HIGHLIGHTS

¢ Computation model based on Interactive Granular Computing (IGrC) for
Intelligence Systems (IcS) is presented and the IGrC model is further
developed. In particular, this concerns the role of control of IcS and
dialogues with experts for IcS treated as complex granules (c-granules,for
short) in IGrC.

e The rough set approach is generalized to approximation of concepts used
by control of IcS and compound granules representing approximate solu-
tions of problems to be solved by IcS.

e The fundamental role of information systems defined by Pawlak and their
generalization to dynamic information systems in searching for relevant
computational building blocks for cognition, including, e.g., approxima-
tion spaces, classifiers or information systems themselves is discussed.

e The role of dialogues of ICs with human experts and several challenges
related to them are discussed. In particular, their impact on granular
computations generated by control of IcS is emphasized.
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Abstract

We discuss the role of rough sets and the basic concept of the rough set ap-
proach namely concept approximation in Intelligence Systems (IcS). These IcS
deal with complex phenomena. Among them are Business Intelligence Systems,
Medical Intelligence Systems, or Risk Management Intelligence Systems. In
such systems, data models are induced from data perceived in the continuous
interaction of the physical layer of IcS, including human experts, and the com-
putational layer of the IcS.

As the computing model for IcS, we propose the Interactive Granular Com-
puting Model (IGrC). The basic objects of IGrC create complex granules (c-
granules, for short) that make it possible to link the abstract and physical worlds.
IcS aim to generate computations over c-granules (or networks of them), along
which high-quality approximations of the solutions to problems solved by IcS
are constructed. We generalize the rough set approach to such cases.

The approximation of objects or concepts is supported by advanced reason-
ing techniques, much more general than in the Zdzistaw Pawlak model of the
rough set approach. We discuss the fundamental role of information systems
defined by Pawlak and their substantial generalization in searching for the rele-
vant approximation spaces used for approximating concepts or, in a more general
setting, c-granules (representing in particular, approximate solutions to prob-
lems) related to computations of IcS. Additionally, this work explores the role
of information systems, creating a special kind of c-granules, in characterizing
computational building blocks for cognition, as defined by Leslie Valiant.

For IcS, dialogues with human experts making decisions are unavoidable.
We discuss different aspects of such dialogues and challenges for modeling such
dialogues, especially concerning reasoning techniques.
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1. Introduction

Intelligence Systems (IcS) are defined in the literature in different ways. For
example, in [1] one can find the following definition:

An intelligence system is an advanced tool that reads, interprets,
and interacts with its surroundings. Discover how these systems
shape the modern world.

Intelligent Systems (IS) are a type of computer system that can learn and
adapt, while Al is a broader concept that encompasses the ability of machines
to perform tasks in a human-like way. For IS we do not necessarily assume
that these systems are interacting with experts or users. In this paper, we
consider Intelligence Systems (IcS) assuming that they are based on a special
’symbiosis’ of the decision support systems with experts and/or users aiming
to support human experts or users rather than making the right decisions in
isolation from them (see Fig. 1). This point of view is characteristic for Human-
Centered AI and Human-in-the Loop Machine Learning [2, 3, 4]. In the case of
decision support systems (or IS) dealing with complex phenomena, we do not
have yet enough powerful reasoning tools to eliminate humans in the decision
making process. One of the reason is that still there are some ’white spots’
in available reasoning techniques which could support systems to a satisfactory
degree to deal with common sense reasoning, in particular with reasoning based
on experience, e.g., with reasoning by analogy (see, e.g., [5, 6, 6]).

From the point of view of our considerations IcS can be treated as spe-
cial cases of IS because they are aiming to deliver, on the basis of collected
data and reasoning about perceived data, computational building blocks (spe-
cial c-granules) for humans that are necessary for comprehension by them the
perceived situations satisfactory for making the right decisions. In particular,
this shows a strong link of IcS with Explainable AI (XAI) (see, e.g., [7, 8, 9]).

Nowadays, are developed different types of IcS [1] like Business IcS [10], Med-
ical IeS [11, 12, 13] or Risk Management IcS [14, 15]. Each of them have some
specificity. For example, Business IcS are offering modern business management
expertise and cutting-edge technologies, both under one roof. They provide
professional services empowering enterprises to stay focused on their core busi-
ness goals and objectives during executing and delivering management-oriented
technology solutions. Business IcS should provide high quality, sustainable, and
tangible Information Technology & Business Solutions as well as Services [16].

There is a need for developing solid foundations for IcS on which the design
of the high quality IcS systems can be realized. This paper presents a step
toward developing such foundations for IcS.
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Figure 1: Interactions of IcS with abstract and physical objects, in particular with humans.

In particular, in developing the mentioned above foundations one should
take into account several issues related to the following queries:

How IcS are able to perceive the complex dynamically changing situations
in the physical and abstract worlds to a degree making it possible to make
the right decisions?

What is the relevant computing model on which IcS can be grounded, in
particular what are the objects used by IcS in their computations?

What are the necessary reasoning techniques on the basis of which control
module of IcS is aiming to generate computations realizing their goals?

How to characterize the computational building blocks for cognition, i.e.,
block on which can be grounded understanding the perceived situations
to a satisfactory degree for making the right decisions?

What are the relevant languages and reasoning techniques for perform-
ing dialogues between decision support systems and experts and/or users
creating parts of IcS?

What is the role of information systems (defined by Pawlak) in the char-
acterization of the computational building blocks for cognition?
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e How the rough set approach should be extended to deal with the issues
related to the formulated questions and problems to be solved by IcS, e.g.,
to deal with the problem of constructing the high quality approximate
solutions of problems which IcS are aiming to solve?

Certainly, it is not possible to discuss in detail all of the above issues one
paper. In the sequel, we concentrate on necessary generalization of the rough
set approach, in particular information (decision) systems defined by Pawlak for
dealing with these issues. In particular, we discuss the crucial role of information
systems (decision) systems with this respect.

To realize this, first it is necessary to present a relevant computing model
on which IcS can be grounded. The reader may recognize that the mentioned
above term ‘computational building blocks’ was introduced by Leslie Valiant
who considers the problem of characterizing the computational building blocks
for cognition as the main problem of AI [17]. In the presented in the paper
approach, these ‘computational building blocks’ are modeled by complex gran-
ules (c-granules, in short) which are the basic objects in Interactive Granular
Computing (IGrC) (see, e.g., [18, 19, 20, 21, 22, 23] and [24, 25]). C-granules
are making it possible to deal with abstract as well as with physical objects.
Such objects are necessary in developing tools for modeling of perception. This
is one of the main difference between IgrC and Granular Computing (GrC). In
GrC are investigated information granules embedded in the abstract space (see,
e.g., [26, 27, 28, 29, 30]). Moreover, in [31] it is mentioned the lack of theoretical
foundations of GrC. In the mentioned above papers on IGrC we are aiming to
develop foundations for the IGrC model and this paper is a step for further
developing such foundations.

It is important to recognize the necessity of proper modeling of IcS control
module. IcS control provides a proper interaction mechanisms for IcS dealing
with the environment consisting of abstract and physical objects. It is aiming
to generate granular computations along which approximate solutions of prob-
lems to be solved by IcS are constructed like classifiers, clustering, compound
chemicals or medicine [32]. These approximate solutions are constructed along
granular computations using c-granules as computational building blocks for
cognition and construction of approximate solutions with the high quality.

IcS are aiming to provide the high quality approximate solutions of the con-
sidered problems. Using the relevant specification of a problem P, in the family
of approximate solutions of P is distinguished a vague concept ‘approximate
solutions with high quality’. IcS is aiming to use the relevant approximation
spaces to define the regions of approximation of such concept, i.e., its lower and
upper approximation as well as boundary region. Next, in the framework of
rough sets one can consider the problem of generation by IcS of approximate
solution(s) belonging to such regions, e.g., to the lower approximation.

This paper explores the role of information systems in the process outlined
above. We demonstrate how Pawlak’s information systems can be generalized
to function effectively as computational building blocks in the processes for un-
derstanding situations related to problem specification and finding high-quality
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approximate solutions. In particular, we discuss how to discover relevant ap-
proximation spaces for approximating the concept of ‘high-quality approximate
solutions’ (the lower approximation of the concept ’approximate solutions of
a given problem’). Additionally, we outline how the IcS control generates ob-
jects from different approximation regions, e.g. objects belonging to the lower
approximation of the considered concept.

In generation of granular computations, IcS control should take into account
the necessity of satisfying different criteria, (e.g. related to business or risk re-
quirements) as well as the fact that the reasoning tools provided by IcS control
can not be fully automatic but they should be also based on dialogues with ex-
perts and/or users. Moreover, due to the fact that IcS are dealing with complex
phenomena it is not possible to base the approach on classical mathematical
modeling as it was observed by many top researchers (see, e.g., [33]) but is is
necessary to provide reasoning tools making it possible continuously search for
proper data in the environment to answer, in particular for queries related to
what, why, how, when etc. the new data should be perceived to guarantee the
proper modeling of computational building blocks for cognition and solutions
(granules). One can observe that this is related to attention mechanism, already
discussed by Aristotle [34].

In our discussion, we also refer to the recent project Label-in-the-Loop
Project (LITL) [35] or [36] concerning discovery of the high quality learning
classifiers supported by dialogue with experts.

This paper is structured as follows. In Section 2 we recall the notion of
information system and the model of rough sets introduced by Pawlak. Next,
in Section 3 we discuss the multi-relational approach to rough sets, in particular,
multi-relational approximation spaces and their relationships with information
systems. We also emphasize that this model can be taken as the basis for many
complex optimization processes related, e.g., to feature selection and extraction
or classifiers generation. In Section 4, we discuss motivation and intuition which
was leading us to IGrC. Sections 5 and 6 include a discussion on generalization of
information systems to dynamic objects under control of IcS as well as their role
in characterization of computational building blocks for cognition by control of
IcS together with motivations for the adaptive rough set approach. Section 7 is
dedicated to dialogues of IcS with human expert supporting characterization of
computational building blocks for cognition. In particular, it is shown that the
architecture of interfaces of IcS with human experts should be equipped with
numerous modules supported by advanced reasoning techniques. Developing
such modules and reasoning techniques requires solving several discussed in this
section challenges. Section 8 presents an outline of the Labeling in the Loop
(LITL) project. The roadmap for dialogues in IcS is discussed in Section 9.
Perspectives of rough sets in IcS are presented in Section 10. Finally, Section 11
concludes the paper.
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2. Rudiments of information systems

Advantages of information systems in specification and modeling of complex
tasks and representation of complex domain knowledge are known for years (for
details see, e.g., [37, 38, 39, 40, 41, 42]). In this section we recall the basic
definition with some additional comments concerning its relationship with the
definition of the Pawlak model of rough sets based on indiscernibility relation
and multi-relational rough sets.

Let us recall the basic definitions related to information systems [38].

Definition 1. A tuple IS = (U, A, {Valy}aca, [) is called an information sys-
tem, where

e U is a non-empty set of objects;
e A is a non-empty set of attributes;
e Val, is a non-empty set of values for each attribute a;

o f:UxA—=U{Val,: a€ A} assigns a unique value from Val, to each
f(z,a) forx €U and a € A.

Equivalent to Definition 1, the notion of information system can also be defined
as follows.

Definition 2. A pair IS* = (U, A) is called an information system [38], where
U is a non-empty universe of objects and A is a non-empty set of em attributes.
Each attribute a € A is represented as a function a : U — V, where V, is the
set of values of the attribute a, called the domain of a.

Information systems are also defined as pairs (U, A), where U is a finite set
of objects and A is a set of attributes, i.e, functions from U into the set V, of
values of a.

For any = € U the signature of x relative to B C A is defined by infp(z) =
{(a,a(z) : a € B}'.

Definition 3. Given an information system 1S = (U, A,{Val,}aca, ) and a
set B C A, an indiscernibility relation IND(B) on U is defined as follows.

(x,y) € IND(B), if and only if infg(x) = infp(y).
For any B C A we define multi-relational approximation space by
ASp = (U{IND({a})}acB)-

Contrary to the Pawlak model of rough sets the concept approximation
over the multi-relational approximation space is not defined uniquely what was

1We also used notation for signature of a given object z relative to the considered infor-
mation system, i.e., infrs(z).
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observed many years ago (see, e.g., [43, 44]). Hence, in searching for the relevant
concept approximation one should also search for the proper approximation
definition.

Information systems with distinguished decisions, called decision systems,
are tuples DS = (U,C, D), where (U,C U D) is an information system and
C N D = (. The attributes from C and D are called conditional and decision
attributes, respectively.

For any decision system DS = (U,C,D) one can consider a generalized
decision function dpg : U — P(Inf(D)) defined by

Ops(x)={i€Inf(D) : 32’ € U [ (2',z) € IND(C) and infp(z') =]}, (1)

where P(Inf(D)) is the powerset of the set Inf(D) of all possible decision
signatures over D, i.e., Inf(D) = {infp(z) :x € U} .

The decision system DS is called consistent (deterministic) if |04(x)| = 1 for
any © € U. Otherwise, DS is said to be inconsistent (non-deterministic). Hence,
a decision system is inconsistent if it consists of some objects with different
decisions but indiscernible with respect to the conditional attributes. Any set
consisting of all objects with the same generalized decision value is called a
generalized decision class.

3. Multi-relational approximation spaces

In this section, we present examples showing that many problems to be
solved by IcS are optimization problems based on searching for the (semi-) opti-
mal spaces in large families of approximation spaces. Among them are problems
of data reduction, attribute (feature) selection, and feature extraction (feature
engineering) in Machine Learning (ML) [45, 46, 47, 48]. We emphasize the
role of information systems in searching for the relevant approximation spaces
by showing that the searching can be based on the space of the information
(decision) systems representing the approximation spaces.

The beginning of multi-granulation rough set approach is usually referred to
papers from 90-ties of the XX century by Cecylia Rauszer and Helena Rasiowa
with Victor Marek (see, e.g., [43, 49, 50, 51]). They considered a team of agents
having at their disposal indiscernibility relations and considered, in particular
for any object aggregation of their voting for and against of a particular decision.

Definition 4. A multi-relational approximation space is any tuple
AS = (UAr}rer),
where R is a set of binary relations over a set U.
The Pawlak model of rough sets is defined using an approximation space
AS = (U,r),

where U is a finite set and r is an equivalence relation over U.
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Then, for any X C U is defined its lower LOW (r, X') and upper approxima-
tion UPP(r,X) by {z € U : [z], C X} and {z € U : [z],N X # 0}, respectively.
Moreover, the boundary region BN (r, X) is defined by UPP(r, X)\LOW (r, X).

From these definitions, one can observe that in the Pawlak model, the ap-
proximation space is treated as given a priori, and approximations are defined
relative to this approximation space. However, in general, we search for approx-
imations of concepts over an extension of U. This requires developing reasoning
techniques to support optimization in searching for the relevant approximation
spaces from different, often huge, families of approximation spaces (see, e.g.,
[45, 46, 48, 32, 32]). We discuss the role of information systems in this search-
ing process.

One can observe that the Pawlak model of rough sets based on information
systems is directly related to multi-relational approach too.

Any information system IS defines a multi-relational system

ASIS - (U7 {TQ}GEA)a

where r, = IND({a}) for a € A.

Also any multi-relational system (U, {r}.cr) defines an information system
I15* = (U, A*), where A* = {a, : r € R}, and a,(x) = f,([z],) for € U, where
fr is a Dbijection of the partition U/r of U defined by r onto {1,...,| U/r |}.
One can observe that the indiscernibility relation IND(A*) of I5* is equal to

to
M
reR
Let us note that the indiscernibility relation IND(A) = {(z,y) € U :
a(z) = a(y) for alla € A} of IS is invariant to renaming of attribute val-

ues. More formally, IND(A) = IND(F(A)), where F(A) = {foca : a €
A & f, is a bijection of V onto V,} and (f, 0 a)(x) = fa(a(z)) for z € U.

The idea of the multi-relational approach to rough sets was further developed
by other researchers (see, e.g., [52, 53, 54, 55, 56, 57, 58]). In particular, the
approach has been extended to covering based approach [59, 60], where in multi-
relational approximation spaces are considered e.g., tolerance, similarity or even
arbitrary binary relations.

In multi-relational approximation spaces, we represent objects based on sig-
natures.

These signatures are used to capture the relationships between objects and
a set of attributes. For single attributes, equivalence classes are represented
by descriptors. These descriptors take the form (a,v), where a is the attribute
and v is the value of that attribute for a specific object x. The intersection of
equivalence classes for single attributes is then described by combining their
corresponding descriptors using conjunctions. The situation becomes different
when we consider fuzzy sets (or rough fuzzy sets) as semantics for signatures of
objects. First, these fuzzy sets are defined over equivalence classes of the original
attributes. Then, descriptors representing the fuzzy sets are connected by fuzzy
connectives in constructing formulas from signatures. These connectives, being
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generalization of conjunction, determine how the fuzzy sets corresponding to
aggregations of descriptors are defined. One should also note that the IcS control
may use some strategies for discovery of these connectives from data [61]. In
this way, one can create expressive languages to describe concepts (c-granules)
that serve as building blocks for understanding perceived situations. In the
existing solutions, these languages are proposed by experts in dialogues of IcS
with them.

Here, we would like to mention only a relationship of multi-relational ap-
proximation spaces with finite universes U with information systems. For any
such such multi-relational system one can construct strongly related to it an
information system. Any of relation r from such spaces can be represented by
a family of neighborhoods r(z) = {y € U : xry}, where z € U. One can con-
sider the family of sets generated from such neighborhoods by set theoretical
operations as the family od definable sets. In this way is obtained a Boolean
algebra of sets generated from the neighborhoods. One can also define an in-
formation system with the universe of objects U and binary attributes that
are characteristic functions of these neighborhoods. One can observe that the
family of definable sets of such information system is equal to the family of de-
finable sets of the original multi-relational approximation space. However, one
should be aware that for practical applications the obtained in this way infor-
mation systems can create problems because of the huge number of attributes.
Moreover, for practical applications one should look for constructive methods of
discovery of the relevant definable sets for approximation of considered concepts
what corresponds, e.g., to problems of feature engineering in ML. These defin-
able sets can be treated as examples of computational building blocks necessary
for cognition (using terminology of Valiant [17]) or c-granules in IGrC. One
should note that searching for relevant computational building blocks should
be supported by reasoning taking into account the risk of overfitting and the
description length of the blocks. This is also related to Minimum Description
Length (MDL) principle [62]. This may be illustrated when one extends a given
multi-relational approximation space AS = (U, {r},cr) with a given family R
of equivalence relations by adding to R new equivalence relations r’ which are
coarser than some r € R and next aiming to approximate a given partition of
the universe of objects by a given decision attribute with the high quality using
this new extended multi-relational approximation space and the quality measure
based on MDL. Searching for semi-optimal solutions in this new, usually large
multi-relational approximation space can be successfully supported by Boolean
reasoning (see, e.g., [47, 48]).

It is important to note that families of partitions corresponding to rele-
vant equivalence relations for solving a given problem may be defined in many
different ways. For example, in the case of construction of (binary) decision
trees [45] these partitions can be defined by single equivalence classes and their
complements and searching is based on selecting in each step of decision tree
construction of the ‘best’ equivalence class relative to some measures base, e.g.
on entropy. It’s important to remember that there are many ways to define
families of partitions based on equivalence relations relevant in searching for so-

10
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lution of a specific problem. For example, in decision tree construction (like the
binary trees) [45], these partitions can be defined using single equivalence classes
and their complements. At each step of decision tree construction, searching
is based on choosing the ’best’ (using specific criteria like entropy) equivalence
class among such parturitions. Another example, can be related to classification
by ensembles (see, e.g., [63]). In this case, searching for information systems or
family of equivalence relations on the basis of which members of ensembles are
constructed plays the important role.

One should note that instead of binary relations over U one can consider
fuzzy relations or relations obtained by combination of rough and fuzzy ap-
proaches. This approach based on combination of rough and fuzzy approaches
defines important spaces of computational building blocks for cognition. In
particular, these blocks may be defined by rough-fuzzy aggregation of neigh-
borhoods. This approach was used successfully in many projects (see e.g.,
[64, 65, 66, 67, 68, 69, 70, 71]).

The discussed above simple multi-relational models (U, {r},cr) generated by
information systems were used with a special kind of reasoning, called Boolean
reasoning, in searching for solutions of many problems related to reduction of
attributes, discretization or symbolic value grouping (see, e.g., [47, 48]). Dis-
cretization or symbolic value grouping is related to searching for the optimal
transformation of a given multi-granular system ASjys to a multi-granular sys-
tem ASrs = (U, {7} }aca’), where A’ C A and for any a € A’ v}, is coarser than
Ta, (i-€., [2]r, C [2] for x € U) and

IND(A) = IND(A)

Z |U/r;|

acA’
is minimal. Usually, this problem is considered for decision systems and then the
formulation should be accordingly changed [47, 48]. We would like to emphasize
here that quite often we deal with optimization problems related to searching
for the optimal approximation space. Hence, reasoning techniques supporting
searching for the (semi-)optimal solutions are of great importance.

One should also bear in mind that in the case of multi-relational approxima-
tion spaces with relations different from equivalence relations the definition of
concept approximation is not unique (see, e.g., [44, 72]) and in applications one
should provide reasoning tools supporting searching for the relevant schemes of
concept approximation.

Moreover, in the case of multi-relational approximation spaces the sets U
as well as the set of relations are not necessarily finite. Such a situation is
typical for problems of feature extraction (feature engineering). For example,
one can consider as the set of attributes the characteristic functions of half-
spaces defined by hyperplanes defined by some real-value attributes (see, e.g.,
[47, 73].)

It is worthwhile mentioning here the relationships of the covering rough set
approach with information systems. First of all, let us observe that in the

as well as the sum

11



338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

definition of information systems by Pawlak together with the value sets V, is
considered the equality =, i.e., the relational structure (V,=). In discussion
on discretization problem, we consider the relational structures (V,, <), where
V., is a subset of the set of reals and < is a linear order. Considering similarity
relations over V, leads to relational structures of the form (Vj,p,). Together
with these relational structures over the value sets of attributes are considered
languages of formulas with semantics expressed by subsets of the value sets
or their Cartesian products. The characteristic functions of these sets can be
considered as possible new attributes. Moreover, they can be used as constraints
in aggregation of information systems for filtering tuples of objects satisfying
these constraints (see, e.g., [74, 75]). This can also be used in definition of types
of information systems discussed in Section 5.

The discussed approach allows us to generalize the indiscernibility relation
defined in information systems as an equivalence relation to the indiscernibility
being tolerance, similarity relation (see e.g., [76]) or even general binary relation
over signatures of objects (see, e.g., [77, 78]). More formally, in generalized
information systems ISrg, ,, where 7 is a similarity relation over signatures of
objects from U, objects z,y € U are 7T-indiscernible in symbols

xIND(IS;)y if and only if infrs_(z) 7 infrs, (v).

In one of the above discussed cases we deal with the optimization problem in
infinite space. Moreover, one can also consider another important problem for
ML related to discovery of languages from which the relevant attributes should
be extracted [45, 46].

Let us note that searching for approximation of concepts in the space of all
definable sets i.e., arbitrary unions of indiscernibility classes) may be infeasible
from the point of view of computational complexity. Hence, these methods are
restricted to searching in subspaces of this space, e.g., defined by definable sets
determined by intersection of some equivalence classes from R.

4. IGrC - motivation and basic intuition

In this section, we present some an intuitive explanation of some basic con-
cepts related top IGrC.

We have selected the IGrC model as the basis for developing theoretical
foundations for the design and analysis of IcS dealing with complex phenomena
in the physical world.

In the considered case, according to opinions of many researchers, classical
mathematical modeling is not satisfactory (see e.g., [33]). Moreover, in [79] it is
noted that there is a necessity to modify the Turing test in order to synchronize
four important areas of Al research (language, reasoning, perception, and ac-
tion), as each has regrettably diverged into a fairly independent area of research.
However, one should take into account that when dealing with perception, the
computing model should consider not only abstract objects, but also physical
objects. The computing model should enable continuous interaction between
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the system and the physical environment, allowing for the collection of relevant
data which can be used to infer data models temporarily characterized by the
high quality.

The basic objects in IGrC are complex granules (c-granules, for short). They
consists two layers: informational and physical. In the informational layer is
stored information about perceived situations as well as specifications of tasks
realized over them as well as information about the expected results of realiza-
tion of these tasks in the physical world. This information is labeling specifica-
tions of spatio-temporal windows (addresses) describing regions of the physical
space where the information is perceived.

The physical layer of c-granule consists parts like soft_suite, link_suit and
hard_suit. Soft_suit consists of physical objects directly accessible, i.e, objects
which properties can be decoded by measurements into the information layer or
objects into which some relevant information from the information layer can be
encoded. This is realized by special elementary c-granules generated by control
of c-granules. Information about physical objects which are not directly accessi-
ble is inferred by reasoning tools using knowledge bases or physical laws. Hence,
computations in IGrC depend on physical laws contrary to the Turing model
[80]. In link suit are physical objects used for transition of interactions from
soft_suit to hard_suit and hard_suit contains physical objects to be perceived
according to the specifications of spatio-temporal windows represented in the
information layer. C-granules are under control of other c-granules or their own
control.

For simplicity of reasoning, we consider here the case when c-granules are
under the control of of IcS which can be treated as a higher order c-granules.
This control is responsible for generating computations of IcS. The computa-
tions are sequences of c-granules (or their networks including information about
relationships of other c-granules which are parts of the networks). IcS is aim-
ing to generate such computations realizing in the best way the task of IcS,
i.e., they are aiming to generate computations along which the high quality of
approximate solutions of problems to be solved by IcS are constructed. These
approximate solutions of problems may concern classifiers or compound physical
objects like sensors, robots or chemical components.

In each step of computation, the control module (CM) of IcS verifies whether
the information about the current situation is satisfactory to initiate the ap-
propriate transformation of the current c-granule configuration (network of c-
granules). This may involve suspending, modifying existing c-granules, or gen-
erating new ones. CM includes a special implementation module (IM) respon-
sible for realization the transformation specifications in the physical world. In
essence, the IM realizes the so-called physical semantics of the transformations’
specifications. Here’s an idea how it works: The specifications of these transfor-
mations are included on the right-hand side of rules located in the rule module
(RM) of CM. In each step, the RM checks if the information about the cur-
rently perceived situation matches the left-hand side of any rules. If there’s a
match, the RM uses reasoning mechanisms to resolve any conflicts among these
rules. If the conflicts can be resolved, the rule module selects the rule for exe-
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cution. Otherwise, it suggests gathering more information about the perceived
situation. The execution of the rule involves realizing the transformation spec-
ification from its left-hand side. The IM is responsible for carrying out this
transformation in the physical world. The set of rules in the RM can be viewed
as a complex game involving intricate rules composed out of vague concepts
(learned by the IcS control) labeled by transformations. The RM is adopted
according to perceived changes by CM. For more details about CM, the reader
is referred to [23].

The control consists several other important modules. More detailed de-
scription of control is included in the cited paper on IGrC (see, e.g., [18, 19,
20, 21, 22, 23, 24, 25, 32]). The RM plays one of the most important role of
the control of IcS. In the simplest case, the rules are embedded in this mod-
ule by designers. However, in many cases these rules should be learned and
changed according to perceived changes. The central role in the control of IcS
play reasoning techniques supporting the IcS control in its behavior.

IGrC goes beyond abstract concepts like information granules in GrC. It
also handles granules that interact with the physical world. The control of IcS
is equipped with IM responsible for realization so called physical semantics. The
IM takes specifications of associations (a broader term than mathematical func-
tions) and generates or uses existing configurations of physical objects. It then
initializes interactions within these configurations and allows the IcS control to
perceive properties related to the object interactions. Based on this perceived
information, along with knowledge bases and physical laws, the IcS control can
infer properties of the perceived objects as results of the realized association.
It’s important to note that these inferred properties might differ from expecta-
tions due to environmental interactions (see Fig. 2). If the differences between
the expected and perceived results of realization of transformations are too large
than CM is looking for adaptation of rules.

5. Information systems and their role in characterization of compu-
tational building blocks for cognition by the control of IcS

Leslie Valiant formulated the main problem of Artificial Intelligence (AI) as
follows [17]:

A fundamental question for artificial intelligence is to character-
1ze the computational building blocks that are necessary for cognition.

We propose to model these computational building blocks using complex
granules (c-granules), which are the fundamental objects of IGrC. These gran-
ules allow us to link two worlds, namely the abstract and the physical, which
is necessary for dealing with perception [81, 82]. Granular networks, which are
a higher order c-granules obtained from c-granules by linking them by some
relations, and computations over them in IGrC are used by IcS to comprehend
the perceived situation to a satisfactory degree for making the right decisions.

In the context of Granular Computing (GrC), information granules can be
seen as a specific type of c-granule. This allows us to focus on the specifications
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ASSOCIATIONS
AND THEIR PHYSICAL SEMANTICS

f: X~y Y where g is a given c-granule
e X — defined in set theory, elements of X are stored (represented)
in informational layer of c-granule g (e.g. control of IcS),
e Y — physical space, not definable in set theory,
e [ — association between X and Y realized by c-granule g using
Dphysical semantics:
- Implementation: for a given xe X and a specification of f control of g is
constructing a physical structural object o, (with dynamics controlled by
g relative to its local time ) providing a ’physical pointer’ from a part of
o0, in which x has been encoded to the associated (by f) to x a physical
object in o, (pointed out by a spatio-temporal window specification
represented in the physical layer of g),
- perception: some properties of parts of o, and properties of interactions
between them (and with the environment) are perceived by control of g
(in particular by decoding from some parts of o into informational layer
ofg) and used in reasoning by g toward providing representation of
information about the object associated to x by £.

Figure 2: Associations and their physical semantics.

of c-granules, which are represented by information granules. This is because
we assume that these specifications are correctly implemented in the physical
world and remain unchanged by environmental external to them interactions.
Therefore, the computational building blocks needed for cognition include both
information granules and c-granules. C-granules are generated by control of
IcS using reasoning techniques. This control aims to construct high-quality ap-
proximate solutions for problems that IcS needs to solve. These computational
building blocks can take various forms, including patterns, clusters, informa-
tion systems, classifiers, and physical objects such as new sensors, robots, or
chemical compounds.
In IGrC we follow the main idea of perception presented in [81]:

The main idea of this book is that perceiving is a way of acting.
It is something we do. Think of a blind person tap-tapping his or her
way around a cluttered space, perceiving that space by touch, not all
at once, but through time, by skillful probing and movement. This is
or ought to be, our paradigm of what perceiving is.

Information systems are the basic objects in modeling perception based on
this idea. However, several modification of the definition presented above are
necessary, in particular:

¢ information systems should be open to interaction with the control of IcS
and the physical world;
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e control of IcS should provide skills for

1. discovery of the right types of objects represented in particular in-
formation systems;

2. implementation in the physical world specifications of perception
tasks represented in objects of information systems;

3. discovery of the relevant properties of the results of sensory measure-
ments and actions over perceived configurations of physical objects.

Let us now add some comments on management in IcS.

The c-granules (with control) hold specific pieces of information stored in
their informational layers. Among these pieces are information systems. An
IcS typically manages multiple information systems. Therefore, IcS control
requires a proper addressing mechanism (realized by spatio-temporal windows
or addresses) to locate the relevant information system, considering both space
and time.

Each information system, identified by its address, stores objects of a prede-
fined type. The type of these objects is defined by a formula that allows the IcS
control to determine if a piece of information sent by the IcS control can modify
the system and how. For instance, the type might specify that the system holds
objects defined by a spatio-temporal window describing where specific attributes
should be measured. It could also include time information, such as the start
time for the measurement and the expected duration.

Information systems can store more complex object types. These could in-
clude, e.g., properties of segments from different multi-time series that the IcS
control perceives during measurements. These segments could be aggregated
into clusters or even more intricate structures. Additionally, types can hold
properties related to interactions with physical and abstract objects. These
properties might also include conditions expressing relationships between at-
tributes, such as specifying that certain parts of the observed objects are phys-
ically close.

Formally, these types can be represented as formulas a(z) in a specific lan-
guage. When checking if information in f is relevant for a particular information
system IS, the variable x in the formula is replaced with the information inf.
This information describes how the IcS control intends to modify I.S by adding
a new object to its collection.

Let us consider an illustrative example in which this new object o is defined
by information inf in the format:

WAL, ..., 0y} SPEC.

Here, w is a spatio-temporal window specification, identifying a part of physical
space where the values of attributes a; to a,, should be measured. The ex-
pression spec refers to a specification for how the module IM of control should
obtain these values.

If this object satisfies the type formula a(z), the IcS control follows these
steps:
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e It expands the universe of objects within IS by adding the new object o.

e The IcS control sends a request to the IM to execute the specification spec
in the physical world.

e IM initiates a process in which it perceives the values of attributes a; to
ap, in the specified part of the physical space (defined by w).

e These values are then stored in the expanded information system 1.5’ as
attribute values for the newly created object o.

One can observe that the specification of type of information system IS is
closely related too specification of a family of admissible changes of I.5..

Let us consider one more example for illustrating the difference between
information granules considered in GrC and c-granules from IGrC. In this ex-
ample, information inf specifying an intended change of a given information
system I.S to IS5’ is related to adding a new attribute to the set of attributes of
1S, with values computed according to a given procedure proc. If this specifi-
cation is admissible for I.S by its type then the change of IS to 1§’ is realized
by implementation of the procedure proc for each object from I.S and taking
the computed by the procedure value as the value of attribute for each consid-
ered object. In this case, assuming that the realization is not disturbed by the
environment one can consider only transformation in the corresponding infor-
mational layer without referring to the physical world.

Summarizing, we propose the following changes in modeling of information
systems in comparison to the Pawlak model:

e The Key to Dynamics: Open Information Systems. We propose a general-
ization of Pawlak’s information systems into ’open’ information systems.
These systems are dynamic entities, and the IcS control is responsible for
their evolution during computations seeking high-quality approximate so-
lutions for problems the IcS needs to solve. Hence, the dynamics of these
systems is not defined a priori as it was proposed in papers on dynamic
information systems so far (see, e.g., [83, 84, 85]). Pawlak’s information
systems can be seen as starting points, or ”seeds.” We need to consider
huge spaces of information systems around them. Within these spaces, it
is necessary to search for (semi-)optimal information systems (or approx-
imation spaces). The relevant reasoning techniques should be developed
supporting this search making it i to induce the relevant computational
building blocks for cognition, like classifiers or clusters. Furthermore, the
IcS control system must be aware that these vast information spaces are
dynamic and change over time.

e Challenges and Networks. The intended dynamics may not always be
achieved due to unforeseen interactions with the physical environment.
Furthermore, the IcS control often deals with multiple interconnected in-
formation systems rather than a single one, forming networks of informa-
tion systems. These networks can be viewed as networks of c-granules
over which computations are generated by control of IcS.
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o System Types and Object and objects in Information Systems. Each in-

formation system has a type that specifies the allowed type of objects
in it, in particular those that can be added in updating. The type is
typically specified using some properties of fragments of granular com-
putations generated by the IcS. Objects within an information system
must be compatible with the system’s type. It can be treated as a filter
for objects to be stored in information system. Objects in information
systems are descriptions of structural objects labeled by specifications of
spatio-temporal windows, like bitmaps of images, fragments of time series
or their clusters, together with encoded in these descriptions procedures
and/or specifications of associations used by control of IcS for computing
values of the relevant attributes. The control of IcS is using

(i) a procedure from the object to compute necessary attribute values
for an object using, e.g., information from other information systems
and/or

(ii) a specification of an association from the object with the specified
fragment of the physical space; a process is associated with this spec-
ification that is realized in the physical world by IM, allowing IcS
to perceive, e.g., the desired attribute values and store them in the
information system.

Hence, attributes considered in the paper are not necessarily abstract
functions by they may be defined by specifications of associations and
their realization in the physical world by IM.

The type specification can also include information on how the IcS control
can update the information system, e.g., by adding or removing rows or
columns. For example, a type might specify a type of spatio-temporal
windows, a list of attributes to measure within the fragments of the phys-
ical space corresponding to those windows, additional information like
measurement timeframes and expected results. Control of IcS is respon-
sible for updating the system with the perceived in physical realization
measurement values.

Dynamic by Design, Not Random. These generalized information sys-
tems are dynamic, not randomly so. Their evolution is determined by the
IcS control’s intended dynamics, which can be influenced by interactions
with the physical environment. This implies that the information systems
in this paper are not purely mathematical objects. Their dynamics are
defined by c-granules representing the systems themselves and their in-
teractions with other c-granules, working like physical pointers to specific
parts of the physical space. These pointers allow the IcS control to per-
ceive properties of physical objects in those parts and use this information
to update the current state of the systems.

This type of modeling is essential for seriously considering issues related to
perceiving complex situations in the physical world and making the right deci-
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sions about them. We demonstrated that our approach to information systems
can be seen as a constructive way to define dynamic approximation spaces.
These spaces are changing accordingly to changes of corresponding to them in-
formation systems and they can be used to search for computational building
blocks for cognition, such as patterns, clusters, or concept approximations (clas-
sifiers) a well as their hierarchical structures relevant to problem-solving by the
IcS.

Typically, control of IcS deals with a family of information systems gener-
ated in the perception of situations. Moreover, the information systems from
such families are linked by different relations representing relationships between
objects, fragments of the whole information systems. In this way are created net-
works of information systems. They are examples of more compound c-granules
(or information granules), corresponding according to our previous discussion,
to families of approximation spaces. Here, it is worthwhile mentioning the
relationships with information flow [86, 87] attempting to develop logical foun-
dations for distributed computing. One should also refer here Fuzzy(-Rough)
Cognitive Networks (see, e.g., [88, 89, 90, 91]) as well as Federated Learning
(see, e.g., [92, 93]) as examples of techniques aiming to create machine learning
models with improved performance on distributed datasets (without sacrificing
privacy). On the way to create such models many challenges appear concerning,
e.g., creating, designing, operationalizing or maintaining distributed systems.
One of the challenges is related to developing reasoning methods supporting
solving these challenges.

The proposed approach focuses on developing reasoning methods that sup-
port the construction of approximate solutions for specified tasks. These meth-
ods must consider additional constraints during construction. These constraints
can include privacy requirements, limitations on data aggregation due to re-
source limitations, or adherence to principles expressed in natural language
standards (e.g., ISO standards) that may contain complex and vague concepts.
Importantly, these reasoning methods should not only analyze pre-constructed
solutions but also actively support the construction process itself, working along-
side the granular computations generated by IcS. Dialogues with human experts
may play a crucial role in this process. Furthermore, at different stages of the
IcS computations, solved subproblems can be treated as optimization problems
within large families of approximation spaces.

Aggregation and decomposition operations as well as filtration (see, e.g.,
[74, 94]) of information systems enable us to construct new information systems
on the basis of which new relevant c-granules being computational building
blocks for comprehension of the perceived situations are discovered.

One of the fundamental issue of information systems under the control of
IcS is that they are open to interaction. They are changed by control of IcS.
The changes are controlled by reasoning skills of control. We discuss this issue
in more detail in the subsequent section.
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6. Adaptive rough sets

In the Pawlak model of rough sets [39, 40, 95] the boundary region of the
approximated vague concept is defined as the difference between upper and lower
approximation of the concept. Hence, the boundary region is crisp set. However,
philosophers argue that the collections of borderline cases creating the boundary
region cannot be defined as a crisp set [96]. In the Pawlak model of rough sets,
the boundary region is defined relative to given sets of attributes and objects.
These sets are represented by information systems [39, 40, 95, 37]. Certainly,
when these sets are changing the boundary region is changing too. Hence, it
was proposed (see, e.g., [97]) to consider for approximation of vague concepts
a process expressing changes in approximations of a given concept according to
changes of sets of attributes and objects rather than an approximation defined
on the basis of a given a priori information system.

From the above discussion it follows that for construction of approximation of
concepts we should rather consider dynamic information systems rather than a
given a priori information system. As it was already mentioned, in the literature,
one can find several proposals of definition of dynamic information systems (see,
e.g., [83, 84, 85]). In these proposed approaches the dynamics is treated as given
a priori. This is not reflecting requirements for Intelligence Systems (IcS) where
information systems are in a sense under control of these systems and they are
changing according to rules of control of these systems and interactions with
the physical world. This point of view is represented in the approach based on
IGrC (see, e.g., [18, 19, 20, 21, 22, 23] and [24, 25]).

Control of IcS is responsible for updating and generation of information
systems in IcS. However, one should note that the expected changes of IcS
planned by their control may be disturbed by interactions with the physical
environment. Updating of information systems is often caused by sensory mea-
surements. Hence, it is related to interactions with physical objects. Generation
of new information systems or decomposition of the existing ones is performed
by aggregation or decomposition operations. From this it follows that modeling
of control of IcS requires objects composed out of abstract and physical objects.
Complex granules (c-granules, for short) are such objects in IGrC.

The control of IcS consists of reasoning module playing the fundamental
role. The reasoning is performed on networks of c-granules (more compound c-
granules). It is aiming to decide which transformation should be performed on
the current granular network toward construction of approximate solutions for a
given specification of problem to be solved. From the point of view of the rough
set approach one can formulate this as the requirement of construction of granule
representing the approximate solution belonging to the lower approximation of
the concept consisting all solutions of the given problem.

6.1. Pawlak’s information systems vs Scott’s information systems

An interesting interpretation of Pawlak’s information systems follows from
comparison them with the definition of Scott information system [98]. This
interpretation may bring some hints in developing reasoning methods for the
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control of IcS related to issues concerning dynamics of information systems
working under the control of IcS. Hence, we outline this interpretation here.
In [98] the intuition of information systems is presented as follows. Intu-
itively, an information system is a set of ‘propositions’ that can be made about
‘possible elements’ of the desired domain. The formal definition is as follows.

Definition 5. An information system is a structure
(D7 A) Oon7 |_)7

where D is a set (the set of data objects or propositions), where A is a dis-
tinguished member of D (the least informative member), Con is a set of finite
subsets of D (the consistent sets of objects), b is a binary relation between mem-
bers of Con and members of D (the entailment relation for objects).

Concerning Con, the following axioms must be satisfied for all finite subsets
u,v C D:

(i) uw € Con, whenever u C v € Con;
(ii) {X} € Con, whenever X € D; and
(i1i) wU{X} € Con, whenever u - X.

Concerning &, the following axioms must be satisfied for all u,v € Con, and
all X € D:

(v) uk A;
(v) uk X, whenever X € u; and
(vi) ifvEY forallY € u and u - X, then v X.

One can interpret an information system defined by Pawlak as a kind of
recording information about some perceived situations represented by signa-
tures of objects. Then, this information system represents in a sense a family of
consistent sets, represented by signatures of objects, perceived up to a given mo-
ment of time. The dynamics of of information systems is determined by control
of IcS and interactions with the physical world. Hence, instead of a single entail-
ment relation one can propose to learn some hypothetical entailment relations
using some idea, e.g. from paraconsistent logic [99, 100, 101, 102] in coopera-
tion with experts. One should be aware that it is necessary to consider not only
consistent sets but to develop tools which can provide useful conclusions in the
case of inconsistent sets. Here, one can refer to the research concerning incon-
sistent knowledge bases (see, e.g. [103]). Some issues concerning the discussed
problems already appear in inconsistent decision systems, what was mentioned
in Introduction.

Let’s consider the case of Scott information systems, where the entailment
relation is assumed to be known upfront (a priori). While the derivation rules
used by the control of IcS can often be learned from data (see, e.g., schemes
of approximate reasoning in [94]). Moreover, their computational complexity
becomes an important factor. Imagine a situation where the current state is
represented by information inf. The IcS control needs to extract a relevant
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fragment from a large knowledge base kb (represented by an information gran-
ule) to infer new information about the situation and accordingly extend inf.
The efficiency of this process depends heavily on how knowledge is represented
in kb. It’s also worth noting that dealing with inconsistencies (or paraconsis-
tencies) in the knowledge base might necessitate dialogues with human experts
and reasoning tools for resolving conflicts. In the case of of Scott information
systems an important role play maximal consistent sets. In the case of IcS,
reasoning is based on consistent (or inconsistent) sets because maximal consis-
tent sets usually are not available for IcS, e.g., because of bounds on resources.
Moreover, reasoning rules in IcS are realized by transformations of c-granules,
where their specifications of transformations are represented in informational
(abstract) layers and their realization is defined by physical semantics, hence
transformations are not purely purely mathematical objects. The realization
of transformations in the physical world is not always as predicted by their
specifications because of interactions with the environment.

7. Dialogues of IcS with human experts grounded on IGrC in search-
ing for computational building blocks for cognition: General com-
ments

In this section, we discuss in more detail issues related to dialogues of IcS
with human experts. In particular, our discussion also concerns dialogue systems
for Human Computer Interaction (HCI) (see e.g., [104, 105]). IGrC is the basic
computing model on which we propose to ground the approach.

We have already emphasized in Introduction that for IcS dealing with com-
plex phenomena it is not possible to eliminate dialogues with human experts.
Among them is the problem that still we do not have enough reliable automatic
techniques for common sense reasoning and/or experience based reasoning.

The idea of common sense is well expressed in [106]:

We look at the idea of common sense as it exists in humans. We
make the case that it is tied to knowing certain ordinary things. We
argue that common sense is the ability to make effective use of this
knowledge in deciding how to behave and plays a critical role in the
spectrum of human cognitive capabilities.

One should note that developing robust commonsense reasoning capabili-
ties for control of IcS presents several key challenges related to commonsense
knowledge. Among them are:

e Acquisition and representation of commonsense knowledge.
e Contextual and dynamic nature of commonsense knowledge.
e Ambiguity and uncertainty in commonsense knowledge.

e Integration of reasoning module with other components of IcS control
concerning commonsense knowledge.
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e Explainability and transparency of commonsense reasoning.
e Scalability and generalization of commonsense knowledge.

Addressing these challenges requires a multidisciplinary approach, incorporat-
ing advances in knowledge representation, machine learning, natural language
processing, cognitive science, and other relevant fields.

One of the important issue where IcS should cooperate with human experts is
related to decomposition of complex vague concepts. This problem appears with
such vague specifications as necessity to preserve as invariant ‘safeness’ [36] or
provide ‘trustworthiness’ [107] of the system. Decomposition of complex vague
concept appears also during implementation of specifications of transformations
in the physical world. If a specification is to compound for the implementation
module IM of control then it may be necessary to ask a human expert for a help
in decomposition. Lotfi Zadeh suggested [108, 109] that information granulation
plays a key role in implementation of the strategy of divide-and-conquer in
human problem-solving. Often it is necessary to perform such decomposition
several times, through different levels, before it is possible to rich the level
directly implementable in the physical world. The problem of decomposition
of vague specification is also important in hierarchical learning. In particular,
for several real-life projects it was possible to obtain the high quality solutions
using so called ontology approximation based on the rough set approach, where
ontology of vague concepts was acquired through dialogues with experts (e.g.,
[36, 48]). The discussed issue of decomposition of complex vague concepts is
also closely related to a cited below challenge formulated by Judea Pearl [110].

Another very important issue related to dialogues of IcS with experts is that
the control of IcS should deliver on the basis of accumulated data and knowl-
edge in informational layers of c-granules understandable by human information
supporting experts in making the right decisions. This information can be pro-
vided in natural language, in a graphical form (see, e.g., QMAK project [111])
or using some easily understandable by human expressions.

8. Outline of the LITL project findings

Foundations based on IGrC for IcS dealing with complex phenomena are
aiming to realize the following general goal, paraphrased to IcS from [112] where
it was formulated for biology:

Tomorrow, I believe, we will use [IcS]to support our decisions in
defining our research strategy and specific aims, in managing our ex-
periments, in collecting our results, interpreting our data, in incor-
porating the findings of others, in disseminating our observations,
in extending (generalizing) our experimental observations through
exploratory discovery and modeling - in directions completely unan-
ticipated
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Now, we shortly characterize the LITL project [35] developed by QED com-
pany and present a roadmap for further development dialogues of human experts
with IcS.

LITL is aiming to develop an automatic and semi-automatic system for
marking data in large data sets based on machine learning. In particular, LITL
provides methods for:

e Few-shot learning:

(1)) Active learning samples selection: Intelligent samples selection lead-
ing to largest expected model improvements.

(ii) Initial batch selection: Deterministic, reliable methods for selecting
initial data samples to avoid production quality minimums.

o Faxpert assignment: Labeling experts matched to the samples based on
their latent competencies.

o FExpert consensus: Ground truth estimated based on experts quality even
in case of contrary votes.

o Ezxpert quality estimation: Experts’ quality and latent competencies con-
tinuously updated.

e New classes identification: New not yet known classes identified and pointed
out to experts for evaluation.

It was already shown that on the road of LITL development the rough set
based methods can be very helpful. In particular:

e Reduct ensembles can be the basis for fast similarity calculation [113].
e Reduct ensembles can be quite good models in practice: [63].

e They may also provide hints about most useful features: [114].

e It can be extended toward interactive feature selection: [115].

There are already in LITL some tools related to selection of queries based
on similarity. Among them are the following:

e A data case may be worth showing to Subject Matter Expert (SME ) if
it is not similar to any cases that were considered in the learning process
up to now.

e A data case may be worth showing to SME if it is similar to a group of
other cases labeled by that SME up to now, but SME seemed to be quite
uncertain about those cases.

e A data case may be worth showing to SME if it is similar to a group other
cases that were analyzed by the previous versions of a model that we learn,
but that model seemed to be quite uncertain about those cases.
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The core concept behind LITL’s development supporting construction of
classifiers can be summarized as follows. We begin with a given multi-relational
approximation space, or corresponding to it a decision system, denoted by AS.
Based on AS, LITL constructs a typically large space Fags of related multi-
relational approximation spaces. Next, an optimization strategy is employed
to search for specific multi-relational approximation spaces within F4g. These
spaces are chosen because they enable the creation of high-quality classifiers
(according to pre-defined quality measures). These classifiers can be, e.g., in
the form of ensembles of classifiers (see Fig. 3 and [63]). The optimization
process can also be performed by tuning metaparameters of learning algorithms
(see, e.g., [116]).

OPTIMIZATION

classifier(s)

results TESTING

labeling
by expert
(dialogue)

Figure 3: Optimization in the loop with experts for inducing the high quality classifiers.

Labeling by experts (see Fig. 3) may concern, in particular suggestions con-
cerning:

e expressed in natural language new attributes (features) or selection of the
relevant objects;

e discretization or symbolic value grouping;
¢ definition of new fuzzy attributes (e.g., based on linguistic variables);
e aggregation of patterns defined over languages of given attributes;

e explanation why the decision is incorrect what may help to modify classi-
fiers;

e new languages of attributes (features) in which searching for the relevant
attributes should be performed;

e dealing with missing values.
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9. Roadmap for dialogues in IcS

There are several challenges for the further research on dialogues of IcS with
human experts. Below we shortly describe examples of them.

The first research direction is related to development of an advanced dialogue
interface of the system with users/experts. This interface is making it possi-
ble to exchange messages between system and experts in dialogues carried out
toward the relevant labeling of objects with compound structural complexity.
The model is based in a recently emerging paradigm Interactive Granular Com-
puting (IGrC) (see, e.g., [18, 19, 20, 21, 22, 23] and [24, 25]. In IGrC messages
are encoded into informational layers of (complex) granules and the process of
sending /receiving messages, treated as information granules, is realized through
relevant interactions of these granules. Representation of objects as well as their
labels are realized by information granules. For example, objects can represent
queries sent by the experts to the system and labels represent messages received
from the system. Another example concerns objects in the form of queries sent
to a domain knowledge base and labels represent description of parts of these
knowledge bases containing the relevant information for the queries. Hence, in
this way we consider a generalization of the concept of labeling function from
simple one considered before to a higher order labeling function where objects
and their labels are information granules with a compound structure. Certainly,
such functions should preserve some constraints related to informativeness of
labels. Such labeling functions may be of great importance for IcS in their dia-
logues with experts. For example, labels can indicate the level of risk associated
with the current situation compared to the desired goals. They might suggest
the need for immediate sensory measurements to gain a clearer understanding.
In general, labelers should be aware that successful cooperation with IcS relies
on the entire granular computation process performed by IcS, not just a single
decision made at a specific point in the computation.

One very interesting area for expert dialogues concerns resolving conflicting
opinions between experts and IcS. IcS can leverage relevant conflict resolution
methods while engaging in dialogues with experts. For example, consider rule-
based object classifiers (see, e.g., [48, 117, 111]). These classifiers may assign
conflicting labels to an object based on different rules matching the same object.
Through dialogue, experts and the system can gather arguments for and against
each decision, ultimately aiming to reach a consensus. Expert insights can
further enhance the system’s methods. For instance, a medical expert might
highlight a high risk of a rare, undiagnosed disease in a patient, even if the
current rule-based classifier data doesn’t reflect it. In this scenario, expert
labeling can serve as a form of critique, suggesting modifications to the system’s
classification process. This example demonstrates that labeling functions can
very much vary in complexity and purpose.

The critical challenge for the further development of IcS is related to the
development of reasoning methods that support the effective perception of rel-
evant data for inducing their models. These methods should aid the control of
IcS in making decisions concerning what, when, how, and where to perceive data
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about the analyzed situations. Moreover, they should support constructions of
representations of perceived data by information systems, their networks and
making aggregations of them. When IcS are dealing with complex phenomena,
unavoidable dialogues between the IS and human experts should take place to
provide the IcS with satisfactory information for making the right decisions.
The importance of data governance is emphasized in the literature about IcS
[118] especially for companies following data driven business.

It’s important to highlight a key difference between the approach based on
mathematical logic and the one discussed here. Mathematical logic focuses on
pre-defined relational structures (models) and a language of formulas built upon
them. Examples include the relations of semantic consequence and syntactic
consequence. This approach then studies, e.g., the relationships between these
entities. In contrast, the approach discussed here aims to learn (discover), at
least partially, both the relations and the formulas (attributes) directly from
data. This data is perceived from relevant fragments of the physical space
pointed by the attention module of the IcS control and this process is supported
by reasoning techniques of this module. Moreover, one should take into account
that the relevant data and their localization in the physical space are changing
with time. Hence, the control of IcS should be aware of continuous supporting
of searching for the relevant data by the reasoning techniques.

One should note that nowadays the dialogues with experts can be supported
by chatbots [119]. For example, after labeling cases by expert the system could
initiate dialogues with chatbots aiming to provide for IcS better understanding
concepts and relations between them used in this labeling. This may be used in
decomposition of complex vague concepts or, in a more general sense, description
of the perceived situations up to the level directly realizable in the physical
world.

One of the crucial problem in development of technology supporting dia-
logues between system and experts is related to developing of languages over
which information granules are defined. It is well defined by Judea Pearl, the
Turing award winner [110]:

Traditional statistics is strong in devising ways of describing data
and inferring distributional parameters from sample. Causal infer-
ence requires two additional ingredients:

e a science-friendly language for articulating causal knowledge,
and

e a mathematical machinery for processing that knowledge, com-
bining it with data and drawing new causal conclusions about a
phenomenon.

An important argument justifying the use of IGrC as the basic computing
model is that this computing model is especially relevant for applications where
interactions between systems, experts as well as other different hardware tools
such as computers, cellular phones, robots, sensors and/or actuators are im-
portant. Hence, this model is relevant for applications concerning Internet of
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Things (IoT) or Cyber Physical Systems (see, e.g., [92, 120, 121]).

One more important aspect of the discussed above interfaces between system
and experts is related to the paradigms like Human-Centered Al or Human-in-
the-Loop ML [3, 4]. In the interfaces of IcS under development we concentrate
on developing technology helping experts to perform their experience based rea-
soning rather than to eliminate them from the loop.The main reason behind this
is that we do not have yet satisfactory formal reasoning tools making it possible
to substitute the experts in tasks related to such reasoning. For example, we
work on tools for delivering to experts proper visualization of objects or sets of
objects. Moreover, we are working on developing tools which can provide ex-
perts with information about the risk degree concerning the relevance of labels
(e.g., decisions) assigned to objects. The degrees are estimated by the system
and provided for experts. One can cite here the opinion of Melanie Mitchell
[6, 122] about analogy based reasoning belonging to the experience based rea-
soning domain:

The quest for machines that can make abstractions and analo-
gies is as old as the Al field itself, but the problem remains almost
completely open.

Let us also note the importance of the trustworthiness [107] requirement for
IcS. One should also consider this in the context of interfaces of IcS related to
dialogues with human experts. Trustworthiness covers accuracy, explainabil-
ity and interpretability, privacy, reliability, robustness, safety, and security or
resilience to attacks and ensure that bias is mitigated.

Moreover, developing and using Al in ways that are ethical, reduce bias,
promote fairness, and protect privacy is essential for fostering a positive effect
on society. Hence, in the design of interfaces of IcS with experts one should take
into account the necessity of developing reasoning tools for interfaces helping
intelligent systems to (i) preserve different sorts of invariants specified by com-
plex vague concepts related to the above mentioned issues and (ii) multi-criteria
optimization.

Let us summarize our discussion as follows.

One key challenge is ensuring effective communication and mutual under-
standing between IcS and the human experts. IcS systems are built on advanced
computational models and frameworks like the IGrC model, which may not be
intuitively accessible to human domain experts. Bridging this gap in techni-
cal knowledge and establishing a common language for productive dialogue is
crucial.

Another challenge is handling the inherent uncertainty and ambiguity that
can arise in human-IcS interactions. Human experts may express themselves
using imprecise, context-dependent language, while IcS systems are designed
to operate on more formal, structured data. Developing robust mechanisms to
interpret and translate between these modes of communication is essential.

The dynamic and iterative nature of the dialogues also poses challenges.
As the human experts provide feedback and new information, the IcS needs
to be able to quickly update its reasoning, adapt its responses, and maintain
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w17 coherence throughout the conversation. Balancing responsiveness with stability
s is important for building trust and productive collaboration.

1019 Additionally, there are challenges in ensuring the transparency and inter-
w0 pretability of the IcS’s decision-making processes. Human experts will likely
w2 want to understand the reasoning behind the system’s recommendations and
w2 approximate solutions. Providing appropriate explanations and justifications is
w23 crucial for gaining user acceptance and buy-in.

1024 Finally, the dialogues must be designed to leverage the complementary strengths
w25 of humans and intelligent systems. Striking the right balance between human
we expertise and IcS capabilities, and seamlessly integrating them, is a key chal-
w7 lenge in realizing the full potential of these human-IcS collaborations.

1028 Designing the IcS system to better interpret and respond to the nuanced lan-
w0 guage used by human experts involves several key issues and challenges showing
w0 that the architecture of interfaces of IcS for interaction with human experts
1w  requires development of numerous advanced modules based on advanced rea-
w2 soning techniques. Among them are, besides of already discussed modules of
03 the IeS control, modules for: (i) natural language processing (NLP) capabili-
0% ties, (ii) knowledge representation and reasoning, (iii) interactive clarification
s mechanisms, (iv) explainable AI, (v) continuous learning and adaptation, (vi)
ws  multimodal interaction.

1037 By employing these modules and designing for them the relevant reasoning
w3 strategies, the IcS system can become increasingly adapt at interpreting and
w30 responding to the nuanced language used by human experts, leading to more ef-
w0 fective and productive dialogues. Overall, the dialogues between IcS and human
wa  experts require careful consideration of technical, cognitive, and social factors
102 to enable effective and fruitful exchanges that drive meaningful problem-solving
i and decision-making. The IGrC model plays in this the crucial role.

1044 One should also note that the IcS should handle the ambiguity and uncer-
w5 tainty inherent in human expert language providing solutions for several key
ws challenges related to: (i) ambiguity in natural language, (ii) imprecision and
e vagueness, (iii) incomplete or inconsistent information, (iv) contextual depen-
ws dency, (v) cognitive biases and heuristics, (vi) dynamic adaptation. To address
w0 these challenges, the IcS design may need to incorporate advanced techniques
wso  from areas such as rough-fuzzy based reasoning, probabilistic reasoning, abduc-
ws1 tive inference, contextual modeling, and interactive learning. A combination
w2 of these approaches can help the system navigate the inherent ambiguity and
053 uncertainty present in human expert language, leading to more effective and
s« productive dialogues. By combining dynamic knowledge representation, con-
wss  textual reasoning, and interactive feedback, the IcS system can navigate the
wss inherent ambiguity and uncertainty present in human expert language, leading
w7 to more accurate interpretations and more productive dialogues.

1058 Moreover, IcS should employ several key techniques to engage in interactive
wso  clarification and feedback with the human expert, helping to resolve ambiguities
weo and uncertainties in their language by: (i) clarifying questions, (ii) paraphras-
s ing and summarization, (iii) highlighting inconsistencies or contradictions, (iv)
w2 iterative refinement, (v) explanation and transparency. By employing these
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interactive clarification techniques, the IcS system can engage in a more dy-
namic and collaborative dialogue with the human expert, ultimately leading to
a more accurate and meaningful understanding of the expert’s language and the
problem at hand.

From our discussion, it becomes clear that for the further development of
IcS, it is necessary to synchronize many domains that have been developed sepa-
rately so far. These domains include a proper computing model, perception and
action, knowledge representation, reasoning under uncertainty, natural language
processing (NLP), and dialogues of IcS with human experts and chatbots.

There are several challenges on this path, such as those related to the ‘white
spots’ in reasoning methods. In other words, there are areas within the reasoning
methods that have not been fully explored or addressed yet.

To summarize, the key points are:

e Synchronizing various domains for the development of IcS.

e These domains include computing model, perception, action, knowledge
representation, reasoning under uncertainty, NLP, and dialogues as well
as challenges related to 'white spots’ in reasoning methods.

10. Perspectives of rough sets in IcS

In this section, we discuss and summarize shortly perspectives of rough sets
in the framework of IcS.

In Fig. 4 is presented a context in which rough sets should be considered in
IcS.

In the context of Figure 4, the rough set approach departs from traditional
methods that rely on a single information or decision system (data table). In-
stead, it utilizes perceived data sets with expert input. These data sets are
used to create multiple multi-relational approximation spaces, denoted as AS,
..., AS, each corresponding to a distinct information or decision system. Var-
ious techniques are then applied to these spaces to generate a family of multi-
relational approximation spaces, denoted as Fag, ... as,. This family serves as
the basis for optimization algorithms searching for high-quality complex games.

It’s important to note that the optimization process involves aggregation and
de-aggregation, which correspond to granulation and de-granulation of the un-
derlying information and decision systems, respectively. This process is crucial
for identifying relevant multi-relational approximation spaces. As Zadeh previ-
ously emphasized in his proposal on information granulation, ongoing dialogue
with experts remains essential.

Furthermore, unlike traditional approaches that approximate a single con-
cept, our method aims to construct a family of concepts in the learning phase
of complex games. These concepts are labeled by specifications of transforma-
tions, which represent the specifications of actions. During testing, the quality
of the discovered complex games is evaluated using application-specific quality
measures. Additionally, based on the testing results, the games are adapted.
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Figure 4: Rough sets in IcS (AM-attention module, IM-implementational module).

The attention module (AM), supported by relevant reasoning techniques and
expert collaboration, empowers the intelligent control system (IcS) to acquire
new data sets. This allows for more efficient adaptation.

Summarizing:

e The control mechanism of IcS based on the Rough Set Theory framework,

aims to learn complex games. This allows IcS to generate computations
over granular networks leading to high-quality approximate solutions.

e The control system, aided by an attention module (AM), continuously

searches for relevant datasets represented in multi-relational approxima-
tion spaces AS1, ..., ASk. The AM is leveraging advanced reasoning tech-
niques in collaboration with domain experts.

e These approximation spaces can be extended, in cooperation with experts,

into a large family of multi-relational approximation spaces Fas, ... AS,-
The system then performs optimization to identify high-quality complex
games.

e These complex games are adaptively modified based on observed changes

in their performance. As previously discussed, complex games consist of
sets of rules. The predecessors of these rules are classifiers for often com-
plex and imprecise concepts, while the successors specify transformations
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to be applied to granular networks when a rule is chosen for execution by
the IcS control. One should note that IM may require to make multi-level
decomposition of the specification of transformation to be realized before
it can be directly realized in the physical world.

e The universes of objects of considered information (decision) systems are
formed by the solutions to the problem IcS is trying to solve, and the
concepts being approximated within this universe correspond to different
quality layers of these solutions. Importantly, in many cases, IcS needs to
generate the granular computation leading to high-quality solutions even
when no known examples of such solutions exist and only some negative
examples are available. This is the case when, e.g., IcS is searching for new
chemical compounds with some specified properties. The success of this
generation process heavily relies on the reasoning techniques supporting
the IcS control. The quality of the generated solution, determined by
the quality of the used complex game, often depends on the behavior of
this complex game over the entire generated granular computation, not
its final state only.

In summary, this approach highlights that approximation problems in IcS
are significantly more complex than those typically encountered in rough set
applications, so far. The success of the control system heavily depends on the
quality of both reasoning techniques and the dialogue with domain experts.

Our research explores new directions for applying the generalized rough set
approach to IcS. This work builds upon the IGrC model and leverages exist-
ing partial results from various fields (including multi-agent systems, perception
and action, machine learning, natural language processing, federated learning,
cognitive networks, smart cities, cyber-physical systems, complex adaptive sys-
tems etc.) by putting them into sync. We also emphasized the fact that IcS
are dealing with complex phenomena in the physical world what requires a new
kind of modeling for solving problems with the design and analysis of IcS. It
was pointed out that dialogues with domain experts are unavoidable for IcS due
to the fact that still we do not have satisfactory formal reasoning techniques
making it possible to deal to a satisfactory degree with commonsense reasoning
or experience based reasoning. The presented comprehensive approach has the
potential to establish a solid foundation for the design and analysis of IcS.

11. Conclusions

We proposed the IGrC model as the fundamental computing model for IcS.
Such systems aim to deliver information relevant for human experts helping
them to make the right decisions. The rough set framework relevant for IcS is
discussed. The crucial role of dynamic information systems in this approach is
explored. Their dynamic behavior is modeled by the control of IcS.

The control of IcS aims to generate computations over the basic objects of
IGrC, called c-granules (or networks of them), such that high-quality approxi-
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mate solutions to the problems considered by IcS are constructed along these
computations.

We emphasize the essential role of dialogues between human experts and IcS
as an integral component of IcS behavior. Some comments on reasoning tech-
niques supporting the construction of approximate solutions, as well as computa-
tional building blocks for cognition, are included. Several challenges, especially
for the dialogues between IcS and human experts, are also included.

In our next steps, we aim to establish the groundwork for c-granule soci-
eties, focusing on how these societies can achieve distributed control and self-
organization.
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