IEEE TRANSACTIONS ON INFORMATION THEORY 1

The Smallest Grammar Problem

Moses Charikar, Eric Lehman, April Lehman, Ding Liu, Rina Panigrahy,
Manoj Prabhakaran, Amit Sahai, abhi shelat

Abstract— This paper addresses themallest grammar problem approximation algorithm which finds a grammar that generates

What is the smallestcontext-free grammar that generates exactly the given string and is not much larger than the smallest such
one given stringo?

? . . grammar.
This is a natural question about a fundamental object con- . . . I
nected to many fields, including data compression, Kolmogorov | Th_'s_ e!egant_problem ha_s considerable m.tereSt In its (_)W”
complexity, pattern identification, and addition chains. right: it is a simple question about a basic mathematical

Due to the problem’s inherent complexity, our objective is to 0bject, context-free grammars. By virtue of this simplicity and
find an approximation algorithm which finds a small grammar the wide applicability of context-free grammars, the smallest
for the input string. We focus attention on the approximation ratio grammar problem has interesting connections to many fields

of the algorithm (and implicitly, worst-case behavior) to establish . . - .
provable performance guarantees and to address short-comings of study, including data compression, Kolmogorov complexity,

in the classical measure ofedundancyin the literature. pattern identification, and approximation algorithms.

Ouir first results are a variety of hardness results, most notably)
that every efficient algorithm for the smallest grammar problem A. Data Compression

has approximation ratio at least 3252 unless P = N P. : -
We then bound approximation ratios for several of the best- Instead of storing a long string, one can store a small

known grammar-based compression algorithms, including.z78, ~grammar that generates the string. The original string can be

BISECTION, SEQUENTIAL, LONGESTMATCH, GREEDY, and Re- €asily reconstructed from the grammar when needed. Many

PAIR. Among these, the best upper bound we show i©(n'/?). data compression procedures use this idea, and therefore
We finish by presenting two novel algorithms with exponen- amount to approximation algorithms for the smallest grammar

tially better ratios of O(log®n) and O(log(n/m*)), where m*
is the size of the smallest grammar for that input. The latter problem [1], [2], [3], [4], [5]. [6]. [7], [8]. [9]. Most of these

highlights a connection between grammar-based compression and procedgres are ana]yzgd in detail in Section VI.

LZ77. Empirical results indicate that the grammar-based approach
: to compression is competitive with other techniques in prac-

Index Terms— Smallest grammar problem, data compression, .

approximation algorithm, LZ78, SEQUITUR, MPM, Re-Pair, tc€ [4], [9], [6], [7], [10], [11], and some grammar-based

LZ77, LONGESTMATCH, hardness of approximation compressors are known to be asymptotically optimal on input

strings generated by finite-state sources. But in Section VI we

show that, surprisingly, many of the best-known compressors

of this type can fail dramatically; that is, there exist input

HIS paper addresses themallest grammar prob- strings generated by small grammars for which these compres-

lem; namely, what is the smallest context-free gramsors produce large grammars. Consequently, they turn out not

mar that generates exactly one given string? For exagd-be very effective approximation algorithms for the smallest
ple, the smallest context-free grammar generating the striggammar problem.

a rose is a rose is a rose as follows:

I. INTRODUCTION

B. Complexity

The size of the smallest context-free grammar generating
a given string is also a natural, but more tractable variant of
B — Als Kolmogorov complexity [12]. The Kolmogorov complexity of
stringo is the length of the shortest pait/, x) where M

S — BBA
A — arose

The size of a grammar is defined to be the total numb@r Turi hine d otion. | i 4\ outout
of symbols on the right sides of all rules. In the exampl'é a L_mngt ma;:_hl_neT escrip |onr,]|_s as ”ggl’ ?n ou pu?
above, the grammar has size 14. Because the decision ver§iofi’ 'MPU* - ThiS TUMNG machiné modet for rt.apresen 9
of this problem is NP-complete, our objective is to find a trings is too powerful to be exploited effectively; in general,

' the Kolmogorov complexity of a string is incomputable. How-
Manuscript received 2002; revised Jan 2005. ever, weakening the string representation model from Turing
Moses Charikar, Ding Liu, and Manoj Prabhakaran are with the Departmaffachines to context-free grammars reduces the complexity

of Computer Science, Princeton University, 35 Olden St., Princeton, NJ 0854Q, : g
e-mail{moses,dingli,mp }@cs.princeton.edu & the problem from the realm of undecidability to mere

Rina Panigrahy is with Cisco, emaihap@cisco.com . intractability. Moreover, we show that one can efficiently

Eric Lehman, April Lehman, and abhi shelat are with CSAIL at the MaSapproximate the “grammar Comp|exity" of a String_
sachusetts Institute of Technology, Stata Center, 32 Vassar Street, Cambridge,

MA 02139, email:{e_lehman,arasala,abhi }@csail.mit.edu . .
Amit Sahai is with the Department of Computer Science, UCLA, Lo&- Pattern Recognition

Angeles, CA 90095. The smallest grammar problem is also relevant to iden-
tifying important patterns in a string, since such patterns

naturally correspond to nonterminals in a compact grammaiv approached the problem from the direction of Kolmogorov
In fact, an original and continuing motivation for work on thecomplexity [20]. Over time, however, their work evolved
problem was to identify regularities in DNA sequences [6], [Bloward data compression, beginning with a seminal paper [21]
(Interestingly, [8] espouses the goal of determining the entropyoposing the LZ77 compression algorithm. This procedure
of DNA. This amounts to upper-bounding the Kolmogorodoesnot represent a string by a grammar. Nevertheless, we
complexity of a human being.) In addition, smallest grammahow in Section VII that LZ77 is deeply entwined with
algorithms have been used to highlight patterns in musiaglammar-based compression. Lempel and Ziv soon produced
scores [13] and uncover properties of language from exampleother algorithm, LZ78, which did implicitly represent a
texts [9]. All this is possible because a string represented byt@ing with a grammar [1]. We describe and analyze LZ78 in
context-free grammar remains relatively comprehensible. Thistail in Section VI. In 1984, Welch increased the efficiency
comprehensibility is an important attraction of grammar-based LZ78 with a new procedure, now known as LZW [2].
compression relative to otherwise competitive compressitm practice, LZW is much preferred over LZ78, but for our
schemes. For example, the best pattern matching algoritporposes the difference is small.

that operates on a string compressed as a grammar is asymp\so in the 1970's, Storer and Szymanski explored a wide
totically faster than the equivalent for the well-known LZ7#ange of “macro-based” compression schemes [22], [23], [24].
compression format [14]. They defined a collection of attributes that such a compressor
might have, such as “recursive”, “restricted”, “overlapping”,
etc. Each combination of these adjectives described a different

D. Hierarchical Approximation i : _ .
: ... scheme, many of which they considered in detail and proved
Finally, work on the smallest grammar problem qualltatlvelyo be NP-hard

extends the study of approximation algorithms. Prior work on Recently, the smallest grammar problem has received in-

approximation algorithms ha_s focused on ‘flat” objects Suc(Qeasing interest in a broad range of communities. For exam-
as graphs, CNF formulas, bins and weights, etc. In contrg{e’ de Marcken'’s thesis [9] investigated whether the structure

context-free grammars as well as many real-world proble ? the smallest grammar generating a large, given body of
such as circuit design and image compression have a hiEFf '

. S . glish text could lead to insight about the structure of the
archical nature. Moreover, standard approximation technqu ﬁguage itself. Lanctot, Li, and Yang [8] proposed using the

fr:%r;fsrsrelzjn?(?rth?g?q;vsnt;frig?:e programming are not A ¥NGESTMATCH algorithm for the smallest grammar prob-
' lem to estimate the entropy of DNA sequences. Apostolico
and Lonardi [11], [25], [10] suggested a scheme that we
Il. PREVIOUS WORK call GREEDY and applied it to the same problem. Larsson
The smallest grammar problem was articulated explicitynd Moffat proposed BPAIR [7] as a general, grammar-
by two groups of authors at about the same time. Nevilbased algorithm. Most of these procedures are described and
Manning and Witten stated the problem and proposed thaalyzed in Section VI.
SEQUITUR algorithm as a solution [6], [13]. Their main focus There has also been an effort to develop algorithms that
was on extracting patterns from DNA sequences, musigabnipulate strings that are in compressed form. For example,
scores, and even the Church of Latter-Day Saints genealogikitla [14] and Shibata, et al. [26] have proposed pattern
database, although they evaluatehi®I1TUR as a compression matching algorithms that run in time related not to the length
algorithm as well. of the searched string, but rather to the size of the grammar
The other group, consisting of Kieffer, Yang, Nelson, angkpresenting it. The relatively good performance of such al-
Cosman, approached the smallest grammar problem frongy@ithms represents a significant advantage of grammar-based
traditional data compression perspective [5], [4], [3]. Firstompression over other compression techniques such as LZ77.
they presented some deep theoretical results on the imposin short, the smallest grammar problem has been considered
sibility of having a “best” compressor under a certain type dfy many authors in many disciplines for many reasons over a
grammar compression model for infinite length strings [15§pan of decades. Given this level of interest, it is remarkable
Then, they presented a host of practical algorithms includimigat the problem has not attracted greater attention in the
BIsecTION, MPM, and LONGESTMATCH. Furthermore, they general algorithms community.
gave an algorithm, which we refer to aE@UENTIAL, in
the same spirit as ERQHUITUR, but with significant defects
removed. All of these algorithms are described and analyzed in
Section VI. Interestingly, on inputs with power-of-two lengths, This paper makes four main contributions, enumerated
the BisecTIoNalgorithm of Nelson, Kieffer, and Cosman [16]Pelow. Throughout, we use to denote the length of an input
gives essentially the same representation as a binary decisifind, andm* to denote the size of the smallest grammar
diagram (BDD) [17]. BDDs have been used widely in digitay€nerating that same input string.
circuit analysis since the 1980’s and also recently exploitedl) We show that the smallest grammar generating a given
for more general compression tasks [18], [19]. string is hard to approximate to within a small constant
While these two lines of research led to the first clear factor. Furthermore, we show that aflogn/ loglogn)
articulation of the smallest grammar problem, its roots go back approximation would require progress on a well-studied
to much earlier work in the 1970’s. In particular, Lempel and problem in computational algebra.

I1l. SUMMARY OF OUR CONTRIBUTIONS

2) We bound approximation ratios for several of the besgrammars are acyclic; that is, there exists an ordering of the
known grammar-based compression algorithms. Thesenterminals” such that each nonterminal precedes all the

results are summarized below: nonterminals in its definition. These properties guarantee that
Approximation Ratio a grammar generates exactly one finite-length string.
Algorithm Upper Bound Lower Bound A grammar naturally defines axpansionfunction of the
form (X UT)* — ¥*. The expansion of a string is obtained

LZ78 O((n/logn)3) Q(n3/logn) by iteratively replacing each nonterminal by its definition until
BISECTION O((n/log n)%) Q(n%/log n) only terminals remain. We denote the expansion of a siting
SEQUENTIAL O((n/logn)i) Q(n3) by (), and the length of the expansion of a string [ay;
LONGESTMATCH | O((n/logn)?) Q(loglogn) tha}t is,[q} = <O‘>|'.(.In contrast,|«| de_notes the length of the
GREEDY O((n/ logn)g) ~137. .. ;trlnga in the traditional sense; that is, the numbgr of symbols
RE-PAIR O((n/logn)?) Q(yIogn) in the string.) For the example grammar on the first page, we

have (A) = a roseand [A] = 6. The expansion of the start
The bounds for LZ78 hold for some variants, includingymbol, (S), is the stringgeneratedby the grammar, and we
LZW. Results for MPM mirror those for BECTION. typically refer toG as a grammafor the string(sS).

The lower bound for SQUENTIAL extends to &- The sizeof a grammaiG is the total number of symbols in
QUITUR. all definitions:

3) We give new algorithms for the smallest grammar prob-
lem with exponentially better approximation ratios. First, Gl = Z e

we give a simpleO(log® n) approximation. Then we Toaea

provide a more comple® (log(n/m*)) approximation We use several notational conventions to compactly express
based on an entirely different approach. strings. The symbo| represents a terminal that appears only
4) We bring to light an intricate connection betwee@nce in a string. (For this reason, we refer|tas aunique
grammar-based compression and the well-known Lz &¥mbol) When| is used several times in the same string, each
compression scheme. appearance represents a different symbol. For examplé) |
The remainder of this paper is organized as follows. Se contains five o_listin_ct symbols and seven symbols in total.
tion IV contains definitions and notational conventions, to- Product notation is used to express concatenation, and
gether with some basic lemmas. In Section V, we establish th@rentheses are used for grouping. For example:

hardness of the smallest grammar problem in two different and (ab)® ababababab
complementary senses. Then, in Section VI, we analyze the 3

most widely known algorithms for the smallest grammar prob- Habi | = ab|abb| abbb |
lem. Following this, we propose new algorithms in Section VII i1

with approximation ratios that are exponentially better. Finall3f,
Section VIII presents some of the many interesting lines 2
research radiating from this problem.

e input to the smallest grammar problem is never specified
ing such shorthand; we use it only for clarity of exposition
in proofs, counterexamples, etc.

Finally, we observe the following variable-naming conven-
tions throughout: terminals are lowercase letters or digits,

This section introduces terminology, notation, and sonmmnterminals are uppercase letters, and strings of symbols
basic lemmas about grammars that are used in later sectic® lowercase Greek. In particular, denotes the input to

a compression algorithm, and denotes its length; that is,

A. Grammars and Strings n = |o|. The size of a particular grammar feris m, and the
size of the smallest grammar is8*. Unless otherwise stated,
all logarithms are base two.

IV. PRELIMINARIES

A grammar G is a 4-tuple(X,T",S,A) in which ¥ is a
finite alphabet whose elements are caltedminals T' is a
disjoint set whose elements are calleohterminals and S €
I' is a special nonterminal called ttstart symbal All other B. Approximation Ratio

nonterminals are callesecondaryln general, the wordymbol Qur focus is on theapproximation ratioof algorithms for

refers to any terminal or nonterminal. The last component gfe smallest grammar problem. The approximation ratio of an

a grammar, denoted, is a set ofrules of the formT" — «, algorithm A is a functiona(n) defined by:

whereT € T is a nonterminal andr € (X UT)* is a string

of symbols referred to as theefinitionof 7. a(n) = max (
Theleft side of a rulel’ — « is the symboll", and theright zex”

side of the ruleor definition of T" is the stringa. Similarly, Thus, our focus is on the performance of algorithms in the

the left side of a grammaconsists of all nonterminals on theworst case. The focus on worst-case analysis is motivated by

left sides of rules, and thdght side of a grammaiconsists

of all strings on the right sides of rules. IFor the lower bounds on &NGEST MATCH and RE-PAIR and in our

| h id h . | hardness results, the use of unique symbols in the input implies that the
n the grammars we consider, there is exactly one rulgaper size for these classes of examples grows unbounded. For the rest of

T — « in A for each nonterminal’ € I". Furthermore, all the lower bounds, however, the alphabet sizes are fixed.

grammar size for: produced byA
size of the smallest grammar far

the goal of establishing provabpiaranteesdn performance, new grammar isA. If k is even (say,k = 2j), define
and therefore establishing a fair basis for comparing algds,, — A;A; and defineA; recursively. If k is odd (say,
rithms. In addition, the worst-case analysis addresses an in= 2j + 1), define 4, — A;A;A; and again defined;
herent problem with characterizing compression performanaeursively. Whenk = 1, we are done. With each recursive
on low-entropy strings. Kosaraju and Manzini [27] point outall, the nonterminal subscript drops by a factor of at least
that the standard notions of universality and redundancy daweo and at most three symbols are added to the grammar.
not meaningful measures of a compressor's performance Bmerefore, the total grammar size|&, | + O(log k). O

low entropy strings. Our approximation ratio measure handlesLemma 2 is helpful in lower-bounding the approxima-
all cases and therefore sidesteps this issue. tion ratios of certain algorithms when it is necessary to
show that there exist small grammars for strings such as
P+ (pak) (k1)

The following lemma is used extensively in our analysis of

In_ this _subsect|on, we give some easy lemmas that highl viously-proposed algorithms. Roughly, it upper-bounds the
basic points about the smallest grammar problem. In pro mplexity of a string generated by a small grammar.

here and elsewhere, we ignore the possibility of degenerameiemma 3 fok Lemma): If a string o is generated by a

where they raise no substantive issue, e.g. a nonterminal W.%mmar of sizem. then o contains at mostmk distinct
an empty definition or a secondary nonterminal that nevglrJbstrings of Iengtr;c

appears in "fl definition. : Proof: Let G be a grammar for of sizem. For each
Le”.“ma 1:The smallest grammar for a string of length rule T — « in G, we upper-bound the number of length-
has sizel}(logn). k substrings of(T) that are not substrings of the expansion

h WP{ﬁOI:G Le;Ci ?e an ?r:rt:'traﬁ %ragr;g%m;ﬁah Yr\rqe of a nonterminal ina. Each such substring either begins at
Sho alG’ generates a string of lengt(), c) terminal inca, or else begins with betweeh and & — 1

pllefs I'lthe Cli'mﬁDsf'Tﬁ a tsectwencbe ?f Pontermlér;lrall_s :e;ursw? minals from the expansion of a nonterminabinTherefore,
as foflows. Letr; be Ihe start Symbol ot grammaf. LeLLit1 e nymber of such strings is at madat - k. Summing over

he the ponteémmslt_m thebqtefm_lluonT(ri]TL- that has the Igngest all rules in the grammar gives the upper bound.
expansion. (Break ties arbitrarily.) The sequence ends when Al that remains is to show that all substrings are accounted

nonterminall;,, defmeq only.m te_rms of terminals, IS r.eache'dror in this calculation. To that end, letbe an arbitrary length-
Note that the nonterminals in this sequence are distinct, sm/f;:gubstring of. Find the rulel’ — o such thatr is a substring

the grammar is acyclic. of (T'), and(T') is as short as possible. Thusjs a substring

| LiLk"f ?ﬁnOte thelleng;h_ of the dsfm't('jond?}' :[I.'hen :Ee of (T") and is not a substring of the expansion of a nonterminal
ength of the expansion df; is upper-bounded by; times the ., Therefore,s was indeed accounted for above. [

length of the expansion df; ;. By an inductive argument,
we find:

C. Basic Lemmas

V. HARDNESS

(] < kickeoka We establish the hardness of the smallest grammar problem
On the other hand, we know that the sum of the sizes &f two ways. First, we show that approximating the size of

the definitions ofT}, ..., T}, is at most the size of the entirethe smallest grammar to within a small constant factor is NP-
grammar: hard. Second, we show that approximating the size to within
o(logn/loglogn) would require progress on an apparently

kitka+...+kn < m difficult computational algebra problem. These two hardness

It is well known that a set of positive integers with sum a&/9uments are curiously complementary, as we discuss in
mostm has product at mosi/™/31, Thus the length of the S€ction V-C.

string generated by is O(3™/3) as claimed. O
Next we show that certain highly structured strings ar&. NP-Hardness
generated b.y small grammars. Theorem 1:There is no polynomial-time algorithm for the
Lemma 2:Let a be the string generated by gramn@l, smallest grammar problem with approximation ratio less than
and let/ be the string generated by gramn@Gig. Then: 8569/8568 unless P= NP.
1) There exists a grammar of siz€,| + |G| + 2 that Proof: We use a reduction from a restricted form of
generate; the string/5. . vertex cover based closely on arguments by Storer and Szy-
2) There exists a grammar of siz€',| + O(logk) that manski [23], [24]. LetH = (V, E) be a graph with maximum
generates the string". degree three anflE| > |V|. We can map the grapi to

Proof: To establish (1), create a grammar containing adl stringo over an alphabet that includes a distinct terminal

rules in G, all rules inGp, and the start rulés — 5,53 (denotedwv;) corresponding to each vertex € V' as follows:
whereS,, is the start symbol of7, and.S; is the start symbol

of G o =][I Gvilvi#t D* T] ot D)
For (2), begin with the gramma¢,,, and call the start vi €V vieV

symbol A;. We extend this grammar by defining nonterminals X H (#vi#v;# |)

A; with expansiona’ for variousi. The start rule of the (viv;)EE

4

There is a natural correspondence between vertex covers ofhe size of a grammar with the structure described above is
the graphH and grammars for the string. In particular, we 8|V| for the first section of the start rule, pla8/|—|C| for the

will show that the smallest grammar fer has sizel5|V| + second section, plug|E| for the third section, plud|V| for

3| E|+ k, wherek is the size of the minimum vertex cover forrules for strings of the forrg#v; andv;#, plus2|C]| for rules

H. However, the size of the minimum cover for this familyfor strings of the form#wv;#, which gives15|V|+3|E|+|C].

of graphs is known to be hard to approximate below a ratithis quantity is minimized whe@' is a minimum vertex cover.

of 145/144 unless P= NP [28]. Therefore, it is equally hard In that case, the size of the grammarlig§V| + 3|E| + k as

to approximate the size of the smallest grammardfdrelow claimed. O
the ratio:
_15|V] + 3|E| + 135k B. Hardness via Addition Chains
15|V| + 3|E| + k This section demonstrates the hardness of the smallest

grammar problem in an alternative sense: a procedure with an
g&%roximation ratioo(log n/ loglogn) would imply progress
on an apparently difficult algebraic problem in a well-studied

Since all vertices i have degree at most threé;| < 2|V/|.
Furthermore, each vertex can cover at most three edges the
of the minimum vertex coveri;, must exceed; |E| > |V].

The expression above achieves its minimum wjipis large area. .
andk is small. From the constraint&| < 2|V| andk > |V, Consider the following problem. Leks,ks,...,k, be
. positive integers. How many multiplications are required to
we get the lower bound: o1k & : .
‘ . computex”, z*2 ... a2, wherez is a real number? This
15|V +3-3|VI+ 12 GIVI) _ 8569 problem has a convenient, alternative formulation.afidition
TV 432 VI+ (V) 8568 chain is an increasing sequence of positive integers starting

- with 1 and with the property that every other term is the sum
Now we show that the minimal grammars fermust assume Lo .
of two (not necessarily distinct) predecessors. The connection

a particular structure related to the vertex coverrpf Let L . . .)
G be an arbitrary grammar that generatesSuppose that between addition chalns and ?Omp‘?“”g powers is straight-
forward: the terms in the chain indicate the powers to be

there exists a nonterminal with an expansion of some form

other than#wv;, v;#, or #v;#. Then that nonterminal eithercompmeq For exampg'éﬂ"‘;?’&.l& 22,23 1s an a.ldd'.tlon
. . chain which computes” andz*® using seven multiplications.
appears at most once it¥ or else expands to a single

i 9 23 H
character, since no other substring of two or more characters:rhe problem of computing, say, andz" using the fewest

appears multiple times iw. Replacing each occurrence c)frnultlpl|c:at|ons is closely tied to the problem of finding the

i — 9 23
this nonterminal by its definition and deleting its defining rulgmaIIESt grammar for the string = 2” | 2. Roughly

can only decrease the size 6f Thus, in searching for the speaking, a grammar far can be regarded as an algorithm for

. - computingz® and2?? and vice versa. The following theorem
smallest grammar fos, we need only consider grammars in

which every nonterminal has an expansion of the fg#m, makes these mappings precise.

vi#, Or #v;#. Theorem 2:Let T' = {k1,...k,} be a set of distinct posi-
Next, suppose gramma¥ does not contain a nonterminaltive integers, and define the strimg= %1 | 2%2 | ... | F».

with expansionfv;. Then this string must appear at least twicéet [* be the length of the shortest addition chain contairfing

in the start rule, since the two occurrences generated by el letm* be the size of the smallest grammar for the string

first product term can not be written another way. Adding @ Then the following relationship holds :

nonterminal with expansiogv; costs two symbols, but also

saves at least two symbols, and consequently gives a grammar

no larger than. Similar reasoning applies for strings of the Proof: We translate the grammar of size* for string o

form v;#. Thus, we need only consider grammars in whicimto an addition chain containing with length at mostn*.

there are nonterminals with expansioft®; andv;# for all This will establish the left inequality; < m*. For clarity, we

verticesv; in the graphH. accompany the description of the procedure with an example
Finally, let C C V' denote the set of verticeg such that and some intuition. Lef” be the set{9,23}. Theno = 2 |

G contains a rule for the substringv;#. Now suppose that 23, The smallest grammar for this string has sizé& = 13:

C is not a vertex cover forH. Then there exists an edge

(vi,vj) € E such thatG does not contain rules for either § — A|AABzx

#uv;# or #v;#. As a result, the occurrences of these strings A — BBB

generated by the second product terna ehust be represented B — zzzx

by at least four symbols in the start rule @f Furthermore,)) » .
the string#tv#v;# generated by the third product term musY/e begin converting the grammar to an addition chain by
rdering the rules so that their expansions increase in length.

be represented by at least three symbols. However, definin - - i
nonterminal with expansiosv;# costs two symbols (since hen we underline symbols in the grammar according to the
following two rules:

there is already a nonterminal with expansi#n;), but saves
at least two symbols as well, giving a grammar no larger than1) The first symbol in the first rule is underlined.
before. Therefore, we need only consider grammars such tha?) Every symbol preceded by a nonterminal or aris
the corresponding set of verticésis a vertex cover. underlined.

r <m* <4l*

Thus, in the example, we would underline as follows: The addition chain begins, 2,3,..., M — 1. Then one puts
dy, doubles itlog M times, addsi; to the result, doubles that
log M times, addsi, to the result, etc. The total length of the
A — BBB addition chain produced is at most:

S — A|AABzx

B — zxx

1
(M —1)+logn+ Omﬁ = logn + O(logn/loglogn)

Each underlined symbol generates one term in the addition log M
chain as follows. Starting from the underlined symbol, WOI’Iﬁ the expression on the left, the first term counts the fifst
leftward until the start of the definition or a unique symbol i terms of the addition chain, the second counts the doublings,
encountered. This span of symbols defines a substring whighy the third counts the incrementsdf The equality follows
ends with the underlined Symbol. The Iength of the expansi@g ChoosingM to be the smallest power of two which is at
of this substring is a term in the addition chain. In the examplgastlog n/ loglogn.
we would obtain the substrings: The M-ary method is very nearly the best possible.
v.xx,v32, BB, BBB, AA, AAB, AABx, AABux Erd'c_')s [31] s_hqwed that, in a certain sense, the shortest addition
chain containing: has length at leasbgn + log n/ loglogn
and the addition chain, 2,3, 6,9, 18, 21, 22, 23. for almost alln. Even if exponentially more time is allowed, no
Intuitively, the terms in the addition chain produced abovexact algorithm (and apparently even no better approximation
are the lengths of the expansions of the secondary nonterglgorithm) is known.
nals in the grammar. But these alone do not quite suffice.The general addition chain problemwhich consists of
To see why, note that the rul&# — ABC implies that finding the shortest addition chain containing a specified set
[T] = [A] + [B] + [C]. If we ensure that the addition chainof integersk, ..., k,, is known to be NP-hard if the integers
contains[A4], [B], and[C], then we still can not immediately k; are given in binary [32]. There is an eaé}(log(}_ k:))
add [T'] because[T] is the sum of three preceding termsapproximation algorithm. First, generate all powers of two
instead of two. Thus, we must also include, say, the tergss than or equal to the maximum of the input integers
[AB], which is itself the sum ofA] and [B]. The creation of Then form each; independently by summing a subset of
such extra terms is what the elaborate underlining procediii@se powers corresponding to 1's in the binary representa-
accomplishes. With this in mind, it is easy to verify that th&on of k;. In 1976, Yao [33] pointed out that the second
construction detailed above gives an addition chain of lengstep could be tweaked in the spirit of the-ary method.
at mostm* that contain<T'. Specifically, he groups the bits df; into blocks of size
All that remains is to establish the second inequalityog log k; —2logloglog k; and tackles all blocks with the same
m* < 4l*. We do this by translating an addition chain obit pattern at the same time. This improves the approximation
length ! into a grammar for the string of size at mosti/. ratio slightly to O(logn/loglogn).

As before, we carry along an example. LBt = {9,23}. Yao’s method retains a frustrating aspect of the naive
The shortest addition chain containifiy has lengthl = 7: algorithm: there is no attempt to exploit special relationships
1,2,4,5,9,18,23. between the integefs; each one is treated independently. For

We associate the symbal with the first term of the se- example, supposk; = 3' for i = 1 to p. Then there exists a
quence and a distinct nonterminal with each subsequent teffort addition chain containing all of the: 1, 2, 3 6, 9, 18,
Each nonterminal is defined using the symbols associated wéh - ... But Yao's algorithm effectively attempts to represent
two preceding terms, just as each term in the addition sequefésers of three in base two.
is the sum of two predecessors. The start rule consists of thélowever, even if theé:; are written in unary, apparently no
nonterminals corresponding to the terms7in separated by polynomial time algorithm with a better approximation ratio
uniques. In the example, this gives the following grammar: than Yao’s is known. Since Theorem 2 links addition chains

and small grammars, finding an approximation algorithm for

L - 3 Ty — DD the smallest grammar problem with ratiglog n/ loglogn)
s — Tw Ty — 151 would require improving upon Yao’s method.
Tis — ToTy Tos — TisTs

S — Tg | T23

C. An Observation on Hardness
The start rule has lengtB|T| — 1 < 2{*, and thel* — 1

secondary rules each have exactly two symbols on the right Ve have demonstrated that the smallest grammar problem
Thus, the total size of the grammar is at ma&t oIS hard to approximate through reductions from two different

Addition chains have been studied extensively for decad@'?blems' Interestingly, there is also a marked difference in

(see surveys in Knuth [29] and Thurber [30]). In order t§1€ tyPes of strings involved. , _
find the shortest addition chain containing a single, specifiegSPecifically, Theorem 1 maps graphs to strings with large
integer n, a subtle algorithm known as th&/-ary method alphabets and few repeated substrings. In such strings, the

gives al +O(1/ log log n) approximation. (This is apparently US€ of hierarchy does not seem to be much of an advantage.
folklore.) One writesn in a baselM, which is a power of 2: Thus, we show the NP-completeness of the smallest grammar

problem by analyzing a class of input strings that specifically
n = doMF4+diMF Tt +do M 2+ +d,_1M +d, avoids the most interesting aspect of the problem: hierarchy.

On the other hand, Theorem 2 maps addition chain problenasio as bad as:?/3. There is little hope that mapping the
to strings over a unary alphabet (plus unique symbols). Theammar to a binary string in a clever manner could offset
potential for use of hierarchy in representing such strings ssich a failure. Thus, grammar-based data compressors and
enormous; in fact, the whole challenge now is to construct approximation algorithms can both be viewed as approaches to
intricate hierarchy of rules, each defined in terms of the othethe smallest grammar problem, but they target different ranges
Thus, this reduction more effectively captures the most notali&inputs.
aspect of the smallest grammar problem. Finally, practical data compression mandates linear running

Taken together, these two reductions show that the smalléste in the length of the input string, with particular atten-
grammar problem is hard in both a “combinatorial packingfion to the specific constants hidden by asymptotic notation.
sense and a seemingly orthogonal “hierarchical structuringgfeally, a compressor should also be on-line; that is, a single
sense. left-to-right pass through the input string should suffice. Space
consumption throughout this pass should, preferably, be a
function of the size of the compressed string, not the size
of the string being compressed.

In this section, we establish upper and lower bounds on theas a result of these disconnects, one must take the results
approximation ratios of six previously proposed algorithms ff the remainder of this section with a caveat: while we
the smallest grammar problem: LZ78|9ECTION, SEQUEN- show that many grammar-based data compression algorithms
TIAL, LONGESTMATCH, GREEDY, and Re-PAIR. In addition, exhibit mediocre approximation ratios, the designers of these
we discuss some closely-related algorithms: LZW, MPM, anglgorithms were concerned with slightly different measures,
SEQUITUR. different inputs, and many practical issues that we ignore.

Although most of the algorithms in this section were orig-
inally designed as compression algorithms, we view themrgs L778
approximation algorithms for the smallest grammar problem:

Generally speaking, a good grammar-based compression alfhe well-known LZ78 compression scheme was proposed
gorithm should attempt to find the smallest possible grammRy Lempel and Ziv [1]. In traditional terms, the LZ78 algo-
generating the input string. Nonetheless, there do exist discéithm represents a string by a sequence of pairs. Each pair
nects between our theoretical study of the smallest gramnfgpresents a substring of, and is of the form(i, c), where
problem and practical data compression. 1 is an integer and is a symbol inc. If i is zero, then the

First, our optimization criteria is grammar size, whereg@xpansion of the pair is simply. Otherwise, the expansion is
the optimization criteria in data compression is the bit leng@fiual to the expansion of thieth pair followed by the symbol
of the compressed string. A grammar with a smaller size The concatenation of the expansions of all pairs.ig-or
does not necessarily translate into a smaller compression @¥ample, the following sequence :
as described in [4]. However, a grammar of size can
be represented WEtI’]l at most logm %its by assigning each (0,a) (1,0) (0,8) (2,0) (3,0) (2,)
distinct symbol a uniquelogm)-bit representation. Such arepresents the stringab b aba ba abb, where spaces are added
log m factor is small by the standards of our worst-case thew clarify the correspondence.
retical analyses, but enormous by practical data compressiolThe sequence-of-pairs representation of a string is generated
standards. by LZ78 in a single left-to-right pass as follows. Begin with

Perhaps more importantly, data compression algorithms a@i¢ empty sequence of pairs. At each step, while there is
typically designed with an eye towatthiversality(asymptot- input to process, find the shortest, nonempty prefix of the
ically optimal compression of strings generated by a finiteemaining input that is not the expansion of a pair already
state source) antbw redundancy(fast convergence to thatin the sequence. There are two cases:
optimum). Informally, strings generated by a finite-state Sourcey) |f this prefix consists of a single symbal then append
have high entropy; that is, they are compressible by only = {4 pair (0, ¢) to the sequence.

a constant factor. Thus, the main focus in the design of az) Otherwise, this prefix must be of the forme, wherea
data compressor is on high entropy strings. In fact, Kosaraju = js the expansion of some pair already in the sequence
and Manzini [27] point out that universality and redundancy (say, thei-th one) and: is a symbol. In this case, append
are not meaningful measures of a compressor’s performance e pair (i,) to the sequence.

on low entropy strings. Consequently, performance on low- . R
Py g q Y. P For a cleaner analysis, we assume that an implicit “end-of-

entropy strings is typically neglected completely. file” character is appended to the string in order to guarantee

The situation is quite _d|ff_erent when one Stu‘.j'es the WOrSKat one of the above two cases always applies. This special
case approximation ratio instead of universality and redugﬁaracter is omitted from the examples below for clarity.
dancy. If the smallest grammar for a high-entropy input string

of lengthn has size, sayp/logn, then any compressor can 1) LZ78in Grammar Terms:An LZ78 pair sequence maps
approximate the smallest grammar to withitbgn factor. The naturally to a grammar. Associate a nontermifialvith each
low-entropy strings, however, present a serious challenge. Ifpair (i,c). If ¢ is zero, define the nonterminal By — c.
input string is generated by a grammar of size, 8442, then a Otherwise, define the nonterminal to Be— Uc, whereU is
carelessly designed algorithm could exhibit an approximatidhe nonterminal associated with tligh pair. The right side

VI. ANALYSIS OF PREVIOUSALGORITHMS

of the start rule contains all the nonterminals associated wigkpansion length of all nonterminals must be equal to the
pairs. For example, the grammar associated with the examgpiee of the input. As a result, there cannot be too many

sequence is as follows: nonterminals in the grammar.
S o Xy XoXsXiXsXe Proof: Suppose that the input to LZ78 is a strlaggf
lengthn, and that the smallest grammar generatingas size
X1 = a Xz — b X5 = Xya “LetS— X X, be the start rule generated by LZ78
Xo — Xjb X4 — Xoa X — Xob m-. AL Ap g y .

First observe that the size of the LZ78 grammar is at most
Given this easy mapping, hereafter we simply regard the outp since each nonterminal; is used once in the start rule and
of LZ78 as a grammar rather than as a sequence of pairsis defined using at most two symbols. Therefore, it suffices to
Note that the grammars produced by LZ78 are of a repper-bound, the number of nonterminals in the start rule.
stricted form in which the right side of each secondary rule To that end, list the nonterminals of the grammar in order
contains at most two symbols and at most one nontermingf. increasing expansion length. Group the finst of these
Subject to these restrictions, the smallest grammar for eveonterminals, the nex@m*, the next3m*, and so forth. Let
the stringz™ has size&2(y/n). (On the other hand, grammarsy be the number of complete groups of nonterminals that can
with such a regular form can be more efficiently encoded intse formed in this way. By this definition af, we have
bits.) . . " .
The next two theorems provide nearly-matching upper and m”+2m" .. gm” + (g + 1)m” > p
lower bounds on the approximation ratio of LZ78 when ignd sop = O(g>m*).

is interpreted as an approximation algorithm for the smalleston the other hand, the definition of LZ78 guarantees that

grammar problem. each nonterminalX; expands to a distinct substring of.
Theorem 3:The approximation ratio of LZ78 is Moreover, Lemma 3 states that contains at mostn*k
Q(n?3/log n) distinct substrings of lengtlk. Thus, there can be at most

Proof: The lower bound follows by analyzing the behay?”?" Nonterminals which have expansion lengfhand at most

ior of LZ78 on input strings of the form 2m* nonterminals which have egpan_sion I_engthand SO on.
It follows that each nonterminal in thg-th group must

op = a"® /2 (pgk)ktD)? expand to a string of length at least Therefore, we have
wherek > 0. The length of this string is = ©(k?). Repeated n = [Xi]+...+[X})]
application of Lemma 2 implies that there exists a grammar > 12m* 4+ 22mF + 32 .+ gPmt

for oy, of size O(log k) = O(logn).]])

The stringoy, is processed by LZ78 in two stages. Durin@nd s0g = O ((”_/m*)l/s)- The inequality follows since we
the first, thek(k -+ 1)/2 leadinga’s are consumed and nonter-are ignoring the incompletgy + 1)-th group.
minals with expansions, aa, aaa, . . ., a* are created. During ~ Substituting this bound og into the upper bound op
the second stage, the remainder of the string is consunfftjained previously gives:
and a nonterminal with expansiariba’ is created for alli n \2/3 n \2/3
and j between0 and k. For exampleo, is represented by p=0 ((*) m*) =0 ((1 > m*>
nonterminals with expansions as indicated below: m ogm

The second equality follows from Lemma 1, which says that

a aa aaa aaaa . .
b aaaab aaaaba aaab asaabaa aab acaabaaa the smallest grammar for a string of lengtlnas siz&(logn).

ab aaaabaaaa -
ba aaaba aaabaa aaba aaabaaa aba aaabaaaa 2) LZW: Some practical improvements on LZ78 are em-
baa aabaa aabaca abaa aabaaaa bodied in a later algorithm, LZW [2]. The grammars implicitly
baaa abaaa abaaaa generated by the two procedures are not substantively differ-
baaaa ent, but LZW is more widely used in practice. For example,

The pattern illustrated above can be shown to occur in gen<—:jFaiIs usc_ad Ito er?code images i.n the the poptgriir format.h
with an induction argument. As a result, the grammar producgﬁereS“ng y, the bad strings I'ntroduced in Theorem 3 have
by LZ78 has sizeQ(k2) = Q(n?/3). Dividing by our upper a natural graphical interpretation. Below, is written in a

bound on the size of the smallest grammar proves the clait?. < 9 grid pattern usingd and® for a andb respectively.

O 0ooooooooOm00oo

EO00ORD000OmO0000

Theorem 4:The approximation ratio of LZ78 is ROO0ORO000OmO000
0 ((n/logn)2/3). EO00OE0000OmMO0000
. . . ROOOORO0O0O0OMO000

Our technigues in the following proof of Theorem 4 form EOO0OmCOOOmRO000
the basis for two other upper bounds presented in this section. ROO000Om000D0OR0000
The core idea is that nonterminals must expand to distinct moooomoooomoooo

substrings of the input. By thexk Lemma, however, there mODDUmbOOOmODod

are very few short distinct substrings of the input. Thus mo$hus, an image with colors in this simple vertical stripe pattern
nonterminals expand to long substrings. However, the totaklds a worst-case string in terms of approximation ratio. This

effect can be observed in practice on even small examplesTheorem 6:The approximation ratio of BECTION is

For example, &8 x 68 image consisting of four horizontal O(1/n/logn).

lines spaced 16 pixels apart is stored by Corel PhotoPaint, a Proof: Suppose that the input toI8CTION is a string
commercial graphics program, in a 933 byte file. When the of length n, and that the smallest grammar generating
image is rotated ninety degrees to create vertical lines instebds sizem*. Let j be the largest integer such thzt < n.

the stored file grows to 1142 bytes. Note that the size of the IBECTION grammar foro is at most
twice the number of distinct substrings generated during the
recursive partitioning process. Thus, it suffices to upper-bound
the latter quantity.

The BisecTION algorithm was proposed by Kieffer, Yang, At most one string at each level of the recursion has a length
Nelson, and Cosman [3], [16]. For binary input strings ohgat is not a power of two; therefore, there are at njcstings
length 2", the same technique was employed much earligfth irregular lengths. All remaining strings have lengthior
in binary decision fjlagrams (BDDs), a data structure used dgmei between 1 ang. We can upper-bound the number of
represent and easily manipulate boolean functions. these remaining strings in two ways. On one hangeBTION

1) The Procedure:BISECTION works on an input stringr crezlites at most one string of !egglh at most two of length
as follows. Select the largest integgrsuch that2) < |o|. 2’ » @t most four of lengtte’~=, etc. On the other hand,
Partition o into two substrings with lengthg/ and|o| — 2/. Lemma 3 says that contains at most'/* distinct substrings
Repeat this partitioning process recursively on each substrffid€ngth2‘. The first observation gives a good upper bound on
produced that has length greater than one. Afterward, crelig number of distinct long strings generated by the recursive
a nonterminal for every distinct string of length greater thap@rtitioning process, and the second is tighter for short strings.

one generated during this process. Each such nonterminal EAfiNg thi§ all together, the size of thas&CTION grammar
then be defined by a rule with exactly two symbols on th& &t most:

B. BISECTION

right. 3 (j—log) j
Example 1. Consider the stringsr = 1110111010011. 2- i+ D, w24 > 2
We recursively partition and associate a nonterminal with i=1 i=1(j—log)

each distinct substring generated as shown below:
1110111010011 S — ThTs
—_—

. n
— O(logn) + O <m bgn) +0 (Vnlogn)

S * n
= 0
11101110 10011 T, - UU Th — Usl (m logn>

T T:
1110 1110 1001 1 Uy — ViV Uy — VaVs In the second equation, we use the fact thet = Q(logn)
~— —~—

by Lemma 1. O
Uz

U
J1 10 111010 01 1 V3 — 11V, —10 V3 — 01 3) MPM: BISECTION was generalized to an algorithm
i V2 Vs called MPM [3], which permits a string to be split more than
two ways during the recursive partitioning process and allows
2) Bounds: The following two theorems give nearly-that process to terminate early. For reasonable parameters,

matching lower and upper bounds on the approximation ragerformance bounds are the same as fERTION.
of BISECTION

Theorem 5:The approximation ratio of BECTION is

Q(v/n/ logn). C. SEQUENTIAL
Proof: We analyze the behavior ofiIBECTION on input Nevill-Manning and Witten introduced thee®UITUR al-
strings of the form gorithm [6], [13]. Kieffer and Yang subsequently offered a
ok ok similar, but improved algorithm that we refer to here as
or = a(b” a) SEQUENTIAL [4].
where k> 0. This string has lengtl = 2°*. After & 1) The Procedure: SEQUENTIAL processes a string as

bisections, oy, is partitioned into2* distinct substrings of tgjjows. Begin with an empty grammar and make a single
length2*. In particular, each contains a singlewhich appears |eft-to-right pass through the input string. At each step, find
in thei-th position in thei-th substring. For example, bisectinghe longest prefix of the unprocessed portion of the input
oy twice gives four distinct stringsibbb babb bbab bbba. that matches the expansion of a secondary nonterminal, and
A routine induction argument shows that this pattern holdgpend that nonterminal to the start rule. If no prefix matches
in general foroy. Since each distinct substring generates e expansion of a secondary nonterminal, then append the
nonterminal, BSECTION produces a grammar of sif§2") = first terminal in the unprocessed portion of the input to the
Q(v/n) on inputoy. start rule. In either case, if the newly created pair of symbols
On the other hand, Lemma 2 implies that there existsa the end of the start rule already appears elsewhere in the
grammar foroy, of sizeO(k) = O(logn). The approximation grammar without overlap, then replace both occurrences by a
ratio of 2(y/n/logn) follows. C1 new nonterminal whose definition is that pair. Finally, if some

nonterminal occurs only once after this substitution, replacedit, and proceeds to consume the second occurrencég iof

by its definition, and delete the corresponding rule. exactly the same way as the first one. This process generates
Example 2. As an example, consider the input string@ nonterminal with expansion,. Notice that the(> and ©
o = zzzzzdrrrazQ. After three steps, the grammarSymbols are never added to a secondary rule.
is: S — zxx. When the nextr is appended to the start The remainder of the input, the strir;ﬂj/Q, is consumed in
rule, there are two copies of the substring. Therefore segments of lengtk + 1. This is because, at each step, the
a new rule,R; — zz, is added to the grammar and botHeadingk + 1 symbols of the unprocessed portion of the input
occurrences ofrz are replaced byR; to produce the string are of the formz**! or §; for somei. Consequently,

following intermediate grammar: the corresponding nonterminal is appended to the start rule at
each step.
§ - Rl At a high level, this is the inefficiency that we exploit. The
Ry — zx length of 5 is not a multiple of &k + 1. As a result, each copy

: of 3 is represented by a different sequence of nonterminals.
During the next two steps, the start rule expands te Now we describe the parsing /2 in more detail. The

Ry R1x<p. At this point, the expansion dk, is a prefix of . . - .
e unprocessed part o o e next wo stes consumd 5P 1 bt et s = wren e, e
zz and appendR; to S twice. y Py

Now the pair R, R, appears twice inS, and so a new is combined W|t_h the Ieadmg_ zero in the secon_d copyfo_’of
. . o and read as a single nonterminal. Thus, nonterminals with the

rule is Rs — Ry R, is added and applied: ; . X
following expansions are appended to the start rule as the first

S — RoxdRs copy of 3 is processed:
B 510 610k-1 Oubrs Sdios ... Oudyjz 2T
R2 — R1R1

] SEQUENTIAL parses the second copy@flifferently, since the
In the next stepy is consumed and nowRyz appears |gading zero of this second copy has already been processed.
twice. A new ruleR3; — Ryx is created and substitutedr thermore the finakz*~! in the second copy off is
into 5. Notice that the ruleR; only appears once after .ompined with the two leading zeroes in the third copy and
this substitution. Therefore, the occurrence B in |oad as a single nonterminal:
the definition of R3 is replaced withR, R,, and Ry is
removed from the grammar. After the next step, we have 6y _10x—1 dx—10x—2 Ok—10k—3 ... Op—10x/2—1 it

the following final output:)) .
With two leading zeros already processed, the third copy of

S — R3OR3Q is parsed yet another way. In general, an induction argument
R — zx shows that the-th copy (indexed fron®) is read as:
R3 - RlRlx 6k—j5k—j 6k—j5k—j—1 5k—j5k—j—2 5k—j6k/2—j :Ck+1

2) Bounds: The next two theorems bound the approximdN0 consecutive pair of nonterminals ever appears twice in this
tion ratio of SEQUENTIAL. Both the upper and lower boundsentire process, and so no new rules are created. Since the input

are considerably more complex than the analysis for LZ78rng containsk/2 copies of 3 and each is represented by
and BSECTION. aboutk nonterminals, the grammar generated IBRBENTIAL

has size(k?).
13 On the other hand, there exists a grammar #&qr of
Qn'/?).) size O(k). First, create a nonterminak; with expansion

~ Proof: We analyze the behavior of BRUENTIAL ON i tor eachi up to k + 1. Each such nonterminal can be
strings oy, for k > 0, defined below, over an alphabelyefineq in terms of its predecessors using only two symbols:
consisting of four symbolstz, y, ¢, ©}. X; — 2X,_1. Next, define a nonterminaD, with expansion

op = aOﬂk/2 0; for eachi using three symbolsD; — X,yXx_;. Now
it is straightforward to define nonterminals and B which

Theorem 7:The approximation ratio of EQUENTIAL is

kL ket
o = @ow @50050(?510610...5k<>5k©k expand toa and 3 respectively. Finally, using Lemma 2,
B = O0k0k OkOk—1 OkOk—2 OkOk—3 ... Okdr/a T O(log k) additional symbols suffice to define a start symbol
6 = alyah? with expansiom<»3*/2. In total this grammar has size(k).

o . Therefore the approximation ratio OEBUENTIAL is Q(k) =
As SEQUENTIAL processes the prefix, it creates nontermi- Q(n'/3) 0

nals for the strings:?" for eachi from 1 to log(k +1), a non-

terminal with expansion:**1, a nonterminal with expansion 3) Irreducible GrammarsOur upper bound on the approxi-
0; for eachi from 0 to k, and some nonterminals with shortemation ratio of EQUENTIAL relies on a property of the output.
expansions that are not relevant here. With regard to the third particular, Kieffer and Yang [4] show thatEQUENTIAL
assertion, note thatERUENTIAL parses the first occurrenceproduces arnrreducible grammar; that is, one which has the
of the stringd; in some particular way. It then consumes théollowing three properties:

10

(I11) All non-overlapping pairs of adjacent symbols of the Identify 2m/9 distinct, non-overlapping pairs of adjacent
grammar are distinct. symbols in the irreducible grammar that are guaranteed to exist
(I12) Every secondary nonterminal appears at least twice by Lemma 5. Note that at mo&t— 1 pairs can expand to the
the right side of the grammar. same lengthe substring ofo. To see why, suppose there are
(13) No two nonterminals in the grammar have the sameor more pairs that expand to represent the same lehgth-
expansion. substring ofc. The first nonterminal in each such pair must
In upper-bounding the approximation ratio cf@UENTIAL, ~€Xpand to a string with length between 1 dne 1. Hence by
we rely on properties of irreducible grammars established ffgeonholing, there must exist two paitsl” and X'Y" such
the following two lemmas. that (U) = (X) and (V) = (Y). Since all pairs are distinct,
Lemma 4:The sum of the lengths of the expansions of affitherl/ # X or V. # Y. In either case, we have two distinct
distinct nonterminals in an irreducible grammar is at ntost Symbols with the same expansion, which violates (13).
(This result also appears as equation 9.33 in Appendix BLiSt the pairs in order of increasing expansion length and

of [5].) group the firstl - 2m* of these pairs, the next- 3m*, etc.
Proof: Let S be the start symbol of an irreducible€t ¢ be the number otompletegroups formed in this way.
grammar for a string of length, and letRy, ..., Ry be the Then we have:

secondary nonterminals. Observe that the sum of the expans{qgg ‘L g.gm* . Dim* 1. " 2m
lengths of all symbols on the left side of the grammar must be m’+2:3m+. g (g)m+(g+1)-(g+2)m” > 9
equal to the sum of the expansion lengths of all symbols Nhd som — O(¢*m*). Lemma 3 implies that contains at
the right side of the grammar. Furthermore, every second';l;ry '

. . . . ostm*k distinct substrings of lengtk. As in Theorem 4,
nonterminal appears at least twice on the right side by (I N : .

) t mostm*k(k — 1) pairs have an expansion of length
Therefore, we have:

Consequently, each pair in theth group expands to a string
[S]+ [Ri] + ...+ [Ri] > 2([R1] + - .. + [R]) of Iength atlleasj+1. Thus, the total length of the expansions
of all pairs is at least - 22m* +2-32m* +...+g(g+1)*m*.
Adding [S] — [R1] +. ..+ [Ry] to both sides of this inequality The 2m,/9 pairs constitute a subset of the symbols on the
and noting tha[S] = 2n finishes the proof. T right side of the grammar. The total expansion length of all
Lemma 5:Every irreducible grammar of size: contains symbols on the right side of the grammar is equal to the total
at least2m/9 distinct, non-overlapping pairs of adjacenexpansion length of all symbols on the left. Lemma 4 upper

symbols. bounds the latter quantity t8n. Therefore, we have:
Proof: For each rule, group the first and second symbols

on the right side to form one pair, the third and fourth for 1-22m* +2-3%m* + ...+ g(g+1)>m" < 2n
a second pair, and so forth. If a rule has an odd number'gg aresult,g = O ((n/m*)1/4). As before, substituting

symbols, ignore the last one. . } ; _ :
We must show that only a few symbols are ignored in th|t£]IS upper-bound oy into the upper-bound om obtained

7 H H _ *\3/4, %) _
process. In particular, we ignore at mesf'3 lonely symbols, prewomljsly 'g}‘j"ef the theoremm = O((n/m*)*/tm*) =
which appear alone on the right side of a rule. Each such rt%(n/ ogn)>m*). =
accounts for three distinct symbols in the grammar: one in the
rule’s definition and at least two for the occurrences of the. Global Algorithms

nonterminal defined by the rule. Thus, there can be at MoStry g remaining algorithms analyzed in this section all belong

mf suchlor|1ely SY?ZOIS‘ bol he righ | to a single class, which we refer to gkobal algorithms We
9 mong rules with 2 or more symbols on the right, at eaﬂ?per bound the approximation ratio of every global algorithm
5 of those symbols are in pairs. (The worst case is a rule Qy 0 ((n/ log n)g/g) with a single theorem. However, our

my _ 4m
Iength3.) ThL,JS at Ieasl%(m - %) n T,SymbOIS must have |0 et bounds are all different, complex, and weakdg n)).
been pa2|red IN our process. Pqttlng th'_s all together, there ffBreover, the lower bounds rely on strings over unbounded
at least<g* non-overlapping pairs of adjacent symbols. [alphabets. Thus, it may be that every global algorithm has an

4) Upper Bound:We can now upper-bound the approxima€Xcellent approximation ratio. Because they are so natural and
tion ratio of SEQUENTIAL by using the fact that SQUENTIAL ~ Our understanding is so incomplete, global algorithms are one
always produces an irreducible grammar. of the most interesting topics related to the smallest grammar

_ _ __ problem that deserve further investigation.
Theorem 8:Every irreducible grammar for a string is

O((n/logn)3/*) times larger than the size of the smallest 1) The Procedure:A global algorithm begins with the

grammar for that string. grammarS — ¢ . The remaining work is divided into rounds.
Corollary 1: The approximation ratio of SQUENTIAL is During each round, one selectsnzaximal stringy. (Global
O((n/logn)3/4). algorithms differ only in the way they select a maximal string

Proof: (of Theorem 8) This argument closely follows thatn €ach round.) A maximal string has three properties:
of Theorem 4. As before, let» be the size of an irreducibléM1) It has length at least two.
grammar generating a strirgof lengthn, and letm* be the (M2) It appears at least twice on the right side of the grammar
size of the smallest grammar. without overlap.

11

(M3) No strictly longer string appears at least as many timesLemma 7:Every grammar produced by a global algorithm
on the right side without overlap. is irreducible.

After a maximal stringy is selected, a new ruld — Proof: We must show that a grammar produced by a
~ is added to the grammar. This rule is then applied gjobal algorithm satisfies the three properties of an irreducible
working left-to-right through the right side of every othe@fammar. _ _ _
rule, replacing each occurrence ofby the symbolT. The (11). First, note that all non-overlapping pairs of adjacent

algorithm terminates when no more maximal strings exist. symbols on the right side are distinct since a global algorithm

E le 3 A le illustrates th ¢ does not terminate until this condition holds.
xampee . An example Tiustrales the range of move 12). We must show that every secondary nonterminal appears
available to a global algorithm. (Throughout this sectio

i the inout stri = abcabeabeabeaba f t least twice on the right side of the grammar. This property
we will use e Input Stingr = abeabeabeabeada 1014 5154 an invariant maintained during the execution of a global
our examples.) We initially create the gramméir —

be abe abe abe ab a wh dded for clarity 92" thM:
ave abe abe ase ab a WNEre spaces are adaed 1or clarty. o property holds vacuously for the initial grammntar—
The maximal strings areb, abc, and abcabe. Suppose

: ! . o. Suppose that the property holds for a gramr@awhich
that we select the maximal string, and introduce the has been generated by a global algorithm, and then we obtain
rule T'— ab. The grammar becomes:

a new grammars’ by introducing a new ruld’ — ~ where

S — TeTeTeTeT a ~ is a maximal string. By the definition of maximal string,
the nonterminall’ must appear at least twice on the right side
of G’. If v contains only terminals or nonterminals which

Now the maximal strings ar&c andT¢Tc. Suppose that aPpear twice on the right-side 6¥, then the invariant clearly
we selectTcTc. Then we add the rul&/ — T¢Te, and holds for G’. Suppose, by contradiction, that contains a
the definition ofS becomesS — U U T a. Now the only nonterminalV which appears only once on the right side of
maximal string isTc. Adding the ruleV — Tec yields G'. LetV — 3 be the definition oft” in G’. This implies that

T — ab

the final grammar: V' only appears in the definition @, and therefore the string
[occurs exactly as many times-asn G. Sincey is maximal,
S - UUTa it must have length at least two, and therefdr¢ > [5].
T ab In particular, this implies that during the step in which the
rule for V' was introduced, the intermediate grammar at that
v —- vy point contained a strictly longer string which appeared exactly
V. — Tc the same number of times, which contradicts the assumption

that G has been produced by a global algorithm. (13). Finally,
2) Upper Bound:The approximation ratio of every globalwe must show that distinct symbols have distinct expansions,
algorithm isO((n/ log n)/#). This follows from the fact that ynless the start symbol expands to a terminal. Once again,
grammars produced by global algorithms are particularly welke use an invariant argument. The following invariants hold
conditioned; not only are they are irreducible, but they posse&g$ every secondary rul&/ — ~ in the grammar maintained
an additional property described in the lemma below. during the execution of a global algorithm:

Lemma 6: Every grammar produced by a global algorithm 1) The stringy appears nowhere else in the grammar.
has the following property. Let: and 3 be strings of length %) The length ofy is at least two.
at least t"‘_’o on the right side. [f) = (5), thena = §. Both invariants hold trivially for the initial grammaf — o.
Proof: We show that this is actually an invariant property nnose that the invariants hold for every rule in a grammar

of the grammar maintained throughout the execution of @ 5nd then we obtain a new gramm@ by introducing the
global algorithm. The invariant holds trivially for the initial ,,1e 77 _, 5.

grammarS — . So suppose that the invariant holds for First we check that the invariants hold for the new rule.
grammarG, and then grammag’ is generated fronG: by The strings can not appear elsewhere in the grammar; such
introducing a new rulel’ — ~. Let o’ and ' be strings ap jnstance would have been replaced by the nonterrfinal
of length at least two on the right side & such that Furthermore, the length of is at least two, sinceS is a
(o) = (#'). We must show that’ = 5. maximal string.

There are two cases to consider. First, suppose that neithexext, we check that the invariant holds for each tiile- /
o' nor 8’ appears iny. Thena’ and 3" must be obtained from j, G’ that corresponds to a rulé — ~ in G. If 4/ does not
non-overlapping strings: and 3 in G such that{a) = (&') contain7, then both invariants carry over fro. Suppose
and (8) = (f). Since the invariant holds fof, we have that ' does containl’. The first invariant still carries over
o = . But thena and$ are transformed the same way whefyom . The second invariant holds unleds= ~. However,
the ruleT" — is added; that is, corresponding instances @fnces is a maximal string, that would imply that appeared
the stringy within o and 3 are replaced by the nonterminalyt |east twice inG, violating the first invariant.
T. Thereforeq’ = . Otherwise, suppose that at least one of The third property of an irreducible grammar follows from
o or 3" appears iny. Then neither’ nor 3’ can contain’. these two invariants. No secondary nonterminal can expand to
Therefore, both/ and 3" appear in grammaé:, where the 3 terminal, because the second invariant implies that each sec-
invariant holds, and se’ = 3’ again. T ondary nonterminal has an expansion of length at least two. No

12

two nonterminals can expand to the same string either; theiecution of LONGESTMATCH, we can replace each nonter-
definitions have length at least two by the second invariamhinal on the right by a unique symbol. This does not alter
and therefore their expansions are distinct by Lemma 61 subsequent behavior, since no rule containing a nonterminal
] L . will ever be introduced anyway. The example grammar from
. The_orem 9:The approximation ratio of every global algo'the start of this section can be transformed in this way into
fithm is O ((n/ log n)*/?). the following:

Proof: This argument is similar to the upper bound on

irreducible grammars and LZ78. Suppose that on inpuaf S — |laba

lengthn, a global algorithm outputs a gramm@r of sizem, T - abe abe

but the smallest grammar has siz€'. First note thatG is

irreducible by Lemma 7. Furthermore, we can append the definitions of secondary rules

As before, list2m/9 distinct, non-overlapping pairs of {0 the start rule (as long as they are separated by unique
adjacent symbols i; (guaranteed to exist by Lemma 5) inSymbols), and then delete all secondary rules. Segments of the
order of increasing expansion length. This time, group tisgle that are between unique symbols can be rearranged within
first 2m* pairs, the nex8m*, and so forth so thaj complete the string as well. Finally, we can delete unique symbols at
groups can be formed. Therefore, we hawe* +3m* +...+ the start and end of this rule and merge consecutive unique
(g +1)m* > 2m/9 which impliesm = O(g*m*). symbols. Transforming the example in this way gives:

Lemma 6 implies that every pair expands to a distinct
substring ofo. With Lemma 3, this implies every pair in the
th group expands to a string of length at leastl. As before, We refer to this three-step simplification procedurecas-
the total length of the expansions of all pairs must be at leastlidatinga grammar. In analyzing the behavior obNGEST
22m* +3°m* + ...+ ¢?>m* < 2n . The upper bound follows MATCH on an input string, we are free to consolidate the
from Lemma 4. Thereforeg = O ((n/m*)/?). Substituting grammar at any point to simplify analysis; the subsequent
this bound ong into the upper bound omn and applying behavior of the procedure is unchanged.

Lemma 1 gives the theoremm = O((n/m*)*3m*) = 1) Lower Bound:

2/3,,,% . . .
O((n/logn) m)- . _ Theorem 10:The approximation ratio of QNGEST
In the following sections, we describe three natural globg} \+~,, is Q(loglogn)

algorithms. The preceding theorem provides an upper bound o ¢ \ve analyze the performance 0bNGESTMATCH

on the approximation ratio for all of them. Below, we establis:Bn a stringo,, which consists ofi + 2 segments that are
a weak lower bound on the approximation ratio for each Orépeparated by Llniques First. define

individually.

S — abalabe abe

y 22" 2 22 2 if ais even
b — a a+1 a+2 b .
E. LONGESTMATCH .21 2 22 2 2% otherwise

Kieffer and Yang [5] proposed thedNGESTMATCH pro- s 4 8 16 32 64 198
cedure, a global algorithm in which one always selects the" e?am‘p_le;yr[]w] —ry Ty q Z xh ?/h ' ¢
longestmaximal string. In our running example, the first ruld\OW: for i in the ranged to k& — 1, define theith segment o
added isT" — abe abe ok @S Y[i,i+2i—1] Wherej is the largest possible value such

. > . k k
LONGESTMATCH has two elegant features that simplifythati +2’ < k. The final two segments are andy* . For

analysis of its behavior: example,
1) Noh rul_(;:-j is ever introduced with a nonterminal on the ¢, = Yo 1 vs |29 |6 | van |58 |
right side. Yoo |78 [Vs | V0.9 | w02 | yt0%

2) Each nonterminal created appears in the final grammar.
If the first principle were violated, and a rule with a nontermiwhich expands to the following string (with indentation and
nal X on the right was introduced, then the definition of théne breaks added for clarity):

nonterminalX could not have been the longest maximal string,; 2 g4 48 16 32 64 4128 |
when it was created, which contradicts the definition of the 2 ;4 8 ;16 32 ;64 128 ;256 |
algorithm. The second principle follows from the first; since gt oy g6 B2 64 128 4256 512
every new rule has only terminals on the right, nonterminals y® g6 32 64 |
are only added to the grammar over the course the procedure g6 32 g1 128 |
and never eliminated. y32 g0t 4128 4250 |
The second principle offers a simple way to lower bound g0t Y128 4256 4512 |
the size of a grammar generated bpNGEST MATCH; we Y128 4256 |
need only sum up the number of nonterminals created over 2256 P12
the course of the procedure. Y12 |
The first principle allows one to simplify the grammar 21024 |
maintained during the execution obINGESTMATCH without 31024

altering the subsequent behavior of the algorithm. During the

13

32 JJ64 128 ,.256 ,,512.

We analyze how bNGESTMATCH processes this string. (3 o) = y® z'¢ Y128 2256 y

Observe that in the example, the longest matchyis; =

<

64 128
204 128 2256 4512 In general, the longest match in, is ? - §32P gl - §X256
always thesecondargest segment of the form,, ,_1j. After P2 - X16Pl 52 - 51Y512
this rule is added and the grammar rewritten, the next longest PB - vop 2 3. 77 P2
4 3

match is the third longest segment of the form 1), (7(s,9]
in our example) which is wholly contained in the first longestNow we can define nonterminals corresponding to the de-
match. In the next round, the longest match is the fourtired segments; ;; in terms of these “prefix” and “suffix”
longest segment, and so forth. A{;fgg_l; roundgskgf this type, nonterminals as follows:
:)hoein? e;(r:;\,\éoralr%rr]‘r?e?rs tism:;c?;lsows (abt?rr(]e(\j/igtioné 'io\r:trtgtljsuced Gpeo) — B Cun = P

: Gps) — D252 Gl — P1S3

above are used for clarity):
In this way, each nonterminal corresponding ta;g; in oy,

S = yon s 1esTt [vse e | is defined using a constant number of symbols. Therefore,
’ ’ ’ ’ ' defining all k& such nonterminals require®(k) symbols.
T T Ts | TyTy | T5T:
Yes [T [yey | T2 | T Toly | ToTs We complete the grammar far, by defining a start rule

.64 128 . .

I — 27y ™D containing anothe© (k) symbols. Thus, the total size of the
T, — 2%°%T3 grammar isO (k).
T, — y°'2 Therefore, the approximation ratio fOlONGESTMATCH is
T, — 2512 Q(log k). Since the length of;, is n = ©(k2*), this ratio is

* Q(loglogn) as claimed. O

and after consolidating the grammar, we obtain
F. GREEDY
S2 = Mo lyns [es [se [| Apostolico and Lonardi [11], [25], [10] proposed a variety

512 | 4512 of greedy algorithms for grammar-based data compression.

The central idea, which we analyze here, is to select the
The critical observation is that the consolidated grammataximal string that reduces the size of the grammar as much
is the same as the initial grammar for input string. as possible. For example, on our usual starting grammar, the
After another succession of rounds and a consolidation, t&t rule added isI" — abe, since this decreases the size of
definition of the start rule becomess, and theno;, and the grammar by 5 symbols, which is the best possible.
so forth. Reducing the right side of the start rule frem
to 0;_1 entails the creation of at leaglogi| nonterminals.
Since nonterminals created byoNGESTMATCH are never 3logb

eliminated, we can lower bound the total size of the grammar Profofr:] V\]{e conmder:he Eehawor OJBEEDY on an input
produced on this input by: string of the formo,, = 2", wheren = 5= .

GREEDY begins with the gramma$ — oj. The first rule

Y[5,8] |V[6,7] |’Y[7,8] |'7[8,8] | @

Theorem 11:The approximation ratio of €EeDy is at
least21°g3 — 1.137.. ..

k added must be of the forfi — x¢. The size of the grammar
Z llogi] = Q(klogk) after this rule is added is then- |n/t| 4+ (n mod t) where the
i=1 first term reflects the cost of definirB, the second accounts

) for the instances df’ itself, and the third represents extraneous
On the other hand, there exists a grammar of §i&) that ,»s This sum is minimized when = n!/2. The resulting
generatesr;,. What follows is a sketch of the constructiongrammar is:
First, we create nonterminal§?’ andY?' with expansions:?' -
andy?' respectively for alki up tok. We can define each such S — T
nonterminal using two symbols, and so orf}(k) symbols 52° 71
are required in total.

Then we define a nonterminal corresponding to each segjnce the definitions of and7" contain no common symbols,
ment ofs;.. We define these nonterminals in batches, whereng can analyze the behavior ofREEDY on each indepen-
batch consists of all nonterminals corresponding to segmefgntly. Notice that both subproblems are of the same form
of o, that contain the same number of terms. Rather than dks the original, but have size— 1 instead ofk. Continuing
scribe the general procedure, we illustrate it with an exampi®.this way, we reach a grammar wittf nonterminals, each

Suppose that we want to define nonterminals correspondingigfined by five copies of another symbol. Each such rule is
the following batch of segments . transformed as shown below in a final step that does not alter
the size of the grammar.

T — =z

Ys6] | Va7 |8 | V69 | X — X'X'Y
X = YYyyy = o _ U0

This can be done by defining the following auxiliary non-
terminals which expand to prefixes and suffixes of the strifiherefore, REEDY generates a grammar fo, of size5 x 2F.

14

On the other hand, we show that for allz™ has a grammar
of size3logs(n) + o(logn). Substitutingn = 52" then proves
the theorem.

Write n as a numeral in a base = 37, wherej is a
parameter defined later: = dob® + dib' ' + dob? 2 + ... +

Theorem 12:The approximation ratio of BPAIR is
Q(y/logn).

Proof: Consider the performance ofERPAIR on input
strings of the form:

1 2vVEk w-1

dal! + o = 1L T e
The grammar is constructed as follows. First, create a U i=0
w= -

nonterminalT; with expansionz® for eachi betweenl and
b — 1. This can be done witl - b = 2 - 37 symbols, using Whereb,, ; is an integer that, when regarded ak-hit binary
rules of the formT,,; — T,z. Next, create a nonterminalnumber, has a 1 at each positigrsuch thatj =i (mod w).

Uy with expansionz® via the rule Uy — Ty,. Create (Position 0 corresponds to the least significant bit.) On such
a nonterminalU; with expansionz@?*d1 by introducing an input, RE-PAIR creates rules for strings ofs with lengths
intermediate nonterminalsZ; which triples Uy, Z, which that are powers of twoX; — zz, X; — X1 X3, ...

triples Z;, and so onj times, and then by appendirg, : At this point, each run ofz’s with length b, ; in oy is
represented using one nonterminal for each 1 in the binary

Z1 — UgUolUo representation of,, ;. For example, the beginning of,; and
Zy — W17, the beginning of the resulting start rule are listed below:
016 — 1‘0001000100010001 | mOOlOOOlOOOlOOOlO |
Zj N Zj—lzj—lzj—l xOlOOOlOOOlOOOlOO | xlOOOlOOOlOOOlOOO |
mlOOOOlOOOOlOOOOl | xOOOOlOOOOlOOOOlO |
U1 — Zdel
)) o) S — X12X8X4I | X13X9X5X1 |
This re_quwes23j + 2 symbols. Similarly, creatd/, with X14X10X6X2 | X15X11X7X3 |
expansionz@? tdib+d2 gnd so on. The start symbol of the Xi5X10 X5 | X11X6X) |

grammar isU;. The total number of symbols used is at moshote that no other rules are introduced, because each pair of

2.3/ 4+ (37 +2)-t 2.3/ 4+ (3j +2) -logyn adjacent symbols now appears only onc&-RIR encodes
each string ofc’s usingQ(v/k) symbols. Since there afe(k)
such strings, the size of the grammar producef?(is3/2).
On the other hand, there exists a grammar of 6izk) that
generatesy. First, we create a nonterminal; with expansion
x? for all j up tok— 1. This requiresO(k) symbols. Then for

; 2
2.3 +3log3n+glog3n

The second equality uses the fact that 37. Setting j
1 logg logs n makes the last expressidhogs(n) + o(logn

~—

as claimed. - eachw we create a nonterminds,, o for 2= usingO(Vk)
of the X; nonterminals, just as RPAIR does. However, we
G. RE-PAIR can then define a nonterminal for each remaining string'of

Larsson and Moffat [7] proposed theERPAIR algorithm.
(The byte-pair encoding (BPE) technique of Gage [34]

based on similar ideas.) Essentially, this is a global algorith
in which the maximal string chosen at each step is the oné
which appears most often. In our running example, the firs

rule added isl” — ab, since the stringib appears most often.

using only two symbolsB,, ; — B i—1Buy.i—1, for a total of
(k) additional symbols. Finally, we expeii{k) symbols on
astart rule, which consists of all the,, ; separated by unique
mbols. In total, the grammar size¥k) as claimed.
t 10 complete the argument, note that= |o| = O(Vk2*
nd so the approximation ratio is no better th@an/k)

~—

a

O

VIogn).

There is a small difference between the algorithm original@(
proposed by Larsson and Moffat and what we refer to here
as Re-PaIR: the original algorithm always makes a rule for VII. NEW ALGORITHMS
the pair of symbols that appears most often without overlap,In this section, we present a simp[é(log3 n) approx-
regardless of whether that pair forms a maximal string. Fanation algorithm for the smallest grammar problem. We
example, on inputtyzzyz, the original RE-PAIR algorithm then give a more complex algorithm with approximation ratio
generates the following grammar: O(logn/m™*) based on an entirely different approach.

S —-UU U—zV V —yz

o . _ _ A. AnO(log®n) Approximation Algorithm
This is unattractive, since one (_:ould _re_p_lace the smgle €10 begin, we describe a useful grammar construction, prove
currence of the nontermindf” by its deflmtl(_)n and obtain a one lemma, and cite an old result that we shall use later.
ST“a”er grammar. lndeed’_ERPA'R’ as described here, would The substring constructiogenerates a set of grammar rules
give the smaller grammar: enabling each substring of a string = z;...z, to be
S > UU expressed with at most two symbols.

The construction works as follows. First, create a nontermi-
The original approach was motivated by implementation efiiral for each suffix of the string ...z) and each prefix of
ciency Issues. Thy1...1p, Wherek = [£]. Note that each such nonterminal

U — zyz

15

can be defined using only two symbols: the nonterminal fatrings and want to find the shortest superstring; that is, the

the next shorter suffix or prefix together with one symbalhortest string that contains each string in the collection as a

x;. Repeat this construction recursively on the two halves sfibstring. The procedure works greedily. At each step, find

the original string,z; ...z, and x4 ...x,. The recursion the two strings in the collection with largest overlap. Merge

terminates when a string of length one is obtained. Thikese two into a single string. (For exampléaa and aaac

recursion hasog p levels, andp nonterminals are defined athave overlapaa and thus can be merged to forabaaac.)

each level. Since each definition contains at most two symbdRepeat this process until only one string remains. This is the

the total cost of the construction is at m@stlog p. desired superstring, and Blum et. al. proved that it is at most
Now we show that every substring = z;...z; of n is four times longer than the shortest superstring.

equal to (AB), where A and B are nonterminals defined

in the construction. There are two cases to considerx IfB The Algorithm

appears entirely within the left-half af or entirely within

the right-half, then we can obtaia and B from the recursive In this algorithm, the focus is on certain sequences of

construction onz; ...z OF Ty . ..x,. Otherwise, letk = substrings of. In particular, we construdbg n sequences§’,,,
[2] as before, and let be the nonterminal fo; ...z, and Cn/2, Cnjas - - C2, Where the sequendg, consists of some
let B be the nonterminal fog; .. . z;. substrings of that have length at most These sequences are
For examp|e’ the Substring construction for the Stnmg; defined as follows. The sequen€t is initialized to consist of
abede fgh is given below: only the stringo itself. In general, the sequencg, generates

the sequence&’;,, via the following operations, which are

Cr—d Cy—cCy Cy—bCy C4—aly illustrated in the figure that follows.

Dy —e Dy — Dif Ds— Dyg Dy— Dsh

E, b Ey—aE F—c Fy — Fyd 1) Use Blum.’s greedy A.f—gpproximatipn' algorit.hm t.o form
Gr—f Gy—eGi Hi—g Hy — Hyh a superstringy, c_onta_lnlng all the_dlstlnct_strmgs @k._
2) Cut the superstring; into small pieces. First, determine
With these rules defined, each substring d@icdefgh is where each string i€, ended up insidey,, and then
expressible with at most two symbols. For examplefg = cut py, at the left endpoints of those strings.
(C1Ds3). In the next lemma, we present a variation of Lemma 3 3) Cut each piece qfy, that has length greater than2 at
needed for the new algorithm. the midpoint. During the analysis, we shall refer to the

Lemma 8:Leto be a string generated by a grammar of size cyts made during this step astra cuts
m. Then there exists a string, of length at mostmk that
contains every length-substring ofo.

Proof: We can constructs, by concatenating strings
obtained from the rules of the grammar of size For each
rule, T — «, do the following:

1) For each terminal iny, take the lengthk substring of

(T') beginning at that terminal.

The sequencé€’,, is defined to be the sequence of pieces
of pr generated by this three-step process. By the nature of
Blum’s algorithm, no piece of, can have length greater than

k after step 2, and so no piece can have length greater than
k/2 after step 3. Thus(/» is a sequence of substrings of

that have length at mogt/2 as desired.

2) For each nonterminal im, take the lengti2k — 1) Begin with the sequence of strings C, :
substring of(T") consisting of the last character in the
expansion of that nonterminal, the precedihg— 1 | ||:| | T | | | | |
characters, and the following— 1 characters. Step 1: Overlap these strings greedily to form a superstring p, .
In both cases, we permit the substrings to be shorter if they ! L
are truncated by the start or end @f). | I } E‘ = |
Now we establish the correctness of this construction. First, Step 2: Cut p, at the left endpoint of each constituent string.

note that the strings;. is a concatenation of at most strings . . —
of length at mosRk, giving a total length of at mostm#k as L A GE—- |
claimed. Next, lety be a lengths substring ofo. Consider

Step 3: Cut pieces with length greater than k/2 at the midpoint.

the ruleT — « such that(T") containsy and (T') is as short (Cuts made at this step are called extra cuts.)
as possible. Eithey begins at a terminal of, in which case . . — _[/
it is a string of type 1, or else it begins inside the expansion [g L__f i |
of a nonterminal inc and ends beyond, in which case it is The resulting sequence of pieces is C,:
contained in a string of type 2. (Note thaican not be wholl

g of ype 2. (Note / (o]] [B] =]

contained in the expansion of a nonterminakinotherwise,

i i i ach string in Ci (e.g., T) is the concatenation of consecutive strings
we would have selected that nonterminal for con5|derat|on|$] Cros (V. W, X)'plus & prefix of the following string (v). This prefix is

instead of7".) In either casey is a substring ofj;; as desired. jtself a concatenation of consecutive strings in C,, plus the prefix of
O the following string, etc.

Our approximation algorithm for the smallest grammar
problem makes use of Blum, Jiang, Li, Tromp, and Yan- Now we translate these sequences of strings into a grammar.
nakakis’ 4-approximation for the shortest superstring proe begin, associate a nonterminal with each string in each
lem [35]. In this procedure, we are given a collection ofequenceC’. In particular, the nonterminal associated with

16

the single string inC,, (which is o itself) is the start symbol nonterminal with a definition of lengti®(logn). This gives

of the grammar. O(m*log®n) symbols in total. On the other hand, for each
All that remains is to define these nonterminals. In doingequence of stringé’;,, we apply the substring construction

so, the following observation is key: each stringGh is the on the corresponding sequence of nonterminals. Recall that

concatenation of several consecutive string€’jn, together this construction generat@p log p symbols when applied to

with a prefix of the next string irCy, . This is illustrated a sequence of length This creates an additional

in the figure above, where the fate of one string (h

(shaded and marked’) is traced through the construction

of Cy 2. In this case[T" is the concatenation of, W, X, symbols. Therefore, the total size of the grammar generated

and a prefix ofY. Similarly, the prefix ofY is itself the py this algorithm isO(m* log® n), which proves the claimQO
concatenation of consecutive stringsdh,, together with a

prefix of the next string inCj, /4. This prefix is in turn the . L .
concatenation of consecutive stringsdh s together with a C. AnO(logn/m")-Approximation AIgonthm
prefix of the next string inCy s, etc. As a result, we can We now present a more cqmpl_ex solution to the smallest
define the nonterminal corresponding to a stringClp as a grammar problem with approximation rati®(log n/m*). The
sequence of consecutive nonterminals fr6fy)., followed by description is divided into three sections. First, we introduce a
consecutive nonterminals frof, ,,, followed by consecutive variant of the well-known LZ77 compression scheme. This
nonterminals fromCy, /s, etc. For example, the definition @f Serves two purposes: it gives a new lower bound on the
would beginT — VWX ... and then contain sequences o$ize of the smallest grammar for a string and is the starting
consecutive nonterminals froi, 4, Cy /s, etc. As a special point for our construqion of a small grammar._Second, we
case, the nonterminals corresponding to string€incan be introduce balanced binary grammars, the variety of well-
defined in terms of terminals. behaved grammars that our procedure employs. In the same
We can use the substring construction to make these defffection, we also introduce three basic operations on balanced
tions shorter and hence the overall size of the grammar smalfipary grammars. Finally, we present the main algorithm,
In particular, for each sequence of strings, we apply Which translates a string compressed using our LZ77 variant
the substring construction on the corresponding sequenceild® @ grammar at mosO(logn/m*) times larger than the
nonterminals. This enables us to express any sequenceSdgllest.
consecutive nonterminals using just two symbols. As a result,
we can define each nonterminal corresponding to a stripg An LZ77 Variant
in C% using only two symbols that represent a sequence of
consecutive nonterminals frodi, /,, two more that represent
a sequence of consecutive nonterminals fiop,, etc. Thus,

O((logn) - (m*logn)log(m*logn)) = O(m*log®n)

We begin by describing a flavor of LZ77 compression [21].

We use this both to obtain a lower bound on the size of the

every nonterminal can now be defined witl{log) symbols smallest grammar for a string and as the b_a5|s for generating
ik a small grammar. In this scheme, a string is represented by a

on the right. sequence of characters and pairs of integers. For example, one
Theorem 13:The procedure described above is an q P gers. pie,

O(log3 n)-approximation algorithm for the smallest gramma?OSSIble sequence 1s.
problem. ab(1,2)(2,3) ¢ (1,5)

Proof: We must determine the size of the grammar .))
generated by the above procedure. In order to do this, we m{i§ LZ77 representation can be decoded into a string by
first upper-bound the number of strings in each sequéfice worklng left-to-right through the sequence according to the
To this end, note that the number of stringgip, is equal to following rules:
the number of strings i, plus the number of extra cuts made « If @ characterc is encountered in the sequence, then the
in step 3. Thus, given that,, contains a single string, we can next character in the string is
upper-bound the number of strings @, by upper-bounding e« Otherwise, if a paifz, y) is encountered in the sequence,

the number of extra cuts made at each stage. then the nexty characters of the string are the same as
Suppose that the smallest grammar generatirigas size they characters beginning at positianof the string. (We

m*. Then Lemma 8 implies that there exists a superstring require that they characters beginning at positianbe

containing all the strings 0, with length 2m*k. Since we represented by earlier items in the sequence.)

are using a 4-approximation, the lengthpgfis at mos8m*k. The example sequence can be decoded as follows:
Therefore, there can be at mdﬁﬁn* pieces ofp,. with length ndex: 1 2 3 4 5 6 7 8 9 10 11 12 13
greater thark /2 after step 2. This upper-bounds the number 0fLZ77' b (L2 23)
extra cuts made in the formation 6, », since extra cuts are Stri . b ’ bob ’ b ’ b boob
only made into pieces with length greater thaf2. It follows fing: a @ a € a @
that every sequence of strings; has lengthO(m*logn), The shortest LZ77 sequence for a given string can be found in
since step 2 is repeated onlygn times over the course of polynomial time. Make a left-to-right pass through the string.
the algorithm. If the next character in the unprocessed portion of the string
On one hand, there alegn sequenceg’,, each contain- has not appeared before, output it. Otherwise, find the longest
ing O(m*logn) strings. Each such string corresponds to prefix of the unprocessed portion that appears in the processed

17

portion and output the paifz,y) describing that previous Suppose thafX] < [Y]; the other case is symmetric. The
appearance. It is easy to show (and well known) that thieldPair operation is divided into two phases.

procedure finds the shortest LZ77 sequence. In the first phase, we decompogeinto a string of symbols.
The following lemma states that this procedure implies laitially, this string consists of the symbaf itself. Thereafter,
lower bound on the size of the smallest grammar. while the first symbol in the string is not in balance with

Lemma 9:The length of the shortest LZ77 sequence for we replace it by its definition. A routine calculation, which we
string is a lower bound on the size of the smallest grammamit, shows that balance is eventually achieved. At this point,
for that string. we have a string of symbols, ... Y; with expansionY’) such

Proof: Suppose that a string is generated by a grammidguat Y; is in balance withX. Furthermore, note that; ...Y;
of size m*. We can transform this grammar into an LZ77s in balance withY;,; for all 1 < i < ¢t by construction.
sequence of length at most* as follows. Begin with the In the second phase, we build a balanced binary grammar
sequence of symbols on the right side of the start rule. Seléat the following sequence of nonterminals generated during
the nonterminal with longest expansion. Replace the leftmdhke first phase:
instance by its definition and replace each subsequent instance XYy .. .Y

by a pair referring to the first instance. Repeat this proce:Fﬁe analysis of the second phase runs for many pages, even

until no nonterminals remain. Note that each symbol on thl'?lou h we omit some routine alaebra. Initially. we create a
right side of the original grammar corresponds to at most oﬁe 9) ' Y

. - . - . new rule Z; — XY; and declare this to be thactive rule

:tneergu:“tt)tle resulting sequence. This establishes the deyﬁ%" remainder of the second phase is divided into steps. At the
A somewhat similar process was described in [36]. In coﬁznaét tﬁf t?elzl-tvr:/iﬁte?ﬁrthe i?:/t“r/ie :tjlehh?; the forty — A; i,

trast, our O(logn/m*)-approximation algorithm essentiallya € Toflowing three invanants hold:

inverts the process and maps an LZ77 sequence to a gramr(r%}.) (Zi) = (XY1...Y3)

This other direction is much more involved. (B2) (B;) is a substring ofY; ... Yj). _ _
(B3) All rules in the grammar are balanced, including the

active rule.

E. Balanced Binary Grammars))) o i
._The relationships between strings implied by the first two
In this section, we introduce the notion of a balanced b'namvariants are indicated in the following diagram:

grammar. The approximation algorithm we are developing
works exclusively with this restricted class of well-behaved
grammars. XY,, Y, .. Y

A binary ruleis a grammar rule with exactly two symbols Pt
on the right side. Abinary grammaris a grammar in which
every rule is binary. Two strings of symbolg, and v, are
a-balancedif

Z;

B;
After t steps, the active rule defines a nontermidalwith
expansion(XY;...Y;) = (XY) as desired, completing the
procedure.

The invariants stated above imply some inequalities that are

l—a =] 7 o needed later to show that the grammar remains in balance.

for some constant between 0 and. Intuitively, a-balanced SinceY...Y; is in balance withY; ., we have:
means “about the same length”. Note that inverting the fraction o [Vig1] 1—a
% gives an equivalent condition. An-balanced ruleis a l-—a ~ M...Y] = a
binary rule in which the two symbols on the right ane) i) i)
balanced. Ana-balanced grammais a binary grammar in SINc€{B;) is a substring ofY; ... Y;) by invariant (B2), we
which every rule isy-balanced. For brevity, we use “balanced®a"n conclude:
to signify “a-balanced”. a _ [Yil o

The remainder of this section defines three basic operations l—a = [Bj]
on balanced bjnary grammaré;ddl_:’air , AddSequence , (p the other hand, sincéZ;) is a superstring ofY; ... Y;)
and AddSubstring . Each operation adds a small numbelgy invariant (B1), we can conclude:
rules to an existing balanced grammar to produce a new
balanced grammar that has a nonterminal with specified prop- [Yit1] < l1-o 2)
erties. For these operations to work correctly, we require that]~ @
« be selected from the limited range< o < 1—1+/2, which Al that remains is to describe how each step of the second
is about0.293. These three operations are detailed below. phase is carried out. Each step involves intricate grammar
transformations, and so for clarity, we supplement the text with
diagrams. In these diagrams, a rdfe — A;B; is indicated

! (8] < 1-—«

1) TheAddPair Operation: This operation begins with a
balanced grammar containing symbaéfsandY and produces -
- : - -%th a wedge:

a balanced grammar containing a nonterminal with expansi

(XY). The number rules added to the original grammar is: Zi
x Zi il /N
0 1+ s 53] 4; B;

18

Preexisting rules are indicated with shaded lines, and new ru@smbining inequalities (3) and (4), one can use algebraic

with dark lines. manipulation to establish the following bounds, which hold
At the start of thei-th step, the active rule ig; — A;B;. hereafter:

Our goal is to create a new active rule that defiigs;

while maintaining the three invariants. There are three cases [Ai] o
to consider. [B;] = 1—-2« ©®)
Case 11If Z; andY;; are in balance, then we create a new [Yii1] a
1+1
rule: 51 S 1.3 (6)
Zit1 [Bi] e
Ziy1 — ZiYin Case 3 Otherwise, suppose thds; is defined by the rule
Z; Yii B; — UV. We create three new rules:
This becomes the active rule. It is easy to check that the three 7.

invariants are maintained.
If Z; andY;,, are not in balance, this implies that— < Zivi — PQ;

Ml < 1= goes not hold. Since the right inequality is (2),

the]Ieft inequality must be violated. Thus, hereafter we can P — AU
assume: Q1 — VY,
o [Yita]
3
1—a [Z] (3)

Case 2 Otherwise, ifA; is in balance withB;Y;, 1,
create two new rules:

then we The first of these becomes the active rule. We must check that
all of the new rules are in balance. We begin with— A;U.
Zz—i—l In one direction, we have:

Ziswn — AT

[A] o
T, — B;Yiq

(Al [Aj] >

/\\ O 7 (-olB] (B 7 T-a
Yiy

1 The first inequality uses the fact th& — UV is balanced.
The second inequality follows because- o < 1. The final

The first of these becomes the active rule. It is easy to chqgléqua“ty uses the fact that; and B; are in balance. In the
that the first two invariants are maintained. In order to cheglther direction, we have:

that all new rules are balanced, first note that the #Ajlgy —
A;T; is balanced by the case assumption. For the Tuyle- [Al]

A;-/

v : < < <
B;Y;1 to be balanced, we must show: 0] = aB]S1-22° a
o [Yit1] < l-a
l—a = [Bi] = « The first inequality uses the fact th& — UV is balanced,
The left inequality is (1). For the right inequality, begin withand the second follows from (5). The last inequality holds for
(3): all @ < 0.293. The argument to show th&); — VY, is
v a ., a iy B balanced is similar.
Yin] < 1- a[il = 1— a([il +[Bil) Finally, we must check tha¥,,,; — P,Q; is in balance. In
«@ 11—« one direction, we have:
T ([Bi] + [Bz})
« «
_ A;
< =% Pl _ (AUl _ [Al+(-a)B] _fi+(1-0)
[0 - = - 3
i VY; o|B;] + |Y; [Yii1]
The equality follows from the definition of; by the rule @ VYir] [Bil + [¥or] Tt By
Z; — A;B;. The subsequent inequality uses the fact that - 5 T (1—a)
this rule is balanced, according to invariant (B3). The last - o+
inequality uses only algebra and holds for @alk 0.381. 1—a
If case 2 is bypassed thety and B; YH1 are not in balance < o
which implies that;*— < [A’] < === does not hold.

Since 4; is in balance W|thB alone by invariant (B3), the 1ne equality follows from the definitions aP, and Q;. The
right inequality holds. Therefore, the left inequality must nofirst inequality uses the fact that the rul; — UV is

hereafter, we can assume: balanced. The subsequent equality follows by dividing the top
a [A;] 4 and bottom by B;]. In the next step, we use (5) on the top, and
1—a = [B;Yi 1]) (1) on the bottom. The final inequality holds for all < %

19

In the other direction, we have:

[Pl _ _[AU] [Ai] + a[Bi]
Qi] [VYiu]l = (1 —=a)[Bi]+ [Yi]
[Ai] +a
_ [B.]
(1-a) + 57
S = ta
N (1 - O() + 1—a2(x
> (0%
T l-«

As before, the first inequality uses the definitionsigfand
Q;. Then we use the fact tha®, — UV is balanced. We

nonterminals, but the sum of their expansion lengths is still
In general, on the-th level, we create at most
c(t/2") log 5

12

new rules. Summing from 0 tologt, we find that the total
number of rules created is

= o(t/20) 1og§ +cti)2

logt

>

> o(t/2%) log§ tetif2 =0 (t (1 +log [XltXt]))

as claimed.

3) TheAddSubstring Operation: This operation takes

obtain the second equality by dividing the top and bottom ky balanced grammar containing a nonterminal wittas a

[B;]. The subsequent inequality uses the fact thatand B;

substring and produces a balanced grammar containing a

are in balance on the top and (6) on the bottom. The finabnterminal with expansion exacty/while addingO(log |3|)

inequality holds for alla < 1.

new rules.

All that remains is to upper-bound the number of rules Let T' be the nonterminal with the shortest expansion such

created during théAddPair

operation. At most three rulesthat its expansion contain$ as a substring. Lef’ — XY

are added in each of thesteps of the second phase. Thereforge its definition. Then we can writ6 = 3,3,, where the

it suffices to upper bound. This quantity is determined

prefix 5, lies in (X) and the suffixg; lies in (Y). (Note, 5,

during the first phase, wherg is decomposed into a stringis actually a suffix of(X), and 3, is a prefix of (Y).) We

of symbols. In each step of the first phase, the length of thenerate a nonterminal that expands to the préfixanother
expansion of the first symbol in this string decreases bytlaat expands to the suffig,, and then merge the two with
factor of at leastl — o. When the first symbol is in balanceAddPair . The last step generates ort(log |3]) new rules.

with X, the process stops. Therefore, the number of stepsSs all that remains is to generate a nonterminal that expands
O(log [Y']/[X]). Since the string initially contains one symbolto the prefix,3,; the suffix is handled symmetrically. This task

t is O(1 +log [Y]/[X]). Therefore, the number of new ruless divided into two phases.

IS:

[X]

log V]

O<1+

)

In the first phase, we find a sequence of symbdjs .. X;
with expansion equal t@,. To do this, we begin with an empty
sequence and employ a recursive procedure. At each step, we

Because we take the absolute value, this bound holds regdr@ve adesired suffix(initially 3,) of some current symbol

less of whethefX] or [Y] is larger.

2) The AddSequence Operation: The AddSequence
operation is a generalization éfddPair . Given a balanced

grammar with symbolsX; ... X;, the operation creates a
balanced grammar containing a nonterminal with expansion

(X1...X4). The number of rules added is:

0 (t (1+10g[X1~t~Xt]))

(initially X). During each step, we consider the definition of
the current symbol, sax — AB. There are two cases:

1) If the desired suffix wholly containgB), then we
prepend B to the nonterminal sequence. The desired
suffix becomes the portion of the old suffix that overlaps
(A), and the current nonterminal becom#s

2) Otherwise, we keep the same desired suffix, but the
current symbol becomeB.

A nonterminal is only added to the sequence in case 1. But in

The idea is to place th&; at the leaves of a balanced binaryat case, the length of the desired suffix is scaled down by
tree. (To simplify the analysis, assume tiais a power of &t least a factoll — «. Therefore the length of the resulting
two.) We create a nonterminal for each internal node by cof@ntérminal sequence is= O(log |3)).

bining the nonterminals at the child nodes usiddPair .

Recall that the number of rules thAddPair creates when
combining nonterminalsX andY is O (1+ ‘log%’

O (log [X] + log [Y]). Let ¢ denote the hidden constant on the

right, and lets equal[X; . .. X;]. Creating all the nonterminals
on the bottom level of the tree generates at most

t
chog[Xi} < ctlog?
i=1

rules. (The inequality follows from the concavity @fg.)

This construction implies the following inequality, which
we use later:

X1... X))
[Xit1]

This inequality holds becaus«; . .. X;) is a suffix of the ex-
pansion of a nonterminal in balance wilf} ;. Consequently,
X1 ...X; is not too long to be in balance with;, ;.

In the second phase, we merge the nonterminals in the
sequenceX ... X; to obtain the nonterminal with expansion
Bp. The process goes from left to right. Initially, we set

11—«

)

«

Similarly, the number of rules created on the second levgl, = X;. Thereafter, at the start of theth step, we have a

of the tree is at most(t/2)log because we pait/2

s
/2

20

nonterminalR; with expansion(X; ... X;) and seek to merge

in symbol.X; . There are two cases, distinguished by whether1) Construct a nonterminal M/ with expansion
or not the following inequality holds: (A1...As,) using AddSequence . This produces
< : 2) Replaced; ... A, in the active list by the single symbol

l—a 7 [Xip] M.
. If so, then R, and X;,; are in balance. (Inequality 3) Construct a nontermin&(’ with expansion equal to the
Therefore, we add the rulg;,; — R; Xi 1. construct a nonterminal” with expansion equal to
« If not, thenR; is too small to be in balance with; ;. the suffix of §; in (Y) using AddSubstring . This
(It can not be too large, because of inequality (7).) ProducesO(log|g;[) new rules in total. .
We useAddPair to merge the two, which generates 4) Create a nonterminaV W'/th expanS|orl1<X MY’) us-
O(1 +log [X;4+1]/[Ri]) new rules. SincéR;] is at most ing AddSequence on X', M, andY”’. This creates
a constant times the size of its largest componxi], O(log |6i|) new rules. AppendV to the end of the active
the number of new rules i©(1 + log [X;,1]/[Xi)). list.
Summing the number of rules created during this proce§BUs, in total, we add(t; +1; log | 3| /t; +1og | 3;]) new rules
gives: during each step. The total number of rules created is:
0 (1+105 T} = 0+ ogixi)) = Of1ox) 0 (Ztmimgm/ti+1og|ﬁi|> -
i=1 ¢ i=1
The second equality follows from the fact, observed previ- - ‘ - _ g z _
ously, thatt = O(log|8|) and from the fact thatX;) is a 0 ;tl +i_zltl log |5l /t: +;10g|ﬁl‘

substring of 3. Generating a nonterminal for the suffix
requiresO(log |3]) rules as well. Therefore, the total numbei he first sum is upper-bounded by the total number of symbols
of new rules isO(log|3|) as claimed. inserted into the active list. This is at most two per stép (
and N), which gives a bound dfp: >°*_, t; < 2p. To upper-
F. The Algorithm bound the second sum, we use the concavity inequality:
We now combine all the tools of the preceding two sections a a P aib;
to obtain anO(logn/m*)-approximation algorithm for the Zai logbi < (Z ai) log(P)
smallest grammar problem. =t =t B
We are given an input string. First, we apply the LZ77 and seta; = t¢;, b; = |5;|/t; to give:
variant described in Section VII-D. This gives a sequence
L,...L, of terminals and pairs. By Lemma 9, the length of Ep:t-lo |8i] - zp:t- Io (Z?_l |ﬂi|>
this sequence is a lower bound on the size of the smallest — 08 t; T — It P
grammar foro; that is,p < m*. Now we employ the tools of B . n
o((3)

i=1li

Section VII-E to translate this sequence to a grammar. We
work through the sequence from left to right and build a

balanced binary grammar as we go. Throughout, we maintgife |atter inequality uses the fact tia}’_, |3;| < n and that

an active listof grammar symbols. S°P_, t; < 2p. Note that the function: logn/x is increasing
Initially, the active list isL;, which must be a terminal. In ;5 .. up ton/e, and so this inequality holds only % < n/e.
general, at the beginning afth step, the expansion of thethjs condition is violated only when input string (length
active list is the string represented By ... L;. Our goal for {,ns out to be only a small factozd) longer than the LZ77
the step is to augment the grammar and alter the active @%Iquence (length). If we detect this special case, then we
so that the expansion of the symbols in the active list is thgp, output the trivial gramma$ — o and achieve a constant
string represented bY; ... L;11. approximation ratio.
If L;11 is aterminal, we can accomplish this goal by simply By concavity again, the third sum is upper-bounded by:
appendingL;., to the active list. If L, is a pair, then it
specifies a substring; of the expansion of the active list. #) > 16i] < plog”
is contained in the expansion of a single symbol in the active P08 D = bl
list, then we useAddSubstring to create a nonterminal
with expansions; usingO(log |5;]) rules. This nonterminal is
then appended to the active list. n
O (p log p)

The total grammar size is therefore:

On the other hand, if}; is not contained in the expansion of = O (m/* log %)
a single symbol in the active list, then it is the concatenation of
a suffix of (X), all of (4; ... As,), and a prefix ofY), where where we use the inequalify< m* and, again, the observa-
XA;...A,Y are consecutive symbols in the active list. Wéon thatx logn/x is increasing for: < n/e. This proves the
then perform the following operations: claim.

21

G. Grammar-Based Compression verdusr7 The procedures presented here are not ready for immedi-

We have now shown that a grammar of size can be ate use as practical compression algorithms. The numerous
translated into an LZ77 sequence of length at mosin the hacks and optimizations needed in practice are lacking. Our
reverse direction, we have shown that an LZ77 Sequencea‘lgorithms are designed not for practical performance, but for
lengthp can be translated to a grammar of si@2éplogn/p). good, analyzableperformance. In practice, the best grammar-
Furthermore, the latter result is nearly the best possibRased compression algorithm may yet prove to be a simple

Consider strings of the form scheme like R-PAIR, which we do not yet know how to
analyze.
o e e I L
where k; is the largest of thek;. This string can be rep- VIIl. FUTURE DIRECTIONS
resented by an LZ77 sequence of lendgttig + logk): . .
; A. Analysis of Global Algorithms
z(1,1) (1,2) (1,4) (1,8) ... (1, ki=27) | (1, k2) | ... | (1,kq) y . g .
Here, j is the largest power of 2 less than. If we setq = Our analysis of previously-proposed algorithms for the
O(log k1), then the sequence has lengililog &). smallest grammar problem leaves a large gap of understand-

On the other hand, Theorem 2 states that the smallest grang surrounding the global algorithms,REEDY, LONGEST
mar for ¢ is within a constant factor of the shortest additioMATCH, and Re-PAIR. In each case, we upper-bound the
chain containingks, . .., k,. Pippinger [37] has shown, viaapproximation ratio byO((n/logn)?/*) and lower bound it
a counting argument, that there exist integers. . ., k, such by some expression that iglogn). Elimination of this gap
that the shortest addition chain containing them all has lengwuld be significant for several reasons. First, these algorithms

log ki are important; they are simple enough to be practical for ap-
Q (log ki+q-) plications such as compression and DNA entropy estimation.
loglog ki +logg Second, there are natural analogues to these global algorithms
If we chooseq = O(logk,) as before, then the abovefor other hierarchically-structured problems. Third, all of our
expression boils down to: lower bounds on the approximation ratio for these algorithms
log? ky are wgll below the(log 7?_/ log logn) hardness ilmplied by the.
<10g10gk:1> reduction from the addition chain problem. Either there exist

worse examples for these algorithms or else a tight analysis

Putting this all together, we have a stringof lengthn = |l yield progress on the addition chain problem.
O(ky log k1) for which there exists an LZ77 sequence of

lengthO(log k1), but for which the smallest grammar has size

lg;g{z ;il . The ratio between the grammar size and tg: Algebraic Extraction
length of the LZ77 sequence is therefore: The need for a better understanding of hierarchical ap-
log ky log n proxmatlon problems beyond the smal!est grammar proplem
Q () = Q <) is captured in the smallest AND-circuit problem. Consider
log log k1 loglogn

a digital circuit which has several input signals and several
Thus our algorithm for transforming a sequence of LZ7@utput signals. The function of each output is a specified sum-
triples into a grammar is almost optimal. of-products over the input signals. How many two-input AND
The analysis in this section brings to light the relationshigates must the circuit contain to satisfy the specification?
between the best grammar-based compressors and LZ77This problem has been studied extensively in the context
One would expect the two to achieve roughly comparabtg automated circuit design. Interestingly, the best known
compression performance since the two representations algorithms for this problem are closely analogous to the
quite similar. Which approach achieves superior compressi@reepy and Re-PAIR algorithms for the smallest grammar
(over all cases) in practice depends on many consideratigieblem. (For details on these analogues, see [38], [39] and

beyond the scope of our theoretical analysis. For example, 4ae] respectively.) No approximation guarantees are known.
must bear in mind that a grammar symbol can be represented

by fewer bits than an LZ77 pair. In particular, each LZ77
pair requires abou?logn bits to encode, although this mayC
be somewhat reduced by representing the integers in each pafdne motivation for studying the smallest grammar problem
with a variable-length code. On the other hand, each grammveaas to shed light on a computable and approximable variant of
symbol can be naively encoded using ablegtm bits, which Kolmogorov complexity. This raises a natural follow-on ques-
could be as small dsg log n. This can be further improved viation: can the complexity of a string be approximated in other
an optimized arithmetic encoding as suggested in [4]. Thugtural models? For example, the grammar model could be
the fact that grammars are can be somewhat larger than LZ&xtended to allow a nonterminal to take a parameter. One could
sequences may be roughly offset by the fact that grammaénen write a rule such ag(P) — PP, and write the string

can also translate into fewer bits. Empirical comparisons itwyzyz asT(x)T(yz). Presumably as model power increases,
[4] suggest precisely this scenario, but they do not yet seepproximability decays to incomputability. Good approxima-
definitive one way or the other [4], [9], [6], [7], [10], [11], tion algorithms for strong string-representation models could
especially in the low-entropy case. be applied wherever the smallest grammar problem has arisen.

. String Complexity in Other Natural Models

22

ACKNOWLEDGMENTS [19]

We sincerely thank Yevgeniy Dodis, Martin Farach-Colton,
Michael Mitzenmacher, Madhu Sudan, and the reviewers fi3f]
helpful comments.

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]
(9]
[20]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[21]
REFERENCES

Jacob ziv and Abraham Lempel, “Compression of individual sequenc&#?]
via variable-rate coding,”IEEE Transactions on Information Theory

vol. 24, no. 5, pp. 530-536, September 1978. [23]
Terry A. Welch, “A technique for high-performance data compression,”
Computer Magazine of the Computer Group News of the IEEE Computer
Group Societyvol. 17, no. 6, pp. 8-19, 1984, [24
John C. Kieffer, En hui Yang, Gregory J. Nelson, and Pamela Cosman,
“Universal lossless compression via multilevel pattern matchitgZE [25]
Transactions on Information Theaqryol. IT-46, no. 5, pp. 1227-1245,
July 2000.

En hui Yang and John C. Kieffer, “Efficient universal lossless data cont26]
pression algorithms based on a greedy sequential grammar transform—
part one: Without context modelsJEEE Transactions on Information
Theory vol. 1T-46, no. 3, pp. 755777, May 2000.

John C. Kieffer and En hui Yang, “Grammar based codes: A new class
of universal lossless source codetZEE Transactions on Information [27]
Theory vol. IT-46, no. 3, pp. 737-754, May 2000.

Craig G. Nevill-Manning, Inferring Sequential StructurePh.D. thesis,
University of Waikato, 1996. [28]
N. Jesper Larsson and Alistair Moffat, “Offline dictionary-based com-
pression,”Proceedings of the IEER/oI. 88, pp. 1722-1732, November[
2000.

J. Kevin Lanctot, Ming Li, and En hui Yang, “Estimating DNA sequence{30]
entropy,” in Symposium on Discrete Algorithim000, pp. 409-418.

Carl G. de MarckenUnsupervised Language AcquisitioRh.D. thesis,

MIT, 1996. 31]
Alberto Apostolico and Stefano Lonardi, “Off-line compression by
greedy textual substitution,Proceedings of the IEEE/ol. 88, no. 11, [32]
pp. 1733-1744, November 2000.

Alberto Apostolico and Stefano Lonardi, “Some theory and practice
of greedy off-line textual substitution,” IHEEE Data Compression
Conference, DCCMarch 1998, pp. 119-128.

Andrei N. Kolmogorov, “Three approaches to the quantitative definitioF?4]
of information,” Problems of Information Transmissiopp. 1-7, 1965.
Craig G. Nevill-Manning and lan H. Witten, “ldentifying hierarchical (35]
structure in sequences: A linear-time algorithndburnal of Artificial
Intelligence vol. 7, pp. 67-82, 1997.

Takuya Kida, Yusuke Shibata, Masayuki Takeda, Ayumi Shinohar5?6]
and Setsuo Arikawa, “A unifying framework for compressed pattern
matching,” in International Symposium on String Processing and
Information Retrieval 1999, pp. 89—96. (37]
John C. Kieffer and En hui Yang, “Sequential codes, lossless com-
pression of individual sequences, and kolmogorov complexitiZEE (38]
Transactions on Information Theqryol. 42, no. 1, pp. 29-39, January
1996.

G. Nelson, John C. Kieffer, and Pamela C. Cosman, “An interestir{ag]
hierarchical lossless data compression algorithm JEBE Information
Theory Society Workshpp995, Invited Presentation.

Randal E. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Transactions on Computergol. C-35, no. 8, pp. [40]
677-691, August 1986.

John C. Kieffer, Philippe Flajolet, and En-Hui Yang, “Data compression
via binary decision diagrams,” ifEEE International Symposium on
Information Theory June 2000, p. 296.

23

Chung-Hung Lai and Tien-Fu Chen, “Compressing inverted files in
scalable information systems by binary decision diagram encoding,” in
Supercomputing2001.

Abraham Lempel and Jacob Ziv, “On the complexity of finite se-
quences,” IEEE Transactions on Information Thegryol. 1T-23, no.

1, pp. 75-81, January 1976.

Jacob Ziv and Abraham Lempel, “A universal algorithm for sequential
data compression,JEEE Transactions on Information Theoryol. IT-

23, no. 3, pp. 337-343, May 1977.

James A. StorerData Compression: Methods and Complexi§h.D.
thesis, Princeton University, 1978.

James A. Storer and Thomas G. Szymanski, “Data compression via
textual substitution,”Journal of the ACMvol. 29, no. 4, pp. 928-951,
October 1982.

] James A. StorerData Compression: Methods and Theor@omputer

Science Press, 1988.

Alberto Apostolico and Stefano Lonardi, “Compression of biological
sequences by greedy off-line textual substitution,” IEEE Data
Compression Conference, DC®arch 2000, pp. 143-152.

Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda,
Ayumi Shinohara, Takeshi Shinohara, and Setsuo Arikawa, “Byte pair
encoding: A text compression scheme that accelerates pattern matching,”
Technical Report DOI-TR-CS-161, Department of Informatics, Kyushu
University, April 1999.

S. Rao Kosaraju and Giovanni Manzini, “Compression of low entropy
strings with Lempel-Ziv algorithms,SIAM Journal on Computing/ol.

29, no. 3, pp. 893-911, 2000.

Piotr Berman and Marek Karpinski, “On some tighter inapproxima-
bility results, further improvements,” Tech. Rep. TR98-065, Electronic
Colloquium on Computational Complexity, 1998.

29] Donald E. Knuth,Seminumerical AlgorithmsAddison-Wesley, 1981.

Edward G. Thurber, “Efficient generation of minimal length addition
chains,” SIAM Journal on Computingvol. 28, no. 4, pp. 1247-1263,
1999.

Paul Erds, “Remarks on number theory IlIACTA Arithmeticavol.

VI, pp. 77-81, 1960.

Peter Downey, Benton Leong, and Ravi Sethi, “Computing sequences
with addition chains,”SIAM Journal on Computingvol. 10, no. 3, pp.
638-646, August 1981.

33] Andrew Chi-Chih Yao, “On the evaluation of powers3IAM Journal

on Computingvol. 5, no. 1, pp. 100-103, March 1976.

Philip Gage, “A new algorithm for data compressioriThe C Users
Journal vol. 12, no. 2, 1994.

Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis,
“Linear approximation of shortest superstrings,” 8ymposium on
Theory of Computing1991, pp. 328-336.

Craig G. Nevill-Manning and lan H. Witten, “Compression and
explanation using hierarchical grammar&omputer Journalvol. 40,

no. 2/3, pp. 103-116, 1997.

Nicholas Pippenger, “On the evaluation of powers and monomials,”
SIAM Journal on Computingvol. 9, no. 2, pp. 230-250, May 1980.
Robert K. Brayton and C. McMullen, “The decomposition and factor-
ization of boolean expressions,” international Symposium on Circuits
and Systemsl982, pp. 49-54.

Robert K. Brayon, Richard L. Rudell, Alberto L. Sangiovanni-
Vincentelli, and A. R. Wang, “Multi-level logic optimization and the
rectangle covering problem,” imternational Conference on Computer
Aided Design November 1987, pp. 66—69.

Janusz Rajski and Jagadeesh Vasudevamurthy, “The testability-
preserving concurrent decomposition and factorization of boolean ex-
pressions,”IEEE Transactions on Computer-Aided Designl. 11, no.

6, pp. 778-793, June 1992.

