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Abstract

After an overview of the main fields of mathematical logic where Ra-
siowa made significant contributions, the author analyzes with some de-
tail the philosophical basis of Rasiowa’s approach to the study of mathe-
matical logic and the main technical points that characterize her contribu-
tions. In particular, it is shown that theses contributions are grounded on
three key ideas of major Polish logicians, namely: (1) Lindenbaum’s idea
of treating the set of formulas as an abstract algebra; (2) Mostowski’s
idea of interpreting quantifiers as infinite conjunctions or disjunctions in
the (ordered) set taken as model; and (3) Tarski’s idea of defining a
logic in general as a finitary closure operator on the power set of the
set of formulas, completed by  Loś and Suszko’s notion of ‘structural-
ity’ (invariance under substitutions). These ideas and Rasiowa’s own
constructions are described in their historical context.
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Introduction

Let me begin with some personal reminiscences. For me, writing a paper on the
contributions of Helena Rasiowa (1917–1994) to Mathematical Logic is the
result of several unexpected coincidences1.

My relationship with Rasiowa is academic, rather than personal. Her book
An algebraic approach to non-classical logics [45] is one of the works most to blame
for my professional dedication to research in Algebraic Logic, if some day I am
taken to court for this extravagant behaviour. I first met Rasiowa in person
as late as 1988, at the 18th ISMVL, held in Palma de Mallorca (Spain). There
I contributed a paper ([19]; but see also [14]) on an abstract characterization of
Belnap’s four-valued logic which used a mathematical tool inspired by some
work done by Bia linicki-Birula and Rasiowa in the fifties [4]. More precisely,
I used a mathematical tool abstracted from the works of Monteiro on De
Morgan algebras [30, 31], and these works, in turn, were based on that early
work of Bia linicki-Birula and Rasiowa. Two years later, that is, in 1990,
I attended the 20th ISMVL, held in Charlotte (North-Carolina, U.S.A.). It so
happened that this meeting included a session in memory of Monteiro.

Antonio Monteiro (1907–1980) was a Portuguese mathematician who
settled in Bah́ıa Blanca (Argentina) after spending some years in exile in Rio
de Janeiro (Brazil) and in San Juan (also in Argentina). In all these places he
promoted or initiated teaching and research in several areas of mathematics.
His strong personality attracted the interest of a group of young mathemati-
cians, and led to the creation of what one could describe as a school . In Bah́ıa
Blanca, Monteiro started a Mathematics Department in the newly founded
Universidad Nacional del Sur, and in 1958 he invited Roman Sikorski and
Helena Rasiowa to lecture there, in order to give a new impulse to his group.
With the influence of Rasiowa and Sikorski, together with Monteiro’s own
interests, there emerged a group of researchers in Algebraic Logic, which has
since made a set of highly significant contributions to the field, and has devel-
oped a characteristic style. The works of this school, together with Rasiowa’s
book, deeply influenced the research of several people in Barcelona in the late
seventies, and were partly responsible for the creation of a group of algebraic
logicians in this city, to which I belong.

At the Charlotte symposium I contributed a paper ([17]; but see also [18])
that combined some of the latest of Monteiro’s ideas with Rasiowa’s general
methods, along with other influences. When I arrived, I found that the person
speaking in memory of Monteiro was Rasiowa herself. It is thus not surpris-
ing that I find myself writing an essay about her work in pure Mathematical
Logic.

Giving a short account of all her research work in this area is no easy task;
and it is even more difficult to make a selection of her most important achieve-
ments. For, unlike other well-known logicians, her contribution to Logic was
not the discovery of a single outstanding theorem, but rather the detailed study
of several non-classical logics, along with classical logic, by using certain typical
mathematical tools, algebraic in nature, which she herself developed and whose

1This paper is an edited version of the talk delivered by the author to the Plenary Session in
the Memory of Helena Rasiowa at the 26th ISMVL held in Santiago de Compostela (Spain)
on May 29–31, 1996. Some comments in this Introduction might be better understood by
keeping this origin in mind.
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strength and limits in applications she explored in more than 30 papers and 2
books published over more than 40 years (between 1947 and, say, 1989, for the
topic I am concerned with2).

I can only try to convey to the reader a general picture of the significance
of Rasiowa’s work; so I will start by giving a brief overview of the main topics
she dealt with, and will then look in some detail at a few points of her work
that seem the most significant to me. Readers interested in more details can
consult issue 3/4 of volume 25 (1995) of the Bulletin of the Section of Logic; a
fairly complete bibliography appears in [1].

1 Overview

Helena Rasiowa’s research work in the area of pure Mathematical Logic can
be classified, save for a few marginal papers, in the subfield of Algebraic Logic;
indeed, her work has been one of the mainstreams in this small area, to such an
extent that one way of defining Algebraic Logic for a quarter of a century was
to say “Algebraic Logic is what Rasiowa does”.

The core of her work consists in the development of a rather general method
to construct an algebraic semantics for certain logical systems. This means:
Given a propositional or first-order logic S, to find a class of algebras Alg∗S,
all having an algebraic constant 1, such that every formula α can be inter-
preted in every algebra A ∈ Alg∗S as a mapping αA that associates with every
interpretation a of the language into A an element αA(a) ∈ A; this element
represents the truth-value of the formula α under the interpretation a in A; so
wee see that many-valuedness is indeed at the heart of Rasiowa’s work. That
the method fully succeeds means that the following Strong Completeness
Theorem holds:

Σ `S α ⇐⇒ ΣA(a) = {1} implies αA(a) = 1 , for every (1)

A ∈ Alg∗S and every interpretation a in A ,

where α is any formula, Σ is any set of formulas, and Σ `S α means that α
follows in the logic S from the assumptions in Σ. The proof is done by extend-
ing and generalizing the construction of Lindenbaum-Tarski quotients,
a method that in classical sentential logic was already known to produce the
class of Boolean algebras. Its success depends on a carefully chosen definition
of the class Alg∗S; with the help of suitable representation-like theorems, in
some cases the class of algebras Alg∗S can be substituted by a smaller class
of algebras of sets or of some special kind of subsets of topological spaces or,
in some particularly well-behaved cases, by a single algebra. A great deal of
Rasiowa’s early work consisted in applying these constructions to prove some
metalogical results either for classical logic or for some non-classical logics.

During what we might define as the first period, say from 1950 to 1964, these
logics were among the best-known and best-behaved ones, such as intuitionistic
logic, Lewis’ modal system S4 , and positive and minimal logics. These are the
logics treated in Rasiowa’s famous book The mathematics of the metamath-
ematics [55], published in 1963, written jointly with Roman Sikorski, with

2At the memorial session mentioned in footnote (1) as the origin of this paper, an analysis
of Rasiowa’s contributions to Applied Mathematical Logic was presented by Professor Ton
Sales of the Polytechnic University of Catalonia (Spain).
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whom she also published another ten papers or so. In these cases, especially
in that of classical logic, she obtains as applications of this algebraic semantics
purely semantical proofs of a number of well-known metalogical properties of
the logics, beginning with the Completeness Theorem [35, 48], Compactness
[36], Skolem-Löwenheim [49], Hilbert’s ε-theorems about Skolem expan-
sions [39], Herbrand’s theorem [28], and even Gentzen’s Cut-Elimination
Theorem for Sequent calculus [54]. In the intuitionistic case, she obtains the
Existential property and the Disjunction Property, and, for modal logic, their
analogues [37, 38, 51, 52].

In 1957 she began to publish papers on several classes of algebras that cor-
respond to lesser-known logics, namely De Morgan algebras [4] and Nelson
algebras [5, 41], related to several logics with different kinds of negation, and,
more importantly, Post algebras [42, 43, 46]. As the reader may know, Post
algebras are the algebraic models of several many-valued logics whose set of
truth-values is a finite linearly ordered set, and each Post algebra mirrors this
structure by containing a set of constants inside it corresponding to the truth
values. These logics fell within the scope of Rasiowa’s methods after the work
done in the sixties by Rousseau [57, 58], who succeeded in axiomatizing them
with an intuitionistic reduct. After finding the appropriate technical, algebraic
results needed to apply her methodology to the many-valued predicate calculi
associated with these logics, Rasiowa soon realized how to extend it to deal
with more general many-valued logics, namely with logics whose truth-values
form a denumerable chain of values with order-type ω+1 [44, 47], or, finally, an
arbitrary partially ordered set with top [8, 9, 10]. These generalizations were
directly responsible for her involvement in Algorithmic Logic, Fuzzy Logic, and
other applications of Logic to Computer Science.

Most of these non-classical cases were incorporated in the even more famous
book An algebraic approach to non-classical logics [45], published in 1974 by
North-Holland in its series Studies in Logic and the Foundations of Mathematics.
There is no doubt that the publication of the book in such a well-known and
prestigious series, stocked in virtually every mathematical library, was one of
the reasons for its enormous influence. But another reason is the maturity of
its exposition in Rasiowa’s book. Her development of a general method began
early in the fifties, in collaboration with Sikorski, as several papers [40, 50, 53]
and some chapters of their joint book [55] show, but its presentation in this
book is superior.

In [45] Rasiowa singled out a wide class of sentential logics to which her
methods and constructions apply; these logics she called standard systems
of implicative extensional propositional calculi , and are defined by some
very natural conditions on an implication connective “→” (I will give more de-
tails in Section 4.4). The scope of this book is wider than the previous one, but
as a contrast (maybe reflecting a slight difference of interests between Sikorski
and herself, or changes in such interests over the years) she gives less space
to first-order logics. The differences between the logics she studies lie mainly
in their propositional part, and in a Supplement she shows, in outline, a com-
mon procedure to associate a first-order logic with each of the propositional
logics she studies; nonetheless, this treatment has had an important influence
on recent work [33, 34] on a common algebraic treatment of several formalisms
that incorporate some form of variable-binding, like first-order logic and lambda
calculus.
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Rasiowa’s general method was characterized by a very tight design, in order
to account for the algebraization of a distinct group of logics she had already
dealt with, and reflects some features these logics have in common. Although
its application might seem rather narrow, the number of new logics that have
been studied by other people with this methodology is very large, because the
requirements are extremely natural.

Actually, the class of logics she defined is, roughly speaking, the class of all
logics to which her methods apply word for word (see Section 2.3). Therefore, it
is not surprising that several generalizations have appeared that widen the scope
of applications of the method by weakening some of the conditions in her defini-
tions. Let me quote here the theory of equivalential logics developed by Janusz
Czelakowski [11], and the theory of algebraizable logics, developed by Wim
Blok and Don Pigozzi [6], which is more restricted than Czelakowski’s,
but still more general than Rasiowa’s. These new developments have con-
nected Rasiowa’s approach with the more general theory of logical matrices
developed also in Poland by other logicians like  Loś, Wójcicki, Wroński,
Zygmunt, etc.; good accounts of this theory and of its diverse ramifications are
[7, 12, 16, 63].

2 A philosophy of Mathematical Logic

Rasiowa’s work presents us with a particular perspective, or philosophy , of
Mathematical Logic. Let me say that, in order to appreciate the impact and
influence of Rasiowa’s work and perspective one has to adopt a historical ap-
proach: some aspects of this perspective are now smoothly incorporated into
our logical heritage, even if we do not work in this line; however, as we shall
see, this was certainly not the case in the late forties and the fifties.

One of the main elements of this philosophy is the absence of any Philos-
ophy in her work on Mathematical Logic. This is beautifully explained and
strongly defended in the preface of The Mathematics of the Metamathematics.
The title of the book is itself a declaration of principles: No Philosophy, only
Mathematics. Rasiowa and Sikorski propose the use of infinitistic methods
in metamathematical investigations; by this they mean the actual use of any
mathematical tool required, especially all the tools from abstract algebra, lat-
tice theory, set theory, and topology, for instance the operations of forming the
supremum or infimum of an infinite subset. They explicitly advocate deviating
from the proof-theoretical approach of the formalist trend in metamathematics,
which they judge to be an unnecessary limitation and complication that ob-
scures the understanding of the deep, true nature of metamathematical notions.
It is best to recall their own words:

The title of this book is not meant as a pun, although it may, at
first sight, appear to be so. [. . . ]

The title of the book is inexact since not all mathematical methods
used in metamatemathics are exposed in it. [. . . ] The exact title of
the book should be: Algebraic, lattice-theoretical, set-theoretical and
topological methods in metamathematics.
[. . . ]

The finitistic approach of Hilbert’s school is completely abandoned
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in this book. On the contrary, the infinitistic methods, making use
of the more profound ideas of mathematics, are distinctly favoured.
This brings out clearly the mathematical structure of metamathemat-
ics. It also permits a greater simplicity and clarity in the proofs of
the basic metamathematical theorems and emphasizes the mathemat-
ical contents of these theorems.
[. . . ]

The theorem on the completeness of the propositional calculus is
seen to be exactly the same as Stone’s theorem on the representation
of Boolean algebras. [. . . ] It is surprising that the Gdel completeness
theorem [of the predicate calculus] can be obtained, for example, as a
result of the Baire theorem on sets of the first category in topological
spaces, etc. [55, pp. 5–6]

We can imagine that this might be a controversial issue in some academic con-
texts; and in fact this approach was criticized by some reviewers like Kreisel
[27] or Beth [3]; in contrast, Feferman [13] and Robinson [56] highlight the
simplicity of the proofs obtained using these methods. Moreover, notice that
Rasiowa and Sikorski’s 1950 proof of the Completeness Theorem for first-
order logics over languages of arbitrary cardinality [48] is almost contemporary
with Leon Henkin’s famous 1949 proof [22], where infinitistic methods could
not be avoided either, as Feferman points out in his review:

In the opinion of the reviewer, this paper represents a distinct
advance over all preceding proofs; for on the one hand, much less
formal development from the axioms is required than in the proofs
similar to Gdel’s, and on the other hand, the doubly infinite pas-
sage to Sω appearing in Henkin’s proof is completely avoided here.
Moreover, the present derivation [. . . ] has the special advantage of
bringing out the essentially algebraic character to the method first
used by Henkin. [13]

3 The mathematical context

Rasiowa’s attitude towards logic is also shaped by three technical points which
she takes from her masters and which automatically place her and her work
inside a specific mathematical framework. Moreover, in these points I see certain
messages for today’s researchers in Logic, either pure or applied.

First, she adopts Lindenbaum’s idea of treating the set of formulas of
a formal language as an abstract algebra , namely the absolutely free alge-
bra Fm generated by some set Var of variables or atomic formulas and where
the operations correspond to the so-called logical connectives (either sentential
or quantifiers); see [45, §VIII.2]. Historically, this was an important achieve-
ment on the way towards the mathematization of formal logic; by this idea,
formal languages can be treated by the usual tools of algebra, substitutions and
interpretations become just homomorphisms, and the subject is liberated from
the slight degree of obscurantism or imprecision that pervaded its early history.

It is interesting to compare this with Paul Halmos’ explanations of how
he became involved in Algebraic Logic; his difficulties in starting show us that
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the modern “Polish approach” to logic was not widespread in western academic
circles, even in the fifties:

An exposition of what logicians call the propositional calculus can
annoy and mystify mathematicians. It looks like a lot of fuss about
the use of parentheses, it puts much emphasis on the alphabet, and
it gives detailed consideration to “variables” (which do not in any
sense vary). [. . . ] it is hard to see what genuine content the subject
has. [. . . ] Does it really have any mathematical value?

Yes, it does. [. . . ] rooting around in the library [. . . ] bit by bit the
light dawned. Question: what is the propositional calculus? Answer:
the theory of free Boolean algebras with a countably infinite set of
generators. [. . . ]

“Truth-tables”, for instance, are nothing but the clumsiest imag-
inable way of describing homomorphisms into the two-element Boolean
algebra. [. . . ] The algebraic analogue of the logical concept of “se-
mantic completeness” is semisimplicity.

[21, pp. 206–207]

Second, she follows her supervisor Andrzej Mostowski [32] in the way quan-
tifiers are interpreted in the models, namely as the generalized lattice-
theoretic operations of join (for the existential quantifier) and meet (for the
universal one) relative to the ordering relation existing in the models, which
is defined by the implication (see Section 4.2). This choice, also taken inde-
pendently by Henkin in [23], constitutes the main distinctive character of her
approach to the algebraization of first-order logic. The two other best-known
approaches, that of Tarski’s school [24, 25, 26] with cylindric algebras, and
that of Halmos [20] with polyadic algebras, both choose to represent quanti-
fiers as independent primitive operations in the models (roughly speaking, one
for each free variable in the first case, and one for each subset of the set of free
variables in the second).

And third, she takes from Tarski [60] the idea of defining a logic as a
finitary closure operator over the algebra of formulas; see [45, §§VIII.4,5].
Although she assumes this operator is defined through the standard notion of
proof in a formal system given by some axioms and inference rules, she hardly
ever makes assumptions about the formal system itself, but only about the re-
sulting closure operator. In this way, she emphasizes the deductive character of
logic; this means that a logic is not just a collection of axioms and rules, or a
collection of the associated theorems, as it is often understood, but a relation of
consequence; in other words, she reminds us that logic is about inference rather
than about truth.

If Fm is the formula algebra, with underlying set of formulas Fm, and `S
represents the notion of proof from assumptions in the logic S, then what she
considers and studies is the closure operator CS : P (Fm)→ P (Fm) defined by

α ∈ CS(Σ) ⇐⇒ Σ `S α (2)

The properties postulated for this operator are the following, for all Σ,∆ ⊆ Fm:

(C1) Σ ⊆ CS(Σ).

(C2) If Σ ⊆ ∆ then CS(Σ) ⊆ CS(∆).
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(C3) CS(CS(Σ)) = CS(Σ).

(C4) If α ∈ CS(Σ) then there exists a finite Σ0 ⊆ Σ such
that α ∈ CS(Σ0).

This is very close to the definition of sentential logic used in today’s studies in
Algebraic Logic, cf. [63], save that she does not mention as a general assumption
the property traditionally called structurality3:

(C5) If α ∈ CS(Σ) then σ(α) ∈ CS(σ[Σ]) for any substitution (i.e., homo-
morphism) σ of Fm into itself.

that is, that the relation of consequence should be invariant under substitutions;
however, the only requirement she puts on the formal system is precisely that
axioms and rules of inference have to be invariant under substitutions; thus she
actually obtains (C5) for the operator defined by (2).

We can observe here an important element of Rasiowa’s view of Mathemat-
ical Logic, and which is also present, and indeed prominent, in her contributions
to applications of Logic. For Rasiowa, a logic is a mathematical object that is
essentially algebraic in nature, as I have just pointed out; however, she estab-
lishes a sharp distinction between logics and algebras. For her, a logic
is a closure operator on the algebra of formulas, not just a particular algebra.
Algebras can certainly be used as models of logics,; they can be used even to
define logics (as in many-valued logic) but algebras are not logics themselves. By
studying the relationships between logics and algebras while retaining the con-
ceptual status of each she was able to uncover the usually implicit assumptions
about these relationships, which eventually led her to succeed in her endeavour.

4 The main technical tools

In this section I will analyse the technical details of what I think are the more
central points in Rasiowa’s work in the area I am concerned with. Except for
sections 4.2 and 4.6, I will refer only to the sentential case; this is because, on the
one hand, the details are much longer and clumsier when a first-order language
enters into the picture, and, on the other hand, because Rasiowa’s treatment
of first-order logics is just an extension of her treatment of propositional logics,
as is clear from the “Supplement” to [45] (pp. 347–379): While she selects the
class of propositional logics to be studied, and for each logic S in the class the
corresponding class Alg∗S of algebras is defined, what she does in the first order
case is to associate a class of first-order logics (one for each first-order language)
to each of these propositional logics, and to algebraize them through the study
of the same class Alg∗S.

4.1 Interpretation of formulas as mappings

The first technical tool I want to highlight is that of interpreting formulas α as
mappings αA on every algebra A of the same similarity type (signature) as the
formal language; see [45, §VIII.3]. This idea is a generalization of  Lukasiewicz

3Note that it has nothing to do with the structural rules of Proof Theory and Gentzen
systems.
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and Post’s method of truth-tables (where one usually deals with a single, con-
crete algebra), and was extended to intuitionistic predicate logic (where one
deals with the whole class of so-called Heyting algebras) by Mostowski.

In the sentential case, an interpretation a is obtained by just an assignment
of values in A to the variables Var , that is, it is any mapping a : Var → A; since
Fm is the absolutely free algebra generated by Var , one can define αA(a) =
a(α), the value of α under the homomorphism (denoted also as a) from Fm to
A that uniquely extends a in the usual way; for instance, if the language has
just negation ¬ and implication → then the recursive clauses would be:

If p ∈ Var then a(p) is determined by the original mapping a. (3)

If α = ¬β then a(α) = ¬A(a(β)). (4)

If α = β → γ then a(α) = a(β)→A a(γ). (5)

We have denoted by ¬A and →A the interpretations of the logical connectives
as operations in the algebra A, in order to emphasize the interplay between
language and algebras; usually one denotes the operations in arbitrary algebras
by the same symbols as those of the language.

4.2 Algebraic interpretation of quantifiers

In the first-order case, an interpretation a requires the specification of:

• A domain of individuals D(a).

• Values in D(a) for the constant symbols and the free variables of the
language.

• A function with arguments and values in D(a) for each functional symbol
of the language.

• An A-valued function with arguments in D(a) for each of the predicate
or relational symbols of the language.

Then the value αA(a) is obtained from the atomic cases (where it is given
directly by the latter A-valued functions) by using the algebraic structure of A
for the propositional connectives as in (3)–(5) above, and by interpreting the
quantifiers as the infinite lattice-theoretic operations as follows: Let α(x) be a
formula with the free variable x, and let ξ be a bound variable not occurring
in α(x) (Rasiowa takes two disjoint sets for the free and the bound variables,
a little used trick which simplifies several technical points); denote by α(ξ) the
substitution instance of α(x) with x replaced by ξ. Then:(

∃ξα(ξ)
)A

(a) =
∨

i∈D(a)

(
α(x)

)A(
a[x/i]

)
(6)

(
∀ξα(ξ)

)A
(a) =

∧
i∈D(a)

(
α(x)

)A(
a[x/i]

)
(7)

where a[x/i] is the interpretation that is exactly like a in every respect except
that it gives the variable x the value i. Actually, definitions (6) and (7) are
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used only when the involved join and/or meet exists; otherwise one leaves the
truth-value of ∃ξα(ξ) or ∀ξα(ξ) undefined. Because of this, simpler exposi-
tions of the semantics, like that in [55], use only complete lattices; but in other
papers by Rasiowa several technical results about existence of bounds of cer-
tain families of elements, about completion of algebras of the relevant class,
and about mappings preserving some infinite meets and joins, are proved; in-
deed, this purely algebraic, technical work is among the most difficult tasks that
Rasiowa undertook.

We see here that the seed of many-valuedness is already present even in
her treatment of classical logic: In classical model theory of first-order logic
predicate symbols are represented by ordinary relations (of suitable arity) over
the domain of individuals, that is, by 2-valued functions. Here, when we speak
of “interpretation in an algebra A”, what we mean is that this algebra is playing
the rle of the set of truth-values; the relational symbols are interpretation as
A-valued functions, therefore the interpretation of every formula is a value in
A.

4.3 Lindenbaum-Tarski quotients

The specific technical construction that establishes a link between the logic S
and the class of algebras Alg∗S (see its definition in Section 4.5) and that makes
it possible to prove the hard half (⇐) of the Strong Completeness Theorem (1)
is the factorization of the formula algebra by an equivalence relation associ-
ated with every theory of the logic. This construction has to be credited to
Tarski, although in the first years after World War II it was initially credited
to Lindenbaum, particularly by Polish logicians, which explains the now usual
denomination of Lindenbaum-Tarski algebras. The contents of footnote 1 on
pages 245–246 of [55] make one think that this attribution to Lindenbaum had
a political or nationalistic component; but it was given particular impetus, in
my opinion, by many people’s misinterpretation of a remark in McKinsey’s
1941 paper [29]. On page 122, lines 12–15 of [29] we read:

Proof: I first show, by means of an unpublished method of Linden-
baum,7 that there is a matrix M1 = (K1, D1,−1, ∗1,×1) which is S2-
characteristic, though not normal. Later I shall show how a normal
S2-characteristic matrix can be constructed from M1.

Footnote 7 on the same page reads:

7This method is very general, and applies to any sentential calculus
which has a rule of substitution for sentential variables. The method
was explained to me by Professor Tarski, to whom I am also indebted
for many other suggestions in connection with the present paper.

The subsequent proof begins by constructing a matrix whose underlying algebra
is the formula algebra, in accordance with Lindenbaum’s idea explained in
Section 3, and after that a normal matrix is constructed by factorizing the first
one; as the word “Later” on line 14 suggests, McKinsey himself was probably
aware that this second step had not been invented by Lindenbaum. In their
completeness paper [48] Rasiowa and Sikorski name the factorized algebra
after Lindenbaum, but Feferman, in his review [13] of this paper, points out
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that the usage of this construction seems to appear for the first time in Tarski’s
1935 paper [61]; later on, Tarski himself claimed it as his own, see for instance
footnote 4 on page 85 of [26].

The construction is as follows: For every theory Σ of the logic S, the relation
≡Σ is defined as:

ϕ ≡Σ ψ ⇐⇒ Σ `S ϕ→ ψ and Σ `S ψ → ϕ (8)

Then one has to check the following key facts:

(L1) The relation (8) is a congruence of the formula algebra Fm.

(L2) The quotient algebra Fm/≡Σ ∈ Alg∗S.

(L3) The projection πΣ : Fm → Fm/≡Σ given by πΣ(p) = p/≡Σ is an
interpretation into an algebra of the class Alg∗S, such that for every
formula ϕ ∈ Fm , ϕFm/≡Σ (πΣ) = ϕ/≡Σ .

(L4) In this quotient the theory Σ collapses exactly to the unit, that is,
for every formula ϕ ∈ Fm , ϕ/≡Σ = 1 if and only if Σ `S ϕ.

Given these facts, the proof of part (⇐) of (1) is easy, working by contraposition:
If Σ 6`S ϕ then there is an algebra A ∈ Alg∗S, namely Fm/≡Σ , and an
interpretation a into it, namely πΣ , such that ΣA(a) = 1 while ϕA(a) 6= 1.
As witnessed by Feferman’s quotation from [13] reproduced in Section 2, this
completeness proof is not far removed in spirit from Henkin’s [22], although the
method of construction of the model is very different: actually in both cases the
models are obtained from the linguistic objects, the formulas. It is interesting to
notice that Henkin himself, independently of Rasiowa and Sikorski, found
essentially the same proof by following Mostowski’s suggestions directly, and
was quickly aware of the possibilities of generalizing such method; apparently,
he was the first to notice that only implication was required for the whole
process to work, and his paper [23] appeared in the same volume of Fundamenta
Mathematicae as Rasiowa and Sikorski’s [48].

4.4 Selection of the class of logics

The success of the proof in the preceding section determines the class of logics
that can be treated with this method. One is tempted to think that the class
identified in [45, §VIII.5] as standard systems of implicative extensional
propositional calculi , is the class of logics S such that for every theory Σ of S
properties (L1) to (L4) hold. Actually, this is not strictly true: in the preceding
section I stated the steps just needed for the proof to work, but in order to
obtain exactly the same class of logics explicitly considered by Rasiowa one
should consider the binary relation

ϕ ≤Σ ψ ⇐⇒ Σ `S ϕ→ ψ , (9)

and assume the following slightly stronger conditions:

(L1’) The relation ≤Σ is a quasi-ordering (i.e., it is reflexive and transitive).

(L1”) The relation ≡Σ (which is now the symmetrization of ≤Σ) is compat-
ible with all the operations of the formula algebra Fm corresponding
to the sentential connectives.
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(L2) The quotient algebra Fm/≡Σ ∈ Alg∗S.

(L3) The projection πΣ : Fm → Fm/≡Σ given by πΣ(p) = p/≡Σ is an
interpretation into an algebra of the class Alg∗S, such that for every
formula ϕ ∈ Fm , ϕFm/≡Σ (πΣ) = ϕ/≡Σ .

(L4’) If Σ `S ϕ then ψ ≤Σ ϕ for every ψ.

(L4”) If Σ `S ϕ and ϕ ≤Σ ψ then Σ `S ψ.

It is straightforward that these conditions imply (L1) to (L4). As the reader
can easily check, (L1) to (L4) as I have put them are enough for the argument
to work; undoubtedly this was clear to anyone working in the field at that time.
That Rasiowa preferred to take the more restrictive version (L1’) to (L4”) was
probably because it is more natural, since then we have conditions more typical
of the implication connective →, while (L1) to (L4) are, in fact, conditions on
the equivalence connective ↔; if there is no conjunction in the language, then
the set of two formulas {ϕ→ ψ ,ψ → ϕ} can be taken collectively to act as an
equivalence connective. Actually, Rasiowa only leaves out few examples, the
best-known being the equivalential fragments of classical or intuitionistic logic.
The first generalizations of her treatment were undertaken by Czelakowski
in [11] precisely by adopting this approach, and gave rise to what he named
equivalential logics with an algebraic semantics (which later on turned out to
be a special case of the algebraizable logics of Blok and Pigozzi) and to the
much more general class of equivalential logics, where (L4) or similar conditions
are dropped.

4.5 The algebraic counterpart of a logic

The class of algebras Alg∗S is determined by the requirement that the easy half
(⇒) of the Completeness Theorem (1), that is, the part sometimes called the
Soundness Theorem , holds. According to [45, §VIII.6], an algebra A belongs
to Alg∗S, and is called an S-algebra , if and only if it has a constant 1 ∈ A
such that:

(A1) For every axiom α of S and every interpretation a into A
αA(a) = 1.

(A2) For any inference rule α1, . . . , αn ` β of S and any interpretation a
into A, if αA

i (a) = 1 for i = 1, . . . , n, then also βA(a) = 1.

(A3) For any a, b ∈ A , if a→ b = 1 and b→ a = 1 then a = b.

Actually (A1) and (A2) together are equivalent to part (⇒) of (1), and amount
to saying that the pair 〈A , {1}〉 is what has come to be called an S-matrix . The
additional condition (A3) tells us that the algebras in the class are reduced , in
some precise, technical sense, which roughly speaking means that, from among
the models for S, we want to select those algebras which turn logical equivalences
into identities.

This definition of the class Alg∗S is historically the first general definition
of what the algebraic counterpart of a logic S should be. From any presentation
of the logic S by axioms and rules the above conditions give a presentation of
the class Alg∗S by means of equations (A1) and quasi-equations (A2) and (A3);
thus this class is always a quasi-variety . In [11], Czelakowski proved that for
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the logics treated by Rasiowa the class Alg∗S defined by her coincides with
the class of the algebraic reducts of the reduced S-matrices, which is the class
of algebras canonically associated with each logic S in the general theory of
matrices.

The organization of material in [45] is striking: While conceptually its central
topic is the study of logics, its first half is devoted to a systematic study of the
algebraic and order-theoretic properties of several classes of algebras, and only
in its second half is a general theory of sentential logics and its algebraization
presented; after the general theory, the treatment of several particular logics
uses the properties of the corresponding class of algebras contained in the first
part of the book. The widest class of algebras she studies is that of implicative
algebras; but the weakest logic she considers is Hilbert and Bernays’ logic
of positive implication, whose algebraic counterpart is a smaller class; only in
Exercise VIII.1 (p. 208) does she ask the reader to construct a calculus whose
associated class of algebras is exactly the class of implicative algebras4.

4.6 Representation Theorems and the “Rasiowa-Sikorski
Lemma”

A widespread criticism of the use of algebraic semantics such as Alg∗S and of
the significance of Completeness Proofs using Lindenbaum-Tarski quotients
is that this semantics is not very different from syntax. Thus, it is particularly
important to obtain Completeness Theorems for classes K of algebras more re-
stricted than Alg∗S. The class K is usually the class of algebras whose universe
is contained in a power set or in the family of open or closed sets of some topo-
logical space; in the most extreme case, K is constituted by a single algebra, for
instance by the two-element Boolean algebra in the case of classical first-order
logic.

If the class K is contained in Alg∗S, then part (⇒) of (1) holds also for
K. To prove the converse by contraposition as in Section 4.3, one first obtains
Fm/≡Σ and πΣ , and then applies some kind of representation-like theorem
which maps the algebra Fm/≡Σ to an algebra A ∈ K in such a way that the
“separation” of Σ and ϕ through πΣ is preserved. The composition of πΣ with
the representation mapping becomes an interpretation into A which validates Σ
but not ϕ, as desired. This kind of restricted completeness rests on the algebraic
properties of the class of algebras Alg∗S. In the propositional case, this is all
that is needed, and this explains why some of the purely algebraic works of
Rasiowa such as [4, 41] are devoted to representability issues.

The last, but certainly not the least, of the points in Rasiowa’s work
that I want to highlight is a purely algebraic result known in the literature
as the Rasiowa-Sikorski Lemma. It is a result in the representation theory
of Boolean algebras as fields of sets, and becomes relevant to the topic of alge-
braization of classical first-order logic precisely through the application of the
above procedure. In the case of first-order logics we need something more: rep-
resentation theorems establish just algebraic homomorphisms, which in general
may not be complete in the lattice-theoretical sense, that is, they may not pre-
serve the join or meet of an infinite family (while preserving the finite ones). In

4This may be the appropriate place to say that Exercises II.1 and VIII.2 of [45], on the
relation between the theories of this logic, the kernels of epimorphisms between implicative
algebras, and special implicative filters, are wrong. See [15] for details.
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order for the above mentioned composition to be an interpretation, these rep-
resentations should at least preserve the infinite joins (6) and meets (7) needed
to interpret the quantifiers.

In the case of classical first-order logic, we have Boolean algebras, and what
is strictly called the Rasiowa-Sikorski Lemma; it has also been called “Tarski’s
Lemma” (see for instance [2], pp. 21, 31) because Rasiowa and Sikorski’s
original proof was rather indirect and complicated, using Stone’s representation
of Boolean algebras and some topological properties, and Tarski, as stated in
[13], suggested a more natural proof, which has been much reproduced. The
precise statement is:

Lemma. Let A be a Boolean algebra and a ∈ A, and assume that
we have two countable collections of subsets Xn , Yn ⊆ A (n ∈ ω)
such that for each n ∈ ω the elements an =

∨
Xn and bn =

∧
Yn

exist. Then there is a Boolean homomorphism h from A onto the
two-element Boolean algebra 2 such that h(a) = 1 and for every
n ∈ ω , h(an) =

∨
h[Xn] and h(bn) =

∧
h[Yn].

Since the epimorphisms from an arbitrary Boolean algebra onto 2 are deter-
mined by its ultrafilters, the Lemma is often formulated as stating the existence
of an ultrafilter containing the given element a and preserving the two given
denumerable families of joins and meets; but even in this case, the condition of
preservation is formulated by using the homomorphism.

According to [59, p. 102], the result was originally found by Sikorski, but
it was first published in the joint paper [48], and Rasiowa’s name has also
remained tied to it, together with Sikorski’s; I think this is right, since in
addition she generalized the Lemma to other classes of algebras whose rep-
resentation theory she studied, in order to obtain strengthened completeness
theorems for the corresponding predicate logics, [42, 46, 47]; moreover, if only
a few mathematicians deserve the honour of having their name permanently
attached to a mathematical result, Rasiowa is undoubtedly one of them.
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Matemática (Bah́ıa Blanca, Argentina, 1992), M. Abad, Ed., vol. 38 of No-
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