9. Formy dwuliniowe Ver. 2.1

Stefan Jackowski

18 maja 2011

Celem tych notatek jest przedstawienie twierdzeri dotyczacych form dwuliniowych jako uogol-
nienia rozwazanych wcze$niej iloczynéw skalarnych i akcentujac ich geometryczny charakter. Doty-
czy to w szczegbdlnosci twierdzen o istnieniu dopetnieni ortogonalnych, istnienia baz ortogonalnych i
ortogonalizacji Grama-Schmidta. Nasze podjescie opiera sie na ksiazce J.Milnora i D.Husemollera'.

Niech V bedzie skoniczenie wymiarowa przestrzenig nad ciatem F charakterystyki # 2. Bedzie-
my rozwazaé przestrzenie wektorowe (V, 3) wyposazone w pewna forme dwuliniowa 5 : V. x V — F.
Niech (V1,51) i (Va,32) beda przestrzeniami wektorowymi wyposazonymi w formy dwuliniowe.
Homomorfizmem form nazywamy przeksztatcenie liniowe A : Vi — Vs takie, ze Vv,w € V;
zachodzi rownosé (v, w) = Ga(A(v), A(w)).

Definicja 0.1. Jesli (V, ) jest forma dwuliniowa a V = {v1, ..., v, } baza przestrzeni V to macierz
B = {3(vi, v;)} nazywamy macierza formy § w bazie V. Liczba dim V nazywa si¢ wymiarem formy
B; rzad macierzy B rzedem formy (. Forma nazywa si¢ niezdegenerowana jesli rk(8) = dim V.
Definiujemy wyznacznik formy det(3) := det{B(vi,v;)}, przy czym jesli det(3) # 0 to jest on
okreslony z doktadnoscia do mnozenia przez kwadrat niezerowej liczby.

Dowolna forma dwuliniowa 8 : V x V — F wyznacza dwa przeksztalcenia liniowe
By :Vov~ [G(v,) € V' oraz BQ:VBVW,B(',V> e V™,

Zad. 1. Macierz {§(v;,v;)} jest macierza przeksztalcenia Bl w bazach V i bazie sprzezonej V*,
a macierz B2 w tych bazach jest do niej transponowana. Wywnioskowac stad, ze definicja rzedu
formy jest poprawna tzn nie zalezy od wyboru bazy, oraz wzoér na zmiane macierzy formy przy
zmianie bazy jako wniosek z odpowiedniego wzoru dla macierzy przeksztatcen liniowych. Por. Zad.
HT 21.4-5.

Definicja 0.2. Suma (ortogonalna) (V1, 31) 1 (Va, 52) nazywamy przestrzen Vi ® Vs wyposazona
w forme
B(vi+vo, Wi+ wa) := B1(vi,, W) + fa(v2, W2) gdzie v;,w; €V,

Jesli (V, ) jest forma dwuliniowa oraz Vi < V podprzestrzenia to jej dopelieniem ortogonalnym
nazywamy podprzestrzen Vo < V taka, ze Vi @ Vo = V oraz 3(vi,va) = B(ve,v1) =0,V vi €
Vl, vy € V.

Zad. 2. det(( @ [2) = det(f1) det(f2) oraz rk(81 @ [2) = rk(51) + rk(B2).

'wg. J.Milnor, D.Husemoller ”Symmetric bilinear forms” Springer-Verlag 1973




W dalszym ciagu bedziemy rozpatrywaé¢ symetryczne formy dwuliniowe (SFD) g : V x
V — F, tzn. takie, ze f(v,w) = [(w, V) i i antysymetyrczne (alternujace) formy dwuliniowe
(AFD) tzn. takie, ze f(v,w) = —(3(w,v) dla dowolnych v,w € V. Dla SFD bedziemy oznacza¢
B := B = B oraz dla AFD, 8 := 31 = — 3. Jedli bedziemy zakladaé, ze forma jest symetryczna
lub antysymetryczna bedziemy pisaé¢ ASFD. W Skrypcie HT VII .3.3 takie formy nazywaja sie
metryczne.

Kazdej formie dwuliniowej mozna kanonicznie przypisa¢ pewna forme symetryczna (syme-
tryzacja) i forme antysymetryczna (antysymetryzacja) - por. Zad. HT 20.1 . Ponadto formy sy-
metryczne i antysymetryczne majg elegancka charakteryzacje p. Zad. HT 20.5. Iloczyn skalarny
nad R jest niezdegenerowana SFD. Niezdegenerowane formy antysymetryczne nad R nazywaja sie
formami symplektycznymi.

Niech (V, () bedzie ASFD. Jej obciecie do dowolnej podprzestrzeni jest tez ASFD, choé
wlasnosé niezdegenerowania nie musi byé zachowywana (w odréznieniu od bycia iloczynem ska-
larnym!). Podobnie jak w przypadku przestrzeni unitarnych mozna zdefiniowaé zbior wektorow
prostopadlych (w sensie formy () do zadanego zbioru.

Definicja 0.3. Dla podprzestrzeni W < V i ASFD 3 definujemy podprzestrzen g-prostopadia
W =57 Hope VI IVwe W, p(w) =0} ={veV|VweW, j(v,w)=0}.

(Litere 3 w W8 bedziemy pomijaé, jesli nie prowadzi to do nieporozumieri.)

Zad. 3. Rozwiaz Zad. HT 21.1.

Zad. 4. Dowolna ASFD (V, 3) rozklada sie na sume ortogonalng V = V+ @ W gdzie W < V
i forma (W, B|W) jest niezdegenerowana. Jesli (V, 3) jest niezdegenerowana, to dla dowolnej pod-
przestrzeni W < V, dim W+ = dim V—dim W. A w ogélnym przypadku? Uwaga: podprzestrzen
W nie musi byc dopetiajaca W, tak jak w przypadku ilocznéw skalarnych! Por. Zad. HT 21.2.

Twierdzenie 0.4 (o dopelnieniu ortogonalnym). Jesli ASFD 3 :V x V — F jest niezdegenero-
wana na podprzestrzeni W < V., to podprzestrzern W jest dopetnieniem ortogonalnym W.

Dowdd. Wystarczy wykazaé, ze W N W = 0 oraz, ze dowolny wektor v € V mozna zapisa¢ jako
sume v = w + w/, gdzie w € W, w/ € Wt Jeslive WNWttoVw e W, B(w,v) =0
a wiec v = 0. Trzeba wiec pokazaé, ze dowolny element v € V rozklada sie na sume v =
w + w gdzie w € W oraz w € W+. Rozwazmy funkcjonal W > w ~ (v, w) € F. Poniewaz
forma [ jest na niezdegerowana na podprzestrzeni W, wiec istnieje wektor wg € W taki, ze
VweW, [(v,w) = [F(wy,w) awiec f(v — wo,w) = 0. Wynika stad, ze v = wy + (v — wo) jest
szukanym rozkladem. ]

Zad. 5. Udowodni¢, odwrotna teze: jesli podprzestrzen W+ jest dopetnieniem ortogonalnym W
to B:V xV — F jest niezdegenerowana na podprzestrzeni W < V.

Zauwazmy, ze dowod twierdzenia 0.4 dostarcza konstrukcji bazy w ktorej macierz formy
ma posta¢ blokowa. Niech V = {vi,...,v,} bedzie taka baza, ze wektory {vi,...,v,} rozpinaja
podprzestrzenn W. Dla wektora v,.; rozpatrzmy funkcjonat W 3 w ~~» (3(v,;, w) € F. Poniewaz
ten funcjonal musi by¢ wyznaczony przez pewien wektor z W, istnieja wiec skalary a1, ..., a4
takie, ze v/, == vy — > a;;v; € WL Wektory {v/ ..., v, } tworza baze podprzestrzeni W+,



a wiec w bazie {vy,...,v,, V. 1,..., Vv, } przestrzeni V macierz formy 3 ma przekatniows postac
blokowa:
{bijtij<r O
0 D

Macierz przejicia od bazy V = {vy,...,v,} do bazy V' := {vi,...,v,, v/ {,..., Vv, } jest postaci:

1d, C
0 Idp—r

a zatem macierz przejscia od bazy dualnej V™* do bazy dualnej V* przestrzeni V* jest postaci:

Id, 0
C Id,—,

Przystapimy teraz do sformutowania i dowodu twierdzenia Lagrange’a o diagonalizacji form (Tw.
2 str. VII-6 skryptu HT') oraz podobnego twierdzenia dla form antysymetrycznych.

Whniosek 1. Dia dowolnej SFD (V, 3) istnieje baza vi,va,..., vy, € V taka, zZe B(vi, Vi) = \idjj
przy czym N; # 0 dla i < vk(B) oraz A; = 0 dla i > k().

Baza o jakiej mowa we wniosku nazywa si¢ B -prostopadta, lub krocej protostpadta. Dowdd
wniosku poprzedzimy lematem:

Lemat 0.1. Jesli (V, 3) jest niezerowg SFD, to istnieje wektor v € V taki, ze B(v,v) # 0.

Dowdd. Istnieja wektory v,w € V takie, ze f(v,w) # 0. Jesli B(v,v) = f(w,w) = 0 to
B(v+w,v+w)=28(v,w) #0. O

Dowdd Wniosku 1. Jesli forma [ jest niezerowa, to istnieje wektor vy taki, ze 3(vi,vi) # 0 a
wiec ( jest niezdegenerowana na podprzestrzeni (vi) generowanej przez wektor vi. Z Tw. 0.4
wynika, ze V = (v1) @ (v1)*, a wiec mozna dowod tezy przeprowadzié¢ indukcyjnie, ze wzgledu
na dim'V. O

Uwaga 1. Jesli X, = a?)\; gdzie a; # 0 to wybierajac wektory v! := a;v; otrzymujemy baze taka,
ze B(vi, V) = Adij. Wobec tego dla ciata liczb zespolonych mozna znalez¢ bazg taka, ze A; = 1
dla i < rk(f3) a dla ciala liczb rzeczywistych \; = £1 dla ¢ < rk(f).

Uwaga 2 (Waznal). Dowolng forme kwadratowa na V mozna przedstawi¢ w postaci ¢ = >0 bi; v} vj
gdzie V* = {v{,...,v;;} jest bazg dualng do V, czyli v](v;) = d;;. Tw. Kroneckera, czyli Zad 4
na str. VII-9 skryptu HT i Zad. HT 17.5 wynika natychmiast z tego przedstawienia i rozwazan o
bazach po Tw. 77.

Whniosek 2. Dla dowolnej niezdegenerowanej AFD (V, 3) istnieje baza vi,va, ..., Vi, Wi,...,Wi € V
taka, ze B(vi, wj) = 0i5 oraz B(vi,v;) = B(w;, w;) = 0. W szczegdlnosci dim'V = 2k.

Dowdd. Indukcja ze wzgledu na dim V. Poniewaz forma jest niezerowa, istnieja dwa wektory
liniowo niezalezne v1, wy takie, ze 3(vy,wi) = 1. Rozpatrzmy podprzestrzen 2-wymiarowa Vi :=
Lin(vy,wi) < V. Obciecie 5|V jest forma niezdegenerowana, bowiem det(/5|V1) # 0. Na mocy
tw. 0.4 V = Vi @ Vi, a forma §|V{ musi byé¢ niezdegenerowana, bo skladnik prosty formy
niezdegenerowanej musi by¢ forma niezdegenerowana (det 8 = det (8| V1) det(B8|Vi) # 0). Por.
Zad. HT 16.4. i 21.3. ]



Dla form nad R zdefiniowany jest jeszcze jeden niezmiennik, a mianowicie sygnatura. Niech
0+ () bedzie maksymalnym wymiarem podprzestrzeni na ktorej forma (3 jest dodatnio (odp.
ujemnie) okreslona. Definujemy sygnature o(() := (04(5),0-(8)). Oczywiscie o4 (8) + o_(5) =
rk((). Sygnature definiuje sie tez jako réznice sygn(3) := o (8) — o_(5)

Whniosek 3. Dwie SFD nad C sq izomorficzne gdy majg ten sam wymiar i rzqd. Dwie formy nad
R sq izomorficzne wtedy i tylko wtedy gdy majg réwne wymiary, rzedy i sygnatury.

Twierdzenie 0.5 (Kryterium Sylvestera - Jacobiego). SFD (V,3) nad cialem R jest dodatnio
okreslona wtedy 1 tylko wtedy gdy istnieje flaga podprzestrzeni 0 < Vi < --- <V, =V taka, Ze
V1<i<n, det(B|V;) > 0.

Dowdd. Jesli forma jest dodatnio okreslona, to oczywiscie det(3|V;) > 0. Dla dowodu implikacji
przeciwnej stosujemy indukcje ze wzgledu na i. Dla ¢ = 1 teza oczywiscie zachodzi, bo dimV; = 1.
Rozwazmy podprzestrzen V; < V1. Poniewaz forma |V jest niezdegenerowana ma ona dopel-
nienie ortogonalne w V11, a wiec dla pewnego wektora v;11 € V;y1 zachodzi izomorfizm form
Vii1 = V; @ (vit1). Poniewaz det(3|V,41) > 0, wynika stad, ze 3(vit1, vit1) > 0 a suma form
dodatnio okreslonych jest dodatnio okreslona. O

Zad. 6 (Uogolnienie ortogonalizacji Grama-Schmidta. Por. zad HT 20.2). Niech (V,f) bedzie
niezdegenerowana SFD oraz B jej macierza w bazie w bazie vq,...,v,. Zalézmy, ze dla kazdego
k <n=dimV podprzestrzen Lin{vy, ..., vi} jest niezdegenerowana. Pokazac, ze

a) istnieje baza prostopadta wi, ..., w, taka, ze dla kazdego 1 < k < n,
Lin{vy,...,vg} = Lin{wy,..., wi}

oraz wektory {wi,..., w,} sa wyznaczone jednoznacznie z doktadnoscia do mnozenia przez
skalar.

b) jezeli dla kazdego 1 < k < n, B(vi, wy) =1, to
B(wi, wi) = Ap—1(B)/Ar(B),
gdzie Ag = 1, za$ Ay jest k-tym minorem gtéwnym macierzy B
c) jezeli k = R, to sygn() = n — 2¢, gdzie c jest liczba zmian znaku minorow Ay.

Zad. 7. Dwie niezdegenerowane formy kwadratowe q1, go dwéch zmiennych nad ciatem F charak-
terystyki # 2 sa réwnowazne wtedy i tylko wtedy gdy spelnione sg nastepujace warunki:

o det(q1)/det(q2) jest kwadratem w ciele T,

e istnieja dwie pary elementow z;, y; € IF takie, ze ¢1(x1,y1) = ga(22,y2) # 0.



