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Celem tych notatek jest przedstawienie twierdzeń dotyczących form dwuliniowych jako uogól-
nienia rozważanych wcześniej iloczynów skalarnych i akcentując ich geometryczny charakter. Doty-
czy to w szczególności twierdzeń o istnieniu dopełnień ortogonalnych, istnienia baz ortogonalnych i
ortogonalizacji Grama-Schmidta. Nasze podjeście opiera się na książce J.Milnora i D.Husemollera1.

NiechV będzie skończenie wymiarową przestrzenią nad ciałem F charakterystyki 6= 2. Będzie-
my rozważać przestrzenie wektorowe (V, β) wyposażone w pewną formę dwuliniową β : V ×V→ F.
Niech (V1, β1) i (V2, β2) będą przestrzeniami wektorowymi wyposażonymi w formy dwuliniowe.
Homomorfizmem form nazywamy przekształcenie liniowe A : V1 → V2 takie, że ∀ v,w ∈ V1
zachodzi równość β1(v,w) = β2(A(v), A(w)).

Definicja 0.1. Jeśli (V, β) jest formą dwuliniową a V = {v1, ...,vn} bazą przestrzeniV to macierz
B = {β(vi,vj)} nazywamy macierzą formy β w bazie V. Liczba dimV nazywa się wymiarem formy
β; rząd macierzy B rzędem formy β. Forma nazywa się niezdegenerowana jeśli rk(β) = dimV.
Definiujemy wyznacznik formy det(β) := det{β(vi,vj)}, przy czym jeśli det(β) 6= 0 to jest on
określony z dokładnością do mnożenia przez kwadrat niezerowej liczby.

Dowolna forma dwuliniowa β : V ×V→ F wyznacza dwa przekształcenia liniowe

β̃1 : V 3 v β(v, ·) ∈ V∗ oraz β̃2 : V 3 v β(·,v) ∈ V∗.

Zad. 1. Macierz {β(vi,vj)} jest macierzą przekształcenia β̃1 w bazach V i bazie sprzężonej V∗,
a macierz β̃2 w tych bazach jest do niej transponowana. Wywnioskować stąd, że definicja rzędu
formy jest poprawna tzn nie zależy od wyboru bazy, oraz wzór na zmianę macierzy formy przy
zmianie bazy jako wniosek z odpowiedniego wzoru dla macierzy przekształceń liniowych. Por. Zad.
HT 21.4-5.

Definicja 0.2. Sumą (ortogonalną) (V1, β1) i (V2, β2) nazywamy przestrzeńV1⊕V2 wyposażoną
w formę

β(v1 + v2,w1 +w2) := β1(v1, ,w1) + β2(v2,w2) gdzie vi,wi ∈ Vi.

Jeśli (V, β) jest formą dwuliniową orazV1 ¬ V podprzestrzenią to jej dopełnieniem ortogonalnym
nazywamy podprzestrzeń V2 ¬ V taką, że V1 ⊕V2 = V oraz β(v1,v2) = β(v2,v1) = 0, ∀ v1 ∈
V1, v2 ∈ V2.

Zad. 2. det(β1 ⊕ β2) = det(β1) det(β2) oraz rk(β1 ⊕ β2) = rk(β1) + rk(β2).
1wg. J.Milnor, D.Husemoller ”Symmetric bilinear forms” Springer-Verlag 1973
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W dalszym ciągu będziemy rozpatrywać symetryczne formy dwuliniowe (SFD) β : V ×
V → F, tzn. takie, że β(v,w) = β(w,v) i i antysymetyrczne (alternujące) formy dwuliniowe
(AFD) tzn. takie, że β(v,w) = −β(w,v) dla dowolnych v,w ∈ V. Dla SFD będziemy oznaczać
β̃ := β̃1 = β̃2 oraz dla AFD, β̃ := β̃1 = −β̃2. Jeśli będziemy zakładać, że forma jest symetryczna
lub antysymetryczna będziemy pisać ASFD. W Skrypcie HT VII .3.3 takie formy nazywają się
metryczne.

Każdej formie dwuliniowej można kanonicznie przypisać pewną formę symetryczną (syme-
tryzacja) i formę antysymetryczną (antysymetryzacja) - por. Zad. HT 20.1 . Ponadto formy sy-
metryczne i antysymetryczne mają elegancką charakteryzację p. Zad. HT 20.5. Iloczyn skalarny
nad R jest niezdegenerowaną SFD. Niezdegenerowane formy antysymetryczne nad R nazywają się
formami symplektycznymi.

Niech (V, β) będzie ASFD. Jej obcięcie do dowolnej podprzestrzeni jest też ASFD, choć
wlasność niezdegenerowania nie musi być zachowywana (w odróżnieniu od bycia iloczynem ska-
larnym!). Podobnie jak w przypadku przestrzeni unitarnych można zdefiniować zbiór wektorów
prostopadłych (w sensie formy β) do zadanego zbioru.

Definicja 0.3. Dla podprzestrzeniW ¬ V i ASFD β definujemy podprzestrzeń β-prostopadłą

W⊥β := β̃−1{φ ∈ V∗ | ∀w ∈W, φ(w) = 0} = {v ∈ V | ∀ w ∈W, β(v,w) = 0}.

(Literę β wW⊥β będziemy pomijać, jeśli nie prowadzi to do nieporozumień.)

Zad. 3. Rozwiąż Zad. HT 21.1.

Zad. 4. Dowolna ASFD (V, β) rozkłada się na sumę ortogonalną V = V⊥ ⊕W gdzie W ¬ V
i forma (W, β|W) jest niezdegenerowana. Jeśli (V, β) jest niezdegenerowana, to dla dowolnej pod-
przestrzeniW ¬ V, dimW⊥ = dimV−dimW. A w ogólnym przypadku? Uwaga: podprzestrzeń
W⊥ nie musi byc dopełniającaW, tak jak w przypadku ilocznów skalarnych! Por. Zad. HT 21.2.

Twierdzenie 0.4 (o dopełnieniu ortogonalnym). Jeśli ASFD β : V ×V → F jest niezdegenero-
wana na podprzestrzeniW ¬ V, to podprzestrzeńW⊥ jest dopełnieniem ortogonalnymW.

Dowód. Wystarczy wykazać, żeW∩W⊥ = 0 oraz, że dowolny wektor v ∈ V można zapisać jako
sumę v = w + w′, gdzie w ∈ W, w′ ∈ W⊥. Jeśli v ∈ W ∩W⊥ to ∀ w ∈ W, β(w,v) = 0
a więc v = 0. Trzeba więc pokazać, że dowolny element v ∈ V rozkłada się na sumę v =
w + w′ gdzie w ∈W oraz w′ ∈W⊥. Rozważmy funkcjonał W 3 w  β(v,w) ∈ F. Ponieważ
forma β jest na niezdegerowana na podprzestrzeni W, więc istnieje wektor w0 ∈W taki, że
∀ w ∈W, β(v,w) = β(w0,w) a więc β(v −w0,w) = 0. Wynika stąd, że v = w0+ (v−w0) jest
szukanym rozkladem.

Zad. 5. Udowodnić, odwrotną tezę: jeśli podprzestrzeńW⊥ jest dopełnieniem ortogonalnymW
to β : V ×V→ F jest niezdegenerowana na podprzestrzeniW ¬ V.

Zauważmy, że dowód twierdzenia 0.4 dostarcza konstrukcji bazy w której macierz formy β
ma postać blokową. Niech V = {v1, ...,vn} będzie taką bazą, że wektory {v1, ...,vr} rozpinają
podprzestrzeńW. Dla wektora vr+i rozpatrzmy funkcjonałW 3 w β(vr+i,w) ∈ F. Ponieważ
ten funcjonał musi być wyznaczony przez pewien wektor z W, istnieją więc skalary αi1, . . . , αir
takie, że v′r+i := vr+i−

∑
αijvj ∈W⊥. Wektory {v′r+1, . . . ,v′n} tworzą bazę podprzestrzeniW⊥,
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a więc w bazie {v1, ...,vr,v′r+1, . . . ,v′n} przestrzeni V macierz formy β ma przekątniową postać
blokową: (

{bij}i,j¬r 0
0 D

)
Macierz przejścia od bazy V = {v1, ...,vn} do bazy V ′ := {v1, ...,vr,v′r+1, . . . ,v′n} jest postaci:(

Idr C
0 Idn−r

)

a zatem macierz przejścia od bazy dualnej V ′∗ do bazy dualnej V∗ przestrzeni V∗ jest postaci:(
Idr 0
C Idn−r

)

Przystąpimy teraz do sformułowania i dowodu twierdzenia Lagrange’a o diagonalizacji form (Tw.
2 str. VII-6 skryptu HT) oraz podobnego twierdzenia dla form antysymetrycznych.

Wniosek 1. Dla dowolnej SFD (V, β) istnieje baza v1,v2, . . . ,vn ∈ V taka, że β(vi,vj) = λiδij
przy czym λi 6= 0 dla i ¬ rk(β) oraz λi = 0 dla i > rk(β).

Baza o jakiej mowa we wniosku nazywa się β -prostopadła, lub krócej protostpadła. Dowód
wniosku poprzedzimy lematem:

Lemat 0.1. Jeśli (V, β) jest niezerową SFD, to istnieje wektor v ∈ V taki, że β(v,v) 6= 0.

Dowód. Istnieją wektory v,w ∈ V takie, że β(v,w) 6= 0. Jeśli β(v,v) = β(w,w) = 0 to
β(v +w,v +w) = 2β(v,w) 6= 0.

Dowód Wniosku 1. Jeśli forma β jest niezerowa, to istnieje wektor v1 taki, że β(v1,v1) 6= 0 a
więc β jest niezdegenerowana na podprzestrzeni 〈v1〉 generowanej przez wektor v1. Z Tw. 0.4
wynika, że V = 〈v1〉 ⊕ 〈v1〉⊥, a więc można dowód tezy przeprowadzić indukcyjnie, ze wzgledu
na dimV.

Uwaga 1. Jeśli λ′i = α2iλi gdzie αi 6= 0 to wybierając wektory v′i := αivi otrzymujemy bazę taką,
że β(v′i,v

′
j) = λ′iδij . Wobec tego dla ciała liczb zespolonych można znaleźć bazę taką, że λi = 1

dla i ¬ rk(β) a dla ciała liczb rzeczywistych λi = ±1 dla i ¬ rk(β).

Uwaga 2 (Ważna!). Dowolną formę kwadratową naVmożna przedstawić w postaci q =
∑n
i,j=1 bijv

∗
i v
∗
j

gdzie V∗ = {v∗1, ...,v∗n} jest bazą dualną do V, czyli v∗i (vj) = δij . Tw. Kroneckera, czyli Zad 4
na str. VII-9 skryptu HT i Zad. HT 17.5 wynika natychmiast z tego przedstawienia i rozważań o
bazach po Tw. ??.

Wniosek 2. Dla dowolnej niezdegenerowanej AFD (V, β) istnieje baza v1,v2, . . . ,vk,w1, . . . ,wk ∈ V
taka, że β(vi,wj) = δij oraz β(vi,vj) = β(wi,wj) = 0. W szczególności dimV = 2k.

Dowód. Indukcja ze względu na dimV. Ponieważ forma jest niezerowa, istnieją dwa wektory
liniowo niezależne v1,w1 takie, że β(v1,w1) = 1. Rozpatrzmy podprzestrzeń 2-wymiarową V1 :=
Lin(v1,w1) ¬ V. Obcięcie β|V1 jest forma niezdegenerowaną, bowiem det(β|V1) 6= 0. Na mocy
tw. 0.4 V = V1 ⊕ V⊥1 , a forma β|V⊥1 musi być niezdegenerowana, bo skladnik prosty formy
niezdegenerowanej musi być formą niezdegenerowaną (detβ = det(β|V1) det(β|V⊥1 ) 6= 0). Por.
Zad. HT 16.4. i 21.3.
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Dla form nad R zdefiniowany jest jeszcze jeden niezmiennik, a mianowicie sygnatura. Niech
σ±(β) będzie maksymalnym wymiarem podprzestrzeni na której forma β jest dodatnio (odp.
ujemnie) określona. Definujemy sygnaturę σ(β) := (σ+(β), σ−(β)). Oczywiście σ+(β) + σ−(β) =
rk(β). Sygnaturę definiuje się też jako różnicę sygn(β) := σ+(β)− σ−(β)

Wniosek 3. Dwie SFD nad C są izomorficzne gdy mają ten sam wymiar i rząd. Dwie formy nad
R są izomorficzne wtedy i tylko wtedy gdy mają równe wymiary, rzędy i sygnatury.

Twierdzenie 0.5 (Kryterium Sylvestera - Jacobiego). SFD (V, β) nad cialem R jest dodatnio
określona wtedy i tylko wtedy gdy istnieje flaga podprzestrzeni 0 < V1 < · · · < Vn = V taka, że
∀ 1 ¬ i ¬ n, det(β|Vi) > 0.

Dowód. Jeśli forma jest dodatnio określona, to oczywiście det(β|Vi) > 0. Dla dowodu implikacji
przeciwnej stosujemy indukcję ze względu na i. Dla i = 1 teza oczywiście zachodzi, bo dimV1 = 1.
Rozważmy podprzestrzeń Vi < Vi+1. Ponieważ forma β|Vi jest niezdegenerowana ma ona dopeł-
nienie ortogonalne w Vi+1, a więc dla pewnego wektora vi+1 ∈ Vi+1 zachodzi izomorfizm form
Vi+1 = Vi ⊕ 〈vi+1〉. Ponieważ det(β|Vi+1) > 0, wynika stąd, że β(vi+1,vi+1) > 0 a suma form
dodatnio określonych jest dodatnio określona.

Zad. 6 (Uogólnienie ortogonalizacji Grama-Schmidta. Por. zad HT 20.2). Niech (V, β) będzie
niezdegenerowaną SFD oraz B jej macierzą w bazie w bazie v1, . . . ,vn. Załóżmy, że dla każdego
k ¬ n = dimV podprzestrzeń Lin{v1, . . . ,vk} jest niezdegenerowana. Pokazać, że

a) istnieje baza prostopadła w1, . . . ,wn taka, że dla każdego 1 ¬ k ¬ n,

Lin{v1, . . . ,vk} = Lin{w1, . . . ,wk}

oraz wektory {w1, . . . ,wn} są wyznaczone jednoznacznie z dokładnością do mnożenia przez
skalar.

b) jeżeli dla każdego 1 ¬ k ¬ n, β(vk,wk) = 1, to

β(wk,wk) = ∆k−1(B)/∆k(B),

gdzie ∆0 = 1, zaś ∆k jest k-tym minorem głównym macierzy B

c) jeżeli k = R, to sygn(β) = n− 2c, gdzie c jest liczbą zmian znaku minorów ∆k.

Zad. 7. Dwie niezdegenerowane formy kwadratowe q1, q2 dwóch zmiennych nad ciałem F charak-
terystyki 6= 2 są równoważne wtedy i tylko wtedy gdy spełnione są następujące warunki:

• det(q1)/det(q2) jest kwadratem w ciele F,

• istnieją dwie pary elementów xi, yi ∈ F takie, że q1(x1, y1) = q2(x2, y2) 6= 0.
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