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“The problem of understanding of intelligence is said to be
the greatest problem in science today and “the” problem for
this century — as deciphering the genetic code was for the
second half of the latest one.

Arguably, the problem of learning represents a gateway to
understanding intelligence in brains and machines, to
discovering how the human brain works and to making
intelligent machines that learn from experience and improve
their competence...”

THE MATHEMATICS OF LEARNING:
DEALING WITH DATA
T. Poggio, S. Smale, Notices AMS, Vol. 50, May 2003 [185]

Abstract. The Rasiowa—Pawlak school was established during the second half of
the twentieth century. The school concentrates on studies in logics, foundations
of computer science and artificial intelligence (AI). Its formation has been greatly
influenced by the logician Andrzej Mostowski, a professor at Warsaw University
[110,111], who, in particular, directed the doctoral dissertation of Helena Rasiowa.
Nowadays, the disciples of the Rasiowa—Pawlak school are active in many research-
development centres worldwide. The school founded its own journal, Fundamenta
Informaticae. In this paper, we present selected trends in the studies of the school
concerning applications of logic in AL At the beginning, we briefly describe
the genesis of the Rasiowa—Pawlak school. We then present the understanding,
currently dominating within the school, on such basic concepts as Al and logic.
Since the beginning of the 1950’s, the focus of the research by Helena Rasiowa and
her associates has been the application of algebraic and topological methods to the
investigation of crucial problems of logic from an Al perspective. Amongst them
are the completeness theorem, construction of deduction systems, construction of
models, especially models for constructive mathematics [136,241,67] and related
logics such as intuitionistic, intermediate, modal, and approximation logics. In
the paper, we discuss the fundamental, in our opinion, ideas underlying these
roots of the Rasiowa—Pawlak school. A great importance in the studies of the
school is assigned to the search for optimal tools for reasoning about complex
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vague concepts, construction of knowledge representation systems, reasoning about
knowledge as well as for the application of logics in learning, communication,
perception, planning, action, cooperation, and competition.

It should be noted that as is the case with many other research centers, the
Rasiowa— school studies pertaining to the application of logics in Al have also
undergone an evolution which we present in this paper. We include extensive
references to the literature on the approach presented in this paper.

Keywords. Logic, Al, algebraic logic, abstract logic, approximation, wisdom
technology, adaptive rough-granular computing, rough sets, machine learning.

1. The Genesis of the Rasiowa—Pawlak School

Since Poland regained its independence during the XX century after about 150 years of
annexation by Russia, Germany and Austria, the Polish intelligentsia (both political as
well as academic) has placed great importance on the design and the deployment of many
action plans aiming at establishing a firm position for Poland internationally. These plans
were, to a great extent, results of the considerations and actions of intellectuals affili-
ated with positivism in the nineteenth century on Polish territories under foreign rules.
One of many such action plans focused on designing a research stimulation program in
mathematics, logic and philosophy in the free Poland. The most important components
of this program were published in a work by Zygmunt Janiszewski [83]. The consis-
tent realization of Janiszewski’s program led to the birth of one of the most powerful
research centres in mathematics and mathematical logic during that time. Leading fig-
ures of the pre-WWII Polish mathematical school were! Stefan Banach, Samuel Eilen-
berg, Kazimierz Kuratowski, Jan Lukasiewicz, Stanistaw Mazur, Stanistaw Saks, Juliusz
Pawet Schauder, Wactaw Sierpifiski, Hugo Steinhaus, Alfred Tarski, Antoni Szczepan
Zygmund, and many others. On the other hand, leaders of the pre-WWII logical school
were Kazimierz Ajdukiewicz, Leon Chwistek, Stanistaw Jaskowski, Tadeusz Kotar-
binski, Stanistaw Lesniewski, Adolf Lindenbaum, Bolestaw Sobocinski, Alfred Tarski,
Kazimierz Twardowski to name a few.>

The refulgent expansion of Polish pre-WWII mathematical and logical schools was
tragically interrupted with the outbreak of the World II. Many Poles were striving to
continue the education and research work within undercover structures organized by the
Polish underground state during the war. In such a way, Helena Rasiowa studied logic
under the supervision of Jan Lukasiewicz, Bolestaw Sobociniski, Andrzej Mostowski,
Karol Borsuk. Her first Master’s thesis supervised by Jan Lukasiewicz and Bolestaw
Sobocinski, burnt up during the Warsaw Uprising. After the war, for a short time, she
had worked as a teacher of mathematics and then, following the advice of Andrzej
Mostowski, she returned to Warsaw University. In 1950, she defended under the super-
vision of Andrzej Mostowski her PhD thesis on algebraic methods in logics. During his
lectures at Warsaw University, Andrzej Mostowski frequently recalled the previously
known vision of building a thinking machine, i.e., a device capable of not only calculat-
ing arithmetic expressions but also of thought process computation. While at it, he used
to say the following after Gottfried Wilhelm Leibniz:

'In alphabetical order.
2In alphabetical order.
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If controversies were to arise, there would be no more need of disputation between
two philosophers than between two accountants. For it would suffice to take their
pencils in their hands, and say to each other: ‘Let us calculate’ [115].

The idea to replace the intuitive process of reasoning with a process of formal eval-
uations of algebraic expressions was considered by Andrzej Mostowski as crucial and in
this context he used to recall another quote from Leibniz:

No one else, I believe, has noticed this, because if they had ... they would have
dropped everything in order to deal with it; because there is nothing greater that man
could do ([146, p. 57]).

While investigating the problem of undecidability of intuitionistic predicate calcu-
lus, Andrzej Mostowski proposed a novel approach to semantics by means of algebraic
models with logical values in a pseudo-Boolean algebra [147]. This approach was fur-
ther studied and extended to investigation of the properties of logics by Helena Rasiowa,
Roman Sikorski [196] and many of their disciples (see, e.g., [193,194,19,20,37,60,4,142,
39,162,188]).

After the Second World War, Kazimierz Kuratowski also played a key role in the
reconstruction of the Polish mathematical and logical school. He founded the State In-
stitute of Mathematics (PIM)® and was its director from 1948 to 1968. At the very be-
ginning of the PIM existence, Kazimierz Kuratowski came up with an initiative to build
the first computer in Poland. To do that, he organized the 23rd December 1948 historical
meeting attended by Andrzej Mostowski, Krystyn Bochenek, Henryk Greniewski, Leon
Lukaszewicz and Romuald Marczyfiski and created within PIM the Group of Mathe-
matical Apparatuses (GAM). During the meeting, Kazimierz Kuratowski announced that
Polish mathematics should occupy itself with computing machines and that the meeting
goal was to discuss the possibilities and plans for the construction of the first computer
in Poland. As a result of the decisions made afterwards, a preliminary program started in
1952 aimed at building the first Polish computer within GAM [131]. In this project super-
vised by Romuald Marczynski, Zdzistaw Pawlak participated. The first step in develop-
ing Polish electronic computers was the construction of mercury-based ultrasonographic
memory. The choice of this kind of memory was influenced by the intention to build a
computer with sufficiently high speed. Mercury memory influenced the construction of
a sequence of Polish computers (EMAL, XYZ, EMAL-2, and BINEG) that continued
until 1959. As a result of these experiments, works on first Polish computers were also
started up at the Warsaw University of Technology, where a project and a prototype of a
first generation vacuum-tube computer was developed in 1960. The prototype was later
improved and initiated the UMC-1, the first serial production of computers in Poland.
These computers were designed on the basis of an original arithmetic with base ‘-2’ pro-
posed by Zdzistaw Pawlak, who engaged in research on models of computer architecture
and the summary of his research results was published in 1963 in his habilitation thesis
entitled “Organization of Address-Less Machines” . In this thesis, Zdzistaw Pawlak pro-
posed the investigation of parenthesis-free languages, a generalization of Polish notation
introduced by Jan Lukasiewicz in 1924 (see, e.g., [23]). In further stages of his research
on computational models, Zdzistaw Pawlak paid more and more attention to logical as-

3Later incorporated into the system of Polish Academy of Sciences and currently called Mathematical Insti-
tute of Polish Academy of Sciences.
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pects of computational models. His interests, at that time, were greatly influenced by a
disciple of Andrzej Mostowski, namely, Andrzej Ehrenfeucht, who had particular inter-
ests in applications of games to problems of definability and decidability (especially in
the theory of ordinals) between the 1950s and the 1960s. The results obtained by An-
drzej Ehrenfeucht have many applications in, e.g., studies in modern complexity theory
(Ehrenfeucht-Fraissé games).

Since the 1970s, Zdzistaw Pawlak’s interests were particularly focused on informa-
tion retrieval, knowledge representation systems and, next, on the logical foundations
of design and construction of algorithms devised to represent and process complex and
vague concepts using computers operating on data in two-valued logics.

In the early 1970s Zdzistaw Pawlak, in cooperation with Victor Marek and Witold
Lipski, started investigations on mathematical foundations of information retrieval [166].
Intensive investigations led to deep results in the area (see., e.g., [132,121-123,81]).
The close cooperation of Zdzistaw Pawlak with Victor Marek continued for more than
a decade. In particular, in the early 1980s, Victor Marek was a member of a research
group at the Institute of Computer Science of the Polish Academy of Sciences, where
Zdzistaw Pawlak discovered rough sets and the idea of classifying objects by means of
their attributes [167-169]. Zdzistaw Pawlak also closely cooperated with many other
researchers. We would like to mention here his close cooperation with Ewa Ortowska,
Erhard Konrad, and Cecylia Rauszer on knowledge representation systems and rough
sets (see, e.g., [157,158,102,103,160,159,171,134,87,217,201]). During the succeeding
years, Zdzistaw Pawlak refined and amplified the foundations of rough sets and their
applications,* and nurtured worldwide research in rough sets that has led to over 4000
publications.> As a result of this research, rough set theory and its diverse applications,
especially in representing and handling complex, vague concepts and perceptions, has
emerged and flourished during the recent years (see, e.g., [170,172-174]).

The Rasiowa—Pawlak school has been created on the basis of nearly forty years of
seminars along with lectures at Warsaw University given by Helena Rasiowa from the
1950s to the 1990s. The principal threads of the school consisted of the so-called Tues-
day seminars on logic and Thursday seminars on application of logic to foundations of
computer science. Many people participated actively in these seminars. The majority of
the participants are currently scattered across the globe. The authors would like to em-
phasize the special and unique atmosphere of beneficent cooperation amongst partici-
pants in these events as well as the ample and fruitful discussions on the research prob-
lems current during that time. The school has managed its own international journal en-
titled Fundamenta Informaticae, initiated principally by Helena Rasiowa and Zdzistaw
Pawlak. Since 1977, Fundamenta Informaticae has been one of the main research pre-
sentation platforms of the Rasiowa—Pawlak school. Its topical scope is quite broad and
includes the majority of research trends in artificial intelligence, logic, mathematics, and
theoretical computer science. It is, hence, difficult to describe, even briefly, all these
trends. We therefore do not pretend to provide all streams of the Rasiowa—Pawlak school
research in this paper. Instead, we aim at surveying of certain aspects of this research
related to the application of logic in Al, so characteristic to the Rasiowa—Pawlak school.
As a result, many important trends of the school such as algorithmic logics, natural de-

4For example, Zdzistaw Pawlak received the Best Paper Award for the paper on rough sets at the ACM 23rd
Annual Conference on Computer Science in Nashville, TN, USA in 1995.
3See http://rsds.univ.rzeszow.pl/.
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duction and non-classical-logic-resolution-based reasoning systems, logical aspects of
concurrent processes, application of universal algebra to computational models, alge-
braic aspects of non-Fregean logics will be omitted. While selecting materials for this
paper, we would like, first of all, to underscore the research directions on logics in the
Rasiowa—Pawlak school, which we deem particularly important for the further advance-
ment of Al. The interested readers are encouraged to consult many other detailed works,
especially on the algebraic approach (see [193,194,196,19,20,4,162,37,198-200] and
http://rsds.univ.rzeszow.pl/).

In the context of the studies on application of logic to computer science conducted
in the 60s and 70s, in one of these trends, a special stress was placed on understanding
algorithms and computer programs in purely logical terms. For this task, a special logic
called algorithmic logic [4,142] has been developed within the school, and the program-
ming language LOGLAN based on this logic was invented [105].

It is difficult to present a complete list of researchers whose investigations were
substantially influenced in different periods of their scientific activity by Helena Ra-
siowa or Zdzistaw Pawlak. Among them are Lech Banachowski, Mohua Banerjee, Wik-
tor Bartol, Jan Bazan, Malcolm Beynon, Leonard Bolc, Gianpiero Cattaneo, Mihir Ku-
mar Chakraborty, Newton da Costa, Andrzej Czyzewski, Wiktor Danko, Piotr Dem-
biniski, Patrick Doherty, Jan Doroszewski, Albert Dragalin, Didier Dubois, Ivo Diintsch,
George Epstein, Anna Gomoliniska, Jerzy Grzymata-Busse, Petr Hajek, Tsutomu Hosoi,
Masahiro Inuiguchi, Andrzej Jankowski, Jouni Jérvinen, Jan Komorowski, Beata Koni-
kowska, Bozena Kostek, Antoni Kreczmar, Churn J. Liau, Tsau Young Lin, Witold
Lipski, Wing Liu, Witold Lukaszewicz, Larisa Maksimowa, Victor Marek, Antoni
Mazurkiewicz, Ernestina Menasalvas, Grazyna Mirkowska-Salwicka, Mikhail Mosh-
kov, Adam Mrézek, Maciej Maczyniski, Daniele Mundici, Hung Son Nguyen, Cat Ho
Nguyen, Sinh Hoa Nguyen, Tuan Trung Nguyen, Damian Niwirski, Hiroakira Ono,
Ewa Ortowska, Sankar K. Pal, Eleonora Perkowska, James F. Peters, Jan Plaza, Lech
Polkowski, Henri Prade, Andrzej Proskurowski, Halina Przymusiriska, Slavian Radev,
Sheela Ramanna, Zbigniew Ra§, Cecylia Rauszer, Grzegorz Rozenberg, Leszek Rudak,
Andrzej Salwicki, Giovanni Sambin, Dana Scott, Maria Semeniuk-Polkowska, Roman
Sikorski, Dimiter Skordev, Andrzej Skowron, Roman Stowiniski, Jerzy Stefanowski,
Jarostaw Stepaniuk, Zbigniew Suraj, Roman Suszko, Piotr Synak, Roman Swiniarski,
Andrzej Szatas, Marcin Szczuka, Dominik Slgzak, Helmut Thiele, Jerzy Tiuryn, Tadeusz
Traczyk, Boris Trakhtenbrot, Shusaku Tsumoto, Pawet Urzyczyn, Dimiter Vakarelov,
Alicja Wakulicz-Deja, Stanistaw Waligdrski, Quoyin Wang, Anita Wasilewska, Jakub
Wréblewski, Wei-Zhi Wu, Urszula Wybraniec-Skardowska, JingTao Yao, YiYu Yao,
Marek Zawadowski, Ning Zhong, Wojciech Ziarko, Tomasz Zielifiski.

2. The Concept of Artificial Intelligence

Ever since its inception, the notion of artificial intelligence (Al) has been understood
in a variety of ways. Along with advances in knowledge and studies in the world, the
viewpoint on its understanding within the Rasiowa—Pawlak school has been changing as
well. Currently the generally accepted understanding is in accordance with the classic
introductory textbook to this field [207], viz.,
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Premises and observations Decisions and further actions
Temperature | Visibility | Fuel Clear road | Acceleration | Deceleration | Turn

Figure 1. Decision table.

[we] define Al as the study of agents that receive percepts from the environment and
perform actions. ... The Al enterprise is based around the idea of intelligent agents —
systems that can decide what to do and then do it.

There are many extensions and modifications of this classical definition of Al (see,
e.g., [247]). The Rasiowa—Pawlak school concentrates especially on learning and im-
proving of approximations of vague complex concepts (used on relevant levels of real-life
problem solving) in dynamically changing environments (in which we have cooperating,
communicating, and competing agents) by using uncertain and insufficient knowledge or
resources.

The multitude in the number of different definitions of Al is a consequence of the
divergence in the understanding of the concept of intelligence itself, both in regard to
humans as well as machines. In this paper, intelligence is understood in accordance with
the definition put forward by Mainstream Science on Intelligence and signed by 52 intel-
ligence researchers in 1994 (Wall Street Journal):

[A] very general mental capability that, among other things, involves the ability
to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn
quickly and learn from experience. It is not merely book learning, a narrow acad-
emic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability

or comprehending our surroundings — “catching on”, “making sense” of things, or
p 8 8 8 8 g
“figuring out” what to do (reprinted in [64, p. 13]).

It should be noted that there is a formal view of intelligence that has its origins in
natural language and philosophy.® It is worthwhile mentioning that, as a natural con-
sequence of the understanding of an agent’s intelligence by Stuart Russell and Peter
Norvig [207], the essence of this intelligence could be described by a decision function,
represented in the form of a very large table with first columns describing attributes re-
lated to an agent’s observations (percepts) and assumptions, and then last columns related
to the proposed agent actions. In other words, the table could be as in Figure 1.

This kind of table may represent a driver’s behavior on a road, or a physician’s ac-
tions while treating a patient. In this case, the decision of intelligent agents — systems
that can decide what to do and then do it is represented by rough concepts which can
be employed to implement algorithms solving specific problems by means of the ad-
vanced rough set techniques proposed by Zdzistaw Pawlak [167,170,172—174]. For in-
stance, in [39], the application of such techniques in a control algorithm for unmanned
helicopters, e.g., monitoring road traffic, is well illustrated. From another perspective that

SIntelligence. 1. The faculty of understanding. 2. Understanding as a quality admitting of degree. 3. The
action or fact of mentally apprehending something [161].
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keys on a principal notion associated with intelligence (i.e., understanding), there is an
individual’s perception or judgment of a situation [161] to consider. The original work
by Zdzistaw Pawlak on classification of objects and perception that has inspired research
concerning what might best be described as perceptual intelligence, adaptive learning
and what is known as rough ethology (see, e.g., [175,176]).

The difficulty with approximation of vague concepts or perceptions lies in, among
other things, the fact that we do not have precise mathematical definitions for those con-
cepts, but only partial information based on limited knowledge of the features of ob-
jects and the concepts. Moreover, this information is usually imprecise, noisy, biased,
insufficient, and is a subject of dynamic changes.

3. The Concept of Logic

The concept of logic has been intensively studied since ancient times. The dominat-
ing understanding of this concept within the Rasiowa—Pawlak school is due to Alfred
Tarski [233], who in the first half of the 20th century initiated studies on abstract un-
derstanding of the consequence operation and of the satisfiability relation. The classic
paper [234] contained the following statement:

The term “semantics” denotes certain relations between a language’s expressions
and objects.

In [235] as well as in many other papers, Tarski wrote:

Semantics is a discipline which, speaking loosely, deals with certain relations be-
tween expressions of a language and the objects (or “states of affairs”) “referred to”
by those expressions.

Elsewhere in the paper, he wrote:

. the words “designates”, “satisfies”, and “defines” express relations (between
certain expressions and the objects “referred to” by these expressions). ..

Since the early works [233], Alfred Tarski had paid much attention to deduction the-
ory in his research. He even invented theories in which primary notions were propositions
and a consequence operation satisfying the so-called Tarski axioms for consequence.

Taking into consideration the traditions of the Polish school of logic already men-
tioned, by the term logic we intuitively understand a structure of the form

<M,L,=,D >, 1)

where |= is any relation between the class M of models and the class L of language ex-
pressions, and D is a deduction system. Lukasiewicz’s disciples stress here that the rela-
tion |= is not necessarily a (partial) function from the product M x L into the two-element
Boolean algebra. In addition, = can have values in some multi-valued structure. In this
context, a little more general concept is investigated within the Rasiowa—Pawlak school.
Namely, by an abstract multi-valued logic structure we understand a system consisting
of the following components:

1. A class of admissible worlds including real or imaginary objects which could
be used as models representing our knowledge. We assume that each admissible
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world has an assigned set of logical values; in classical mathematics only two
logical values true and false are considered.

2. A set of expressions used as a language for representation of our thoughts about
properties and phenomena in the admissible worlds.

3. A truth function being a (partial) function which for every admissible world A
assigns another function from the set of all relevant expressions into the set of
logical values of A; this function enables us to estimate of the degree of credibility
and verifiability of expressions in each admissible world. Put another way, Tarski
writes that this means that the truth or falsehood of any sentence obtained from
that function by substituting whole sentences for variables depends exclusively on
the truth or falsity of the sentences that have been substituted [239]. In general, a
truth function is a propositional function of truth values [34].

4. A deductive system that enables us to draw inferences about an admissible world,
based on credibility and verifiability of knowledge about that world; in general,
we can assume that it is a closure operation [144].

It is easy to imagine many examples of abstract multi-valued logical structures and
related research problems such as completeness, compactness, theorem proving, concept
approximation, as well as interpolation.

Example 1. Let us consider as expressions of a logical structure a set of sentences (i.e.,
formulas without free variables) of a theory 7" of the classical predicate calculus. The
class of admissible worlds could be just the class of all relational structures for the the-
ory T'. Logical values are: true and false, i.e., the elements of two-element Boolean al-
gebra.

Example 2. Let us consider as expressions the set of all formulas with free variables
from an infinite set of variables V' of a theory T of classical predicate calculus. Then, the
admissible worlds can be once again the relational structures. However, the set of logical
values and the truth function should be slightly more complex. Namely, for each rela-
tional structure A, let S be the set of all valuations of free variables V' into the universe
of A (i.e., functions from V into the universe of .4). Then, the set of logical values of .A
is the set of elements of the Boolean algebra of all subsets of .S. Let the truth function for
A assign to each formula p, the set of all valuations v, making p true in the structure A.
Thus, for the classical predicate calculus, the class of admissible worlds may contain
more than two logical values.

Although Alfred Tarski was probably the first to investigate the general concept of
satisfiability as a binary relation, and Jan L.ukasiewicz and Emil Post were the first to in-
vestigate multi-valued semantical structures, it may be worthwhile mentioning that these
concepts are currently widely used in mathematics and Al under various names. Notice
that ubiquitous mathematical concepts such as matrix and table may be considered as
multi-valued semantical structures where

¢ Worlds: matrix row indices = Admissible worlds,
» Expressions: matrix column indices = Set of expressions,
¢ Truth Values: matrix values = truth values.

From the viewpoint of the Rasiowa—Pawlak school, such tables represent the princi-
pal concept of rough sets called Pawlak’s information system [170,172], in which admis-
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sible worlds are the objects of the system, while expressions are functions representing
attributes. The truth function can be used in the context of a truth table to evaluate the
truth or falsity of a value associated with the function values associated with an attribute
of a particular sample object. Notice that if we treat decision tables (such as presented in
Figure 1) as an essence of Al then multi-valued logical structures could be also treated
as an essence of Al

However, putting aside the philosophical context, from a purely formal viewpoint,
if a language possesses denotations for logical values and a logical equivalence relation,
then abstract multi-valued logical structures may be considered as logical structures with
two logical values, in which the fact that a formula has an intermediate value v can be
expressed as it is true that this formula is equivalent to v. Obviously, this maneuver has
a merely formal character and usage of many logical values directly is more convenient
in many situations. For example, Boolean multi-valued models could be very convenient
for an interpretation of the Heisenberg uncertainly principle (see [13, pp. 156—157]) and
for proving of independence of axioms of set theory (see [13]).

In the case of abstract multi-valued logical structures having only two logical values,
we simply refer to them as abstract logical structures [84,85].

The approach to the semantics of classical predicate calculus presented in the sec-
ond example is a very special case of a more general semantics known as the Rasiowa—
Sikorski Boolean models [193,194,196]. The concept of Rasiowa—Sikorski Boolean
models for set theory was applied by Dana Scott and Robert Solovay in an elegant
method in the proof of independence of the axiom of choice and the continuum hypothe-
sis from the axioms of the ZF set theory [208,209,13]. However, the original proof of the
independence of the axiom of choice done by Paul Cohen [35] used Kripke semantics.
In 1973, Denis Higgs, and independently Dana Scott and his students [50], generalized
the Rasiowa—Sikorski Boolean models to the case of category theory, and especially to
topos theory [73,50]. In particular, Denis Higgs defined the notion of {2-set and estab-
lished for a complete Boolean algebra B, the equivalence of the topos of B-sets both
with the category of sets and maps in the Boolean extension V' (B) of the universe of sets
and with the category of canonical set-valued sheaves on B. Topos-based semantics is
now used as a uniform generalization of the Rasiowa—Sikorski models and Kripke-style
semantics [241,130]. For example, in [130, p. 277], one can find the concept of Cohen
topos which is a powerful tool for analysis of the independence of axioms of set theory.
There are many other applications of Rasiowa—Sikorski Boolean models. From the point
of view of reasoning under uncertainty in Al, there is an interesting and yet not very pop-
ular application of the Rasiowa—Sikorski Boolean models to interpretation of uncertainty
in terms of quantum theory (see [36] and [13, pp. 156—157]). This approach could be
a starting point for a better understanding of imprecise and vague complex concepts by
means of the Rasiowa—Sikorski Boolean models. For authors of this article, especially
interesting is the next step in this direction, namely, exploring possible applications of
the Rasiowa—Sikorski Boolean models in the discovery of the ontology of patterns in
time series based on combination of wavelets, quantum mechanics, granularity, and frac-
tal geometry [25, p. 25]. Next, these patterns are used for approximation of concepts
or percepts that paves the way toward making predictions and economical or financial
decisions.

One of the research directions in the Rasiowa—Pawlak school is a the characteri-
zation of relationship of classical logic to other logic. For better understanding of the
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role of classical logic, it is important to identify relationships between logics, in partic-
ular, between classical logic and non-classical logics. It is worthy to note that important
stimuli to these studies in the Rasiowa—Pawlak school were papers by Jan Lukasiewicz
[23,196] (interpretation of classical logic in intuitionistic logic by double negation),
Andrzej Mostowski [148] (introduction of the concept of generalized quantifiers), and
Rasiowa—Sikorski (relationships of classical predicate calculus with intuitionistic and
modal predicate calculus (see, e.g., [196, pp. 408, 485]). From the point of view of ap-
plications of logic to Al, especially interesting are intuitionistic logic and its relation to
classical logic [241]. For many years, intuitionistic logic has been explored as a frame-
work for computer science foundations. Using societies of intelligent agents for mod-
eling in Al is strongly related to a very interesting principle known as the Brouwer—
Heyting—Kolmogorov interpretation (of intuitionistic logic). Under this principle, intu-
itionistic proofs of implicative formulas are functions and the existence of proofs re-
quires witnesses — agents [241]. Another idea interesting for the Al foundations is Kol-
mogorov’s interpretation of intuitionistic implication as a reduction problem [241, p. 31].
The history of relationships between intuitionistic logic and classical logic is very old.
In particular, Glivenko’s Theorem [61] (discovered independently by Jan Lukasiewicz
[23]) says that: An arbitrary propositional formula A is classically provable if and
only if =—A is intuitionistically provable. For other translations of propositional cal-
culus see, e.g., [241] and [152]. Glivenko’s Theorem cannot directly be extended to
predicate calculus, although there are some forms of this theorem which use special
types of modification of the Glivenko negative translation (i.e., Godel-Gentzen [241],
Godel [241], Kolmogorov [241], Kuroda [241], Kleene [99], Rasiowa—Sikorski [196]).
Andrzej Mostowski [148] stimulated a different dimension of characterization of clas-
sical logic, viz., a characterization in terms of extension of this logic by some infinite
logical connectives. Examples of results in this direction can be found in [120,6,7,16,28].

There is a characterization of classical logic obtained in the Rasiowa—Pawlak school
in terms of relationships to other logics. Namely, any logical structure L with countable
set of formulas is embeddable into a classical logical structure if and only if L satisfies
compactness and completeness theorems [84,85]. This result, in some sense, could be
treated as a reverse theorem to Glivenko’s Theorem for propositional calculus and its
modifications for the predicate calculus.

4. Roots of the Algebraic Approach to Logic by the Rasiowa—Pawlak School

The core techniques that constitute the roots of the algebraic approach to logic by the
Rasiowa—Pawlak school were developed in the 1950s and 1960s, and have been further
extended in later years. Since the very beginning, these techniques have been focused on
the following topics:

1. Development of algebraic methods used in search of the most relevant semanti-
cal structures, i.e., structures that enable to search efficiently for constructive (al-
gorithmic) problem solutions in specific types of domains (e.g., applications of
modal logic to knowledge representation in multiagent systems, logical reason-
ing about rough concepts, logical models for quantum computation), in particular
research on semantics and inference rules.
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2. Algebraic construction of canonical world for a consistent set of expressions and
application of this technique to the study of equivalence between deductive infer-
ence and inference based on the truth relation (the completeness theorem).

3. Construction and analysis of alternative deductive systems for a given logic, for
example based on modification of approaches invented by Stanistaw Jaskowski,
Gerhard Gentzen, David Hilbert, Jacques Herbrand, and Helena Rasiowa together
with Roman Sikorski [196,128].

4. Analysis of the fundamental model-theoretic properties of the admissible worlds
for a given logical structure (e.g., the Skolem-Lowenheim theorem, the compact-
ness theorem, the omitting-types theorem).

5. Research on the geometric properties of the space of models [54,205,250]. In this
framework, by a space of models we understand a space which has models (Q-
filters in the Lindenbaum-Tarski algebra) as points and a topology generated by
Stone’s representation theorem. One can consider also a distance between points
measuring similarity of models. This is a metaphor of Stone’s representation the-
orem for Boolean algebras [211]. One of the most exciting intellectual experi-
ences for the authors of this article is a proof of the Rasiowa—Sikorski Lemma
using topological properties of the space of models (using the Baire property).
Beside of this application of topological methods to proving the completeness
theorem, there are many other very interesting logical properties of the space of
models implied by the topological properties of this space. They concern results
characterizing open theories and mechanisms for the construction of Herbrand
alternatives [196].

Basically, tools employed by the Rasiowa—Pawlak school are, in a natural way, a
continuation of the idea of concept calculus proposed by Gottfried Wilhelm Leibniz,
and later developed by George Boole and his disciples, in particular by Alfred Tarski
and Adolf Lindenbaum. The evolution of tools employed in the algebraic research of
different aspects of logic can be summarized by the scheme presented in Figure 2.

To introduce with acuity the key elements characteristic to the algebraic approach to
logic, typical for many trends in the Rasiowa—Pawlak school, let us assume that ) de-
notes a set of abstract logical operators representing some logical connectives. In the case
of classical logic, the most important ones are conjunction, disjunction, implication, and
negation. As it was noticed by Adolf Lindenbaum and Alfred Tarski, if we glue together
all the sentences which represent the same thought in a deductively closed theory in clas-
sical logic, we get a Boolean algebra. Intuitively, this is an algebra of thoughts for the
theory. Algebraic operators in the algebra of thoughts correspond to logical connectives.
In particular, provable implication corresponds to a partial order of thoughts.

Greater value in the order intuitively means more true. Disjunction corresponds to
supremum in the order generated by the implication, and conjunction corresponds to in-
fimum in the same order. If we treat the existential quantifier of classical logic as infinite
disjunction, then its algebraic interpretation is the supremum. Similarly, if we treat the
universal quantifier as infinite conjunction, then it corresponds to the infimum.

The set of abstract logical operators represented by propositional connectives can
be generalized to a set () consisting of more logical operators. In the standard way, we
define the concept of (-algebra that includes all operators from the set () [193,194], and
concept of (Q-homomorphism between two (Q-algebras which preserves all Q-operators.
In this paper, we assume that () is enumerable and each ()-algebra has a special constant



A. Jankowski and A. Skowron / Logic for Artificial Intelligence 117

Domain Natural Algebra of | Boolean Algebra | Logical concepts | Semantical models Topoi Wisdom Granular
& Artthmetic subsets in Lindenbaum — | for constructive Computing for a
Operators Tarski algebra | mathematics given application
domain
X<Y |Xissmaller Xisasubset | Xissmallerthan | Y could be Logical value of X is | Morphism from X | Wisdom granule Y
than Y of Y Y in Boolean deduced from X | smaller than logical oY is a consequence of
algebra value of Y ina wisdom granule X
Heyting algebra in the domain
0 Zero Empty set The smallest False 0in Heyting algebra | Initial element Smallest wisdom
element granule in the
domain
1 One Full set The biggest True 1in Heyting algebra | Terminal element | Biggest wisdom
element granule in the
domain
+ Addition Join of two Maximum Disjunction Maximum Coproduct Relative coproduct
sets of two wisdom
granule
* Multiplication | Intersection of | Minimum Conjunction Minimum Product Relative product of
two sets two wisdom
granule
XY Exponentia- Join of (-Y) Join of (-Y) and | Implication (Y Relative pseudo — Object Granule
tion X to and X X implies X) complementation corresponding to | corresponding to all
power Y Y—Xin Heyting all morphisms consequences from
algebra from Y to X granule Y to
granule X
Mod (X) | Modulo X Quotient Quotient Lindenbaum — Models for a theory | Category of All consequences
calculus algebra of the | Boolean algebra | Tarski algebra generated by axioms | sheaves over X from a given
filter of the filter for a theory X granule X
generated by | generated by set | generated by a
set X X set of axioms X
Logical True True True Algebra of Elements of Heyting | Subobject Identification of
values False False False logical values algebra classifier subgranules of
ranules
| ANCIENT | CONTEMPORARY | FUTURE |

Figure 2. Evolution of computational models of logical concepts from the Rasiowa—Pawlak school perspective
(the last column is hypothetical for further research).

1 for the logical value of truth. An interesting introduction to logics based on ()-algebras
with implication (extensions of implicative algebras) can be found in [193,194].
We say that an abstract multi-valued logical structure is a Q-logical structure, if

— the algebra of thoughts for any theory is a ()-algebra,

— the logical values for each admissible world form a ()-algebra,

— the truth function is defined using a Q-homomorphism from the set of expressions
into a -algebra of logical values for each admissible world.

The main idea of the algebraic approach to predicate calculus in the research papers
of Helena Rasiowa and her students is based on two concepts:

— Q-representability,
— Q-characterizability.

These concepts have been used in several variants and have been applied as the main tool
for solving of several important problems.

In order to introduce both concepts let us assume that we have two classes M and
K of (Q-algebras. We say that M is Q-representable by K, if for any algebra A from
the class M there exists a (Q-isomorphism from A to a )-algebra in K. For example,
if @) includes standard finite Boolean operators, then Stone’s representation theorem for
Boolean algebras means that the class of Boolean algebras is ()-representable by the
class of all of )-fields of sets. The Stone representation theorem has been generalized
for infinite Boolean operators by Rasiowa and Sikorski. If () is a set of standard finite
Boolean operators and a countable set of operators corresponding to infinite infima and
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suprema in such ()-Boolean algebras, then the Rasiowa—Sikorski representation theo-
rem [196,197] says that the class of all such ()-Boolean algebras is QQ-representable by
the class of all )-fields of sets. By the definition it means that for any countable set @) of
infima and suprema in a Boolean algebra, there exists a (Q-isomorphism to a Q-field of
sets.

We say that M is Q-characterizable by K, if for any algebra A from the class M and
for any element x of A such that x is different from 1, there exists a ()-homomorphism
from A to a (Q-algebra from the class K such that the value of x after the transformation
by the Q homomorphism is different than 1.

For example, if @) includes standard finite Boolean operators and K has only one
two-element Boolean algebra, then each (Q-homomorphism from a Boolean algebra A
into the class K can be identified with a Q-prime filter of A, and any element a of A
can be identified with a set of all Q-prime filters including a. Originally, the Rasiowa—
Sikorski Lemma was expressed as follows: If () is a set of standard finite Boolean opera-
tors and a countable set of operators corresponding to infinite infima and suprema in such
-Boolean algebras, then the class of all such (-Boolean algebras is -characterizable
by the class which has only one two-element Boolean algebra.

The logical meaning of the concept of Q)-representability of the class of ()-algebras
of thoughts by the ()-algebras of logical values for admissible worlds of a logical struc-
ture L is that L satisfies the completeness theorem. The concept of )-representability
of the class of (-algebras of thoughts by the (Q-algebras of logical values for admissi-
ble worlds of L is used for construction of special admissible worlds called canonical
models.

We say that a Q)-logical structure L is a Rasiowa—Sikorski logical structure if the
class of (Q-algebras of thoughts is ()-characterizable by the ()-algebras of logical val-
ues for admissible worlds of L. There are several examples of Rasiowa—Sikorski logical
structures based on logics such as: intuitionistic [196], Heyting—Brouwer [198], interme-
diate [199], modal [196,193,194], Post [193], semi-Post [194] and algorithmic [4,142],
autoepistemic [200], knowledge for groups of agents [202,203,53,183].

It is possible to apply several schemes of analysis to the research of Rasiowa—
Sikorski logical structures. An excellent compendium of such schemes can be found in
[196,193,194]. The schemes can be used for typical model-theoretic applications such
as the completeness theorem or construction of the canonical model, and also for not so
typical ones like natural deduction systems in the Rasiowa—Sikorski style [196,128], or
the proof of decidability of formulas in prenex form for constructive intuitionistic theo-
ries [196].

Along with the emergence of the concept of topos, generalizing the semantics of
Boolean and pseudo-Boolean models, as well as the appearance of other approaches like
Kripke semantics or Beth tableaux, interests to these methods have also grown within
the Rasiowa—Pawlak school. On one hand, opportunity to generalize techniques charac-
teristic for algebraic and Kripke models to topos has been investigated [60]. On the other
hand, internal representations of some logics in others have also been researched [88].

5. Logic for Reasoning and Knowledge

In the early stages, reasoning was understood within the Rasiowa—Pawlak school as nat-
ural deduction systems by Stanistaw Jaskowski, Genzen’s sequent calculus systems, Her-
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brand disjunctions, and their modifications [19,20,192,240]. In particular, in the book by
Helena Rasiowa and Roman Sikorski [196], an elegant deduction system for predicate
calculus, called in literature the Rasiowa—Sikorski deduction system [128], has been pre-
sented. Much effort has also been devoted to the deduction systems in non-classical log-
ics. An exemplary survey containing many results in this field can be found in [19,20].
Various aspects of logic programming and deduction in quantum logics have also been
studied [138,154].

Together with the advancement in understanding the specifications of complex vague
concepts, a gradual shift of the center of studies has taken place, toward approximation
logic and approximate reasoning (see, e.g., [194,133,195,200,202,19,20,188,162]).

In practical applications, there has been a still-increasing need for approximate rea-
soning about concepts and objects on the basis of incomplete, partial, biased and ever
changing information about them. The concepts themselves are usually vague. Methods
for approximate reasoning about such concepts based on rough sets have been developed.
Problems considered in applications can usually be reduced to the construction of ob-
jects adhering to vague specifications to a satisfactory degree (e.g., fuzzy sets [252-254],
rough sets [167,170,172—-174], rough mereology [187,189]). As a result, constructed ap-
proximate solutions are significantly easier to obtain than exact solutions, which often
prove impossible to attain due to the lack of exact model or the inhibiting costs associated
with their computing. This way of thinking seems to be popular in humans while solving
problems. The research on searching for approximate solutions adhering to vague spec-
ifications to a satisfactory degree is therefore considered one of the principal advanced
directions in developing better intelligent systems (see, e.g., [177,178]). Rough set based
methods have proven effective in relatively simple applications such as searching for
reducts and relevant features for a given phenomenon, as well as in highly complex sit-
uations such as image recognition and processing (see, e.g., [21,22,180]), biologically-
inspired adaptive learning controllers (see, e.g., [178,180]) or control and cooperation
among autonomous robots monitoring and repairing power lines.” An interesting ap-
plication is the design for a control system of an autonomous helicopter, where a joint
approach between rough sets and nonmonotonic reasoning has been presented [39].

Reasoning considered as formal operations on features of linguistic features has high
complexity and thus identification of formulas (or abstraction classes understood as gran-
ules), to which the reasoning can be limited to, is of great concern. However, this kind
of applications requires specific knowledge and wisdom representation systems, as well
as the resignation from hitherto existing formalizations of language in classical logic. In
this context, an interesting trend in the seminars by Rasiowa consisted of attempts refer-
ring to pre-WWII ideas by Stefan Banach and his collaborators to use geometrical meth-
ods (relying on a switch from language to topological concept space) [196,54,205,250].
Another, also appealing direction, pertaining to Wittgenstein’s proposal, was to look at
language and satisfiability relation by means of the apparatus of game theory [251,210,
74]. These works laid the ground for a proposal of algebraic models for non-Fregean
logics by Roman Suszko [232,18]. Another application of game theory, from a bit differ-
ent perspective, to investigate features and reasoning in intuitionistic logic can be found
in [60,74]. Game theory can also be applied to approximate reasoning about granular
computing [91].

7For more details on applications the reader is referred to the bibliography in [172-174] and
http://rsds.univ.rzeszow.pl/.
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By the term knowledge, we understand a system consisting of information, its in-
ternal relations and inference rules making it possible to reason about phenomena oc-
curring in a domain of the world. Ever since its inception, one of the main problems
in Al has been the construction of effective knowledge representation systems. There
have been many paradigms of knowledge representation in both structured systems (e.g.,
frames, rule-based systems, semantic networks, logic programming) and non-structured
systems (e.g., neural networks, genetic algorithms, ant systems). With the unprecedented
expansion of the Internet, there is a growing demand for effective systems to represent,
process, search and provide information in texts, images, audio and video recordings.
One of the many effective tools for knowledge representation, in particular for vague
concepts description, are rough set based systems and their generalizations. Some of such
tools were employed by the authors to build in 2000 an Internet search engine called
Excavio capable of communication with users through simple dialogs using phrases. Re-
cently, this kind of technology has became more and more popular in text mining [1,3,
32,48,69,72]. The main idea of these applications relies on using automatic document
clustering algorithms in regard to sets of sequences of phrases potentially interesting to
searchers. The precursors of an interesting direction of application of rough set methods
to Internet search engines were the Japanese [76]. This paper was based on ideas pre-
sented in [218]. The algorithms were also developed and published by members of the
Rasiowa—Pawlak school [150]. Vastly interesting systems applying paradigms of rough
sets and algebraic aspects of logic have also appeared in Japan, China, India, Sweden,
and Canada [172-174].

Within the Rasiowa—Pawlak school a system for representing knowledge from many
fields and for reasoning about this knowledge primarily by means of rough set paradigms
has been designed and implemented. The system can be accessed on the server of Warsaw
University and is presented at the Internet address: http://logic.mimuw.edu.pl/~rses/.

Independently from knowledge representation systems using the rough set approach,
another important trend in the Rasiowa—Pawlak school is a series of research on au-
toepistemic logics and application of logic to the negotiation in a society of cooperating
or competing agents. These works are in a natural way related to the fundamental intu-
itions of modal operators in modal logic. Interesting results in this area can be found in
[202,195,183].

6. Mathematical Approach to Vagueness

One of the fundamental motivations for Jan Lukasiewicz in inventing multi-valued log-
ics was his belief that not all propositions can be considered as either true or false, due
to the impossibility of humans to predict certain events. A standard example frequently
used in Lukasiewicz’s works is the sentence Jan will be in Warsaw next year [23]. Jan
Lukasiewicz, referring to the indetermination principle in quantum mechanics, stated
that assigning to this sentence either truth or falsehood is abusive. His works initiated,
intensely developed until now, a research direction pertaining to uncertainty by means
of multi-valued logics. Among others there is an interesting attempt to combine approx-
imation logic based on rough set paradigm with Post’s multi-valued logics [194].
Mathematics requires that all mathematical concepts (including set) must be exact,
otherwise precise reasoning would be impossible. However, philosophers and, recently,
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computer scientists as well as other researchers have become interested in vague (impre-
cise) concepts.

We would like to remind that modern understanding of the notion of vague (im-
precise) concept has a quite firmly established meaning context including the following
issues [98]:

1. The presence of borderline cases.
2. Boundary regions of vague concepts are not crisp.
3. Vague concepts are susceptible to sorites paradoxes.

Moreover, it is usually assumed that the understanding (approximation) of vague
concepts (their semantics is determined by the satisfiability relation) depends on the
agent’s knowledge, which is often changing. Hence the approximation by agent of vague
concepts should also be considered changing with time (this is known as the concept
drift). In the 20th century, it became obvious that new specialized logical tools need to
be developed to investigate and implement practical problems involving vague concepts.
One of such trends are rough sets.

Rough set theory, proposed by Zdzistaw Pawlak in 1982 [167,170] can be seen as a
new mathematical approach to vagueness. The rough set philosophy is founded on the
assumption that with every object of the universe of discourse we associate some infor-
mation (data, measurements, observations, patterns, knowledge). For example, if objects
are patients suffering from a certain disease, symptoms of the disease from clinical ob-
servations and diagnoses about patients. Objects characterized by the same information
are indiscernible (similar) in view of the available information about them. The indis-
cernibility relation generated in this way is the mathematical basis of rough set theory.
This understanding of indiscernibility is related to the idea of Gottfried Wilhelm Leib-
niz that objects are indiscernible if and only if all available functionals take on them
identical values (Leibniz’s Law of Indiscernibility: The Identity of Indiscernibles) [117].
However, in the rough set approach indiscernibility is defined relative elementary sets
of objects with matching descriptions based on values of functions representing selected
attributes thought to be inherent in objects or feature-based measurements based on the
appearances of objects [182]. Any set of all indiscernible (similar) objects is called an
elementary set, and forms a basic granule (atom) of knowledge about the universe. Any
union of some elementary sets that is a subset of a set of interest (e.g., set of objects X
that are considered somehow acceptable) is referred to as crisp (precise) set; otherwise,
for those elementary sets that have a non-empty intersection with a set X of interest and
its complement, the attention turns to the boundary of X . Whenever the boundary is not
empty, then the set X is considered rough. The size of the boundary provides a measure
of the vagueness of our knowledge about X . Consequently, each rough set has boundary-
line cases, i.e., objects which cannot with certainty be classified either as members of
the set or of its complement. Obviously crisp sets have no boundary-line elements at all.
This means that boundary-line cases cannot be properly classified by employing avail-
able knowledge. Thus, the assumption that objects can be seen only through the infor-
mation available about them leads to the view that knowledge has granular structure.
Due to the granularity of knowledge, some objects of interest cannot be discerned and
appear as the same (or similar). As a consequence, vague concepts, in contrast to precise
concepts, cannot be characterized in terms of information about their elements. There-
fore, in the proposed approach, we assume that any vague concept is replaced by a lower
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and the upper approximation of the vague concept. The lower approximation consists
of all objects which surely belong to the concept and the upper approximation contains
all objects which possibly belong to the concept. The difference between the upper and
the lower approximation constitutes the boundary region of the vague concept. Approx-
imations are two basic operations in rough set theory. Hence, rough set theory expresses
vagueness not by means of membership, but by employing a boundary region of a set. If
the boundary region of a set is empty it means that the set is crisp, otherwise the set is
rough (inexact). A non-empty boundary region of a set means that our knowledge about
the set is insufficient to define the set precisely. Rough set theory is not an alternative
to classical set theory but is embedded in it. Rough set theory can be viewed as a spe-
cific implementation of Frege’s idea of vagueness, i.e., imprecision in this approach is
expressed by a boundary region of a set. The boundary region is defined relative to a
given set of attributes, i.e., it could change if the set of features changes. Moreover, the
boundary region is changing according to data access. Hence, one can see that boundary
region cannot be defined by only one crisp concept. In [204,179], sorites paradoxes in
the framework of rough sets are discussed.

Rough set theory has attracted attention of many researchers and practitioners all
over the world, who have contributed essentially to its development and applications.
Rough set theory overlaps with many other theories. Still, rough set theory may be con-
sidered as an independent discipline in its own right. The rough set approach seems to be
of fundamental importance in artificial intelligence and cognitive sciences, especially in
research areas such as machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, knowledge discovery, decision analysis, and expert systems. The
main advantage of rough set theory in data analysis is that it does not need any prelimi-
nary or additional information about data like probability distributions in statistics, basic
probability assignments in Dempster-Shafer theory, a grade of membership or the value
of possibility in fuzzy set theory. It should also be observed that functions representing
either attributes or features of objects do reflect a priori reflection about the appropriate
choice of functions that represent selected features of observed objects such as widgets
and organisms such as beetles or ants or attributes of conceptual objects such as popu-
lation demographics or numbers in a statistical study. In effect, this signals a strong tie
between fuzzy set and rough set theory, since each feature (e.g., high, medium, low rel-
ative to observed or anticipated distributions of values in an experiment) is represented
by a membership function chosen beforehand in fuzzy set theory. One can observe the
following aspects of the rough set approach:

— partition of sets of sample objects using some form of the indiscernibility relation,

— identifying neighborhoods of sample objects relative to elementary sets to facili-
tate perception and object recognition,

— approximation of each set of objects of interest with another set,

— introduction of efficient algorithms for finding hidden patterns in data,

— determination of optimal sets of data (data reduction),

— evaluation of the significance of data,

— generation of sets of decision rules from data,

— easy-to-understand formulation,

— straightforward interpretation of obtained results,

— suitability of many of its algorithms for parallel processing.
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When recalling the sources motivating the creation of multi-valued logic, which in-
spired Jan Lukasiewicz during his analysis of uncertain concepts by means of interme-
diate logical values, we would like to stress that many works on rough sets were ded-
icated to the relations between rough sets and multi-valued logics by Jan Lukasiewicz
and others (see, e.g., [37,135,162]).

Despite of the efforts to build computers operating on multi-valued logics (electronic
as well as optical), currently the model based on two-valued Boolean logic is dominating.
It is, hence, not the best architecture to implement concepts described in multi-valued
non-classical logics. Although there are announcements on research on building quan-
tum computers based on quantum logic which is a non-classical logic, they have not yet
been realized for real-life applications [33,75,228]. Given this context, especially sig-
nificant are numerous works attempting to find handy and effective computing models
for the treatment of complex vague concepts. Solving this problem is the essence of the
idea by Zdzistaw Pawlak who, we remind, was the architect of one of the first of the
world computers, based on a system different from the typical binary system, to enter
serial production. Zdzistaw Pawlak postulated that we should accept the fact that our
conceptual apparatus is limited and we are able to describe the reality only by means
of expressions comprehensible to us, whose truth value (as understood by two-valued
logic) can be easily verified. Apart from such expressions, however, there exist expres-
sions concerning complex vague concepts that cannot be easily verified (e.g., a financial
operation bears an unacceptable risk, Kowalski contracted disease X, the situation on
a road is dangerous). In such cases, we generally can express, in a language of easily
verifiable concepts, which objects with certainty fall into the scope of the described con-
cept (lower approximation) as well as which objects may fall into this scope with some
certainty (upper approximation). This simple and obvious idea has become foundation
for constructing highly effective tools supporting the representation and processing of
vague concepts in practically all fields of applications [167,170,172—-176].

Vague complex concepts are very often related to one another through a hierarchy
induced by abstraction levels of these concepts. Such hierarchies occur, for instance,
when some concepts are components of other concepts. In such a context, there is a great
interest in investigating the relation being a part-of. It is a different approach from the
ontology of modern mathematics (also known as Cantor ontology), which is based on the
relation being an element-of. Such alternative ontology for mathematics was proposed
by Stanistaw Les$niewski [118,119] in 1929 and became the inspiration for an important
research within the Rasiowa—Pawlak school called rough mereology [187,162]. Within
this approach, the notion rough inclusion relation plays a central role. It describes to
what degree some concepts are parts of other concepts. A rough mereological approach
is based on the relation to be a part to a degree. It is interesting to note here that Jan
Lukasiewicz in 1913 investigated the inclusion to a degree of concepts in his discussion
on relationships between probability and logical calculi [23].

Certainly, the mereological approach is not the only one attempt for establishing
links between vague concepts and rough sets. Among others are links based on treating
vague concepts by means of logical values. In this case, one can build an algebra of
such vague concepts as an algebra of logical values. Usually, this kind of algebra is a
pseudo-Boolean algebra and the relationships between vague concepts can be expressed
as relationships of logical values of an intermediate logic. Notice, that if we would like
to prove relationships between some concepts in intuitionistic logic, then we should be
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able to use constructive evidence. For example, we cannot affirm that any two concepts x
and y are either equal or unequal. In intuitionistic logic we have two kinds of inequality:

— classical inequality which means that x is equal to y leads to contradiction,
— intuitionistic inequality which is stronger and means that we can provide a con-
structive evidence which proves that  and y are not equal.

In particular, if  and y are real numbers, then in order to show that x and y are
intuitionistically unequal it is necessary to provide a constructive evidence for that. In
this case, we can construct an example of a rational number which separates = and y. In
other words, our knowledge about relationships between concepts in intuitionistic logic
requires constructive evidences. For example, if we show that the statement John does
not have pneumonia leads to contradiction, then in intuitionistic logic it does not mean
that John has pneumonia holds.

Having in mind the above remarks it is interesting to represent our knowledge in
the framework of intuitionistic logic. In general, it is not easy because the free Heyting
algebra is infinite, even in the case of one generator only. However, if we assume that:

— each concept can be represented by a finite set of objects and
— the universe of objects which can be used for representation of concepts is finite,

then some intermediate logics may be used instead of intuitionistic logic [87].

Naturally, the remarks above do not cover all aspects of techniques employed by
the Rasiowa—Pawlak school in treating vague concepts. At the current stage, particularly
intensive are studies on rough granular computing as well as in the direction of working
out techniques for learning of complex vague concepts. We discuss these issues more
broadly in the following section.

7. Logic for Learning, Communication, Perception, Planning, Action,
Cooperation, and Competition

From the viewpoint of understanding of the definition of Al along the lines of Russell
and Norvig [207], the essence of artificial intelligence is to equip an agent with a decision
table using one complex concept that allows to implement the idea:

. intelligent agents — systems that can decide what to do and then do it.

In Section 6, we outlined the idea of construction and description of vague concepts
using rough sets. In other words, a solution to learning of complex vague concepts is
also a solution to the fundamental goals in Al In this context, developing techniques
applicable to the Al field called machine learning is of primary concern. Unfortunately,
we are still very far from fully satisfactory solutions, and the currently developed ap-
proaches to learning are suitable to deal with a predictable environment, where one can
foresee which of the existing machine learning paradigms may perform the best. In prac-
tice, so far, it has not been possible to develop satisfactory methods for autonomous sys-
tems [124], neither to work out universal techniques that allow machine learning to be
applied in environments with high unpredictability (we mean an unpredictability degree
comparable to that of an ecosystem in which living organisms have, and successfully
could, learn various concepts in order to adapt and survive) [S7]. From the perspective
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of further advances in Al, it would be handy to have tools allowing to design, construct,
and development of machines capable of:

1. Initialization of input knowledge provided in a simplified natural language based
on an expert’s domain knowledge.

2. Automatic planning of experiments and learning of new, complex vague concepts
that allow better actions within the domain of operation of the machine.

3. The skilful and effective use of the possessed wisdom in order to perform best
possible actions.

Basically speaking, these ambitious goals have come around in Al many times since
its inception. They can be observed in various attempts from the discussions of Alan
Turing’s test [242] through programs that generate winning strategies in games [46,79,
223], discussion of key problems in knowledge discovery systems [114], to many other
modern research trends in this direction [100]. Within the Rasiowa—Pawlak school there
have also been many approaches to solving this crucial problem. The authors of this pa-
per are supervising applied projects in medicine and economy, where they attempt to
use a new, possibly universal approach to a better understanding of the path leading to
solving the three problems mentioned above. The research concerns mainly construc-
tion of a hierarchical architecture for networks of multi-valued logical structures (see,
e.g., [9-11,90,91,149,151,150,12,224]). These works intensively employ rough set para-
digms, though it is worth mentioning that they bear meta-Al characteristics (analogously
to meta-mathematical research within the Rasiowa—Pawlak school). We call this tech-
nology wisdom technology, in short. In a simplification, these techniques refer to one
of the directions in KDD dubbed hierarchical multi-search discovery systems (see also,
e.g., [92]). These issues are related to the fundamental problems of pattern recognition,
machine learning and KDD, involving methods for the extraction of new features [100,
182,181].

In any case, the research trends mentioned previously were not equipped with two es-
sentially new elements derived from wisdom technology, concerning simulation of judg-
ment processes [68,96,184,211] and of processes that construct, adaptively refine and
handle complex vague concepts by way of interaction with the environment [127]. These
processes are present at each level of the hierarchical structure mentioned above. Such
a hierarchical structure constitutes a metaphoric view of a well-known psychological
concept — Maslow Hierarchy of Human Needs (see Figure 3).

The wisdom technology can be explained by the so-called the wisdom equation [90]
which can be expressed metaphorically as follows:

wisdom = KSN + AJ + IP,

where KSN, AJ, IP denote knowledge sources network, adaptive judgment, and inter-
active processes, respectively. For the context of the wisdom equation see Figure 4.

Combination of the technologies represented in the wisdom equation offers an intu-
itive starting point for a variety of approaches to design and implementation of compu-
tational models for wisdom technology. In this sense, wisdom is a concept of a higher
level than knowledge, information and data in the context of DIKW hierarchy suggested
in a poem by T.S. Eliot (see Figure 5).

The basic concepts of wisdom technology outlined above do not constitute a com-
plete solution of the three fundamental problems of Al as posed at the beginning of the
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Figure 3. The Maslow Hierarchy of human needs (about 1934) as an example of judge hierarchy of habit
controls.

section. Wisdom technology should rather be considered as a proposal indicating a po-
tential research direction. Without doubt, in these studies, apart from mechanisms for the
construction of metaphorically understood Maslow hierarchy for intelligent agents (in
order to implement processes of judgment and of steering interactions with the environ-
ment), it will be critical to work out effective mechanisms for learning of new complex
and vague concepts in the prospective domain of operation of an intelligent agent. Two
directions may be distinguished in the learning mechanisms just mentioned:

1. Learning of concept hierarchies (including the metaphorically understood Maslow
hierarchy for an intelligent agent), i.e., strategies for discovery of levels of the
hierarchy, including relevant languages for each level and methods for selection
of relevant concepts.

2. Learning concepts at particular nodes of the hierarchy.

No doubt, both kinds of processes are strongly interlaced with each other. However,
a better understanding of the mechanism interlacing both groups would be more easily
attained if a better understanding of specific features of each separated group was pos-
sible. From the viewpoint of studies conducted within the Rasiowa—Pawlak school, we
consider the approach to understanding both process groups through a combination of
rough set techniques and evolutionary programming [77-79,113] to the construction of
abstract hierarchical multi-valued logical structures to be particularly essential. The sim-
plest examples of such combination of rough sets and evolutionary programming can be



A. Jankowski and A. Skowron / Logic for Artificial Intelligence

127

Wistech wisdom =
knowledge sources network
+ adaptive judgment
; + interactive processes
[$)
[
< knowledge =
Knowledge & information +
Management = information relationships
Technology * + inference rules
|
w
Information E information =
Technology ‘data +
G interpretation
o
Database o)
Technology =2
X
o
w
=
COMPLEXITY LEVELS OF THE SOLUTION PROBLEM SUPPORT
Understanding Perception Prediction
Questions: about data Questions: information type Questions: knowledge type
values and additionally questions and additionally questions and additionally questions
Questions: questions about questions about explanation and } about correct judgments and
data context, like: prediction, like: decisions, action/ interaction
Who? What? When? How? Why? What if? planning / executing and justification,
Where? How Much? like:
What to do? Why to do it? When
to do it? How to do it?
Obijects: Data and Objects: Information and Objects: Knowledge and correct
data explanation by a rules for information Jjudgments, decisions based on a
Objects: description, picture or transformation (reasoning, ...), hierarchy of being values or beliefs,

other presentations.

constrains, relationships
between concepts, ideas and
thought patterns.

action plans, incorporation of vision,
design, plans and implementation
standards based on being
preferences.

Time context:

Time context:

Usually information is a
posteriori, known after the
fact.

Time context:

Usually knowledge is a priori,
known before the fact and
provides its meaning.

Time context:

Usually deals with management
interactions with environment to
achieve future objectives.

Measures:

Measures:

Logical values,
uncertainty, completeness,
amount.

Measures:

Efficiency of problem solutions
by applying theory to
information, quality of problem
solutions.

Figure 4. Wisdom equation context.

Measures:

Priorities, culture values, profits,
quality of action results and plan
implementation.

put straightforward. Namely, let us assume that our goal is to construct a very complex
and vague concept for a decision table (as understood by rough sets described in the
beginning of the paper) satisfying the idea:

. intelligent agents — systems that can decide what to do and then do it.

At first one can assume that the table consisted of rules is provided by experts and that
each rule is assigned a weight determined by means of rough set techniques (or of other
paradigms). Next, the rules over a population of chromosomes constitute an input to the
genetic algorithms under consideration. In the sequel, the approximation of our complex
vague concept is refined using the implemented genetic algorithm and interactions with
the environment and external experts. Although this demarche is described for a single
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Knowledge

Information

Data

Figure 5. DIKW hierarchy.

node in the hierarchy, it is not difficult to imagine a similar construction (combining
Pawlak decision tables with genetic algorithms) aiming at making best possible decisions
for the architecture of the developed hierarchy of concepts. The combination of rough set
techniques, genetic algorithms and simulations of interactions by agents with one another
and with the environment using game theory provides a certain framework to granular
computing (see [91]). The essence of these algorithms is searching for the descriptions
of concept granules optimal for an agent, which can be later effectively employed by the
agent to solve specific problems posed to it by the environment or by other agents (rules
of the game). This search process is known to be highly complex and one should not ex-
pect that it will yield very precise granules. The goal here is merely to search for granular
approximations sufficiently useful to the agent to construct solutions suitable to a satis-
factory degree. The process leading to better and better approximation of granules can be
based on genetic algorithms or on many other evolutionary models. However, due to high
complexity of the concepts being approximated (e.g., because of the huge search space
for relevant features [26,245]), this process is usually highly time-consuming in practical
applications. Its acceleration is mainly possible by implementation of the broadest pos-
sible knowledge provided by domain experts [9-11,90,91,149,151,150,12,224], and in
the case of genetic algorithms, by application of various techniques for speeding-up the
evolution. This kind of evolution control techniques is sometimes referred to as evolution
of evolution techniques [89,43]. This concept is a metaphor of observable phenomena for
refining and accelerating evolution in the nature (see Figure 6, [86,89]).

To sum up, we would like to mention that the described proposals for learning mech-
anisms should be closely synchronized with specific agent’s tasks in the environment
and should effectively support its such fundamental functions as communication, per-
ception, planning, action, cooperation, and competition [2,30,31,38,42,49,57,58,65,80,
94,100,104,124,125,164,207,216,226,227,230,238,240,243].
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Figure 6. The extra exponential growth in the speed of evolution.

8. Examples of Future Research Directions: From the Tarski Concept of Truth,

Galois Connections, and Adjoint Functors to Adaptive Rough-Granular

Computing by Agents

Alfred Tarski, in his research on satisfiability relation and concept of truth, investigated
features of a class Mod(A) of models satisfying some set A of expressions of the lan-
guage as well as the set of features Th(M) of a class of models M [235-237,70,238].
Clearly, by the definition, these functions Mod and Th are adjoint, i.e., they satisfy the

condition:

M C Mod(A) if and only if Th(M)+ A, )

where

* M denotes models, worlds, memorized sequences of receptors receiving stimuli
from the environment; sometimes subclasses of M are called scenes,

¢ A denotes a set of expressions of the language; the expressions are used to repre-
sent or denote concepts,
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e My, C M, asserts inclusion of the model M; in Ms; for instance, a scene rea-
soning process may involve, for some reasons, certain models (e.g., when plan-
ning a trip by car, we consider all possible access paths at the beginning; then,
depending on some other conditions, constraints, and other criteria, we gradually
rule out irrelevant models and, as a consequence, we consider only a class of mod-
els M, with actual prospective access route models containing only the necessary
information to make the trip),

e Mod(A) denotes the class of all models satisfying expressions A,

e Th(M) denotes the class of all language expressions that hold true in all models
belonging to the class M,

* Ay F As states that the all expressions belonging to A, can be derived in accor-
dance with considered deduction rules from the set of formulas A4;.8

Condition (2) is usually expressed in the formalism of Galois connections or, more
generally, adjoint functors as follows:

M C Mod(A)

Th(M)+ A’ ©)

and we say that T is the left adjoint to functor Mod, whereas Mod is the right adjoint
to functor Th. Using the language of category theory [130,129], we can also say that Th
and Mod are adjoint to each other, and simply write

Th 4 Mod. “

Intuitively, Th(M) can be regarded as a verbal description in the language of features of
the models belonging to the class M. On the other hand, Mod(A) can be intuitively con-
sidered as a projection of an agent’s understanding of the expressions A about the class
of models satisfying these expressions. In this way, we obtain the following metaphor of
the adjoint functor above mentioned:

Linguistic description in a language of - Imaginated models of a given set of
a class of models M language expressions A

Similarly, a metaphoric evaluation of the aforementioned conjugation allows us to ob-
tain, for a class of perceived worlds M and expressions A describing M, the following
metaphors in natural language:

Description of M in a language - Imaginated interpretation of A,

Symbolic reasoning about M -4 Scene reasoning described by
expressions from A,

Deductive reasoning in a language of M - Inductive generalization of
properties specified by expressions A,

81~ (called a turnstile, first used by Gottlob Frege [51]) reads “provable from” or “is derivable from”.
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Judgments concerning M - Action plans derived from
expressions A,

Analysis of features of models in M - Synthesis of classes of models
satisfying given features from A,

Judgments concerning M - Emotions concerning expressions

from A,

Logical functions of the left hemisphere - Imaginative functions of the right
(e.g., word computing) as perception hemisphere (scene calculus) as
effects by sensory organs of models in M, effects of understanding of
propositions from A by the brain.

It can be seen from the metaphors above that adjoint functors can be regarded in a
natural way as a generalization of the concept of semantics understood as a binary re-
lation between model and language. It particularly concerns the Cartesian-closed cate-
gories, intensively investigated by Joachim Lambek and others [112]. In these categories,
morphisms are considered as deductive reasoning operators. Hence, adjoint categories
can be considered as pairs of categories corresponding to language and models. This kind
of approach to semantics by means of adjoint functors could be a starting point to re-
search about formula-less and model-less semantics by an analogy to point-less topology
where points are represented by open sets including points (see, [93]). In other words,
this kind of semantics deals with approximations of formulas and approximations of
models instead of dealing directly with formulas and models only.

The above metaphors are only to draw attention to the adjoint relations between sym-
bolic reasoning category and imaginative-scene reasoning category. It is worth stressing
that it has become common in the cognitive studies and multi-agent interaction [227] to
pay more and more attention to the role of the duality, illustrated above, in processes in-
volving cognition and intelligence [226]. The intuitions illustrated here are basic for the
implementation of granular computing [5,90,91,219,220,222,225], where an intelligent
agent is equipped with two hemispheres (of a brain) — the left one is used for describing
things in a symbolic language and for symbolic reasoning, while the right hemisphere
deals with imagining by the agent the acceptable models satisfying certain features and
with reasoning on possibilities of traversing from one model to the other (scene reason-
ing). Such an agent communicates with the world through sensors attached to the both
brains hemispheres (see, e.g., [91]). Intuitively, the essence of granular computing is to
construct the best possible ontological tools that are helpful in discovery of information
granules which may help us wisely solve practical problems. In the context of rough
sets and approximation spaces, granulation is rooted in the discovery of elementary sets
that identify neighborhoods of objects of interest and give substance to our search for
instances of classes of objects (i.e., concepts [161]) and which serve to establish a ground
for perception [253]. A classical example illustrating these intuitions is the history of
solving by our civilization, through nearly 2000 years since the ancient Greeks, problem
of geometric constructions. This problem has become relatively easy due to a granula-
tion method initiated by Evariste Galois. Using the Galois theory, certain problems in
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field theory may be reduced to group theory, which is in some sense simpler and better
understood. In order to demonstrate the impossibility of such geometric constructions as
squaring the circle, angle trisection or doubling the cube, we can express the problem in
an algebraic language (instead of a geometric one) by means of the following observa-
tion: A given number can be constructed using a ruler and a compass if and only if its
rank over the field of rationals is a natural power of 2. At the same time, using the Galois
theory, one can express an algebraic problem by means of group theory, which can be
solved relatively more easily [248,56].

In some sense, the Galois idea has been generalized by Garrett Birkhoff. He noticed
in 1940 [17] that any binary relation yields two inverse dual isomorphism called polar-
ities. He introduced this name because they also generalize the dual isomorphism be-
tween polars in analytic and projective geometry. This concept has been further gener-
alized by Oystein Ore [153] and Cornelius J. Everett [44] to any partial order, and was
called Galois connections. Everett showed that all Galois connections can be obtained
by contraction from suitable polarities. Next, the concept of Galois connections has been
generalized to category theory by Daniel M. Kan [97], who introduced the concept of
adjoint functors. In 1946, Cornelius J. Everett and Stanistaw Ulam® [45], using projec-
tive geometry, showed how to use this kind of connection to an algebraic interpretation
of semantical meaning of quantifiers. In Ulam’s opinion [244], it was the first algebraic
interpretation of the universal and existential quantifiers semantic. This interpretation
was based on an analogy with the projection operators in projective geometry. However,
probably the first quantifier manipulation in an algebraic style could be find in early
papers related to descriptive set theory (see [106—108]). This kind of algebraic quanti-
fier manipulation is a basis for a certain type of measure of concept complexity, called
the Kleene—Mostowski hierarchy (see [99,145]). For example, the well known Tarski—
Kuratowski algorithm provides an easy way to get an upper bound on the classifications
assigned to a formula and the set it defines. Notice that existentional and general quan-
tifiers could be treated as adjoint functors. Having in mind this, one can generalize the
Kleene—Mostowski hierarchy to arbitrary adjoint functors. This new hierarchy creates a
measure of the granule complexity. The intuitions of algebraic interpretations of seman-
tical issues of universal and existential quantifiers by an analogy with the projection op-
erators in projective geometry, were further extended by Alfred Tarski and his research
group [70]. Within the Rasiowa—Pawlak school an algebraic interpretation of quantifiers
semantic is by means of suprema (existential quantifier) and infima (universal quantifier)
(see [196]). William F. Lawvere and his successors unified all these ideas on the ground
of category theory (see [130]) by showing how quantification can be constructed in suit-
able categories by using the idea of adjoint functors (i.e., by a construction which is a
generalization of Galois connections).

In computer science, Galois connections are associated with several other names
such as classification [8], contexts [55], or the Chu spaces [8,190]. It is interesting
that applications of the Chu spaces to parallel and concurrent models were intensively
studied [191]. These works are directly related to the idea of the use of algebraic ap-
proaches, developed by the Rasiowa—Pawlak school, to modeling of parallel and concur-
rent processes [63,137].

One of the key research directions within the Rasiowa—Pawlak school is the investi-
gation of algebraic features of various kinds of logics. Especially important is the method

9See [206,244] for more details about Stanistaw Ulam’s life and work.
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of proving completeness by means of the so-called canonical models (which are built of
terms, language’s expressions and a filter representing a given theory), described in the
following section. The method shows how, having at disposal a description, to imagine
models for it (to use the aforementioned metaphor, it is a cycle of back and forth shifts
from the left hemisphere to the right one, and reverse). On the other hand, having models
that can be transformed by suitable functors into models expressible in another language,
one can build an approximation language for new models (a cycle of back and forth shifts
from the right hemisphere to the left one, and reverse).

It is worth reminding that in modeling of concept approximations using rough sets,
it is frequently necessary to discover relevant semantic granular structures (in right-
hemisphere), syntactic granular structures (in left-hemisphere), and plans of interactions
with environment and other agents. Next, based on the results of interactions it is nec-
essary to upgrade the world perception, estimate the distance to the planned goals, and
reconstruct plans. Intuitively speaking, this approach to adaptive granular computing is
very similar to the quality improvement cycle known as PDCA cycle (Plan Do Check
Act) or the Deming cycle. This is a fundamental challenge for the methods concern-
ing approximate (inductive) defining of concepts from acquired information (e.g., sensor
measurements represented by a given information system). This approach could be also
applied to data mining (see, e.g., [100]), text mining (see, e.g., [100,15,47,66,249]), ma-
chine learning (see, e.g., [139,140,101,141,143,52,176-178,180]), and pattern recogni-
tion (see, e.g., [41,71,181]).

9. Conclusions

In this paper, some research trends within the Rasiowa—Pawlak school concerning the
application of logic to Al have been selected and discussed. At the beginning, a concise
genesis of the school was presented. In the next part, the understanding of Al and logic
currently dominating within the school, along with the characteristic algebraic and topo-
logical tools employed by the school were described. We exposed rough set methods in-
troduced by Zdzistaw Pawlak and indicated by some trends in current studies concerning
learning of complex vague concepts and their treatment. Particular attention was paid to
wisdom technology and granular computing. It should be noted that this paper does not
claim to be a complete and exhaustive presentation of research methods in application of
logic to Al conducted within the Rasiowa—Pawlak school. These methods have signifi-
cantly broader applications and have undergone a remarkable evolution during the past
couple decades. This evolution, however, indicates certain directions for the future stud-
ies. For a better understanding of the evolutionary scope of the research directions con-
ducted within the Rasiowa—Pawlak school, readers are encouraged to consult Figure 7.
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Evolution of AI models of computing in the Rasiowa-Pawlak School
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