement at α = 0.05, with a dramatic
accuracy boost of 43.83%, significantly reducing misclassi-
fications. These results, highlighted by confusion matrices
in Figure 4, confirm that our calibration method enhances
model performance under varying data skewness, particularly
in highly imbalanced scenarios.

In conclusion, the calibration experiment validates that our
approach enhances model performance under varying data
skewness. The calibration effect diminishes as the data distri-
bution becomes balanced, but our research primarily addresses
scenarios with significant dataset imbalances.

2) Robustness Experiment: In this experiment, detailed
in Tables III and IV, we evaluated the robustness of our
FL-FCR method against other leading FL models: FedCL
[25], MOON [36], and FedProx [7] under highly imbalanced
settings (α ∈ [0.05, 0.1, 0.2, 0.3]). The results show that our
method consistently outperforms these benchmarks, especially
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(a) MNIST dataset

(b) CIFAR-10 dataset

(c) Adult Income dataset

Fig. 3. The t-SNE plots illustrate the improved model performance for
MNIST, CIFAR-10, and Adult Income datasets at α = 0.05.

(a) MNIST dataset

(b) Adult Income dataset

Fig. 4. Confusion matrices for the MNIST and Adult Income datasets at α =
0.05, illustrating classification performance before and after applying FL-
FCR. (a) MNIST shows improved accuracy and clearer class separation. (b)
Adult Income indicates fewer false negatives and more balanced classification,
enhancing overall predictive accuracy.

under extreme skewness.
For the MNIST dataset, our model achieved an accuracy

of 65.34% at α = 0.05 (highly skewed) and maintained
an average accuracy of 78.04%. Figure 5 shows that our
method consistently outperforms FedCL, MOON, and Fed-
Prox across different skewness levels, indicating robustness.
For the CIFAR10 dataset, our method demonstrated substantial
effectiveness, particularly at α = 0.05, with an accuracy of
19.81%, higher than the benchmarks. The overall average
accuracy of 39.80% confirms its robustness in addressing data
imbalance.

Other state-of-the-art methods struggle with imbalanced
data due to their design focus. MOON [36] enhances model

TABLE III
ACCURACY ACROSS DIFFERENT LEVELS OF SKEWNESS FOR MNIST AND

CIFAR-10 DATASETS. RED INDICATES THE BEST PERFORMANCE.

Accuracy 0.05 0.1 0.2 0.3 Avg.
MNIST FedCL [25] 33.14 48.29 78.85 88.16 62.11

MOON [36] 43.44 66.55 77.64 90.81 69.61
FedProx [7] 46.25 71.59 73.7 83.93 68.87

Ours 65.34 73.45 81.2 92.15 78.04
CIFAR10 FedCL [25] 14.8 22.97 47.11 64.38 37.32

MOON [36] 10.51 24.44 59.57 61.94 39.12
FedProx [7] 14.85 18.22 51.81 66.53 37.85

Ours 19.81 27.85 50.73 60.78 39.80

TABLE IV
LOSS ACROSS DIFFERENT LEVELS OF SKEWNESS FOR MNIST AND
CIFAR-10 DATASETS. RED INDICATES THE BEST PERFORMANCE.

Loss 0.05 0.1 0.2 0.3 Avg.
MNIST FedCL [25] 0.0455 0.0222 0.0111 0.0067 0.0214

MOON [36] 0.0286 0.0178 0.0118 0.0058 0.0160
FedProx [7] 0.0224 0.0175 0.0129 0.0105 0.0158

Ours 0.0205 0.0157 0.0103 0.0095 0.0140
CIFAR10 FedCL [25] 0.0356 0.0343 0.0257 0.0193 0.0287

MOON [36] 0.0364 0.0328 0.0209 0.0188 0.0272
FedProx [7] 0.0357 0.0348 0.0251 0.0160 0.0279

Ours 0.0349 0.0312 0.0224 0.0227 0.0278

Fig. 5. MNIST classification performance under extreme imbalanced setting.

consistency across clients using a contrastive loss but lacks
mechanisms to address skewed data distributions. FedProx [7]
introduces a proximal term to the local training objective to
improve convergence under heterogeneous data. However, it
primarily targets system-level heterogeneity (such as varying
computational capabilities and network conditions) rather than
statistical heterogeneity (data imbalance). This proximal term
stabilizes the training process by preventing local updates from
deviating too far from the global model, but it does not address
the uneven representation of classes in the data. These findings
are significant for real-world applications where data is often
highly imbalanced. Our method ensures robust and consistent
performance across various skewness levels, making it suitable
for diverse federated learning scenarios.

VI. CONCLUSION

Our Federated Learning with Feature Calibration and Client
Resampling (FL-FCR) approach introduces two key tech-
niques to enhance data privacy and model performance in
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federated learning. By using calibration statistics for dataset
resampling and replacing the conventional SGD loss func-
tion with a calibrated loss function, our method effectively
addresses real-world imbalanced datasets.

Empirical evaluations show that FL-FCR outperforms Fe-
dAvg and other leading FL methods in accuracy and loss re-
duction while improving data privacy and security. Calibration
weighting and resampling provide an extra layer of privacy
protection by minimizing the impact of outliers and malicious
data points.

Although our method requires additional computational
overhead due to server-side retraining, future research could
explore optimized retraining strategies or more efficient cal-
ibration techniques. Scalability concerns for extremely large
datasets or numerous clients also warrant further investigation.

Our work contributes to the fields of data mining, infor-
mation forensics, and security by demonstrating enhanced
robustness and security in federated learning, especially with
imbalanced data. Future research should focus on improving
scalability and efficiency and exploring applications in var-
ious security-critical domains. Additionally, integrating our
approach with other privacy-preserving techniques, such as
differential privacy or homomorphic encryption, could further
enhance the security and applicability of FL systems.

APPENDIX A
APPENDIX: GLOBAL SAMPLE COVARIANCE

Assuming Nc,k ≥ 2, covc,k of class c in client k (local
covariance) can be derived as:

covc,k =
1

Nc,k − 1

Nc,k∑
i=1

vc,k,iv
⊤
c,k,i −

Nc,k∑
i=1

vc,k,iµ
⊤
c,k

−
Nc,k∑
i=1

µc,kv
⊤
c,k,i +

Nc,k∑
i=1

µc,kµ
⊤
c,k


=

1

Nc,k − 1

Nc,k∑
i=1

vc,k,iv
⊤
c,k,i −Nc,kµc,kµ

⊤
c,k

−Nc,kµc,kµ
⊤
c,k + Nc,kµc,kµ

⊤
c,k

]
=

1

Nc,k − 1

Nc,k∑
i=1

vc,k,iv
⊤
c,k,i −

Nc,k

Nc,k − 1
µc,kµ

⊤
c,k

(18)

After rearranging, covc,k can also be written as:

(Nc,k − 1)covc,k =

Nc,k∑
i=1

vc,k,iv
⊤
c,k,i −Nc,kµc,kµ

⊤
c,k (19)

Lastly, global sample covariance covc can be derived by the

results obtained from (3) and (4):

covc =
1

Nc − 1

K∑
k=1

Nc,k∑
i=1

(vc,k,i − µc)(vc,k,i − µc)
⊤ (20)

=
1

Nc − 1

K∑
k=1

Nc,k∑
i=1

vc,k,iv
⊤
c,k,i −

Nc

Nc − 1
µcµ

⊤
c (21)

=

K∑
k=1

1

Nc − 1

[
(Nc,k − 1)covc,k +Nc,kµc,kµ

⊤
c,k

]
(22)

− Nc

Nc − 1
µcµ

⊤
c (23)

=

K∑
k=1

Nc,k − 1

Nc − 1
covc,k +

K∑
k=1

Nc,k

Nc − 1
µc,kµ

⊤
c,k (24)

− Nc

Nc − 1
µcµ

⊤
c . (25)

The first equality holds by the definition of sample co-
variance, the second equality holds due to (3), and the third
equality is obtained from (4).

APPENDIX B
APPENDIX: CALIBRATED LOSS FUNCTION

In this appendix, we provide the theoretical foundation and
derivation of the calibrated loss function designed to address
imbalanced datasets in classification tasks.

A. Softmax Cross-Entropy Loss Derivation

For input x with true label y, let s(x) denote the score
vector. The predicted label ŷ is:

ŷ = arg max s(x)

The softmax cross-entropy loss L(y, ŷ) is:

L(y, ŷ) = L(y, s(x)) = − log
esy(x)∑

y′∈[C] e
sy′ (x)

Simplified as:

L(y, s(x)) = log

 ∑
y′∈[C]

esy′ (x)

− sy(x)

Or:

L(y, s(x)) = log

1 + ∑
y′ ̸=y

esy′ (x)−sy(x)


B. Derivation of Equation (9)

Error bound for class c:

Lc[f ]
1

γc

√
C(F)
Nc

+
logN√
Nc

(26)

Balanced error bound:

Lbal[f ]
1

C

C∑
c=1

 1

γc

√
C(F)
Nc

+
logN√
Nc

 (27)
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For C = 2, [C] = {p, q}:

Lbal[f ]
1

2

(
1

γp

√
C(F)
Np

+
logN√

Np

+
1

γq

√
C(F)
Nq

+
logN√

Nq

)
(28)

Ignoring logarithmic terms:

Lbal[f ] ≈
1

2

(
1

γp

√
C(F)
Np

+
1

γq

√
C(F)
Nq

)
(29)

For binary classification:

eCal 1

γp
√
Np

+
1

γq
√
Nq

(30)

C. Derivation of Equation (10)

Perturbed margins γ′
p = γp − δ and γ′

q = γq + δ:

eCal
δ

1

(γp − δ)
√

Np

+
1

(γq + δ)
√
Nq

Optimal margins must satisfy:

1

γp
√
Np

+
1

γq
√
Nq

≥ 1

(γp − δ)
√
Np

+
1

(γq + δ)
√

Nq

D. Derivation of Equation (11)

Fixed sum of margins γp + γq = β:

γq = β − γp

Minimize:
1

γp
√
Np

+
1

(β − γp)
√
Nq

Set derivative to zero:

− 1

γ2
p

√
Np

+
1

(β − γp)2
√

Nq

= 0

Solve for γp:

γp =
β 4
√
Np

4
√

Np + 4
√
Nq

And for γq:

γq =
β 4
√
Nq

4
√
Np + 4

√
Nq

E. Derivation of Equation (12)

To extend the result to a multi-class setting, consider the
balanced error bound:

Lbal[f ]
1

C

C∑
c=1

 1

γc

√
C(F)
Nc


For a fixed sum of margins, we let:

γc =
H

N
1/4
c

where H is a hyper-parameter to be tuned and Nc is the
number of samples in class c.

Substituting γc =
H

N
1/4
c

into the error bound, we get:

Lbal[f ]
1

C

C∑
c=1

 1
H

N
1/4
c

√
C(F)
Nc


Simplifying:

Lbal[f ]
1

C

C∑
c=1

N
1/4
c

H

√
C(F)
Nc


Lbal[f ]

1

C

C∑
c=1

(
N

1/4
c

H

√
C(F)N−1/2

c

)

Lbal[f ]
1

C

C∑
c=1

(√
C(F)
H

N−1/4
c

)
By using the relationship between the margins and sample
sizes, the optimal margin for each class γc ensures that the
error bound is minimized. Thus, the optimal margin ∆c for
each class c is given by:

∆c =
H

N
1/4
c

F. Derivation of Equation (13)

The traditional softmax loss function for an input x and true
label y is:

Lsoftmax = − log
eŷc∑C
j=1 e

ŷj

where ŷc is the output (logit) corresponding to the true class
c.

AM-Softmax [32] introduces an additive margin m to the
logits. The AM-Softmax loss is:

LAMS = − 1

n

n∑
i=1

log
es(cos θyi−m)

es(cos θyi−m) +
∑

j ̸=yi
es cos θj

where s is a scaling factor, and θyi is the angle between the
weight vector and the feature vector of the i-th sample for the
true class yi.

To address class imbalance, we introduce a calibrated mar-
gin ∆c for each class c. The calibrated margin is defined as:

∆c =
H

N
1/4
c

where H is a constant and Nc is the number of samples in
class c.

Incorporating the calibrated margin into the softmax loss,
we get the calibrated loss function:

LCAL((x, y); s) = − log
eŷc−∆c

eŷc−∆c +
∑

c̸=y e
ŷc

This loss function adjusts the logits based on the class
distribution, reducing the bias towards majority classes. By
applying the calibrated margin, the loss function effectively
penalizes classes proportionally to their prevalence, ensuring
fair treatment across all classes.
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