
HIGHLIGHTS

� Computation model based on Interactive Granular Computing (IGrC) for
Intelligence Systems (IcS) is presented and the IGrC model is further
developed. In particular, this concerns the role of control of IcS and
dialogues with experts for IcS treated as complex granules (c-granules,for
short) in IGrC.

� The rough set approach is generalized to approximation of concepts used
by control of IcS and compound granules representing approximate solu-
tions of problems to be solved by IcS.

� The fundamental role of information systems defined by Pawlak and their
generalization to dynamic information systems in searching for relevant
computational building blocks for cognition, including, e.g., approxima-
tion spaces, classifiers or information systems themselves is discussed.

� The role of dialogues of ICs with human experts and several challenges
related to them are discussed. In particular, their impact on granular
computations generated by control of IcS is emphasized.
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Abstract

We discuss the role of rough sets and the basic concept of the rough set ap-
proach namely concept approximation in Intelligence Systems (IcS). These IcS
deal with complex phenomena. Among them are Business Intelligence Systems,
Medical Intelligence Systems, or Risk Management Intelligence Systems. In
such systems, data models are induced from data perceived in the continuous
interaction of the physical layer of IcS, including human experts, and the com-
putational layer of the IcS.

As the computing model for IcS, we propose the Interactive Granular Com-
puting Model (IGrC). The basic objects of IGrC create complex granules (c-
granules, for short) that make it possible to link the abstract and physical worlds.
IcS aim to generate computations over c-granules (or networks of them), along
which high-quality approximations of the solutions to problems solved by IcS
are constructed. We generalize the rough set approach to such cases.

The approximation of objects or concepts is supported by advanced reason-
ing techniques, much more general than in the Zdzis law Pawlak model of the
rough set approach. We discuss the fundamental role of information systems
defined by Pawlak and their substantial generalization in searching for the rele-
vant approximation spaces used for approximating concepts or, in a more general
setting, c-granules (representing in particular, approximate solutions to prob-
lems) related to computations of IcS. Additionally, this work explores the role
of information systems, creating a special kind of c-granules, in characterizing
computational building blocks for cognition, as defined by Leslie Valiant.

For IcS, dialogues with human experts making decisions are unavoidable.
We discuss different aspects of such dialogues and challenges for modeling such
dialogues, especially concerning reasoning techniques.
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1. Introduction1

Intelligence Systems (IcS) are defined in the literature in different ways. For2

example, in [1] one can find the following definition:3

An intelligence system is an advanced tool that reads, interprets,4

and interacts with its surroundings. Discover how these systems5

shape the modern world.6

Intelligent Systems (IS) are a type of computer system that can learn and7

adapt, while AI is a broader concept that encompasses the ability of machines8

to perform tasks in a human-like way. For IS we do not necessarily assume9

that these systems are interacting with experts or users. In this paper, we10

consider Intelligence Systems (IcS) assuming that they are based on a special11

’symbiosis’ of the decision support systems with experts and/or users aiming12

to support human experts or users rather than making the right decisions in13

isolation from them (see Fig. 1). This point of view is characteristic for Human-14

Centered AI and Human-in-the Loop Machine Learning [2, 3, 4]. In the case of15

decision support systems (or IS) dealing with complex phenomena, we do not16

have yet enough powerful reasoning tools to eliminate humans in the decision17

making process. One of the reason is that still there are some ’white spots’18

in available reasoning techniques which could support systems to a satisfactory19

degree to deal with common sense reasoning, in particular with reasoning based20

on experience, e.g., with reasoning by analogy (see, e.g., [5, 6, 6]).21

From the point of view of our considerations IcS can be treated as spe-22

cial cases of IS because they are aiming to deliver, on the basis of collected23

data and reasoning about perceived data, computational building blocks (spe-24

cial c-granules) for humans that are necessary for comprehension by them the25

perceived situations satisfactory for making the right decisions. In particular,26

this shows a strong link of IcS with Explainable AI (XAI) (see, e.g., [7, 8, 9]).27

Nowadays, are developed different types of IcS [1] like Business IcS [10], Med-28

ical IcS [11, 12, 13] or Risk Management IcS [14, 15]. Each of them have some29

specificity. For example, Business IcS are offering modern business management30

expertise and cutting-edge technologies, both under one roof. They provide31

professional services empowering enterprises to stay focused on their core busi-32

ness goals and objectives during executing and delivering management-oriented33

technology solutions. Business IcS should provide high quality, sustainable, and34

tangible Information Technology & Business Solutions as well as Services [16].35

There is a need for developing solid foundations for IcS on which the design36

of the high quality IcS systems can be realized. This paper presents a step37

toward developing such foundations for IcS.38
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Figure 1: Interactions of IcS with abstract and physical objects, in particular with humans.

In particular, in developing the mentioned above foundations one should39

take into account several issues related to the following queries:40

� How IcS are able to perceive the complex dynamically changing situations41

in the physical and abstract worlds to a degree making it possible to make42

the right decisions?43

� What is the relevant computing model on which IcS can be grounded, in44

particular what are the objects used by IcS in their computations?45

� What are the necessary reasoning techniques on the basis of which control46

module of IcS is aiming to generate computations realizing their goals?47

� How to characterize the computational building blocks for cognition, i.e.,48

block on which can be grounded understanding the perceived situations49

to a satisfactory degree for making the right decisions?50

� What are the relevant languages and reasoning techniques for perform-51

ing dialogues between decision support systems and experts and/or users52

creating parts of IcS?53

� What is the role of information systems (defined by Pawlak) in the char-54

acterization of the computational building blocks for cognition?55
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� How the rough set approach should be extended to deal with the issues56

related to the formulated questions and problems to be solved by IcS, e.g.,57

to deal with the problem of constructing the high quality approximate58

solutions of problems which IcS are aiming to solve?59

Certainly, it is not possible to discuss in detail all of the above issues one60

paper. In the sequel, we concentrate on necessary generalization of the rough61

set approach, in particular information (decision) systems defined by Pawlak for62

dealing with these issues. In particular, we discuss the crucial role of information63

systems (decision) systems with this respect.64

To realize this, first it is necessary to present a relevant computing model65

on which IcS can be grounded. The reader may recognize that the mentioned66

above term ‘computational building blocks’ was introduced by Leslie Valiant67

who considers the problem of characterizing the computational building blocks68

for cognition as the main problem of AI [17]. In the presented in the paper69

approach, these ‘computational building blocks’ are modeled by complex gran-70

ules (c-granules, in short) which are the basic objects in Interactive Granular71

Computing (IGrC) (see, e.g., [18, 19, 20, 21, 22, 23] and [24, 25]). C-granules72

are making it possible to deal with abstract as well as with physical objects.73

Such objects are necessary in developing tools for modeling of perception. This74

is one of the main difference between IgrC and Granular Computing (GrC). In75

GrC are investigated information granules embedded in the abstract space (see,76

e.g., [26, 27, 28, 29, 30]). Moreover, in [31] it is mentioned the lack of theoretical77

foundations of GrC. In the mentioned above papers on IGrC we are aiming to78

develop foundations for the IGrC model and this paper is a step for further79

developing such foundations.80

It is important to recognize the necessity of proper modeling of IcS control81

module. IcS control provides a proper interaction mechanisms for IcS dealing82

with the environment consisting of abstract and physical objects. It is aiming83

to generate granular computations along which approximate solutions of prob-84

lems to be solved by IcS are constructed like classifiers, clustering, compound85

chemicals or medicine [32]. These approximate solutions are constructed along86

granular computations using c-granules as computational building blocks for87

cognition and construction of approximate solutions with the high quality.88

IcS are aiming to provide the high quality approximate solutions of the con-89

sidered problems. Using the relevant specification of a problem P , in the family90

of approximate solutions of P is distinguished a vague concept ‘approximate91

solutions with high quality’. IcS is aiming to use the relevant approximation92

spaces to define the regions of approximation of such concept, i.e., its lower and93

upper approximation as well as boundary region. Next, in the framework of94

rough sets one can consider the problem of generation by IcS of approximate95

solution(s) belonging to such regions, e.g., to the lower approximation.96

This paper explores the role of information systems in the process outlined97

above. We demonstrate how Pawlak’s information systems can be generalized98

to function effectively as computational building blocks in the processes for un-99

derstanding situations related to problem specification and finding high-quality100
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approximate solutions. In particular, we discuss how to discover relevant ap-101

proximation spaces for approximating the concept of ‘high-quality approximate102

solutions’ (the lower approximation of the concept ’approximate solutions of103

a given problem’). Additionally, we outline how the IcS control generates ob-104

jects from different approximation regions, e.g. objects belonging to the lower105

approximation of the considered concept.106

In generation of granular computations, IcS control should take into account107

the necessity of satisfying different criteria, (e.g. related to business or risk re-108

quirements) as well as the fact that the reasoning tools provided by IcS control109

can not be fully automatic but they should be also based on dialogues with ex-110

perts and/or users. Moreover, due to the fact that IcS are dealing with complex111

phenomena it is not possible to base the approach on classical mathematical112

modeling as it was observed by many top researchers (see, e.g., [33]) but is is113

necessary to provide reasoning tools making it possible continuously search for114

proper data in the environment to answer, in particular for queries related to115

what, why, how, when etc. the new data should be perceived to guarantee the116

proper modeling of computational building blocks for cognition and solutions117

(granules). One can observe that this is related to attention mechanism, already118

discussed by Aristotle [34].119

In our discussion, we also refer to the recent project Label-in-the-Loop120

Project (LITL) [35] or [36] concerning discovery of the high quality learning121

classifiers supported by dialogue with experts.122

This paper is structured as follows. In Section 2 we recall the notion of123

information system and the model of rough sets introduced by Pawlak. Next,124

in Section 3 we discuss the multi-relational approach to rough sets, in particular,125

multi-relational approximation spaces and their relationships with information126

systems. We also emphasize that this model can be taken as the basis for many127

complex optimization processes related, e.g., to feature selection and extraction128

or classifiers generation. In Section 4, we discuss motivation and intuition which129

was leading us to IGrC. Sections 5 and 6 include a discussion on generalization of130

information systems to dynamic objects under control of IcS as well as their role131

in characterization of computational building blocks for cognition by control of132

IcS together with motivations for the adaptive rough set approach. Section 7 is133

dedicated to dialogues of IcS with human expert supporting characterization of134

computational building blocks for cognition. In particular, it is shown that the135

architecture of interfaces of IcS with human experts should be equipped with136

numerous modules supported by advanced reasoning techniques. Developing137

such modules and reasoning techniques requires solving several discussed in this138

section challenges. Section 8 presents an outline of the Labeling in the Loop139

(LITL) project. The roadmap for dialogues in IcS is discussed in Section 9.140

Perspectives of rough sets in IcS are presented in Section 10. Finally, Section 11141

concludes the paper.142
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2. Rudiments of information systems143

Advantages of information systems in specification and modeling of complex144

tasks and representation of complex domain knowledge are known for years (for145

details see, e.g., [37, 38, 39, 40, 41, 42]). In this section we recall the basic146

definition with some additional comments concerning its relationship with the147

definition of the Pawlak model of rough sets based on indiscernibility relation148

and multi-relational rough sets.149

Let us recall the basic definitions related to information systems [38].150

Definition 1. A tuple IS = (U,A, {V ala}a∈A, f) is called an information sys-151

tem, where152

� U is a non-empty set of objects;153

� A is a non-empty set of attributes;154

� V ala is a non-empty set of values for each attribute a;155

� f : U ×A → ∪ {V ala : a ∈ A} assigns a unique value from V ala to each156

f(x, a) for x ∈ U and a ∈ A.157

Equivalent to Definition 1, the notion of information system can also be defined158

as follows.159

Definition 2. A pair IS∗ = (U,A) is called an information system [38], where160

U is a non-empty universe of objects and A is a non-empty set of em attributes.161

Each attribute a ∈ A is represented as a function a : U −→ Va where Va is the162

set of values of the attribute a, called the domain of a.163

Information systems are also defined as pairs (U,A), where U is a finite set164

of objects and A is a set of attributes, i.e, functions from U into the set Va of165

values of a.166

For any x ∈ U the signature of x relative to B ⊆ A is defined by infB(x) =167

{(a, a(x) : a ∈ B}1.168

Definition 3. Given an information system IS = (U,A, {V ala}a∈A, f) and a169

set B ⊆ A, an indiscernibility relation IND(B) on U is defined as follows.170

(x, y) ∈ IND(B), if and only if infB(x) = infB(y).

For any B ⊆ A we define multi-relational approximation space by171

ASB = (U, {IND({a})}a∈B).

Contrary to the Pawlak model of rough sets the concept approximation172

over the multi-relational approximation space is not defined uniquely what was173

1We also used notation for signature of a given object x relative to the considered infor-
mation system, i.e., infIS(x).

7



observed many years ago (see, e.g., [43, 44]). Hence, in searching for the relevant174

concept approximation one should also search for the proper approximation175

definition.176

Information systems with distinguished decisions, called decision systems,177

are tuples DS = (U,C,D), where (U,C ∪ D) is an information system and178

C ∩ D = ∅. The attributes from C and D are called conditional and decision179

attributes, respectively.180

For any decision system DS = (U,C,D) one can consider a generalized181

decision function ∂DS : U −→ P (Inf(D)) defined by182

∂DS(x) = {i ∈ Inf(D) : ∃x′ ∈ U [ (x′, x) ∈ IND(C) and infD(x′) = i]} , (1)

where P (Inf(D)) is the powerset of the set Inf(D) of all possible decision183

signatures over D, i.e., Inf(D) = {infD(x) : x ∈ U} .184

The decision system DS is called consistent (deterministic) if |∂A(x)| = 1 for185

any x ∈ U . Otherwise, DS is said to be inconsistent (non-deterministic). Hence,186

a decision system is inconsistent if it consists of some objects with different187

decisions but indiscernible with respect to the conditional attributes. Any set188

consisting of all objects with the same generalized decision value is called a189

generalized decision class.190

3. Multi-relational approximation spaces191

In this section, we present examples showing that many problems to be192

solved by IcS are optimization problems based on searching for the (semi-) opti-193

mal spaces in large families of approximation spaces. Among them are problems194

of data reduction, attribute (feature) selection, and feature extraction (feature195

engineering) in Machine Learning (ML) [45, 46, 47, 48]. We emphasize the196

role of information systems in searching for the relevant approximation spaces197

by showing that the searching can be based on the space of the information198

(decision) systems representing the approximation spaces.199

The beginning of multi-granulation rough set approach is usually referred to200

papers from 90-ties of the XX century by Cecylia Rauszer and Helena Rasiowa201

with Victor Marek (see, e.g., [43, 49, 50, 51]). They considered a team of agents202

having at their disposal indiscernibility relations and considered, in particular203

for any object aggregation of their voting for and against of a particular decision.204

Definition 4. A multi-relational approximation space is any tuple205

AS = (U, {r}r∈R),

where R is a set of binary relations over a set U .206

The Pawlak model of rough sets is defined using an approximation space207

AS = (U, r),

where U is a finite set and r is an equivalence relation over U .208
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Then, for any X ⊆ U is defined its lower LOW (r,X) and upper approxima-209

tion UPP (r,X) by {x ∈ U : [x]r ⊆ X} and {x ∈ U : [x]r ∩X ̸= ∅}, respectively.210

Moreover, the boundary region BN(r,X) is defined by UPP (r,X)\LOW (r,X).211

From these definitions, one can observe that in the Pawlak model, the ap-212

proximation space is treated as given a priori, and approximations are defined213

relative to this approximation space. However, in general, we search for approx-214

imations of concepts over an extension of U . This requires developing reasoning215

techniques to support optimization in searching for the relevant approximation216

spaces from different, often huge, families of approximation spaces (see, e.g.,217

[45, 46, 48, 32, 32]). We discuss the role of information systems in this search-218

ing process.219

One can observe that the Pawlak model of rough sets based on information220

systems is directly related to multi-relational approach too.221

Any information system IS defines a multi-relational system222

ASIS = (U, {ra}a∈A),

where ra = IND({a}) for a ∈ A.223

Also any multi-relational system (U, {r}r∈R) defines an information system224

IS∗ = (U,A∗), where A∗ = {ar : r ∈ R}, and ar(x) = fr([x]r) for x ∈ U, where225

fr is a bijection of the partition U/r of U defined by r onto {1, . . . , | U/r |}.226

One can observe that the indiscernibility relation IND(A∗) of IS∗ is equal to227

to228 ⋂
r∈R

r.

Let us note that the indiscernibility relation IND(A) = {(x, y) ∈ U :229

a(x) = a(y) for all a ∈ A} of IS is invariant to renaming of attribute val-230

ues. More formally, IND(A) = IND(F (A)), where F (A) = {fa ◦ a : a ∈231

A & fa is a bijection of Va onto Va} and (fa ◦ a)(x) = fa(a(x)) for x ∈ U.232

The idea of the multi-relational approach to rough sets was further developed233

by other researchers (see, e.g., [52, 53, 54, 55, 56, 57, 58]). In particular, the234

approach has been extended to covering based approach [59, 60], where in multi-235

relational approximation spaces are considered e.g., tolerance, similarity or even236

arbitrary binary relations.237

In multi-relational approximation spaces, we represent objects based on sig-238

natures.239

These signatures are used to capture the relationships between objects and240

a set of attributes. For single attributes, equivalence classes are represented241

by descriptors. These descriptors take the form (a, v), where a is the attribute242

and v is the value of that attribute for a specific object x. The intersection of243

equivalence classes for single attributes is then described by combining their244

corresponding descriptors using conjunctions. The situation becomes different245

when we consider fuzzy sets (or rough fuzzy sets) as semantics for signatures of246

objects. First, these fuzzy sets are defined over equivalence classes of the original247

attributes. Then, descriptors representing the fuzzy sets are connected by fuzzy248

connectives in constructing formulas from signatures. These connectives, being249
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generalization of conjunction, determine how the fuzzy sets corresponding to250

aggregations of descriptors are defined. One should also note that the IcS control251

may use some strategies for discovery of these connectives from data [61]. In252

this way, one can create expressive languages to describe concepts (c-granules)253

that serve as building blocks for understanding perceived situations. In the254

existing solutions, these languages are proposed by experts in dialogues of IcS255

with them.256

Here, we would like to mention only a relationship of multi-relational ap-257

proximation spaces with finite universes U with information systems. For any258

such such multi-relational system one can construct strongly related to it an259

information system. Any of relation r from such spaces can be represented by260

a family of neighborhoods r(x) = {y ∈ U : xry}, where x ∈ U . One can con-261

sider the family of sets generated from such neighborhoods by set theoretical262

operations as the family od definable sets. In this way is obtained a Boolean263

algebra of sets generated from the neighborhoods. One can also define an in-264

formation system with the universe of objects U and binary attributes that265

are characteristic functions of these neighborhoods. One can observe that the266

family of definable sets of such information system is equal to the family of de-267

finable sets of the original multi-relational approximation space. However, one268

should be aware that for practical applications the obtained in this way infor-269

mation systems can create problems because of the huge number of attributes.270

Moreover, for practical applications one should look for constructive methods of271

discovery of the relevant definable sets for approximation of considered concepts272

what corresponds, e.g., to problems of feature engineering in ML. These defin-273

able sets can be treated as examples of computational building blocks necessary274

for cognition (using terminology of Valiant [17]) or c-granules in IGrC. One275

should note that searching for relevant computational building blocks should276

be supported by reasoning taking into account the risk of overfitting and the277

description length of the blocks. This is also related to Minimum Description278

Length (MDL) principle [62]. This may be illustrated when one extends a given279

multi-relational approximation space AS = (U, {r}r∈R) with a given family R280

of equivalence relations by adding to R new equivalence relations r′ which are281

coarser than some r ∈ R and next aiming to approximate a given partition of282

the universe of objects by a given decision attribute with the high quality using283

this new extended multi-relational approximation space and the quality measure284

based on MDL. Searching for semi-optimal solutions in this new, usually large285

multi-relational approximation space can be successfully supported by Boolean286

reasoning (see, e.g., [47, 48]).287

It is important to note that families of partitions corresponding to rele-288

vant equivalence relations for solving a given problem may be defined in many289

different ways. For example, in the case of construction of (binary) decision290

trees [45] these partitions can be defined by single equivalence classes and their291

complements and searching is based on selecting in each step of decision tree292

construction of the ‘best’ equivalence class relative to some measures base, e.g.293

on entropy. It’s important to remember that there are many ways to define294

families of partitions based on equivalence relations relevant in searching for so-295
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lution of a specific problem. For example, in decision tree construction (like the296

binary trees) [45], these partitions can be defined using single equivalence classes297

and their complements. At each step of decision tree construction, searching298

is based on choosing the ’best’ (using specific criteria like entropy) equivalence299

class among such parturitions. Another example, can be related to classification300

by ensembles (see, e.g., [63]). In this case, searching for information systems or301

family of equivalence relations on the basis of which members of ensembles are302

constructed plays the important role.303

One should note that instead of binary relations over U one can consider304

fuzzy relations or relations obtained by combination of rough and fuzzy ap-305

proaches. This approach based on combination of rough and fuzzy approaches306

defines important spaces of computational building blocks for cognition. In307

particular, these blocks may be defined by rough-fuzzy aggregation of neigh-308

borhoods. This approach was used successfully in many projects (see e.g.,309

[64, 65, 66, 67, 68, 69, 70, 71]).310

The discussed above simple multi-relational models (U, {r}r∈R) generated by311

information systems were used with a special kind of reasoning, called Boolean312

reasoning, in searching for solutions of many problems related to reduction of313

attributes, discretization or symbolic value grouping (see, e.g., [47, 48]). Dis-314

cretization or symbolic value grouping is related to searching for the optimal315

transformation of a given multi-granular system ASIS to a multi-granular sys-316

tem ASIS′ = (U, {r′a}a∈A′), where A′ ⊆ A and for any a ∈ A′ r′a is coarser than317

ra, (i.e., [x]ra ⊆ [x]r′a for x ∈ U) and318

IND(A) = IND(A′)

as well as the sum319 ∑
a∈A′

| U/r′a |

is minimal. Usually, this problem is considered for decision systems and then the320

formulation should be accordingly changed [47, 48]. We would like to emphasize321

here that quite often we deal with optimization problems related to searching322

for the optimal approximation space. Hence, reasoning techniques supporting323

searching for the (semi-)optimal solutions are of great importance.324

One should also bear in mind that in the case of multi-relational approxima-325

tion spaces with relations different from equivalence relations the definition of326

concept approximation is not unique (see, e.g., [44, 72]) and in applications one327

should provide reasoning tools supporting searching for the relevant schemes of328

concept approximation.329

Moreover, in the case of multi-relational approximation spaces the sets U330

as well as the set of relations are not necessarily finite. Such a situation is331

typical for problems of feature extraction (feature engineering). For example,332

one can consider as the set of attributes the characteristic functions of half-333

spaces defined by hyperplanes defined by some real-value attributes (see, e.g.,334

[47, 73].)335

It is worthwhile mentioning here the relationships of the covering rough set336

approach with information systems. First of all, let us observe that in the337
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definition of information systems by Pawlak together with the value sets Va is338

considered the equality =, i.e., the relational structure (Va,=). In discussion339

on discretization problem, we consider the relational structures (Va,≤), where340

Va is a subset of the set of reals and ≤ is a linear order. Considering similarity341

relations over Va leads to relational structures of the form (Va, ρa). Together342

with these relational structures over the value sets of attributes are considered343

languages of formulas with semantics expressed by subsets of the value sets344

or their Cartesian products. The characteristic functions of these sets can be345

considered as possible new attributes. Moreover, they can be used as constraints346

in aggregation of information systems for filtering tuples of objects satisfying347

these constraints (see, e.g., [74, 75]). This can also be used in definition of types348

of information systems discussed in Section 5.349

The discussed approach allows us to generalize the indiscernibility relation350

defined in information systems as an equivalence relation to the indiscernibility351

being tolerance, similarity relation (see e.g., [76]) or even general binary relation352

over signatures of objects (see, e.g., [77, 78]). More formally, in generalized353

information systems ISISτ
,, where τ is a similarity relation over signatures of354

objects from U , objects x, y ∈ U are τ -indiscernible in symbols355

xIND(ISτ )y if and only if infISτ
(x) τ infISτ

(y).

In one of the above discussed cases we deal with the optimization problem in356

infinite space. Moreover, one can also consider another important problem for357

ML related to discovery of languages from which the relevant attributes should358

be extracted [45, 46].359

Let us note that searching for approximation of concepts in the space of all360

definable sets i.e., arbitrary unions of indiscernibility classes) may be infeasible361

from the point of view of computational complexity. Hence, these methods are362

restricted to searching in subspaces of this space, e.g., defined by definable sets363

determined by intersection of some equivalence classes from R.364

4. IGrC - motivation and basic intuition365

In this section, we present some an intuitive explanation of some basic con-366

cepts related top IGrC.367

We have selected the IGrC model as the basis for developing theoretical368

foundations for the design and analysis of IcS dealing with complex phenomena369

in the physical world.370

In the considered case, according to opinions of many researchers, classical371

mathematical modeling is not satisfactory (see e.g., [33]). Moreover, in [79] it is372

noted that there is a necessity to modify the Turing test in order to synchronize373

four important areas of AI research (language, reasoning, perception, and ac-374

tion), as each has regrettably diverged into a fairly independent area of research.375

However, one should take into account that when dealing with perception, the376

computing model should consider not only abstract objects, but also physical377

objects. The computing model should enable continuous interaction between378
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the system and the physical environment, allowing for the collection of relevant379

data which can be used to infer data models temporarily characterized by the380

high quality.381

The basic objects in IGrC are complex granules (c-granules, for short). They382

consists two layers: informational and physical. In the informational layer is383

stored information about perceived situations as well as specifications of tasks384

realized over them as well as information about the expected results of realiza-385

tion of these tasks in the physical world. This information is labeling specifica-386

tions of spatio-temporal windows (addresses) describing regions of the physical387

space where the information is perceived.388

The physical layer of c-granule consists parts like soft suite, link suit and389

hard suit. Soft suit consists of physical objects directly accessible, i.e, objects390

which properties can be decoded by measurements into the information layer or391

objects into which some relevant information from the information layer can be392

encoded. This is realized by special elementary c-granules generated by control393

of c-granules. Information about physical objects which are not directly accessi-394

ble is inferred by reasoning tools using knowledge bases or physical laws. Hence,395

computations in IGrC depend on physical laws contrary to the Turing model396

[80]. In link suit are physical objects used for transition of interactions from397

soft suit to hard suit and hard suit contains physical objects to be perceived398

according to the specifications of spatio-temporal windows represented in the399

information layer. C-granules are under control of other c-granules or their own400

control.401

For simplicity of reasoning, we consider here the case when c-granules are402

under the control of of IcS which can be treated as a higher order c-granules.403

This control is responsible for generating computations of IcS. The computa-404

tions are sequences of c-granules (or their networks including information about405

relationships of other c-granules which are parts of the networks). IcS is aim-406

ing to generate such computations realizing in the best way the task of IcS,407

i.e., they are aiming to generate computations along which the high quality of408

approximate solutions of problems to be solved by IcS are constructed. These409

approximate solutions of problems may concern classifiers or compound physical410

objects like sensors, robots or chemical components.411

In each step of computation, the control module (CM) of IcS verifies whether412

the information about the current situation is satisfactory to initiate the ap-413

propriate transformation of the current c-granule configuration (network of c-414

granules). This may involve suspending, modifying existing c-granules, or gen-415

erating new ones. CM includes a special implementation module (IM) respon-416

sible for realization the transformation specifications in the physical world. In417

essence, the IM realizes the so-called physical semantics of the transformations’418

specifications. Here’s an idea how it works: The specifications of these transfor-419

mations are included on the right-hand side of rules located in the rule module420

(RM) of CM. In each step, the RM checks if the information about the cur-421

rently perceived situation matches the left-hand side of any rules. If there’s a422

match, the RM uses reasoning mechanisms to resolve any conflicts among these423

rules. If the conflicts can be resolved, the rule module selects the rule for exe-424
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cution. Otherwise, it suggests gathering more information about the perceived425

situation. The execution of the rule involves realizing the transformation spec-426

ification from its left-hand side. The IM is responsible for carrying out this427

transformation in the physical world. The set of rules in the RM can be viewed428

as a complex game involving intricate rules composed out of vague concepts429

(learned by the IcS control) labeled by transformations. The RM is adopted430

according to perceived changes by CM. For more details about CM, the reader431

is referred to [23].432

The control consists several other important modules. More detailed de-433

scription of control is included in the cited paper on IGrC (see, e.g., [18, 19,434

20, 21, 22, 23, 24, 25, 32]). The RM plays one of the most important role of435

the control of IcS. In the simplest case, the rules are embedded in this mod-436

ule by designers. However, in many cases these rules should be learned and437

changed according to perceived changes. The central role in the control of IcS438

play reasoning techniques supporting the IcS control in its behavior.439

IGrC goes beyond abstract concepts like information granules in GrC. It440

also handles granules that interact with the physical world. The control of IcS441

is equipped with IM responsible for realization so called physical semantics. The442

IM takes specifications of associations (a broader term than mathematical func-443

tions) and generates or uses existing configurations of physical objects. It then444

initializes interactions within these configurations and allows the IcS control to445

perceive properties related to the object interactions. Based on this perceived446

information, along with knowledge bases and physical laws, the IcS control can447

infer properties of the perceived objects as results of the realized association.448

It’s important to note that these inferred properties might differ from expecta-449

tions due to environmental interactions (see Fig. 2). If the differences between450

the expected and perceived results of realization of transformations are too large451

than CM is looking for adaptation of rules.452

5. Information systems and their role in characterization of compu-453

tational building blocks for cognition by the control of IcS454

Leslie Valiant formulated the main problem of Artificial Intelligence (AI) as455

follows [17]:456

A fundamental question for artificial intelligence is to character-457

ize the computational building blocks that are necessary for cognition.458

We propose to model these computational building blocks using complex459

granules (c-granules), which are the fundamental objects of IGrC. These gran-460

ules allow us to link two worlds, namely the abstract and the physical, which461

is necessary for dealing with perception [81, 82]. Granular networks, which are462

a higher order c-granules obtained from c-granules by linking them by some463

relations, and computations over them in IGrC are used by IcS to comprehend464

the perceived situation to a satisfactory degree for making the right decisions.465

In the context of Granular Computing (GrC), information granules can be466

seen as a specific type of c-granule. This allows us to focus on the specifications467
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ASSOCIATIONS 

AND THEIR PHYSICAL SEMANTICS

f : X ↝𝑔 𝑌 where g is a given c-granule
• 𝑋 − 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑠𝑒𝑡 𝑡ℎ𝑒𝑜𝑟𝑦, elements of X are stored  (represented) 

in informational layer of c-granule g (e.g. control of IcS),
• Y  − physical space, not definable in set theory,  
• f − association between X and Y realized by c-granule g using 

physical semantics:
- implementation: for a given xX and a specification of f control of g is 

constructing a physical structural object ox (with dynamics controlled by 
g relative to its local time ) providing  a ’ physical pointer’  from  a part of  
ox in which x has been encoded  to the associated (by f ) to x  a physical 
object in ox (pointed out by a spatio-temporal window specification 
represented in the physical layer of g),

- perception: some properties of parts of ox and  properties of interactions 
between them (and with the environment) are perceived by  control of g  
(in particular by  decoding from some parts of ox into informational layer 
of g) and used in reasoning  by g toward providing representation of 
information about the object associated to x by f.

Figure 2: Associations and their physical semantics.

of c-granules, which are represented by information granules. This is because468

we assume that these specifications are correctly implemented in the physical469

world and remain unchanged by environmental external to them interactions.470

Therefore, the computational building blocks needed for cognition include both471

information granules and c-granules. C-granules are generated by control of472

IcS using reasoning techniques. This control aims to construct high-quality ap-473

proximate solutions for problems that IcS needs to solve. These computational474

building blocks can take various forms, including patterns, clusters, informa-475

tion systems, classifiers, and physical objects such as new sensors, robots, or476

chemical compounds.477

In IGrC we follow the main idea of perception presented in [81]:478

The main idea of this book is that perceiving is a way of acting.479

It is something we do. Think of a blind person tap-tapping his or her480

way around a cluttered space, perceiving that space by touch, not all481

at once, but through time, by skillful probing and movement. This is482

or ought to be, our paradigm of what perceiving is.483

Information systems are the basic objects in modeling perception based on484

this idea. However, several modification of the definition presented above are485

necessary, in particular:486

� information systems should be open to interaction with the control of IcS487

and the physical world;488
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� control of IcS should provide skills for489

1. discovery of the right types of objects represented in particular in-490

formation systems;491

2. implementation in the physical world specifications of perception492

tasks represented in objects of information systems;493

3. discovery of the relevant properties of the results of sensory measure-494

ments and actions over perceived configurations of physical objects.495

Let us now add some comments on management in IcS.496

The c-granules (with control) hold specific pieces of information stored in497

their informational layers. Among these pieces are information systems. An498

IcS typically manages multiple information systems. Therefore, IcS control499

requires a proper addressing mechanism (realized by spatio-temporal windows500

or addresses) to locate the relevant information system, considering both space501

and time.502

Each information system, identified by its address, stores objects of a prede-503

fined type. The type of these objects is defined by a formula that allows the IcS504

control to determine if a piece of information sent by the IcS control can modify505

the system and how. For instance, the type might specify that the system holds506

objects defined by a spatio-temporal window describing where specific attributes507

should be measured. It could also include time information, such as the start508

time for the measurement and the expected duration.509

Information systems can store more complex object types. These could in-510

clude, e.g., properties of segments from different multi-time series that the IcS511

control perceives during measurements. These segments could be aggregated512

into clusters or even more intricate structures. Additionally, types can hold513

properties related to interactions with physical and abstract objects. These514

properties might also include conditions expressing relationships between at-515

tributes, such as specifying that certain parts of the observed objects are phys-516

ically close.517

Formally, these types can be represented as formulas α(x) in a specific lan-518

guage. When checking if information inf is relevant for a particular information519

system IS, the variable x in the formula is replaced with the information inf.520

This information describes how the IcS control intends to modify IS by adding521

a new object to its collection.522

Let us consider an illustrative example in which this new object o is defined523

by information inf in the format:524

w : a1, . . . , am; spec.

Here, w is a spatio-temporal window specification, identifying a part of physical525

space where the values of attributes a1 to am should be measured. The ex-526

pression spec refers to a specification for how the module IM of control should527

obtain these values.528

If this object satisfies the type formula α(x), the IcS control follows these529

steps:530
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� It expands the universe of objects within IS by adding the new object o.531

� The IcS control sends a request to the IM to execute the specification spec532

in the physical world.533

� IM initiates a process in which it perceives the values of attributes a1 to534

am in the specified part of the physical space (defined by w).535

� These values are then stored in the expanded information system IS′ as536

attribute values for the newly created object o.537

One can observe that the specification of type of information system IS is538

closely related too specification of a family of admissible changes of IS..539

Let us consider one more example for illustrating the difference between540

information granules considered in GrC and c-granules from IGrC. In this ex-541

ample, information inf specifying an intended change of a given information542

system IS to IS′ is related to adding a new attribute to the set of attributes of543

IS, with values computed according to a given procedure proc. If this specifi-544

cation is admissible for IS by its type then the change of IS to IS′ is realized545

by implementation of the procedure proc for each object from IS and taking546

the computed by the procedure value as the value of attribute for each consid-547

ered object. In this case, assuming that the realization is not disturbed by the548

environment one can consider only transformation in the corresponding infor-549

mational layer without referring to the physical world.550

Summarizing, we propose the following changes in modeling of information551

systems in comparison to the Pawlak model:552

� The Key to Dynamics: Open Information Systems. We propose a general-553

ization of Pawlak’s information systems into ’open’ information systems.554

These systems are dynamic entities, and the IcS control is responsible for555

their evolution during computations seeking high-quality approximate so-556

lutions for problems the IcS needs to solve. Hence, the dynamics of these557

systems is not defined a priori as it was proposed in papers on dynamic558

information systems so far (see, e.g., [83, 84, 85]). Pawlak’s information559

systems can be seen as starting points, or ”seeds.” We need to consider560

huge spaces of information systems around them. Within these spaces, it561

is necessary to search for (semi-)optimal information systems (or approx-562

imation spaces). The relevant reasoning techniques should be developed563

supporting this search making it i to induce the relevant computational564

building blocks for cognition, like classifiers or clusters. Furthermore, the565

IcS control system must be aware that these vast information spaces are566

dynamic and change over time.567

� Challenges and Networks. The intended dynamics may not always be568

achieved due to unforeseen interactions with the physical environment.569

Furthermore, the IcS control often deals with multiple interconnected in-570

formation systems rather than a single one, forming networks of informa-571

tion systems. These networks can be viewed as networks of c-granules572

over which computations are generated by control of IcS.573
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� System Types and Object and objects in Information Systems. Each in-574

formation system has a type that specifies the allowed type of objects575

in it, in particular those that can be added in updating. The type is576

typically specified using some properties of fragments of granular com-577

putations generated by the IcS. Objects within an information system578

must be compatible with the system’s type. It can be treated as a filter579

for objects to be stored in information system. Objects in information580

systems are descriptions of structural objects labeled by specifications of581

spatio-temporal windows, like bitmaps of images, fragments of time series582

or their clusters, together with encoded in these descriptions procedures583

and/or specifications of associations used by control of IcS for computing584

values of the relevant attributes. The control of IcS is using585

(i) a procedure from the object to compute necessary attribute values586

for an object using, e.g., information from other information systems587

and/or588

(ii) a specification of an association from the object with the specified589

fragment of the physical space; a process is associated with this spec-590

ification that is realized in the physical world by IM, allowing IcS591

to perceive, e.g., the desired attribute values and store them in the592

information system.593

Hence, attributes considered in the paper are not necessarily abstract594

functions by they may be defined by specifications of associations and595

their realization in the physical world by IM.596

The type specification can also include information on how the IcS control597

can update the information system, e.g., by adding or removing rows or598

columns. For example, a type might specify a type of spatio-temporal599

windows, a list of attributes to measure within the fragments of the phys-600

ical space corresponding to those windows, additional information like601

measurement timeframes and expected results. Control of IcS is respon-602

sible for updating the system with the perceived in physical realization603

measurement values.604

� Dynamic by Design, Not Random. These generalized information sys-605

tems are dynamic, not randomly so. Their evolution is determined by the606

IcS control’s intended dynamics, which can be influenced by interactions607

with the physical environment. This implies that the information systems608

in this paper are not purely mathematical objects. Their dynamics are609

defined by c-granules representing the systems themselves and their in-610

teractions with other c-granules, working like physical pointers to specific611

parts of the physical space. These pointers allow the IcS control to per-612

ceive properties of physical objects in those parts and use this information613

to update the current state of the systems.614

This type of modeling is essential for seriously considering issues related to615

perceiving complex situations in the physical world and making the right deci-616
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sions about them. We demonstrated that our approach to information systems617

can be seen as a constructive way to define dynamic approximation spaces.618

These spaces are changing accordingly to changes of corresponding to them in-619

formation systems and they can be used to search for computational building620

blocks for cognition, such as patterns, clusters, or concept approximations (clas-621

sifiers) a well as their hierarchical structures relevant to problem-solving by the622

IcS.623

Typically, control of IcS deals with a family of information systems gener-624

ated in the perception of situations. Moreover, the information systems from625

such families are linked by different relations representing relationships between626

objects, fragments of the whole information systems. In this way are created net-627

works of information systems. They are examples of more compound c-granules628

(or information granules), corresponding according to our previous discussion,629

to families of approximation spaces. Here, it is worthwhile mentioning the630

relationships with information flow [86, 87] attempting to develop logical foun-631

dations for distributed computing. One should also refer here Fuzzy(-Rough)632

Cognitive Networks (see, e.g., [88, 89, 90, 91]) as well as Federated Learning633

(see, e.g., [92, 93]) as examples of techniques aiming to create machine learning634

models with improved performance on distributed datasets (without sacrificing635

privacy). On the way to create such models many challenges appear concerning,636

e.g., creating, designing, operationalizing or maintaining distributed systems.637

One of the challenges is related to developing reasoning methods supporting638

solving these challenges.639

The proposed approach focuses on developing reasoning methods that sup-640

port the construction of approximate solutions for specified tasks. These meth-641

ods must consider additional constraints during construction. These constraints642

can include privacy requirements, limitations on data aggregation due to re-643

source limitations, or adherence to principles expressed in natural language644

standards (e.g., ISO standards) that may contain complex and vague concepts.645

Importantly, these reasoning methods should not only analyze pre-constructed646

solutions but also actively support the construction process itself, working along-647

side the granular computations generated by IcS. Dialogues with human experts648

may play a crucial role in this process. Furthermore, at different stages of the649

IcS computations, solved subproblems can be treated as optimization problems650

within large families of approximation spaces.651

Aggregation and decomposition operations as well as filtration (see, e.g.,652

[74, 94]) of information systems enable us to construct new information systems653

on the basis of which new relevant c-granules being computational building654

blocks for comprehension of the perceived situations are discovered.655

One of the fundamental issue of information systems under the control of656

IcS is that they are open to interaction. They are changed by control of IcS.657

The changes are controlled by reasoning skills of control. We discuss this issue658

in more detail in the subsequent section.659
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6. Adaptive rough sets660

In the Pawlak model of rough sets [39, 40, 95] the boundary region of the661

approximated vague concept is defined as the difference between upper and lower662

approximation of the concept. Hence, the boundary region is crisp set. However,663

philosophers argue that the collections of borderline cases creating the boundary664

region cannot be defined as a crisp set [96]. In the Pawlak model of rough sets,665

the boundary region is defined relative to given sets of attributes and objects.666

These sets are represented by information systems [39, 40, 95, 37]. Certainly,667

when these sets are changing the boundary region is changing too. Hence, it668

was proposed (see, e.g., [97]) to consider for approximation of vague concepts669

a process expressing changes in approximations of a given concept according to670

changes of sets of attributes and objects rather than an approximation defined671

on the basis of a given a priori information system.672

From the above discussion it follows that for construction of approximation of673

concepts we should rather consider dynamic information systems rather than a674

given a priori information system. As it was already mentioned, in the literature,675

one can find several proposals of definition of dynamic information systems (see,676

e.g., [83, 84, 85]). In these proposed approaches the dynamics is treated as given677

a priori. This is not reflecting requirements for Intelligence Systems (IcS) where678

information systems are in a sense under control of these systems and they are679

changing according to rules of control of these systems and interactions with680

the physical world. This point of view is represented in the approach based on681

IGrC (see, e.g., [18, 19, 20, 21, 22, 23] and [24, 25]).682

Control of IcS is responsible for updating and generation of information683

systems in IcS. However, one should note that the expected changes of IcS684

planned by their control may be disturbed by interactions with the physical685

environment. Updating of information systems is often caused by sensory mea-686

surements. Hence, it is related to interactions with physical objects. Generation687

of new information systems or decomposition of the existing ones is performed688

by aggregation or decomposition operations. From this it follows that modeling689

of control of IcS requires objects composed out of abstract and physical objects.690

Complex granules (c-granules, for short) are such objects in IGrC.691

The control of IcS consists of reasoning module playing the fundamental692

role. The reasoning is performed on networks of c-granules (more compound c-693

granules). It is aiming to decide which transformation should be performed on694

the current granular network toward construction of approximate solutions for a695

given specification of problem to be solved. From the point of view of the rough696

set approach one can formulate this as the requirement of construction of granule697

representing the approximate solution belonging to the lower approximation of698

the concept consisting all solutions of the given problem.699

6.1. Pawlak’s information systems vs Scott’s information systems700

An interesting interpretation of Pawlak’s information systems follows from701

comparison them with the definition of Scott information system [98]. This702

interpretation may bring some hints in developing reasoning methods for the703
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control of IcS related to issues concerning dynamics of information systems704

working under the control of IcS. Hence, we outline this interpretation here.705

In [98] the intuition of information systems is presented as follows. Intu-706

itively, an information system is a set of ‘propositions’ that can be made about707

‘possible elements’ of the desired domain. The formal definition is as follows.708

Definition 5. An information system is a structure709

(D,∆, Con,⊢),

where D is a set (the set of data objects or propositions), where ∆ is a dis-710

tinguished member of D (the least informative member), Con is a set of finite711

subsets of D (the consistent sets of objects), ⊢ is a binary relation between mem-712

bers of Con and members of D (the entailment relation for objects).713

Concerning Con, the following axioms must be satisfied for all finite subsets714

u, v ⊆ D:715

(i) u ∈ Con, whenever u ⊆ v ∈ Con;716

(ii) {X} ∈ Con, whenever X ∈ D; and717

(iii) u ∪ {X} ∈ Con, whenever u ⊢ X.718

Concerning ⊢, the following axioms must be satisfied for all u, v ∈ Con, and719

all X ∈ D:720

(iv) u ⊢ ∆;721

(v) u ⊢ X, whenever X ∈ u; and722

(vi) if v ⊢ Y for all Y ∈ u and u ⊢ X, then v ⊢ X.723

One can interpret an information system defined by Pawlak as a kind of724

recording information about some perceived situations represented by signa-725

tures of objects. Then, this information system represents in a sense a family of726

consistent sets, represented by signatures of objects, perceived up to a given mo-727

ment of time. The dynamics of of information systems is determined by control728

of IcS and interactions with the physical world. Hence, instead of a single entail-729

ment relation one can propose to learn some hypothetical entailment relations730

using some idea, e.g. from paraconsistent logic [99, 100, 101, 102] in coopera-731

tion with experts. One should be aware that it is necessary to consider not only732

consistent sets but to develop tools which can provide useful conclusions in the733

case of inconsistent sets. Here, one can refer to the research concerning incon-734

sistent knowledge bases (see, e.g. [103]). Some issues concerning the discussed735

problems already appear in inconsistent decision systems, what was mentioned736

in Introduction.737

Let’s consider the case of Scott information systems, where the entailment738

relation is assumed to be known upfront (a priori). While the derivation rules739

used by the control of IcS can often be learned from data (see, e.g., schemes740

of approximate reasoning in [94]). Moreover, their computational complexity741

becomes an important factor. Imagine a situation where the current state is742

represented by information inf. The IcS control needs to extract a relevant743
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fragment from a large knowledge base kb (represented by an information gran-744

ule) to infer new information about the situation and accordingly extend inf.745

The efficiency of this process depends heavily on how knowledge is represented746

in kb. It’s also worth noting that dealing with inconsistencies (or paraconsis-747

tencies) in the knowledge base might necessitate dialogues with human experts748

and reasoning tools for resolving conflicts. In the case of of Scott information749

systems an important role play maximal consistent sets. In the case of IcS,750

reasoning is based on consistent (or inconsistent) sets because maximal consis-751

tent sets usually are not available for IcS, e.g., because of bounds on resources.752

Moreover, reasoning rules in IcS are realized by transformations of c-granules,753

where their specifications of transformations are represented in informational754

(abstract) layers and their realization is defined by physical semantics, hence755

transformations are not purely purely mathematical objects. The realization756

of transformations in the physical world is not always as predicted by their757

specifications because of interactions with the environment.758

7. Dialogues of IcS with human experts grounded on IGrC in search-759

ing for computational building blocks for cognition: General com-760

ments761

In this section, we discuss in more detail issues related to dialogues of IcS762

with human experts. In particular, our discussion also concerns dialogue systems763

for Human Computer Interaction (HCI) (see e.g., [104, 105]). IGrC is the basic764

computing model on which we propose to ground the approach.765

We have already emphasized in Introduction that for IcS dealing with com-766

plex phenomena it is not possible to eliminate dialogues with human experts.767

Among them is the problem that still we do not have enough reliable automatic768

techniques for common sense reasoning and/or experience based reasoning.769

The idea of common sense is well expressed in [106]:770

We look at the idea of common sense as it exists in humans. We771

make the case that it is tied to knowing certain ordinary things. We772

argue that common sense is the ability to make effective use of this773

knowledge in deciding how to behave and plays a critical role in the774

spectrum of human cognitive capabilities.775

One should note that developing robust commonsense reasoning capabili-776

ties for control of IcS presents several key challenges related to commonsense777

knowledge. Among them are:778

� Acquisition and representation of commonsense knowledge.779

� Contextual and dynamic nature of commonsense knowledge.780

� Ambiguity and uncertainty in commonsense knowledge.781

� Integration of reasoning module with other components of IcS control782

concerning commonsense knowledge.783
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� Explainability and transparency of commonsense reasoning.784

� Scalability and generalization of commonsense knowledge.785

Addressing these challenges requires a multidisciplinary approach, incorporat-786

ing advances in knowledge representation, machine learning, natural language787

processing, cognitive science, and other relevant fields.788

One of the important issue where IcS should cooperate with human experts is789

related to decomposition of complex vague concepts. This problem appears with790

such vague specifications as necessity to preserve as invariant ‘safeness’ [36] or791

provide ‘trustworthiness’ [107] of the system. Decomposition of complex vague792

concept appears also during implementation of specifications of transformations793

in the physical world. If a specification is to compound for the implementation794

module IM of control then it may be necessary to ask a human expert for a help795

in decomposition. Lotfi Zadeh suggested [108, 109] that information granulation796

plays a key role in implementation of the strategy of divide-and-conquer in797

human problem-solving. Often it is necessary to perform such decomposition798

several times, through different levels, before it is possible to rich the level799

directly implementable in the physical world. The problem of decomposition800

of vague specification is also important in hierarchical learning. In particular,801

for several real-life projects it was possible to obtain the high quality solutions802

using so called ontology approximation based on the rough set approach, where803

ontology of vague concepts was acquired through dialogues with experts (e.g.,804

[36, 48]). The discussed issue of decomposition of complex vague concepts is805

also closely related to a cited below challenge formulated by Judea Pearl [110].806

Another very important issue related to dialogues of IcS with experts is that807

the control of IcS should deliver on the basis of accumulated data and knowl-808

edge in informational layers of c-granules understandable by human information809

supporting experts in making the right decisions. This information can be pro-810

vided in natural language, in a graphical form (see, e.g., QMAK project [111])811

or using some easily understandable by human expressions.812

8. Outline of the LITL project findings813

Foundations based on IGrC for IcS dealing with complex phenomena are814

aiming to realize the following general goal, paraphrased to IcS from [112] where815

it was formulated for biology:816

Tomorrow, I believe, we will use [IcS]to support our decisions in817

defining our research strategy and specific aims, in managing our ex-818

periments, in collecting our results, interpreting our data, in incor-819

porating the findings of others, in disseminating our observations,820

in extending (generalizing) our experimental observations through821

exploratory discovery and modeling - in directions completely unan-822

ticipated823
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Now, we shortly characterize the LITL project [35] developed by QED com-824

pany and present a roadmap for further development dialogues of human experts825

with IcS.826

LITL is aiming to develop an automatic and semi-automatic system for827

marking data in large data sets based on machine learning. In particular, LITL828

provides methods for:829

� Few-shot learning:830

(i)) Active learning samples selection: Intelligent samples selection lead-831

ing to largest expected model improvements.832

(ii) Initial batch selection: Deterministic, reliable methods for selecting833

initial data samples to avoid production quality minimums.834

� Expert assignment: Labeling experts matched to the samples based on835

their latent competencies.836

� Expert consensus: Ground truth estimated based on experts quality even837

in case of contrary votes.838

� Expert quality estimation: Experts’ quality and latent competencies con-839

tinuously updated.840

� New classes identification: New not yet known classes identified and pointed841

out to experts for evaluation.842

It was already shown that on the road of LITL development the rough set843

based methods can be very helpful. In particular:844

� Reduct ensembles can be the basis for fast similarity calculation [113].845

� Reduct ensembles can be quite good models in practice: [63].846

� They may also provide hints about most useful features: [114].847

� It can be extended toward interactive feature selection: [115].848

There are already in LITL some tools related to selection of queries based849

on similarity. Among them are the following:850

� A data case may be worth showing to Subject Matter Expert (SME ) if851

it is not similar to any cases that were considered in the learning process852

up to now.853

� A data case may be worth showing to SME if it is similar to a group of854

other cases labeled by that SME up to now, but SME seemed to be quite855

uncertain about those cases.856

� A data case may be worth showing to SME if it is similar to a group other857

cases that were analyzed by the previous versions of a model that we learn,858

but that model seemed to be quite uncertain about those cases.859
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The core concept behind LITL’s development supporting construction of860

classifiers can be summarized as follows. We begin with a given multi-relational861

approximation space, or corresponding to it a decision system, denoted by AS.862

Based on AS, LITL constructs a typically large space FAS of related multi-863

relational approximation spaces. Next, an optimization strategy is employed864

to search for specific multi-relational approximation spaces within FAS . These865

spaces are chosen because they enable the creation of high-quality classifiers866

(according to pre-defined quality measures). These classifiers can be, e.g., in867

the form of ensembles of classifiers (see Fig. 3 and [63]). The optimization868

process can also be performed by tuning metaparameters of learning algorithms869

(see, e.g., [116]).870

OPTIMIZATION

labeling

by expert

(dialogue)

AS

TESTING

classifier(s)

results

Figure 3: Optimization in the loop with experts for inducing the high quality classifiers.

Labeling by experts (see Fig. 3) may concern, in particular suggestions con-871

cerning:872

� expressed in natural language new attributes (features) or selection of the873

relevant objects;874

� discretization or symbolic value grouping;875

� definition of new fuzzy attributes (e.g., based on linguistic variables);876

� aggregation of patterns defined over languages of given attributes;877

� explanation why the decision is incorrect what may help to modify classi-878

fiers;879

� new languages of attributes (features) in which searching for the relevant880

attributes should be performed;881

� dealing with missing values.882
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9. Roadmap for dialogues in IcS883

There are several challenges for the further research on dialogues of IcS with884

human experts. Below we shortly describe examples of them.885

The first research direction is related to development of an advanced dialogue886

interface of the system with users/experts. This interface is making it possi-887

ble to exchange messages between system and experts in dialogues carried out888

toward the relevant labeling of objects with compound structural complexity.889

The model is based in a recently emerging paradigm Interactive Granular Com-890

puting (IGrC) (see, e.g., [18, 19, 20, 21, 22, 23] and [24, 25]. In IGrC messages891

are encoded into informational layers of (complex) granules and the process of892

sending/receiving messages, treated as information granules, is realized through893

relevant interactions of these granules. Representation of objects as well as their894

labels are realized by information granules. For example, objects can represent895

queries sent by the experts to the system and labels represent messages received896

from the system. Another example concerns objects in the form of queries sent897

to a domain knowledge base and labels represent description of parts of these898

knowledge bases containing the relevant information for the queries. Hence, in899

this way we consider a generalization of the concept of labeling function from900

simple one considered before to a higher order labeling function where objects901

and their labels are information granules with a compound structure. Certainly,902

such functions should preserve some constraints related to informativeness of903

labels. Such labeling functions may be of great importance for IcS in their dia-904

logues with experts. For example, labels can indicate the level of risk associated905

with the current situation compared to the desired goals. They might suggest906

the need for immediate sensory measurements to gain a clearer understanding.907

In general, labelers should be aware that successful cooperation with IcS relies908

on the entire granular computation process performed by IcS, not just a single909

decision made at a specific point in the computation.910

One very interesting area for expert dialogues concerns resolving conflicting911

opinions between experts and IcS. IcS can leverage relevant conflict resolution912

methods while engaging in dialogues with experts. For example, consider rule-913

based object classifiers (see, e.g., [48, 117, 111]). These classifiers may assign914

conflicting labels to an object based on different rules matching the same object.915

Through dialogue, experts and the system can gather arguments for and against916

each decision, ultimately aiming to reach a consensus. Expert insights can917

further enhance the system’s methods. For instance, a medical expert might918

highlight a high risk of a rare, undiagnosed disease in a patient, even if the919

current rule-based classifier data doesn’t reflect it. In this scenario, expert920

labeling can serve as a form of critique, suggesting modifications to the system’s921

classification process. This example demonstrates that labeling functions can922

very much vary in complexity and purpose.923

The critical challenge for the further development of IcS is related to the924

development of reasoning methods that support the effective perception of rel-925

evant data for inducing their models. These methods should aid the control of926

IcS in making decisions concerning what, when, how, and where to perceive data927
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about the analyzed situations. Moreover, they should support constructions of928

representations of perceived data by information systems, their networks and929

making aggregations of them. When IcS are dealing with complex phenomena,930

unavoidable dialogues between the IS and human experts should take place to931

provide the IcS with satisfactory information for making the right decisions.932

The importance of data governance is emphasized in the literature about IcS933

[118] especially for companies following data driven business.934

It’s important to highlight a key difference between the approach based on935

mathematical logic and the one discussed here. Mathematical logic focuses on936

pre-defined relational structures (models) and a language of formulas built upon937

them. Examples include the relations of semantic consequence and syntactic938

consequence. This approach then studies, e.g., the relationships between these939

entities. In contrast, the approach discussed here aims to learn (discover), at940

least partially, both the relations and the formulas (attributes) directly from941

data. This data is perceived from relevant fragments of the physical space942

pointed by the attention module of the IcS control and this process is supported943

by reasoning techniques of this module. Moreover, one should take into account944

that the relevant data and their localization in the physical space are changing945

with time. Hence, the control of IcS should be aware of continuous supporting946

of searching for the relevant data by the reasoning techniques.947

One should note that nowadays the dialogues with experts can be supported948

by chatbots [119]. For example, after labeling cases by expert the system could949

initiate dialogues with chatbots aiming to provide for IcS better understanding950

concepts and relations between them used in this labeling. This may be used in951

decomposition of complex vague concepts or, in a more general sense, description952

of the perceived situations up to the level directly realizable in the physical953

world.954

One of the crucial problem in development of technology supporting dia-955

logues between system and experts is related to developing of languages over956

which information granules are defined. It is well defined by Judea Pearl, the957

Turing award winner [110]:958

Traditional statistics is strong in devising ways of describing data959

and inferring distributional parameters from sample. Causal infer-960

ence requires two additional ingredients:961

� a science-friendly language for articulating causal knowledge,962

and963

� a mathematical machinery for processing that knowledge, com-964

bining it with data and drawing new causal conclusions about a965

phenomenon.966

An important argument justifying the use of IGrC as the basic computing967

model is that this computing model is especially relevant for applications where968

interactions between systems, experts as well as other different hardware tools969

such as computers, cellular phones, robots, sensors and/or actuators are im-970

portant. Hence, this model is relevant for applications concerning Internet of971
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Things (IoT) or Cyber Physical Systems (see, e.g., [92, 120, 121]).972

One more important aspect of the discussed above interfaces between system973

and experts is related to the paradigms like Human-Centered AI or Human-in-974

the-Loop ML [3, 4]. In the interfaces of IcS under development we concentrate975

on developing technology helping experts to perform their experience based rea-976

soning rather than to eliminate them from the loop.The main reason behind this977

is that we do not have yet satisfactory formal reasoning tools making it possible978

to substitute the experts in tasks related to such reasoning. For example, we979

work on tools for delivering to experts proper visualization of objects or sets of980

objects. Moreover, we are working on developing tools which can provide ex-981

perts with information about the risk degree concerning the relevance of labels982

(e.g., decisions) assigned to objects. The degrees are estimated by the system983

and provided for experts. One can cite here the opinion of Melanie Mitchell984

[6, 122] about analogy based reasoning belonging to the experience based rea-985

soning domain:986

The quest for machines that can make abstractions and analo-987

gies is as old as the AI field itself, but the problem remains almost988

completely open.989

Let us also note the importance of the trustworthiness [107] requirement for990

IcS. One should also consider this in the context of interfaces of IcS related to991

dialogues with human experts. Trustworthiness covers accuracy, explainabil-992

ity and interpretability, privacy, reliability, robustness, safety, and security or993

resilience to attacks and ensure that bias is mitigated.994

Moreover, developing and using AI in ways that are ethical, reduce bias,995

promote fairness, and protect privacy is essential for fostering a positive effect996

on society. Hence, in the design of interfaces of IcS with experts one should take997

into account the necessity of developing reasoning tools for interfaces helping998

intelligent systems to (i) preserve different sorts of invariants specified by com-999

plex vague concepts related to the above mentioned issues and (ii) multi-criteria1000

optimization.1001

Let us summarize our discussion as follows.1002

One key challenge is ensuring effective communication and mutual under-1003

standing between IcS and the human experts. IcS systems are built on advanced1004

computational models and frameworks like the IGrC model, which may not be1005

intuitively accessible to human domain experts. Bridging this gap in techni-1006

cal knowledge and establishing a common language for productive dialogue is1007

crucial.1008

Another challenge is handling the inherent uncertainty and ambiguity that1009

can arise in human-IcS interactions. Human experts may express themselves1010

using imprecise, context-dependent language, while IcS systems are designed1011

to operate on more formal, structured data. Developing robust mechanisms to1012

interpret and translate between these modes of communication is essential.1013

The dynamic and iterative nature of the dialogues also poses challenges.1014

As the human experts provide feedback and new information, the IcS needs1015

to be able to quickly update its reasoning, adapt its responses, and maintain1016

28



coherence throughout the conversation. Balancing responsiveness with stability1017

is important for building trust and productive collaboration.1018

Additionally, there are challenges in ensuring the transparency and inter-1019

pretability of the IcS’s decision-making processes. Human experts will likely1020

want to understand the reasoning behind the system’s recommendations and1021

approximate solutions. Providing appropriate explanations and justifications is1022

crucial for gaining user acceptance and buy-in.1023

Finally, the dialogues must be designed to leverage the complementary strengths1024

of humans and intelligent systems. Striking the right balance between human1025

expertise and IcS capabilities, and seamlessly integrating them, is a key chal-1026

lenge in realizing the full potential of these human-IcS collaborations.1027

Designing the IcS system to better interpret and respond to the nuanced lan-1028

guage used by human experts involves several key issues and challenges showing1029

that the architecture of interfaces of IcS for interaction with human experts1030

requires development of numerous advanced modules based on advanced rea-1031

soning techniques. Among them are, besides of already discussed modules of1032

the IcS control, modules for: (i) natural language processing (NLP) capabili-1033

ties, (ii) knowledge representation and reasoning, (iii) interactive clarification1034

mechanisms, (iv) explainable AI, (v) continuous learning and adaptation, (vi)1035

multimodal interaction.1036

By employing these modules and designing for them the relevant reasoning1037

strategies, the IcS system can become increasingly adapt at interpreting and1038

responding to the nuanced language used by human experts, leading to more ef-1039

fective and productive dialogues. Overall, the dialogues between IcS and human1040

experts require careful consideration of technical, cognitive, and social factors1041

to enable effective and fruitful exchanges that drive meaningful problem-solving1042

and decision-making. The IGrC model plays in this the crucial role.1043

One should also note that the IcS should handle the ambiguity and uncer-1044

tainty inherent in human expert language providing solutions for several key1045

challenges related to: (i) ambiguity in natural language, (ii) imprecision and1046

vagueness, (iii) incomplete or inconsistent information, (iv) contextual depen-1047

dency, (v) cognitive biases and heuristics, (vi) dynamic adaptation. To address1048

these challenges, the IcS design may need to incorporate advanced techniques1049

from areas such as rough-fuzzy based reasoning, probabilistic reasoning, abduc-1050

tive inference, contextual modeling, and interactive learning. A combination1051

of these approaches can help the system navigate the inherent ambiguity and1052

uncertainty present in human expert language, leading to more effective and1053

productive dialogues. By combining dynamic knowledge representation, con-1054

textual reasoning, and interactive feedback, the IcS system can navigate the1055

inherent ambiguity and uncertainty present in human expert language, leading1056

to more accurate interpretations and more productive dialogues.1057

Moreover, IcS should employ several key techniques to engage in interactive1058

clarification and feedback with the human expert, helping to resolve ambiguities1059

and uncertainties in their language by: (i) clarifying questions, (ii) paraphras-1060

ing and summarization, (iii) highlighting inconsistencies or contradictions, (iv)1061

iterative refinement, (v) explanation and transparency. By employing these1062
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interactive clarification techniques, the IcS system can engage in a more dy-1063

namic and collaborative dialogue with the human expert, ultimately leading to1064

a more accurate and meaningful understanding of the expert’s language and the1065

problem at hand.1066

From our discussion, it becomes clear that for the further development of1067

IcS, it is necessary to synchronize many domains that have been developed sepa-1068

rately so far. These domains include a proper computing model, perception and1069

action, knowledge representation, reasoning under uncertainty, natural language1070

processing (NLP), and dialogues of IcS with human experts and chatbots.1071

There are several challenges on this path, such as those related to the ‘white1072

spots’ in reasoning methods. In other words, there are areas within the reasoning1073

methods that have not been fully explored or addressed yet.1074

To summarize, the key points are:1075

� Synchronizing various domains for the development of IcS.1076

� These domains include computing model, perception, action, knowledge1077

representation, reasoning under uncertainty, NLP, and dialogues as well1078

as challenges related to ’white spots’ in reasoning methods.1079

10. Perspectives of rough sets in IcS1080

In this section, we discuss and summarize shortly perspectives of rough sets1081

in the framework of IcS.1082

In Fig. 4 is presented a context in which rough sets should be considered in1083

IcS.1084

In the context of Figure 4, the rough set approach departs from traditional1085

methods that rely on a single information or decision system (data table). In-1086

stead, it utilizes perceived data sets with expert input. These data sets are1087

used to create multiple multi-relational approximation spaces, denoted as AS1,1088

. . . , ASk, each corresponding to a distinct information or decision system. Var-1089

ious techniques are then applied to these spaces to generate a family of multi-1090

relational approximation spaces, denoted as FAS1,...,ASk
. This family serves as1091

the basis for optimization algorithms searching for high-quality complex games.1092

It’s important to note that the optimization process involves aggregation and1093

de-aggregation, which correspond to granulation and de-granulation of the un-1094

derlying information and decision systems, respectively. This process is crucial1095

for identifying relevant multi-relational approximation spaces. As Zadeh previ-1096

ously emphasized in his proposal on information granulation, ongoing dialogue1097

with experts remains essential.1098

Furthermore, unlike traditional approaches that approximate a single con-1099

cept, our method aims to construct a family of concepts in the learning phase1100

of complex games. These concepts are labeled by specifications of transforma-1101

tions, which represent the specifications of actions. During testing, the quality1102

of the discovered complex games is evaluated using application-specific quality1103

measures. Additionally, based on the testing results, the games are adapted.1104
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Figure 4: Rough sets in IcS (AM-attention module, IM-implementational module).

The attention module (AM), supported by relevant reasoning techniques and1105

expert collaboration, empowers the intelligent control system (IcS) to acquire1106

new data sets. This allows for more efficient adaptation.1107

Summarizing:1108

� The control mechanism of IcS based on the Rough Set Theory framework,1109

aims to learn complex games. This allows IcS to generate computations1110

over granular networks leading to high-quality approximate solutions.1111

� The control system, aided by an attention module (AM), continuously1112

searches for relevant datasets represented in multi-relational approxima-1113

tion spaces AS1, . . . , ASk. The AM is leveraging advanced reasoning tech-1114

niques in collaboration with domain experts.1115

� These approximation spaces can be extended, in cooperation with experts,1116

into a large family of multi-relational approximation spaces FAS1,...,ASk
.1117

The system then performs optimization to identify high-quality complex1118

games.1119

� These complex games are adaptively modified based on observed changes1120

in their performance. As previously discussed, complex games consist of1121

sets of rules. The predecessors of these rules are classifiers for often com-1122

plex and imprecise concepts, while the successors specify transformations1123
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to be applied to granular networks when a rule is chosen for execution by1124

the IcS control. One should note that IM may require to make multi-level1125

decomposition of the specification of transformation to be realized before1126

it can be directly realized in the physical world.1127

� The universes of objects of considered information (decision) systems are1128

formed by the solutions to the problem IcS is trying to solve, and the1129

concepts being approximated within this universe correspond to different1130

quality layers of these solutions. Importantly, in many cases, IcS needs to1131

generate the granular computation leading to high-quality solutions even1132

when no known examples of such solutions exist and only some negative1133

examples are available. This is the case when, e.g., IcS is searching for new1134

chemical compounds with some specified properties. The success of this1135

generation process heavily relies on the reasoning techniques supporting1136

the IcS control. The quality of the generated solution, determined by1137

the quality of the used complex game, often depends on the behavior of1138

this complex game over the entire generated granular computation, not1139

its final state only.1140

In summary, this approach highlights that approximation problems in IcS1141

are significantly more complex than those typically encountered in rough set1142

applications, so far. The success of the control system heavily depends on the1143

quality of both reasoning techniques and the dialogue with domain experts.1144

Our research explores new directions for applying the generalized rough set1145

approach to IcS. This work builds upon the IGrC model and leverages exist-1146

ing partial results from various fields (including multi-agent systems, perception1147

and action, machine learning, natural language processing, federated learning,1148

cognitive networks, smart cities, cyber-physical systems, complex adaptive sys-1149

tems etc.) by putting them into sync. We also emphasized the fact that IcS1150

are dealing with complex phenomena in the physical world what requires a new1151

kind of modeling for solving problems with the design and analysis of IcS. It1152

was pointed out that dialogues with domain experts are unavoidable for IcS due1153

to the fact that still we do not have satisfactory formal reasoning techniques1154

making it possible to deal to a satisfactory degree with commonsense reasoning1155

or experience based reasoning. The presented comprehensive approach has the1156

potential to establish a solid foundation for the design and analysis of IcS.1157

11. Conclusions1158

We proposed the IGrC model as the fundamental computing model for IcS.1159

Such systems aim to deliver information relevant for human experts helping1160

them to make the right decisions. The rough set framework relevant for IcS is1161

discussed. The crucial role of dynamic information systems in this approach is1162

explored. Their dynamic behavior is modeled by the control of IcS.1163

The control of IcS aims to generate computations over the basic objects of1164

IGrC, called c-granules (or networks of them), such that high-quality approxi-1165
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mate solutions to the problems considered by IcS are constructed along these1166

computations.1167

We emphasize the essential role of dialogues between human experts and IcS1168

as an integral component of IcS behavior. Some comments on reasoning tech-1169

niques supporting the construction of approximate solutions, as well as computa-1170

tional building blocks for cognition, are included. Several challenges, especially1171

for the dialogues between IcS and human experts, are also included.1172

In our next steps, we aim to establish the groundwork for c-granule soci-1173

eties, focusing on how these societies can achieve distributed control and self-1174

organization.1175
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Kok (Eds.), Handbook of Natural Computing, Springer Berlin Heidelberg,1416

Berlin, Heidelberg, 2012, pp. 1921–1948. doi:10.1007/978-3-540-92910-1417

9 57.1418

[71] M. Inuiguchi, W. Wu, C. Cornelis, N. Verbiest, Fuzzy-rough hybridiza-1419

tion, in: J. Kacprzyk, W. Pedrycz (Eds.), Springer Handbook of Compu-1420

tational Intelligence, Springer Handbooks, Springer, 2015, pp. 425–451.1421

doi:10.1007/978-3-662-43505-2 26.1422

[72] P. G. Clark, J. W. Grzyma la-Busse, W. Rza̧sa, Generalizations of approx-1423

imations, in: P. Lingras, M. Wolski, C. Cornelis, S. Mitra, P. Wasilewski1424

(Eds.), Rough Sets and Knowledge Technology, Springer, Berlin, Heidel-1425

berg, 2013, pp. 41–52. doi:10.1007/978-3-642-41299-8 5.1426

[73] V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York,1427

NY, 1998.1428

[74] A. Skowron, J. Stepaniuk, Information granules: Towards founda-1429

tions of granular computing, International Journal of Intelligent Sys-1430

tems 16 (1) (2001) 57–86. doi:10.1002/1098-111X(200101)16:1¡57::AID-1431

INT6¿3.0.CO;2-Y.1432

39



[75] A. Skowron, J. Stepaniuk, J. F. Peters, Rough Sets and Infomorphisms:1433

Towards Approximation of Relations in Distributed Environments, Fun-1434

damenta Informaticae 54 (2-3) (2003) 263–277.1435

[76] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fundam. In-1436

formaticae 27 (2/3) (1996) 245–253. doi:10.3233/FI-1996-272311.1437

[77] T. Y. Lin, The discovery, analysis and representation of data dependen-1438

cies in databases, in: L. Polkowski, A. Skowron (Eds.), Rough Sets in1439

Knowledge Discovery 1: Methodology and Applications, Vol. 18 of Stud-1440

ies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, 1998,1441

pp. 107–121.1442

[78] J. Kacprzyk, W. Pedrycz, Springer Handbook of Computational Intelli-1443

gence, Springer, Heidelberg, 2015.1444

[79] C. L. Ortiz Jr., Why we need a physically embodied Turing1445

test and what it might look like, AI Magazine 37 (2016) 55–62.1446

doi:10.1609/aimag.v37i1.2645.1447

[80] D. Deutsch, A. Ekert, R. Lupacchini, Machines, logic and quantum1448

physics, Neural Computation 6 (2000) 265–283. doi:10.2307/421056.1449

[81] A. Noë, Action in Perception, MIT Press, Cambridge, MA, 2004.1450

[82] S. Harnad, Categorical Perception: The Groundwork of Cognition, Cam-1451

bridge University Press, New York, NY, 1987.1452

[83] A. Campagner, D. Ciucci, V. Dorigatti, Uncertainty representation in dy-1453

namical systems using rough set theory, Theoretical of Computer Science1454

908 (2022) 28–42. doi:10.1016/J.TCS.2021.11.009.1455

[84] L. Dong, R. Wang, D. Chen, Incremental feature selection with fuzzy1456

rough sets for dynamic data sets, Fuzzy Sets Syst. 467 (2023) 108503.1457

doi:10.1016/J.FSS.2023.03.006.1458

[85] M. Wolski, Rough sets in terms of discrete dynamical systems, in: M. S.1459

Szczuka, M. Kryszkiewicz, S. Ramanna, R. Jensen, Q. Hu (Eds.), Rough1460

Sets and Current Trends in Computing - 7th International Conference,1461

RSCTC 2010, Warsaw, Poland, June 28-30,2010. Proceedings, Vol. 60861462

of Lecture Notes in Computer Science, Springer, 2010, pp. 237–246.1463

doi:doi.org/10.1007/978-3-642-13529-3 26.1464

[86] J. Barwise, J. Seligman, Information Flow: The Logic of Dis-1465

tributed Systems, Cambridge University Press, Cambridge, 1997.1466

doi:10.1017/CBO9780511895968.1467

[87] S. Dutta, A. Skowron, M. K. Chakraborty, Information flow in logic for1468

distributed systems: Extending graded consequence, Information Sciences1469

491 (2019) 232–250. doi:10.1016/J.INS.2019.03.057.1470

40



[88] B. Kosko, Fuzzy cognitive maps, International journal of Man-machine1471

Studies 24 (1986) 65–75. doi:10.1016/S0020-7373(86)80040-2.1472
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