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Jeśli V jest rzeczywistą (odp. zespoloną) przestrzenią ortogonalną, to przez O(V) oznacza-
my grupę izometrii liniowych V → V (odp. U(V). Ich podgrupy składające się z macierzy o
wyznaczniku 1 będziemy oznaczać odpowiednio SO(V) i SU(V) i nazywać odp. specjalną grupą
ortogonalną i specjalną grupą unitarną. Grupa V → V (odp. U(V)) jest izomorficzna z grupą
izometrii przestrzeni euklidesowej Rn (odp. Cn) ze standardowym iloczynem skalarnym, a więc
grupą macierzy ortogonalnych O(n)(odp. macierzy unitarnych U(n)).

Definicja 0.1. Przez odbicie lustrzane rozumiemy zawsze odbicie w podprzestrzeni kowymiaru 1,
przez symetrię osiową odbicie w podprzestrzeni wymiaru 1, a symetrię centralną odbicie w 0, czyli
antypodyzm. Obrotem rzeczywistej przestrzeni dwuwymiarowej nazywamy izometrię zachowują-
cą orientację. Obrotem dowolnej przestrzeni nazywamy ortogonalne rozszerzenie obrotu pewnej
podprzestrzeni 2-wymiarowej.

Zanim przejdziemy do przypadków niskowymiarowych zauważmy pewne ogólne własności grup
O(V) i U(V).

Stwierdzenie 0.1. Jeśli A : V→ V jest liniową izometrią przestrzeni unitarnej, to | det(A)| = 1.
W przypadku rzeczywistym, izometrie dla których det(A) = 1 to dokładnie izometrie zachowujące
orientację. Dowolna izometria zmieniająca orientację (np. lustrzane odbicie S : V→ V) wyznacza
bijekcję SO(V)→ O(V) \ SO(V) daną wzorem A A ◦ S.
Zad. 1. JeśliW ⊂ V jest jednowymiarową podprzestrzenią, to można zanurzyć grupę O(W) ⊂ O(V)
rozszerzając dowolną izometrię g :W→W do ḡ : V→ V, kładąc identyczność naW⊥. Podgrupy
O(W) i SO(V) generują całą grupę O(V).

Zbadamy budowę grup grup izometrii niskowymiarowych przestrzeni unitarnych.

1 Izometrie 1-wymiarowych przestrzeni unitarnych
W wymiarze 1 możemy jednocześnie rozważać przypadek rzeczywisty i zespolony (a nawet kwa-
ternionowy). Skoro A : V → V jest przekształceniem liniowym, to A(v) = λv dla pewnego
skalara λ ∈ F. Ponieważ A jest izometrią, to dla dowolnego niezerowego wektora v ∈ V mamy
〈v, v〉 = 〈λv, λv〉 = |λ|2〈v, v〉 skąd wynika, że |λ| = 1, a więc O(V) = {λ ∈ F | |λ| = 1}. W przy-
padku rzeczywistym jest to dwulementowa podgrupa grupy multyplikatywnej R×, a w przypadku
zespolonym podgrupa C× składająca się z liczb zespolonych o module =1, czyli okrąg.

Wniosek 1. O(1) = Z2 ⊂ R× oraz U(1) = S1 ⊂ C×. Grupy specjalne w obu przypadkach są
trywialne.
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2 Izometrie 2-wymiarowych przestrzeni unitarnych nad R
Twierdzenie 2.1. Jeśli dim(V) = 2 to na V istnieje struktura zespolonej przestrzeni liniowej,
taka że SO(V) = U(V) ' S1.

Dowód. Niech {e1, e2} będzie ustaloną bazą ortonormalną V, a A : V → V dowolną izometrią
zachowującą orientację. Rozważmy wektory {A(e1), A(e2)} i zauważmy, że wektor A(e2) jest jed-
noznacznie wyznaczony przez wektor A(e1). Istotnie A(e2) jest jednostkowym wektorem leżącym w
jednowymiarowej podprzestrzeni Lin{A(e1}⊥. Tylko jeden z dwóch wektorów tworzy bazę zgodnie
zorientowaną z {e1, e2}. Odwrotnie, zadając wektor A(e1), jednoznacznie określamy w ten spo-
sób wektor A(e2). Zauważmy, że jeśli J : V → V jest strukturą zespoloną na V zadaną wzorem
J(e1) = e2, J(e2) = −1 to dla dowolnej izometrii tak skontruuowanej A ◦ J = J ◦A, a więc A jest
izometrią zespolonej jednowymiarowej przestrzeni. Stąd wynika, że SO(V ) = U(V) = S1.

Ze Stwierdzenia 0.1 wynika, że dowolną inną izometrię możemy przedstawić w postaci A ◦ S
gdzie A ∈ SO(V) jest obrotem a S : V → V dowolnie wybranym odbiciem lustrzanym. W
terminach struktury zespolonej oznacza to, że A jest C-antyliniowe tzn. A ◦ J = −J ◦ A.

Wniosek 2. Dowolna liniowa izometria 2-wymiarowej rzeczywistej przestrzeni unitarnej jest lu-
strzanym odbiciem (gdy zmienia orientację) lub dwóch lustrzanych odbić (gdy zachowuje orienta-
cję).

Dowód. Jeśli izometria A zmienia orientację i przeprowadza wektor e1 na wektor A(e1) to jest
odbiciem lustrzanym w prostej zadanej przez wektor wA := e1 + A(e1), jeśli e1 + A(e1) 6= 0 lub w
prostej generowanej przez‘ wektor wA := e2. Złożenie dwóch odbić zachowuje orientację, więc jest
obrotem. Odwrotnie, ponieważ dowolna izometria A /∈ SO(V ) jest odbiciem, wybierając ustaloną
izometrię zmieniająca orientację S otrzymujemy bijekcję SO(V)→ O(V) \ SO(V) (daną wzorem
A  A ◦ S), czyli dowolny obrót jest złożeniem dwóch odbić (przy czym jedno z nich można
ustalić!).

Zad. 2. Niech S : V→ V będzie dowolną ustaloną izometrią zmieniającą orientację. Dowolną inną
izometrię zmieniającą orientację można jednoznacznie zapisać w postaci A ◦ S, gdzie A zachowuje
orientację. Zapisać w ten sposób iloczyn (A ◦ S) ◦B, gdzie B zachowuje orientację.

3 Izometrie 3-wymiarowych przestrzeni unitarnych nad R
Twierdzenie 3.1. Jeśli dim(V) = 3 to dowolna izometria A ∈ SO(V) jest obrotem w pewnej
dwuwymiarowej podprzestrzeni.

Dowód. Niech A : V → V będzie dowolną izometrią zachowującą orientację. Pokażemy, że A
musi zachowywać pewną podprzestrzeń 1-wymiarową. Wielomian charakterystyczny det(A−λId)
ma stopień 3, w więc ma co najmniej jeden pierwiastek rzeczywisty. Stąd wynika, że istnieje
niezerowy wektor v ∈ V taki, że A(v) = ±v, a więc obcięcie A jest izometrią jednowymiarowej
podprzestrzeni, A : Lin{v} → Lin{v}. Ponieważ A jest izometrią, podprzestrzeń prostopadła
Lin{v}⊥ też musi być zachowywana. Jeśli A(v) = v to izometria przestrzeni dwuwymiarowej
A : Lin{v}⊥ → Lin{v}⊥ zachowuje orientacje, więc na mocy przypadku 2-wymiarowego jest
obrotem. Przypadek A(v) = −v sprowadzamy do poprzedniego, znajdując inny wektor w taki, ze
A(w) = w. Istotnie, w takim przypadku A : Lin{v}⊥ → Lin{v}⊥ musi zmieniać orientację, a więc
być odbiciem lustrzanym, a więc A(w) = w dla pewnego wektora w ∈ Lin{v}⊥.
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Wniosek 3. Izometria liniowa unitarnej rzeczywistej przestrzeni 3-wymiarowej może być przed-
stawiona jako złożenie nie więcej niż trzech symetrii lustrzanych, przy czym jest obrotem wtedy i
tylko wtedy, gdy jest złożeniem dwóch odbić lustrzanych.

Dowód. Złożenie dwóch symetrii lustrzanych zachowuje orientację, więc na mocy poprzedniego
stwierdzenia jest obrotem wokół pewnej osi. Niech teraz A : V → V będzie dowolną izometrią
zmieniającą orientację. Jak poprzednio, istnieje 1-wymiarowa podprzestrzeń niezmiennicza gene-
rowana przez wektor v ∈ V taki, że A(v) = ±v. Jeśli A(v) = v, to izometria płaszczyzny Lin{v}⊥
musi zmienia, orientację, a więc na mocy Tw... musi być odbiciem w pewnej prostej leżącej w tej
płaszczyźnie. Przekształcenie A jest więc odbiciem w płaszczyźnie generowanej przez tę prostą i
wektor v.

Zad. 3. Uogólnij powyższy wniosek na przestrzenie dowolnego wymiaru.

Uwaga 1. Zwróćmy uwagę, że w grupie O(3) element −Id zmienia orientację (jest złożeniem trzech
odbić lustrzanych) oraz jest on przemienny z dowolnym elementem grupy O(3). Stąd dowolną
izometrię zmieniającą orientację można przedstawić w postaci −A, gdzie A jest obrotem.

4 Izometrie przestrzeni unitarnych i algebra kwaternionów
Niech H będzie ciałem kwaternionów. Argumenty przytoczone w 1-wymiarowym przypadku nad R
i C przenoszą się bez zmian na kwaterniony, a więc grupa izometrii H-liniowych H→ H jest izomor-
ficzna z grupa multyplikatywną kwaternionów o module 1 - jest to sfera 3-wymiarowa S3 ⊂ H ' R4.

Zad. 4. Wykazać, że dowolna C-liniowa izometria A : H→ H taka, że det(A) = 1 jest H-liniowa,
a więc istnieje izomorfizm S3 ' SU(2).

Dla dowolnego jednostkowego kwaternionu q ∈ S3 oznaczmy przez Cq : H → H sprzężenie
przez element q tzn. Cq(q′) := q−1q′q. Jest to izometria R-linowa (ale nie H, ani C-liniowa!).
Działa ono trywialnie na prostej rzeczywistej, a więc zachowuje kwaterniony czysto urojone, czyli
R-podprzestrzeń Lin{i, j.k} ,którą utożsamiamy z przestrzenią euklidesową R3.

Twierdzenie 4.1. Przyporządkowanie S3 3 q  Cq ∈ SO(3) jest epimorfizmem grup, zaś jego
jądro to grupa {−1, 1} ' Z2.

Dowód. Sprawdzenie, że Cq = Id wtedy i tylko wtedy gdy kwaternion jest liczbą rzeczywistą pozo-
stawiamy jako zadanie. Pokażemy, że dowolny element w SO(3) jest iloczynem CqCq′ . Istotnie, dla
dowolnego czysto urojonego kwaternionu q odwzorowanie −Cq jest odbiciem lustrzanym (i każde
odbicie jest tej postaci), a stąd wynika, że CqCq′ jest obrotem. [por. Skrypt prof. H.Toruńczyka
Rozdz. V.4 Tw. 1 i 2].
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