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Abstract—This study explores the application of genetic al-
gorithm (GA)-optimized multi-layer perceptron (MLP) models
for accurately classifying binary outcomes in anomaly detec-
tion within financial datasets, which are prone to poor target
feature separability. By leveraging GA, we synthesize MLP
architectures tailored to maximize precision while maintaining
recall on a validation set that was not part of the training
data. Experimental results demonstrate that GA-driven opti-
mization improves the precision of anomaly detection compared
to traditional regression-based methods. This approach offers a
promising framework for enhancing the security and reliability
of financial systems against sophisticated fraudulent behaviors
and anomalies.

Index Terms—binary classification, genetic algorithm, anomaly
detection, imbalanced data

I. INTRODUCTION

The detection of anomalies in financial data has become a
pressing concern, necessitating the development of effective
and accurate solutions. This study specifically targets the
detection of the need for tax inspections among legal entities
based on a dataset that includes financial statements, financial
reporting attributes, and details about the executives of these
organizations. Importantly, this dataset presents inherent chal-
lenges due to its initial poor separability and the imbalance
of its target feature. Correctly classifying the target feature in
such data is indeed the search for anomalies.

Traditional approaches, such as regression analysis, have
proven insufficent [1] in handling high-dimensional and com-
plex data, particularly when the target feature lacks clear
distinguishing characteristics [2]. Neural network (NN)-based
approaches, specifically, multi-layer perceptrons (MLPs), have
shown effectiveness [3] in classification. However, optimizing
the architecture and parameters of MLPs can be a complex
task, particularly without employing optimization techniques.
One powerful tool for finding global optima in complex
parameter spaces is the Genetic Algorithm (GA) [4]. Inspired

by natural selection and evolution, GA have proven their
efficacy across various scientific and engineering domains.

This study explores various regression models for binary
classification to identify the most suitable approach for de-
tecting anomalies in the target feature, specifically the need
for tax authority audits, within a financial dataset of legal
entities. The dataset is characterized by poor separability
and class imbalance of the target feature. After determining
the best-performing regression model, namely the MLP, GA
were applied to optimize MLP’s hyperparameters to maximize
model precision while maintaining recall on a validation set
not used during training. Experimental results demonstrate
that GA-driven optimization yields substantial improvements
compared to traditional regression-based methods.

Put simply, the paper is structured as follows: Section II
reviews related work in the field, providing context. Sec-
tion III details our dataset and employed methodology. Sec-
tion IV presents experimental results and their implications.
In Section V discusses future research directions.. Finally,
Section VI, we draw conclusions from our findings.

II. RELATED WORKS

Various approaches have been proposed for anomaly de-
tection in finance, each with its strengths and limitations. To
provide a comprehensive overview, we summarize the key
works in the field in the Table I.

Anomaly detection is crucial in finance for identify-
ing fraudulent activities. Ahmed et al. [6] survey reviews
clustering-based unsupervised anomaly detection techniques,
comparing them from different perspectives. A key challenge
is the lack of real-world data, with synthetic data often used
for validation. However, on the other hand, anomaly detection
in financial data has been largely overlooked. In study [7]
authors apply standard anomaly detection techniques (nearest-
neighbours, clustering, and statistical approaches) to historical
daily trading data to detect rare anomalies. The results show



TABLE I
SUMMARY OF WORKS ON ANOMALY DETECTION IN FINANCE

Reference Focus Limitations
Guo et al. (2015) [5] Combining activity and density for time

series anomaly detection
Limited to financial time series data, neglects indi-
vidual outliers

Ahmed et al. (2016) [6] Clustering-based unsupervised anomaly de-
tection

Lack of real-world data, reliance on synthetic data

Ahmed et al. (2017) [7] Standard anomaly detection techniques
(nearest-neighbours, clustering, statistical
approaches)

Limited to historical daily trading data

Huang et al. (2018) [8] CoDetect framework (network and feature
information)

Limited to financial fraud detection

Zhang et al. (2022) [9] Random forest algorithm for anomaly de-
tection

Requires manual updates for IDS to function prop-
erly

Chen et al. (2022) [10] AntiBenford subgraph framework (statisti-
cal principles)

Limited to cryptocurrency transaction networks

Crepey et al. (2022) [11] PCA and feedforward neural network for
anomaly detection

Limited to financial time series data

that LOF (Local Outlier Factor) [12] and CMGOS (Clustering-
based Multivariate Gaussian Outlier Score) [13] are the best-
performing algorithms.

The rapid growth of computer networks brings convenience,
but also security concerns due to abnormal flows. Current
detection systems, like intrusion detection system (IDS) [14],
have limitations, requiring manual updates to function prop-
erly. Zhang et al. [15] suggests an approach using random
forest algorithm to detect abnormal samples in financial data,
measuring their degree of abnormality based on similarity.
Simulation results show that this method outperforms other
distance-based techniques in terms of accuracy and computing
time.

Financial fraud, such as money laundering, is a serious
crime that involves complex networks of transactions. Existing
methods focus on either network or feature information, but
not both. Huang et al. [8] proposes CoDetect, a framework that
leverages both network and feature information for financial
fraud detection and can detect fraud activities and identify
associated feature patterns. Experiments on synthetic and real-
world data demonstrate its efficiency and effectiveness in
combating financial fraud.

Chen et al. [10] introduce the AntiBenford subgraph frame-
work, based on statistical principles, to detect anomalies
in cryptocurrency transaction networks. This algorithm finds
AntiBenford subgraphs [16] in near-linear time. Evaluations
on real and synthetic data show that our framework out-
performs state-of-the-art methods, detecting previously unde-
tected anomalous subgraphs and providing new insights into
financial transaction data.

Anomalies in financial time series can lead to miscalibrated
risk models and erroneous risk measures. Crepey et al. [11]
proposes an approach that extracts valuable features using
principal component analysis (PCA) and detects anomalies
using a feedforward neural network. The anomaly score is cal-
ibrated through a customized loss function, and the approach
is shown to outperform existing algorithms on synthetic and
real data sets. By using this approach with a basic imputa-
tion method, value-at-risk estimation errors are significantly

reduced.
Financial data is increasingly variable and unpredictable,

with abnormal fluctuations containing important information.
Traditional time series anomaly detection methods focus on
individual outliers, neglecting the time sequence and sub-
sequences. Guo et al. [5] proposes a method that combines
activity and density to effectively utilize time sequence and
sub-sequences features, discovering anomalies in financial
time series data.

A knowledge gap exists in the literature on using opti-
mization techniques, like GA to tune classification models for
anomaly detection in financial data. This gap is particularly
significant for tax authority audits, where efficient anomaly
detection can reduce auditors’ workload. Our article aims to
bridge this gap

III. MATERIALS AND METHODS

A. Dataset Description

The dataset consisted of 10,000 records, each corresponding
to an organization previously scrutinized by tax authorities.
It encompassed 37 columns, including 10 binary features
and 26 quantitative features related to these binaries. The
target variable indicated the necessity of an audit. Notably,
36 features were indirectly known to tax authorities and were
not outcomes of prior audits. Hence, the goal was to construct
models that effectively minimized unnecessary audits based
on these indirect indicators. Figure 1 presents histograms
illustrating the distributions of binary features, essential for
characterizing various aspects of legal entities

The dataset’s binary features contains the Account Sta-
tus feature (1b)which indicates the presence or absence of
accounts associated with these entities. The High-Risk Flag
(1b)identifies entities categorized as high-risk, potentially due
to financial or operational vulnerabilities. Additionally, the Tax
Compliance Flag (1c)flags entities known for tax avoidance
or non-compliance issues. Moreover, it includes features that
capture disparities in leadership and ownership structures.
The Regional Leadership Inequality Flag (1d)indicates dis-
crepancies in executive positions across regions within the
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Fig. 1. Histograms of features from financial dataset with 10,000 entities correspond to: (a) Account Status, (b) High-Risk Flag, (c) Tax Compliance Flag,
(d) Regional Leadership Inequality Flag, (e) Founder Inequality Flag, (f) Financial Reporting Non-compliance Flag, (g) Blocked Account Flag, (h) Single
Leader, Multiple Founders Flag, (i) Single Leader, Multiple Executives Flag, (j) Tax Disclosure Flag.

organization, while the Founder Inequality Flag (1e)highlights
variations in ownership among founders across regions. Fur-
thermore, features related to financial reporting and com-
pliance are present in the dataset. The Financial Reporting
Non-compliance Flag (1f)identifies entities with inadequate or
absent financial reporting practices, and the Blocked Account
Flag (1g)indicates entities with currently blocked accounts.
Additionally, the dataset includes features that depict the
leadership and ownership structures of entities. The Single
Leader, Multiple Founders Flag (1h)identifies entities with a
single leader and multiple founders, while the Single Leader,
Multiple Executives Flag (1i)highlights organizations led by
a single leader with multiple executives. Finally, the Tax
Disclosure Flag (1j)indicates entities providing tax disclosures,
potentially influencing financial transparency.

The t-Distributed Stochastic Neighbor Embedding (t-SNE)
and Principal Component Analysis (PCA) visualizations (Fig-
ure 2) depict the challenges posed by the poor separability of
data in our dataset. After reducing the dataset, which excludes
the target feature, to 2 and 3 dimensions using t-SNE and
PCA, respectively, and labeling it according to the target
feature, we observe significant overlap among data points. This
overlap illustrates the intricate nature of the dataset, where
distinguishing between classes becomes a non-trivial task for
binary classification. The visual representation underscores the
complexities involved in achieving effective separation and
classification of entities based on their characteristics

B. Regression-based binary classification

Figure 3 illustrates our approach to selecting the optimal
classifier architecture and therefore hyperparameters for a

given task, leveraging a combination of classifier evaluation
metrics and GA-based optimization.

The fist goal of the study was to employ various classifiers
to maximize precision for the target class while maintaining
a recall below 0.3 [17]. This strategy aims to identify risky
legal entities with minimal false positives.

Using diverse classification methods [18] enhances mod-
eling and prediction. Logistic Regression [19] handles linear
dependencies, while Random Forest [20] manages nonlinear
relationships and avoids overfitting. Adjusting classification
thresholds balances precision and recall. Oversampling or
undersampling [21] addresses class imbalances, and feature
engineering [22] improves model interpretability. Algorithm
selection [23] and ensemble methods combine multiple models
for better performance.

Cost-sensitive learning [24] and customizing class
weights [25] are crucial when misclassifications have
distinct consequences. Advanced techniques like Meta-
learning [26], XGBoost [27], LightGBM [28], CatBoost [29],
and AdaBoost [30] improve classification performance. Voting
ensembles [31] leverage diverse models for robust results.

Advanced methods such as Bayesian Optimization [32]
and Deep Neural Networks (DNN) [33] further enhance
performance. Bayesian Optimization refines hyperparameters
for optimal settings, and DNNs capture complex patterns,
making them powerful for binary classification. Integrating
these techniques offers a sophisticated approach to improving
classification accuracy.

We applied 50 different classifiers to our dataset to identify
the most optimal one for our task. Following standard method-
ology, we used built-in classification modules in Python.
Metrics were evaluated on a test set, which comprised 20
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Fig. 2. (a) 2D PCA Heatmap and (b) 3D PCA Heatmaps; (c) 2D t-SNE Heatmap and (d) 3D t-SNE Heatmaps: PCA and t-SNE were used for dimensionality
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Fig. 3. Schematic representation of the proposed approach, illustrating the
steps involved in classifier selection, hyperparameter tuning, and evaluation
on the holdout set

C. GA-based optimizing MLP models

The next aim of this research was to utilize GA optimization
to synthesize MLP models aimed at maximizing precision
while maintaining recall for binary classification of a dataset
concerning legal entities. The primary objective was to reduce
unnecessary tax audits conducted by tax authorities. The
selection of MLP was based on its performance as the model
that achieved the best metrics.

The dataset was divided into training, testing, and validation
sets using a stratified split with respective sizes of 70%, 20%,
and 10%, and a fixed random state of 42. Features were
standardized using StandardScaler from scikit-learn.

The hyperparameter space included the following parame-
ters: activation function (identity, logistic, tanh, or relu), solver
(adam or sgd), alpha (0.0001, 0.001, 0.01, or 0.1), and hidden
layer sizes (ranging from 2 to 10 layers with 2 to 128 neurons
per layer).

GA implementation was carried out using the DEAP library
in Python. Each individual in the GA was defined as a

list of four elements: hidden layer sizes, activation function,
solver, and alpha. The fitness function was defined as the
validation accuracy of the neural network. The GA operated
with a population size of 20 over 10 generations, employing a
crossover probability of 0.5 and a mutation probability of 0.2.

IV. RESULTS

Fig. 4 illustrates the precision, recall, and accuracy values
across different experiments. The accuracy remains below
0.8, underscoring the challenging the classification task of
imbalanced data with poor separability of target feature. The
recall for the target feature (1) fluctuates between 0.2 and 0.4,
indicating the model’s ability to capture a portion of positive
instances. Precision for the target feature (1) hovers around
0.6, reflecting the balance between correctly identified positive
instances and false positives. These trends provide insights
into the model’s performance and highlight areas for poten-
tial improvement in achieving a more balanced classification
outcome.

Over several generations, GA consistently demonstrated an
incremental improvement in precision on the validation dataset
(Fig. 5). Initial generations exhibited diversity in the models
produced; however, as the number of generations increased,
models achieving high precision became predominant. The
application of GA facilitated a substantial enhancement in
precision compared to baseline models, thereby confirming the
effectiveness of the approach.

In the ordered precision growth chart of the validation
dataset, we observe an increase in precision from approxi-
mately 0.4 to 0.54. However, test precision displays fluctua-
tions ranging between 0.45 and 0.62. Concurrently, accuracy
metrics on both test and validation datasets exhibit similar
patterns, hovering around 0.8. Meanwhile, the recall metric
remains consistently low, typically averaging below 0.18.

The systematic rise in validation precision suggests that
models generated by the GA are becoming more adept at
correctly identifying positive cases (true positives) relative to
all positive predictions (true positives + false positives). This
underscores the GA’s efficacy in optimizing model parameters
for enhanced performance on validation data.
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Fluctuations in both test and validation precision can be at-
tributed to several factors. Overfitting may occur when models
tailored to the validation set struggle to generalize to unseen
test data, leading to varying performance levels. Furthermore,
disparities in the distribution or characteristics of the validation
and test datasets can impact model performance differentially.
Additionally, the complexity of GA-evolved models may con-
tribute to performance variability across datasets.

The consistent behavior of accuracy metrics, averaging
around 0.8 on both datasets, indicates reliable performance in
terms of correct predictions (true positives + true negatives)
relative to all predictions.

However, the relatively low values of recall, averaging less
than 0.18, suggest that the models are less effective in cap-
turing all positive cases, particularly true positives, compared
to all actual positive instances. This imbalance may reflect a
prioritization of precision over recall, potentially influenced
by class imbalance or specific characteristics of the problem
domain.

The optimal architectures with neurons per each layer,
activation function (AF) for all layer, and hyperparameters for
metrics validation accuracy (VA) and validation precision (VP)
and and are presented in Table II.

TABLE II
TOP-PERFORMING MODELS

Layers AF Solver α VA VP
(22, 55, 124, 82, 121, 79, 41) tanh sgd 0.001 0.799 0.6429

(62, 82, 87, 54) tanh sgd 0.1 0.7975 0.6701
(62, 82, 87, 54) tanh sgd 0.001 0.7975 0.6542

(109, 20, 95, 43, 56) tanh sgd 0.1 0.7945 0.6195
(45, 115, 53) relu sgd 0.0001 0.796 0.6415

V. DISCUSSION

The results of this study open up several avenues for future
research in the area of anomaly detection. For instance, future
work could explore the application of GA-based optimization
to multi-class anomaly detection tasks [34]. This approach
could be particularly useful when, besides determining the
need for a tax audit, it is necessary to identify other unknown
indicators before an audit, such as potential money laundering
activities and offshore transfers based on indirect signs.

Comparison with other optimization algorithms, such as par-
ticle swarm optimization [35] or Bayesian optimization [36],
is also warranted to evaluate their effectiveness relative to
GA. Additionally, applying the proposed approach to other
anomaly detection tasks, such as fraud detection, network
intrusion detection, or medical diagnosis, could further validate
its versatility and robustness.

The integration of GA with other machine learning tech-
niques, such as ensemble methods [37] or transfer learn-
ing [38], should not be overlooked. As anomaly detection
datasets continue to grow in size and complexity, future
research could focus on developing scalable and parallelized
versions of the proposed approach to handle large-scale
datasets [39]. Moreover, research could also aim at developing

techniques to provide deeper insights into the decision-making
process of the optimized models, enhancing their interpretabil-
ity and trustworthiness.

VI. CONCLUSIONS

In this study, we explored the application of various clas-
sifiers for binary classification tasks burned with lack separa-
bility and imbalanced in target feature. Our results demon-
strate that the choice of classifier can significantly impact
the performance of the model. Specifically, we found that
the MLP classifier outperformed other classifiers, such as
logistic regression and decision trees, in terms of accuracy
and precision.

GA has been shown to be a powerful tool for solving
complex optimization problems, and our study highlights its
potential for optimizing hyperparameters in anomaly detection
tasks. By leveraging the GA, we can identify optimal hyper-
parameters that result in improved performance and accuracy,
leading to more effective anomaly detection.

Overall, our study highlights the importance of consid-
ering multiple classifiers, optimizing hyperparameters, and
leveraging powerful optimization algorithms, such as the GA,
for solving anomaly detection problems. By combining these
approaches, we can develop more accurate and reliable models
that can be applied to a wide range of anomaly detection tasks,
particularly from fraud detection in financial data.

APPENDIX

Appendix A]Data Availability All code, datasets, and im-
ages referenced in this article are publicly available in the fol-
lowing GitHub repository: catauggie/AnomalyData (accessed
on 2024-06-15). Researchers are encouraged to refer to this
repository for access to the complete set of resources used in
the study.
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[11] S. Crépey, N. Lehdili, N. Madhar, and M. Thomas, “Anomaly detection
in financial time series by principal component analysis and neural
networks,” Algorithms, vol. 15, no. 10, p. 385, 2022.

[12] O. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A review of local
outlier factor algorithms for outlier detection in big data streams,” Big
Data and Cognitive Computing, vol. 5, no. 1, p. 1, 2020.

[13] M. Muhammad, U. Daniel Ani, A. A. Abdullahi, and P. Radan-
liev, “Device-type profiling for network access control systems using
clustering-based multivariate gaussian outlier score,” in The 5th Inter-
national Conference on Future Networks & Distributed Systems, 2021,
pp. 270–279.

[14] M. Pradhan, C. K. Nayak, and S. K. Pradhan, “Intrusion detection system
(ids) and their types,” in Securing the internet of things: Concepts,
methodologies, tools, and applications. IGI Global, 2020, pp. 481–
497.

[15] Q. Zhang, “Financial data anomaly detection method based on decision
tree and random forest algorithm,” Journal of Mathematics, vol. 2022,
no. 1, p. 9135117, 2022.

[16] R. K. Somkunwar, M. P. Pimpalkar, K. M. Katakdound, A. S. Bhide,
S. P. Chinchalkar, and Y. M. Patil, “A fraud detection system in financial
networks using antibenford subgraphs and machine learning algorithms,”
in 2023 International Conference on Ambient Intelligence, Knowledge
Informatics and Industrial Electronics (AIKIIE). IEEE, 2023, pp. 1–6.

[17] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.

[18] A. Elatawneh, C. Kalaitzidis, G. P. Petropoulos, and T. Schneider, “Eval-
uation of diverse classification approaches for land use/cover mapping
in a mediterranean region utilizing hyperion data,” International Journal
of Digital Earth, vol. 7, no. 3, pp. 194–216, 2014.

[19] M. P. LaValley, “Logistic regression,” Circulation, vol. 117, no. 18, pp.
2395–2399, 2008.

[20] M. Pal, “Random forest classifier for remote sensing classification,”
International journal of remote sensing, vol. 26, no. 1, pp. 217–222,
2005.

[21] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning with
oversampling and undersampling techniques: overview study and exper-
imental results,” in 2020 11th international conference on information
and communication systems (ICICS). IEEE, 2020, pp. 243–248.

[22] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, “A conceptual
basis for feature engineering,” Journal of Systems and Software, vol. 49,
no. 1, pp. 3–15, 1999.

[23] J. R. Rice, “The algorithm selection problem,” in Advances in computers.
Elsevier, 1976, vol. 15, pp. 65–118.

[24] C. Elkan, “The foundations of cost-sensitive learning,” in International
joint conference on artificial intelligence, vol. 17, no. 1. Lawrence
Erlbaum Associates Ltd, 2001, pp. 973–978.

[25] A. Aue and M. Gamon, “Customizing sentiment classifiers to new
domains: A case study,” in Proceedings of recent advances in natural
language processing (RANLP), vol. 1, no. 3.1, 2005, pp. 2–1.

[26] J. Vanschoren, “Meta-learning,” Automated machine learning: methods,
systems, challenges, pp. 35–61, 2019.

[27] Z. E. Aydin and Z. K. Ozturk, “Performance analysis of xgboost clas-
sifier with missing data,” Manchester Journal of Artificial Intelligence
and Applied Sciences (MJAIAS), vol. 2, no. 02, p. 2021, 2021.

[28] B. Wang, Y. Wang, K. Qin, and Q. Xia, “Detecting transportation modes
based on lightgbm classifier from gps trajectory data,” in 2018 26th
International Conference on Geoinformatics. IEEE, 2018, pp. 1–7.

[29] A. A. Ibrahim, R. L. Ridwan, M. M. Muhammed, R. O. Abdulaziz, and
G. A. Saheed, “Comparison of the catboost classifier with other machine
learning methods,” International Journal of Advanced Computer Science
and Applications, vol. 11, no. 11, 2020.

[30] T.-K. An and M.-H. Kim, “A new diverse adaboost classifier,” in 2010
International conference on artificial intelligence and computational
intelligence, vol. 1. IEEE, 2010, pp. 359–363.

[31] L. I. Kuncheva and J. J. Rodrı́guez, “A weighted voting framework for
classifiers ensembles,” Knowledge and information systems, vol. 38, pp.
259–275, 2014.

[32] P. I. Frazier, “Bayesian optimization,” in Recent advances in optimization
and modeling of contemporary problems. Informs, 2018, pp. 255–278.

[33] Y. Geifman and R. El-Yaniv, “Selective classification for deep neural
networks,” Advances in neural information processing systems, vol. 30,
2017.

[34] I. S. Thaseen, A. K. Chitturi, F. Al-Turjman, A. Shankar, M. R. Ghalib,
and K. Abhishek, “An intelligent ensemble of long-short-term memory
with genetic algorithm for network anomaly identification,” Transactions
on Emerging Telecommunications Technologies, vol. 33, no. 10, p.
e4149, 2022.

[35] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm:
an overview,” Soft computing, vol. 22, pp. 387–408, 2018.

[36] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[37] M. Dostmohammadi, M. Z. Pedram, S. Hoseinzadeh, and D. A. Garcia,
“A ga-stacking ensemble approach for forecasting energy consumption
in a smart household: A comparative study of ensemble methods,”
Journal of Environmental Management, vol. 364, p. 121264, 2024.

[38] A. Farahani, B. Pourshojae, K. Rasheed, and H. R. Arabnia, “A
concise review of transfer learning,” in 2020 international conference on
computational science and computational intelligence (CSCI). IEEE,
2020, pp. 344–351.

[39] J. Chen, K. Li, K. Bilal, K. Li, S. Y. Philip et al., “A bi-layered parallel
training architecture for large-scale convolutional neural networks,”
IEEE transactions on parallel and distributed systems, vol. 30, no. 5,
pp. 965–976, 2018.


	Introduction
	Related Works
	Materials and Methods
	Dataset Description
	Regression-based binary classification
	GA-based optimizing MLP models

	Results
	Discussion
	Conclusions
	Appendix
	References

