Urban traffic flow prediction based on
Multi-spatio-temporal correlation analysis

Abstract—Predicting future traffic conditions in road traffic
networks using historical traffic data has extensive applica-
tions in enhancing people’s daily lives, managing road traffic,
and facilitating urban planning and design. However, due to
the highly dynamic nature of traffic flow, which is spatially
and temporally dependent with nonlinear and non-stationary
characteristics, predicting traffic flow still encounters significant
challenges. To address this issue, this paper proposes a method
for predicting traffic flow based on a Multi-Spatial Temporal
Correlation Model (MSTCM). Firstly, the temporal features
of traffic flow are decomposed into multi-scale representations
that capture internal trends and fluctuations caused by external
disturbances respectively. Simultaneously, the original spatial
features are decomposed into multi-dimensional representations
that convey information about road proximity and direction
within the road network. Secondly, an attention mechanism
combined with a graph convolutional neural network is employed
to extract and integrate global as well as local spatial-temporal
dependencies for each spatial-temporal combination. Finally, fu-
sion features from each dimension are weighted and recombined
before being applied to predict future traffic flow patterns. The
proposed method can effectively extract fine-grained temporal-
spatial features from multiple perspectives while capturing non-
linear dynamics inherent in the data; it also mitigates noise
interference on traffic flow prediction performance. Extensive
experiments conducted on four real-world datasets along with
comparative analysis against twelve existing algorithm models
over a five-year period demonstrate favorable performance of
our proposed model.

Index Terms—Traffic flow prediction; Multi-spatio-temporal
correlation; Eigen decomposition; Attention mechanism; Graph
convolutional neural network; Feature fusion

I. INTRODUCTION

With the ongoing process of urbanization and rapid growth
in urban population, traffic congestion has emerged as a
pervasive issue that cannot be disregarded by major cities
worldwide. To address these challenges comprehensively, na-
tions across the globe are actively exploring strategies to
mitigate traffic congestion.

Traffic flow prediction plays a crucial role in forecasting the
future trends of traffic by analyzing historical data, thereby
facilitating informed travel planning for individuals and aid-
ing traffic management departments in formulating effective
control measures and emergency guidance plans. This serves
as an important approach to alleviate traffic congestion. The
existing methods for traffic flow prediction can be categorized
into three groups: point prediction, regional prediction [1]-[3],
and network prediction [4]-[8]. These approaches respectively
focus on studying traffic data at specific roads, regions or
entire road networks to analyze and predict their future trends
and traffic flow. In recent years, the widespread deployment

of sensors in the transportation domain has facilitated more
convenient access to real-time and comprehensive traffic data,
thereby providing robust support for network-level traffic flow
prediction research.

However, predicting urban traffic flow remains highly chal-
lenging due to two primary reasons. Firstly, the temporal
and spatial relationships in traffic flow are not independent
but rather coupled, forming complex spatial-temporal de-
pendencies under the joint action of global resonance and
local perturbation [9]. Secondly, urban traffic is influenced
by various random factors such as people’s travel habits,
weather conditions, road construction activities, and traffic
accidents. Additionally, the relationship between supply and
demand further complicates matters. Consequently, multiple
periodic and non-periodic signals coexist within a complex
spatial-temporal domain with non-linear and non-stationary
characteristics. This presents a significant obstacle for accurate
traffic flow prediction.

To capture the intricate and dynamic spatial-temporal cor-
relation relationships in traffic flow, scholars have proposed
two categories of temporal-spatial correlation models: hybrid
models and fusion models. Hybrid models employ distinct
neural networks to independently capture the temporal and
spatial dependence relationships in traffic flow, which are then
combined using a specific strategy for accurate traffic flow
prediction. In contrast, fusion models utilize more sophisticat-
ed neural network architectures to analyze and predict traffic
flow by integrating spatial-temporal features, enabling a more
precise representation of real urban traffic environments and
capturing the complex spatial-temporal correlation relation-
ships. However, most existing fusion models primarily focus
on local spatial-temporal dependencies while neglecting com-
prehensive consideration of global dependencies within the
road network; moreover, these models often treat urban road
traffic networks as undirected graphs without accounting for
directional characteristics. To mitigate the impact of nonlinear
and non-stationary characteristics on traffic flow prediction,
some researchers have employed empirical mode decomposi-
tion or wavelet decomposition techniques to decompose traffic
flow into multiple time series exhibiting simpler fluctuation
patterns. Alternatively, the trend-cycle decomposition method
has been utilized to partition the original traffic flow signal into
periodic signals and fluctuation signals. Subsequently, time
series analysis methods and supervised learning approaches
are applied to extract features from each traffic flow signal
sequence for accurate prediction. However, these approaches
primarily focus on single-point traffic flow prediction with-



out considering spatial dependence relationships within road
network traffic flows, rendering them unsuitable for whole
network traffic flow prediction.

To tackle these challenges, we conduct a comprehensive
analysis of traffic flow characteristics in both spatial and
temporal dimensions, exploring the interdependencies between
traffic flow across different spatial and temporal scales. Sub-
sequently, we propose a novel urban traffic flow prediction
method based on the Multiple Spatio-Temporal Correlation
Model (MSTCM). The MSTCM model leverages attention
mechanisms and convolutional neural networks to extract
global and local spatial-temporal features, integrating diverse
traffic flow attributes into features that capture their spatio-
temporal dependencies. Ultimately, we aggregate these spatio-
temporal traffic flow dependence features with appropriate
weights and concatenate them to construct higher-dimensional
spatial-temporal representations for predicting future traffic
flows. The key contributions of this study are as follows:

o The temporal and spatial characteristics of traffic flow are
decomposed into multiple scale temporal representations
and multi-dimensional spatial representations, effectively
mitigating the impact of noise on prediction results and
enhancing the model’s capacity to capture traffic flow
features.

o By analyzing and integrating temporal and spatial fea-
tures of traffic flow from multiple perspectives, the mod-
el’s prediction accuracy was significantly enhanced.

« By integrating attention mechanism and convolutional
neural networks, the proposed model effectively captures
intricate global and local features from traffic flow da-
ta, thereby enhancing its capacity for nonlinear feature
extraction through increased network depth.

o Extensive experiments were conducted to evaluate the
performance of our algorithmic model using four real-
world datasets. Comparative analysis against 12 promi-
nent research achievements from the past five years
demonstrates outstanding performance.

II. RELATED WORK

This section will succinctly summarize the principal re-
search accomplishments in three domains: deep learning appli-
cations in traffic flow prediction, spatial-temporal correlation
models, and graph neural networks.

A. Deep Learning-based Traffic Flow Prediction

In recent years, deep learning-based methods for traffic
flow prediction have garnered significant attention due to their
exceptional feature extraction and nonlinear fitting capabilities,
enabling the revelation of intrinsic spatio-temporal correlations
in road network traffic flow data and precise modeling of its
evolution. To achieve this objective, researchers have dedicated
themselves to developing diverse neural network architectures
for traffic flow prediction. For instance, RNN [3], [4], [10]
or GRU [11] models are employed to explore temporal cor-
relations in time-series traffic data, while GCN [12], [13]
structures capture the spatial dependencies of traffic data.

Moreover, neural network structures that integrate spatio-
temporal features [4], [5], [7], [14], [15] have been extensively
utilized to simultaneously extract both spatial and temporal
characteristics of traffic flow. These approaches effectively
uncover complex spatio-temporal dependence relationships
in urban traffic data and demonstrate notable advantages in
predicting traffic flow.

Howeyver, the intricate structure of urban traffic network-
s, characterized by diverse adjacency relationships between
nodes, poses challenges in defining a unified convolution
operation, thereby impeding the application potential of graph
convolutional neural networks in terms of learning capabili-
ty [16]. Simultaneously, when directly applied to traffic data,
graph convolutional neural networks are unable to preserve
directional information in traffic flow due to their suitability
for processing undirected graph structures. Furthermore, the
nonlinear and non-stationary characteristics inherent in traffic
flow signals significantly impact the accuracy of the model.

B. Spatio-temporal correlation models

The temporal and spatial correlation of urban traffic flow
is highly intricate [9]. Firstly, urban traffic exhibits dynamic
and interdependent changes in both time and space. Secondly,
different regions possess distinct types of temporal and spatial
correlation, which evolve over time. Consequently, recent re-
search efforts have been devoted to developing models capable
of extracting the underlying temporal and spatial dependence
relationships within traffic flow.

Currently, two primary categories of spatio-temporal cor-
relation models exist: composite spatio-temporal models [1],
[4]-[6] and fusion spatio-temporal models [17]-[20]. Com-
posite spatio-temporal models capture temporal and spatial
dependence relationships separately within traffic flow and
subsequently combine them using a specific strategy for
traffic flow prediction. For instance, Yu et al. [5] utilized
two temporal convolutional blocks along with one spatial
convolutional block to learn the dynamic behavior over time
as well as the spatial patterns and features of traffic flow.
Guo et al. [21] employed spatial attention mechanisms to
establish correlations between different locations in terms
of space while utilizing temporal attention mechanisms to
capture dynamic correlations across various time periods. It
is evident that the modeling of composite spatio-temporal
relationships has not fully considered the joint interaction
between space and time, leading to a disconnection between
these two dimensions. While modeling traffic flow in terms
of temporal or spatial correlation, the fusion of temporal-
spatial models integrates the spatial-temporal characteristics
of traffic flow to capture the interplay between space and
time. For instance, Li et al. [18] employed a data-driven
approach to construct a traffic flow time graph and combined
it with a set of spatial graphs to form a spatio-temporal fusion
graph, thereby uncovering hidden similarities and temporal-
spatial dependence relationships within the traffic flow. Wang
et al. [19] captured the spatial dependencies within the traffic
flow using a bidirectional message passing mechanism and



explored high-order temporal dimensions by employing a gate
recurrent unit (GRU) to capture complex nonlinear correlations
within the traffic flow. Jin et al. [20] introduced an automatic
expansion module called Auto-DSTSG that combines spatial
graph neural networks with extended temporal convolutional
networks, enabling capturing various types of temporal-spatial
dependence relationships at different levels through stacking
multiple modules.

Despite this, most current spatio-temporal correlation mod-
els fail to consider the directionality of the traffic network
when simulating spatial dependencies, and inadequately ad-
dress the trade-off between global and local spatio-temporal
dependencies.

C. Graph neural network

Graph Neural Networks (GNNs) is a deep learning frame-
work that enables direct learning from graph structured data.
The fundamental concept underlying GNNs involves aggre-
gating node features with those of their neighboring nodes.
Previous research has demonstrated the remarkable capabilities
of graph neural networks in learning from graph structured
data [3]. Consequently, they have found extensive applications
in traffic prediction to capture the latent spatial dependencies
within traffic data [22], [23].

In recent years, prominent graph neural networks include
spectral graph convolutional networks (SGCN), spatial graph
convolutional networks (SGCN), and graph attention networks
(GAT). Spectral graph convolutional networks primarily trans-
form spatial graph signals into the spectral domain through
Fourier transformation and perform convolution calculations
in this domain [24]. However, their main limitation lies in their
reliance on the Laplacian matrix of the graph, which restricts
their applicability to scenarios with fixed structures. To address
this dependency issue, Kipf et al. [22] simplified the graph
convolution operation by employing message passing in the
spatial domain and enhanced the performance of spatial graph
convolutional networks by utilizing Chebyshev expansion to
reduce Laplacian calculation complexity. However, due to the
constraint imposed by the Laplacian matrix, spatial graph con-
volutional networks are only suitable for processing undirected
graph-structured data. To consider the significance of learning
spatial dependencies among neighboring nodes, Velickovic et
al. [25] introduced a pioneering approach known as graph
attention neural network (GAT). This network effectively
incorporates feature information from neighboring nodes by
calculating attention scores between nodes and their neighbors
to determine edge weights between them. However, when
dealing with sparse graph structures akin to traffic data, the
feature learning capability of the GAT network is compar-
atively inferior to that of spatial graph convolutional neural
networks.

Given the limitations inherent in graph convolutional neural
networks and the deficiencies observed in graph attention
neural networks, there is still a need to explore network
model structures that are adept at efficiently extracting spatial-
temporal features from traffic data.

III. PRELIMINARY

This section will provide a concise examination of potential
temporal and spatial correlations in urban road traffic flow,
while formally presenting and elucidating the research prob-
lem.

A. Spatio-temporal correlation analysis of traffic flow

In the urban traffic network, vehicles traverse interconnected
roads, giving rise to intricate interdependencies between time
and space. As depicted in Figure 1, a schematic representation
of a local spatial unit within the traffic network, the red nodes
denote the current intersection (referred to as wvg), while the
gray and blue nodes represent downstream intersections that
are directly or indirectly linked to vg. We will employ this
diagram as an illustrative example for investigating potential
temporal and spatial correlations in urban traffic flow.

Local spatial dependency
Global spatial dependency
Local temporal dependency
— === Global temporal dependency
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Fig. 1. Schematic diagram of traffic flow’s spatio-temporal correlation.

Firstly, due to the topological structure of the traffic net-
work, the flow of vehicles at time ¢ from the current inter-
section vy is constrained to a limited range of downstream
intersections that are directly connected to it. Assuming that
after At; time units, a portion of vehicle flow enters a directly
connected downstream intersection v;; among these flows,
both the amount entering intersection v; and the corresponding
travel time At; are intricately linked with traffic conditions
and network structure near vy. We refer to this phenomenon
as the local spatial-temporal relationship of traffic flow, which
arises from being confined by local spatial structure. Fur-
thermore, within the entire transportation network, although
certain intersections may not have direct connections, they
can serve as concentrated areas encompassing traffic hubs,
businesses, or office buildings. As a result, a spatial-temporal
correlation relationship exists among these intersections that
is not constrained by temporal duration or spatial extent. We
refer to this type of correlation relationship as global spatial-
temporal correlation.

B. Problem formulation

We utilize a directed graph G = (V,E) to depict the
topological structure of the urban road network. In this model,
V = {v1,va,--- ,un} represents the set of intersections, and
E = {e1,ea, - ,en} represents the set of road segments.
Matrix A is employed to denote the adjacency relationships
between intersections in G. If there exists an edge e =
(vi,vj) € E, then A;; = 1; otherwise, A;; = 0. Assuming
Xt € RN signifies the traffic flow at each intersection in



G at time t, X = {X!~FHL Xt=F+2 ... X} denotes the
collection of traffic flow observations obtained by continuous
monitoring of road network GG for F consecutive time units.
The objective of this paper is to establish a temporal and
spatial dependency extraction model capable of learning traffic
flow evolution from historical traffic flow set X and acquiring a
mapping function v (+) (as depicted in Equation 1) that predicts
traffic flow at each intersection in G for H subsequent time
steps based on X.

[Xt7F+17Xt7F+27.” ,Xt} P () [Yt+17yt+27.“ 7Yt+H] )
Specifically, X*~% € R" represents the observed traffic flow
at each intersection in G at the time ¢ — i, and Y!+7 € RV
represents the predicted traffic flow at each intersection in G
for the future time step j.

IV. TRAFFIC FLOW PREDICTION BASED ON MSTCM

This section will investigate the intricate temporal and
spatial correlations in urban traffic flows, examine multi-
dimensional temporal and spatial representation methods for
traffic flow, develop algorithms for extracting temporal and
spatial dependency relationships, and construct a traffic flow
prediction model based on multi-perspective temporal and
spatial correlation models.

A. Model Framework

Considering the intricate temporal and spatial dependen-
cies in traffic flow within urban road network GG, we com-
mence by examining the spatial and temporal characteristics
of traffic networks to comprehensively analyze and describe
the multidimensional spatio-temporal features of traffic flow.
Building upon this analysis, we propose a novel Multiple
Spatio-Temporal Correlation Model (MSTCM) to effectively
capture and predict future evolution trends by incorporating
both spatial and temporal aspects.

The overall framework of the traffic flow prediction model
based on multi-temporal and spatial correlation model is
illustrated in Figure 2, comprising three main modules: (a)
temporal and spatial representation, (b) temporal and spatial
feature extraction, and (c) feature fusion and prediction. Given
the temporal and spatial features of urban traffic flow (X, A),
where X € RNXF represents the traffic tensor of the road
network that describes the temporal features of traffic flow;
A € RVNXN represents the connectivity relationship between
intersections in the traffic network G that describes the spatial
features of urban traffic flow. Firstly, within the temporal and
spatial representation module, tensor X is decomposed into
tensors X, and X to respectively represent trend features
and fluctuation features. Additionally, a first-order adjacent
matrix A; is generated based on spatial feature A to ex-
press connectivity relationships between intersections in G.
Furthermore, second-order in-degree matrix Ag;, as well as
second-order out-degree matrix A;,,; are generated to depict
road direction characteristics within G. Subsequently, within
the temporal and spatial feature extraction module, internal

dependence relationships among different time-space combi-
nations are extracted resulting in a comprehensive represen-
tation of traffic flow features encompassing various temporal-
spatial dependencies. Finally, within the feature fusion and
prediction module, traffic flow features from different time-
space dimensions are fused together for future traffic flow
prediction.

B. Spatio-temporal representation

(1) Temporal feature representation. In urban road traffic,
the behavior of traffic participants plays a crucial role in
the evolution of traffic flow. However, external factors such
as weather and traffic events interfere with the behavior of
traffic participants, resulting in nonlinear and non-stationary
characteristics of traffic flow. This increases the complexity
of learning the temporal evolution features of traffic flow.
To accurately capture both subjective behavior and external
disturbance features inherent in traffic flow, we employ the
damage-free seasonal trend decomposition algorithm [26] to
decompose the traffic flow signal into a trend signal repre-
senting subjective behavioral features and a fluctuation signal
representing external event disturbance features.

Considering the road network’s traffic flow signal X €
RN*F and the sliding window size w, this study employs the
sliding average strategy described in Equation 2 to calculate
the trend signal in traffic flow.

T R . [Xxi << F
7 _ —[w/2] t+[w/2] 1 __ s 1 =
Ko = w PWHere &= 10 otherwise )
Where X7, . represents the trend feature of intersection ¢ at

time ¢ in graph G, which denotes the average traffic flow
within a time window of size w centered at ¢t. If the time
window range exceeds the input traffic flow time interval, then
zeros are padded to obtain X, € RV*F representing the trend
signal of traffic flow in graph G. Let X = X — X,,; hence,
X € RN*F signifies the fluctuation feature signal of traffic
flow.

(2) Spatial feature representation. Spatial graph convo-
lutional neural networks (GCNs) are widely employed for
analyzing graph-structured data due to their robust feature
aggregation capabilities. However, the current approach is
limited to processing undirected graph structures with semi-
definite Laplacian matrices. In urban road traffic networks,
which exhibit a directed spatial graph topology, direct appli-
cation of spatial GCNs for related data analysis is not feasible.
Existing traffic flow prediction methods based on graph con-
volutional neural networks often consider traffic networks as
undirected graphs, leading to the loss of directional features
in traffic flow and reduced prediction accuracy. To tackle
this issue, we employ the approach proposed in [27], which
decomposes the directed graph structure of the urban road
network into multiple spatial structures exhibiting adjacency
relationships consistent with semi-definite Laplacian matrices.
These structures are utilized to depict proximity relationships
and directional information between nodes.
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Fig. 2. Schematic diagram of traffic flow’s spatio-temporal correlation.

Based on the adjacency matrix A of the given urban road
traffic network G, utilizing formula 3, we can derive the first-
order proximity matrix A that characterizes the neighboring
relationships among intersections in G, as well as the second-
order in-degree proximity matrix Ag;, and out-degree proxim-
ity matrix Ag,y; that describe the upstream and downstream
directions of intersections, respectively.

Aplad) = AVGLg)

Asin(i:§) = 2p sat ®
. AigAj

Asout(z’ .7) = Zk ﬁ

Specifically, A%Y™ represents the symmetric matrix derived
from the adjacency matrix A, which characterizes the direct
spatial correlation relationships among intersections in the
road network. As demonstrated in [27], all matrices A, Agin,
and Ag,,; exhibit positive semidefinite properties.

C. Spatio-temporal correlation extraction and feature fusion

Given a pair of temporal-spatial feature of traffic flow
(X,A), where X € {X,,X} and A € {Ay, Agin, Asout}»
we extract both global and local temporal-spatial correlation
features from the traffic flow data within the temporal-spatial
framework (X, A). Subsequently, these correlation features are
sequentially integrated with the original traffic flow features

(1) Global spatio-temporal correlation extraction and
feature fusion.

The global spatio-temporal correlation relationship between
traffic flows in the road network describes the correlation
between traffic flows on different roads in terms of both time
and space, regardless of the road network topology. In order to
learn this relationship, we employ an attention mechanism. To
facilitate explanation, we initially extend the temporal feature
of traffic flow to X € RN*XCXF where N represents the
number of intersections in the road network, C' represents the
number of observed feature channels, and F' represents the
length of the observed traffic flow sequence. Initially, there is
only one channel for the traffic flow temporal feature (C' = 1).

By utilizing Equation 4, we can compute the global temporal
attention coefficient AT for traffic flow.

AT = LeakyReLU((XW1Wa)(XW1W2)T + bt @)

Specifically, Wy € RC, Wy € RN*N' and b, € RF*F are
the learnable parameters, while LeakyReLU(-) serves as the
activation function, N’ represents the length of the expanded
space feature dimension. To mitigate the differential impact of
time feature scales on our model, we normalize the time atten-
tion coefficient AT using Equation 5, resulting in standardized
time attention AT € RF*F,

exp(AT;;)
Sy exp(AT )

Subsequently, through the transformation of X' = X AT’, we
integrate the global time-correlated features with the feature
representation of traffic flow, thereby acquiring the fused
representation X’ for traffic flow.

Building upon this, we further extract the global spatial
correlation relationships within traffic flow. Subsequently, the
spatial attention coefficient AS in traffic flow can be computed
using formula 6.

AT]; = softmax; (AT;;) = )

AS = LeakyReLU((X'U1Uz)(X'U1U2)T + bs) (6)

Specifically, U, € RC, Uy € RF*F', and b, € RN*N
represent the learnable parameters. The activation function
LeakyReLU(-) is utilized, while F’ denotes the length of
the traffic flow temporal feature dimension after expansion.
Subsequently, Equation 7 is employed to normalize the spatial
attention coefficient AS in order to mitigate the differential
impact caused by variations in spatial feature scales within
road traffic flow.

exp(AS;;)
>l exp(ASiy)

The global spatial-temporal correlation features are finally
integrated with the traffic flow feature representation X' to

AS}; = softmax; (AS;;) = 7



obtain X", denoted as X" = AS’X' = AS’X AT’, thereby
yielding a comprehensive traffic flow representation X" €
RN*CXF that encompasses both global temporal and spatial
correlation features of traffic flow.

(2) Local spatio-temporal correlation extraction and
feature fusion.

The local temporal correlation relationship quantifies the
proportion of vehicle flows exiting one intersection and enter-
ing the directly connected downstream intersection over time.
After obtaining the traffic flow temporal feature representation
X", which integrates global temporal correlation features, we
further investigate the local temporal correlation relationship
of road network traffic flows by incorporating the spatial
feature representation A of the road network.

Given a spatial representation A € {Ay, Agin, Asout} of
the road network G, it is known that A is a positive semi-
definite matrix. Therefore, we can obtain the Laplacian matrix
Ly=1—-D"12AD"1/2 where D € RN*N represents the
degree matrix of matrix A. The eigenvalue decomposition of
matrix L, can be expressed as Ly = UAUT, where A =
diag([Ag, - ,An—1]) € RV*N denotes the diagonal matrix
containing the eigenvalues of L 4. Let Y = X", then the graph
convolution operation on the road network G with respect to
the spatial representation A can be expressed as follows in
equation 8:

90 %G, Y =go(La)Y = go(UAUT)Y =Uge(MUTY  (8)

Here, *¢, denotes the spatial feature A of the graph convo-
lution operation on road network G, g represents a learnable
parameter and g(A) signifies the polynomial of eigenvalues de-
rived from the Laplacian matrix L 4. To mitigate computational
complexity, this study approximates g(A) using Chebyshev
polynomial coefficients up to degree K, as illustrated in
Equation 9.

K K
go*G, Y =UD O TR(MUTY =Y 0 Ti(La)Y (9
k=0 k=0
Where the recurrence relation Ty (z) = 2271 (z) — Tk—2(x)
is employed, with initial conditions Ty (z) = 1 and T3 (x) = .
To enhance the model’s learning and expressive capabilities,
we introduce the active function LeakyReLU(-) for nonlin-
ear processing of the output from the convolutional neural
network. We define v'=LeakyReLU(go*c ,Y), Which represents
the integrated traffic flow feature representation incorporating
local spatial correlation relationship features.

Subsequently, we will conduct further investigation into
the local temporal correlation relationships in traffic flow. By
acquiring a time weight coefficient vector £ € RF*™ we
will aggregate the traffic flow features at any given time with
the features within a window of size m centered around that
specific time point. Here, F' represents the length of the traffic
flow time feature. Ultimately, by leveraging Equation 10, we
will integrate these local temporal correlation features into
the road network traffic flow Y’, thereby obtaining a fused

representation Y that incorporates both global and local
spatio-temporal correlations.”

m—1 Y i ]
B _ L[ —t<j< F+[2] -t
" L. . % 2 B B ’
Y = g:o Yij Ejr, where Yy {0” otherwise

10

Therefore, we can represent the multi-temporal and spatial

correlation features of traffic flow as a function of the temporal

feature X, spatial feature A, and the learnable parameters © =
{9, W1, Ws,Uy,Us, E,bs,bs}, as depicted in Equation 11.

Zx,a=®(X,A,0) (11)

Here, Zx 4 denotes a comprehensive traffic flow represen-

tation that integrates both global and local spatio-temporal

correlation features within the spatial and temporal context

(X, A). For clarity purposes, we will henceforth refer to Zx 4
as Zz.

D. Deep spatio-temporal correlation extraction

According to the dynamic nature of traffic flow, the temporal
and spatial correlation of traffic flow will also propagate
across time and space domains. Therefore, we employ stacked
modules for extracting higher-order, non-linear temporal and
spatial correlations. Additionally, in order to mitigate the issue
of gradient vanishing during multi-layer network propagation,
we introduce a residual network as depicted in Equation 12.
We denote the obtained traffic flow feature representation after
the I*" layer of feature extraction and fusion as Z().

zZW =o(z0-D, 4,00 4 z(0-1 (12)

Let z®=x, by substituting z(-Y=¢(z(-?,4,6!-V) into

equation 12, we obtain

zW = a@(z"72, 4,00, 4,00) 4 320D 4,007
=o(--2(@(X, 4,00, ), 400+ pax,40M) + X

N’
l l

Clearly, when Z(©) = X is evident. The equation 12 can be
simplified to the subsequent equation 13 if we briefly denote
B(---(B(X,A,01),...),4,00) as 0V (x,4,060...00),

l
yAQ= Z o) (x,A,000...00)
i=0

13)

E. Traffic flow prediction based on MSTCM

By considering the two types of temporal features {X,,, X, }
and the three types of spatial features {A;, Agin, Asout}
we can individually select one temporal feature and one
spatial feature to form six distinct combinations of space-time
features. Subsequently, by leveraging these six combinations,
we are able to learn and derive fusion features for traffic flow
as expressed in Equation 14.
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In order to accurately depict the disparities in the impact
of temporal-spatial traffic flow fusion features on the future
evolution trend of traffic flow, we employ learnable weight
coefficients to assign weights to each temporal-spatial com-
bination’s fusion features and subsequently concatenate them
along the time dimension. Ultimately, we acquire the feature
representation Z() € RN*SF for the multi-temporal and
spatially correlated traffic flow through activation function
PReLU(-), as demonstrated in Equation 15.

1 (1) AR 1 [©)
atZ R soutZ. \
Z(l) _ PReLU(Concat( g (l)j B‘57TL :(Ll)‘“n Vsout ?L[)sout)> (15)
va i wnZ'u sin? ’Ysoutz'u,sout

Ultimately, a fully connected network is employed to learn
the weight matrix W € RSF*H as depicted in Equation 16,
which facilitates mapping of the fused features Z((I)) from
multiple temporal and spatial domains to predict traffic flow
X € RN*H for the subsequent [ time steps.

X =zW0w (16)

By utilizing the loss function fr(-), we accomplish opti-
mization objective as demonstrated in Equation 17.

11 N H
inL,(0)=—— Xt Xt 17
IIgl’l p( ) NHT;;J(L( ns n) an
Where © represents the set of trainable parameters within the
network model,© denotes the number of intersections in the
road network, and H signifies the predicted traffic flow length.

V. EXPERIMENTS

This section will conduct comprehensive experiments on
four real-world datasets to assess the efficacy of the proposed
model in this paper and compare and analyze it with several
existing baseline algorithms.

A. Experimental Environment and Data

The experimental procedures were conducted using Python
3.10 and the deep learning framework Pytorch 2.1.0, on a
Linux server cluster equipped with an NVIDIA-A800 G-
PU. Model performance was evaluated using four real-world
datasets and compared against the latest research findings.
All experimental datasets were obtained from the California
Performance Measurement System (PEMS) [28], with detailed
descriptions provided in Table I.

TABLE I
DESCRIPTION OF THE EXPERIMENTAL DATASET

Datasets | Vertices | Edges | Timestamps Time Range

PEMSO03 358 547 26208 9/1/2018-11/30/2018
PEMS04 307 340 16992 1/1/2018-2/28/2018
PEMSO07 883 866 28224 5/1/2017-8/31/2017
PEMSO08 170 295 17856 7/1/2016-8/31/2016

B. Evaluation metrics and baseline models

In the analysis of the experimental results, we em-
ployed three indicator functions, namely Mean Absolute Er-
ror (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE), to assess the model’s
accuracy. We compared our method with twelve significant
baseline methods from the past five years. These baseline
methods primarily encompass four categories: graph neural
network-based approaches such as STSGCN [17], LSGC-
N [29], AutoSTG [30], STFGNN [18], STGODE [28], Auto-
DSTSGN [20], STG-NCDE [31], and ASTGCN [6]; attention
mechanism-based techniques like PDFormer [32]; methods
that combine graph neural networks and attention mechanisms,
such as STJGCN [33] and ST-Ware [34]; as well as spatio-
temporal data pre-modeling and processing methods like STD-
MAE [35].

C. Model Performance Analysis

To comprehensively investigate the impact of various pa-
rameters on the model’s accuracy, we conducted a series of
experiments on the PEMS08 dataset to explore and validate the
accuracy associated with important parameters. Throughout
the experiment, we randomly partitioned all data into three
distinct datasets - training, testing, and validation - in a ratio of
6:2:2. Simultaneously, several crucial model parameters were
configured as follows: setting input and output lengths to 12
hours; utilizing a sliding window size of 15 for traffic flow time
feature decomposition; employing a temporal and spatial con-
volutional kernel size of 64; selecting Chebyshev polynomial
order as 3; constructing a two-layer spatial-temporal relation-
ship extraction network. Furthermore, to enhance adaptability,
we randomly divided the training data into multiple batches
and trained the model using batch processing with a default
batch size of 32 samples.

(1) In the MSTCM model, we decompose non-linear traffic
flow into relatively simple trend and fluctuation signals and
independently learn their spatial and temporal features to en-
hance prediction accuracy. Firstly, we investigate the influence
of the sliding time window size (Win) on model accuracy
through a series of experiments. The experimental results are
depicted in Figure3(a), where initially there is a significant
increase in model accuracy as Win increases, followed by a
plateau at Win=15 which represents the peak performance.
Subsequently, with further increase in Win, there is a slight
decrease in model accuracy. As discussed in Section 4.2
analysis, the decomposition of traffic flow temporal features
aims to separate stable characteristics determined by traffic



demand from random fluctuations caused by sudden factors.
Among these components, the trend signal captures stable
traffic flow features while the fluctuation signal represents
changes induced by sudden factors. Increasing the sliding
window size gradually aligns the trend signal obtained dur-
ing decomposition with stable characteristics determined by
traffic demand leading to improved model accuracy. However,
excessive enlargement of window size may mistakenly identify
small-scale changes in traffic demand as random fluctuations
thereby reducing overall prediction accuracy.
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Fig. 3. Model’s accuracy influenced by the parameters Win, K and L.

(2) To reduce computational complexity, we employ the
Kth-order Chebyshev polynomial approximation to represent
the characteristic polynomial of the Laplacian matrix when
investigating local spatial correlation relationships in traffic
flow analysis. Generally, a higher order Chebyshev polynomial
enables more accurate capture of spatial correlation relation-
ships, thereby enhancing model accuracy. Consequently, we
conducted a series of experiments to examine the impact of
Chebyshev polynomial order on model accuracy. The experi-
mental results are depicted in Figure 3(b), illustrating that as
K increases, model accuracy initially improves rapidly and
then stabilizes; beyond K = 4, there is negligible change in
model accuracy. The main reason for this is that as K increases,
the additional high-order coefficients that are added bring an
increasingly small increase in expressive ability.

(3) To enhance the MSTCM’s capacity for learning
temporal-spatial features of traffic flow, we employ a multi-
layer temporal-spatial correlation extraction module to acquire
higher-dimensional non-linear features. In order to investigate
the impact of the number of layers in the temporal-spatial
relationship extraction network on model accuracy, a series
of experiments were conducted. The experimental results are
depicted in Figure 3(c), where initially, as the number of
network layers L increases, there is a rapid improvement in
model accuracy; subsequently, it stabilizes and slightly de-
creases with further increase in network layers. This behavior
can be attributed to an expanded receptive field resulting
from increased network layers that aids in capturing higher-
dimensional non-linear features; however, excessive layering
may lead to overfitting issues. Consequently, augmenting the
number of network layers within a narrower range yields
benefits that outweigh costs and enhances model accuracy;
nevertheless, beyond this range, diminishing returns occur
along with escalating costs leading to stable or even reduced
model accuracy.

(4) Subsequently, a series of experiments will be conducted

to analyze and validate the impact of traffic flow time feature
decomposition on model accuracy. Initially, a sliding window
(Win=15) is employed to decompose traffic flow into two
features: Trend and Variation. One or both of these features
are then selected to learn the evolution patterns of traffic flow
and predict future conditions. Simultaneously, a comparison
will be made between experimental results and predictions
using the original traffic flow data (Origin). As depicted in
Figure 4(a), combining the trend and variation features yields
the highest accuracy in traffic flow prediction; utilizing only
the trend feature achieves second-best accuracy but significant-
ly outperforms predictions based on original traffic flow data;
employing solely the variation feature yields inferior results,
much lower than those obtained from predicting with original
traffic signals. These experimental findings further confirm
two key points: firstly, in representing the evolution process
of traffic flow, trend serves as the most stable and crucial
feature; secondly, incorporating disturbance information ren-
ders future traffic flow prediction more challenging. This study
has significant implications for enhancing predictive accuracy
regarding future traffic conditions by extracting trend and
variation features from traffic flows while separately learning
their evolutionary laws.
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Fig. 4. Model’s accuracy influenced by spatio-temporal representation of
traffic flow.

(5) In the MSTCM model, to capture more intricate spatial
correlations, we decompose the spatial features of traffic flow
into a first-order adjacency matrix Ay representing proximity
relationships, and second-order in-degree adjacency matrix
Agin and out-degree adjacency matrix Ag,,; representing
directional information. Consequently, in our experiments, we
utilize one or more of these aforementioned three spatial
features to learn the correlation patterns of traffic flow and
forecast future traffic conditions. Simultaneously, we analyze
prediction outcomes to evaluate the impact of decomposing
traffic flow’s spatial features on model accuracy. As illustrated
in Figure 4(b), when employing only one spatial feature, both
Ay and Ag;, demonstrate significantly higher accuracy com-
pared to A, ; indicating that Ay and A,;;, encapsulate richer
information regarding spatial characteristics than does Agyys.
When incorporating two different types of spatial features
simultaneously, all combinations yield higher accuracy than
using a single type alone; among all tested combinations,
the combination of Ay and Ag;, slightly outperforms others.
Finally, by integrating all three distinct types of spatial fea-
tures simultaneously, our model achieves its highest level of
accuracy. These experimental findings substantiate that these



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES FOR TRAFFIC FLOW FORECASTING

PEMSO03 PEMS04 PEMS07 PEMS08
RMSE | MAE | MAPE(%) | RMSE | MAE | MAPE(%) | RMSE | MAE | MAPE(%) | RMSE | MAE | MAPE(%)

STSGCN (2020) 29.21 17.48 16.78 33.65 21.19 13.90 39.03 24.26 10.21 26.80 17.13 10.96
LSGCN (2020) 29.85 17.94 16.98 33.86 21.53 13.18 41.46 27.31 11.98 26.76 17.73 11.20
AutoSTG (2021) 27.63 16.27 16.10 32,51 20.38 14.12 36.47 23.22 9.95 25.46 16.37 10.36
STFGNN (2021) 28.34 16.77 16.30 3251 20.48 16.77 36.60 23.46 9.21 26.25 16.94 10.60
STGODE (2021) 27.84 16.50 16.69 32.82 20.84 13.77 37.54 22.99 10.14 25.97 16.81 10.62
Auto-DSTSGN (2022) 25.17 14.59 14.22 30.48 18.85 13.21 33.02 20.08 8.57 23.76 14.74 9.45
STG-NCDE (2022) 27.09 15.57 15.06 31.09 19.21 12.76 33.84 20.53 8.80 24.81 15.45 9.92
ST-aware (2022) 16.63 15.17 15.83 31.02 19.06 12.52 34.05 20.74 8.71 24.62 15.41 9.94
STGCN (2022) 29.56 17.34 17.21 35.22 22.93 16.56 37.87 21.01 10.73 28.06 18.25 11.64
PDFormer (2023) 25.39 14.94 15.82 29.97 18.32 12.10 32.87 19.83 8.53 23.51 13.58 9.05
STJGCN (2023) 25.70 14.92 14.81 30.35 18.81 11.92 33.01 19.95 8.31 23.74 14.53 9.15
STD-MAE (2024) 24.43 13.80 13.96 29.25 17.80 11.97 31.44 18.65 7.84 22.47 13.44 8.76
MSTCM (Ours) 14.79 11.94 14.17 22.81 12.48 12.08 28.57 17.68 8.27 18.07 10.12 8.65

*The reported results of the utilized baseline method are exclusively sourced from primary literature.

three distinct types of spatial features complement each other
in extracting underlying correlations within traffic flow.

D. Performance comparison analysis

We conducted a series of experiments to compare the
proposed MSTCM model with twelve baseline methods that
have been used in the past five years. In these experiments, all
methods were configured with input and output lengths set to
12, indicating the utilization of historical traffic data from the
previous hour for predicting traffic flow in the subsequent hour.
The prediction accuracy of various methods on four datasets
is presented in Table 2. The experimental results demonstrate
that the MSTCM model has achieved remarkable performance,
significantly outperforming other indicators when compared to
the baseline methods, except for MAPE values on the PEMS03
and PEMSO07 datasets.

By comparing the key technologies and performance of
each baseline method, we observed that the eight graph neural
network-based baselines demonstrated similar overall perfor-
mance on the four datasets, albeit with some variations. No-
tably, the PDFomer method incorporating an attention mecha-
nism outperformed most graph neural network-based baselines
and only slightly lagged behind the Auto-DSTHCN method.
The two approaches for integrating attention mechanisms
with graph neural networks exhibited comparable performance
across all metrics, except for a significant disparity in the
RMSE metric on the PEMSO03 dataset. These methods outper-
formed the baseline graph neural network approach and yield-
ed results comparable to those of the PDFomer method. The
STD-MAE method presented a distinctive approach wherein
a pre-trained model was designed to enhance traffic flow data
quality before feeding it into downstream prediction models,
which is fundamentally different from existing algorithms. It is
worth mentioning that as a downstream prediction model for
STD-MAE, GWNet model [36] achieved superior accuracy
compared to six baseline algorithms.

In response to the aforementioned experimental phenomena,
we conducted an analysis of the underlying logic behind these

observations. Our findings suggest that graph neural networks
and attention mechanisms emphasize different aspects when
extracting spatial-temporal features of traffic flow. Specifically,
graph neural networks primarily focus on aggregating local
network’s spatial-temporal features; although they can extend
feature aggregation through deep network layers, discovering
global spatial-temporal features of the road network remains
challenging. On the other hand, attention mechanisms excel at
capturing global spatial-temporal features of the road network
without being constrained by space and time but exhibit
limitations in extracting local area’s spatial-temporal features.
By combining both approaches in our MSTCM model, we
leverage their respective strengths and compensate for their
weaknesses to achieve superior performance. In this model,
we not only employ attention mechanisms and graph neural
networks to extract global and local spatial-temporal features
of traffic flow but also decompose its spatiotemporal character-
istics while extracting more refined and nonlinear perspectives
from various spatiotemporal dimensions.

VI. CONCLUSION

Due to the combined influence of intrinsic traffic demand
and external random factors, urban road traffic flow exhibits
highly dynamic nonlinear and non-stationary characteristics,
which pose a significant challenge for traffic flow prediction.
To mitigate the complexity arising from temporal and spatial
features of traffic flow and their adverse impact on prediction
accuracy, this study employs a feature decomposition strategy.
By decomposing traffic flow into multiple representations in
different temporal and spatial domains, as well as utilizing
multi-layer temporal relationship extraction modules to capture
non-linear dependencies within each domain, we effectively
predict the future evolution trend of road network traffic by
weighting and fusing the temporal and spatial dependence fea-
tures. We conducted extensive experiments on four real-world
datasets to thoroughly analyze and evaluate our proposed
model’s performance. Furthermore, we compared our method
with twelve state-of-the-art approaches achieved over the past



five years. The comprehensive evaluation results demonstrate
outstanding performance of our proposed method.
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