
IEEE TRANSACTIONS ON INFORMATION THEORY 1

The Smallest Grammar Problem
Moses Charikar, Eric Lehman, April Lehman, Ding Liu, Rina Panigrahy,

Manoj Prabhakaran, Amit Sahai, abhi shelat

Abstract— This paper addresses thesmallest grammar problem:
What is the smallestcontext-free grammar that generates exactly
one given stringσ?

This is a natural question about a fundamental object con-
nected to many fields, including data compression, Kolmogorov
complexity, pattern identification, and addition chains.

Due to the problem’s inherent complexity, our objective is to
find an approximation algorithm which finds a small grammar
for the input string. We focus attention on theapproximation ratio
of the algorithm (and implicitly, worst-case behavior) to establish
provable performance guarantees and to address short-comings
in the classical measure ofredundancyin the literature.

Our first results are a variety of hardness results, most notably
that every efficient algorithm for the smallest grammar problem
has approximation ratio at least 8569

8568
unlessP = NP .

We then bound approximation ratios for several of the best-
known grammar-based compression algorithms, includingLZ78,
BISECTION, SEQUENTIAL, LONGESTMATCH, GREEDY, and RE-
PAIR. Among these, the best upper bound we show isO(n1/2).

We finish by presenting two novel algorithms with exponen-
tially better ratios of O(log3 n) and O(log(n/m∗)), where m∗

is the size of the smallest grammar for that input. The latter
highlights a connection between grammar-based compression and
LZ77.

Index Terms— Smallest grammar problem, data compression,
approximation algorithm, LZ78, SEQUITUR, MPM, RE-PAIR,
LZ77, LONGESTMATCH, hardness of approximation

I. I NTRODUCTION

T HIS paper addresses thesmallest grammar prob-
lem; namely, what is the smallest context-free gram-

mar that generates exactly one given string? For exam-
ple, the smallest context-free grammar generating the string
a rose is a rose is a roseis as follows:

S → BBA

A → a rose

B → A is

The size of a grammar is defined to be the total number
of symbols on the right sides of all rules. In the example
above, the grammar has size 14. Because the decision version
of this problem is NP-complete, our objective is to find an

Manuscript received 2002; revised Jan 2005.
Moses Charikar, Ding Liu, and Manoj Prabhakaran are with the Department

of Computer Science, Princeton University, 35 Olden St., Princeton, NJ 08540,
e-mail:{moses,dingliu,mp }@cs.princeton.edu .

Rina Panigrahy is with Cisco, email:rinap@cisco.com .
Eric Lehman, April Lehman, and abhi shelat are with CSAIL at the Mas-

sachusetts Institute of Technology, Stata Center, 32 Vassar Street, Cambridge,
MA 02139, email:{e lehman,arasala,abhi }@csail.mit.edu .

Amit Sahai is with the Department of Computer Science, UCLA, Los
Angeles, CA 90095.

approximation algorithm which finds a grammar that generates
the given string and is not much larger than the smallest such
grammar.

This elegant problem has considerable interest in its own
right: it is a simple question about a basic mathematical
object, context-free grammars. By virtue of this simplicity and
the wide applicability of context-free grammars, the smallest
grammar problem has interesting connections to many fields
of study, including data compression, Kolmogorov complexity,
pattern identification, and approximation algorithms.

A. Data Compression

Instead of storing a long string, one can store a small
grammar that generates the string. The original string can be
easily reconstructed from the grammar when needed. Many
data compression procedures use this idea, and therefore
amount to approximation algorithms for the smallest grammar
problem [1], [2], [3], [4], [5], [6], [7], [8], [9]. Most of these
procedures are analyzed in detail in Section VI.

Empirical results indicate that the grammar-based approach
to compression is competitive with other techniques in prac-
tice [4], [9], [6], [7], [10], [11], and some grammar-based
compressors are known to be asymptotically optimal on input
strings generated by finite-state sources. But in Section VI we
show that, surprisingly, many of the best-known compressors
of this type can fail dramatically; that is, there exist input
strings generated by small grammars for which these compres-
sors produce large grammars. Consequently, they turn out not
to be very effective approximation algorithms for the smallest
grammar problem.

B. Complexity

The size of the smallest context-free grammar generating
a given string is also a natural, but more tractable variant of
Kolmogorov complexity [12]. The Kolmogorov complexity of
a stringσ is the length of the shortest pair(M,x) whereM
is a Turing machine description,x is a string, andM outputs
σ on input x. This Turing machine model for representing
strings is too powerful to be exploited effectively; in general,
the Kolmogorov complexity of a string is incomputable. How-
ever, weakening the string representation model from Turing
machines to context-free grammars reduces the complexity
of the problem from the realm of undecidability to mere
intractability. Moreover, we show that one can efficiently
approximate the “grammar complexity” of a string.

C. Pattern Recognition

The smallest grammar problem is also relevant to iden-
tifying important patterns in a string, since such patterns

naturally correspond to nonterminals in a compact grammar.
In fact, an original and continuing motivation for work on the
problem was to identify regularities in DNA sequences [6], [8].
(Interestingly, [8] espouses the goal of determining the entropy
of DNA. This amounts to upper-bounding the Kolmogorov
complexity of a human being.) In addition, smallest grammar
algorithms have been used to highlight patterns in musical
scores [13] and uncover properties of language from example
texts [9]. All this is possible because a string represented by a
context-free grammar remains relatively comprehensible. This
comprehensibility is an important attraction of grammar-based
compression relative to otherwise competitive compression
schemes. For example, the best pattern matching algorithm
that operates on a string compressed as a grammar is asymp-
totically faster than the equivalent for the well-known LZ77
compression format [14].

D. Hierarchical Approximation

Finally, work on the smallest grammar problem qualitatively
extends the study of approximation algorithms. Prior work on
approximation algorithms has focused on “flat” objects such
as graphs, CNF formulas, bins and weights, etc. In contrast,
context-free grammars as well as many real-world problems
such as circuit design and image compression have a hier-
archical nature. Moreover, standard approximation techniques
such as linear and semidefinite programming are not easily
transferred to this new domain.

II. PREVIOUS WORK

The smallest grammar problem was articulated explicitly
by two groups of authors at about the same time. Nevill-
Manning and Witten stated the problem and proposed the
SEQUITUR algorithm as a solution [6], [13]. Their main focus
was on extracting patterns from DNA sequences, musical
scores, and even the Church of Latter-Day Saints genealogical
database, although they evaluated SEQUITUR as a compression
algorithm as well.

The other group, consisting of Kieffer, Yang, Nelson, and
Cosman, approached the smallest grammar problem from a
traditional data compression perspective [5], [4], [3]. First,
they presented some deep theoretical results on the impos-
sibility of having a “best” compressor under a certain type of
grammar compression model for infinite length strings [15].
Then, they presented a host of practical algorithms including
BISECTION, MPM, and LONGESTMATCH. Furthermore, they
gave an algorithm, which we refer to as SEQUENTIAL, in
the same spirit as SEQUITUR, but with significant defects
removed. All of these algorithms are described and analyzed in
Section VI. Interestingly, on inputs with power-of-two lengths,
the BISECTION algorithm of Nelson, Kieffer, and Cosman [16]
gives essentially the same representation as a binary decision
diagram (BDD) [17]. BDDs have been used widely in digital
circuit analysis since the 1980’s and also recently exploited
for more general compression tasks [18], [19].

While these two lines of research led to the first clear
articulation of the smallest grammar problem, its roots go back
to much earlier work in the 1970’s. In particular, Lempel and

Ziv approached the problem from the direction of Kolmogorov
complexity [20]. Over time, however, their work evolved
toward data compression, beginning with a seminal paper [21]
proposing the LZ77 compression algorithm. This procedure
doesnot represent a string by a grammar. Nevertheless, we
show in Section VII that LZ77 is deeply entwined with
grammar-based compression. Lempel and Ziv soon produced
another algorithm, LZ78, which did implicitly represent a
string with a grammar [1]. We describe and analyze LZ78 in
detail in Section VI. In 1984, Welch increased the efficiency
of LZ78 with a new procedure, now known as LZW [2].
In practice, LZW is much preferred over LZ78, but for our
purposes the difference is small.

Also in the 1970’s, Storer and Szymanski explored a wide
range of “macro-based” compression schemes [22], [23], [24].
They defined a collection of attributes that such a compressor
might have, such as “recursive”, “restricted”, “overlapping”,
etc. Each combination of these adjectives described a different
scheme, many of which they considered in detail and proved
to be NP-hard.

Recently, the smallest grammar problem has received in-
creasing interest in a broad range of communities. For exam-
ple, de Marcken’s thesis [9] investigated whether the structure
of the smallest grammar generating a large, given body of
English text could lead to insight about the structure of the
language itself. Lanctot, Li, and Yang [8] proposed using the
LONGESTMATCH algorithm for the smallest grammar prob-
lem to estimate the entropy of DNA sequences. Apostolico
and Lonardi [11], [25], [10] suggested a scheme that we
call GREEDY and applied it to the same problem. Larsson
and Moffat proposed RE-PAIR [7] as a general, grammar-
based algorithm. Most of these procedures are described and
analyzed in Section VI.

There has also been an effort to develop algorithms that
manipulate strings that are in compressed form. For example,
Kida [14] and Shibata, et al. [26] have proposed pattern
matching algorithms that run in time related not to the length
of the searched string, but rather to the size of the grammar
representing it. The relatively good performance of such al-
gorithms represents a significant advantage of grammar-based
compression over other compression techniques such as LZ77.

In short, the smallest grammar problem has been considered
by many authors in many disciplines for many reasons over a
span of decades. Given this level of interest, it is remarkable
that the problem has not attracted greater attention in the
general algorithms community.

III. SUMMARY OF OUR CONTRIBUTIONS

This paper makes four main contributions, enumerated
below. Throughout, we usen to denote the length of an input
string, andm∗ to denote the size of the smallest grammar
generating that same input string.

1) We show that the smallest grammar generating a given
string is hard to approximate to within a small constant
factor. Furthermore, we show that ano(log n/ log log n)
approximation would require progress on a well-studied
problem in computational algebra.

2

2) We bound approximation ratios for several of the best-
known grammar-based compression algorithms. These
results are summarized below:

Approximation Ratio
Algorithm Upper Bound Lower Bound

LZ78 O((n/ log n)
2
3) Ω(n

2
3 / log n)

BISECTION O((n/ log n)
1
2) Ω(n

1
2 / log n)

SEQUENTIAL O((n/ log n)
3
4) Ω(n

1
3)

LONGESTMATCH O((n/ log n)
2
3) Ω(log log n)

GREEDY O((n/ log n)
2
3) > 1.37 . . .

RE-PAIR O((n/ log n)
2
3) Ω(

√
log n)

The bounds for LZ78 hold for some variants, including
LZW. Results for MPM mirror those for BISECTION.
The lower bound for SEQUENTIAL extends to SE-
QUITUR.

3) We give new algorithms for the smallest grammar prob-
lem with exponentially better approximation ratios. First,
we give a simpleO(log3 n) approximation. Then we
provide a more complexO(log(n/m∗)) approximation
based on an entirely different approach.

4) We bring to light an intricate connection between
grammar-based compression and the well-known LZ77
compression scheme.

The remainder of this paper is organized as follows. Sec-
tion IV contains definitions and notational conventions, to-
gether with some basic lemmas. In Section V, we establish the
hardness of the smallest grammar problem in two different and
complementary senses. Then, in Section VI, we analyze the
most widely known algorithms for the smallest grammar prob-
lem. Following this, we propose new algorithms in Section VII
with approximation ratios that are exponentially better. Finally,
Section VIII presents some of the many interesting lines of
research radiating from this problem.

IV. PRELIMINARIES

This section introduces terminology, notation, and some
basic lemmas about grammars that are used in later sections.

A. Grammars and Strings

A grammar G is a 4-tuple(Σ,Γ, S,∆) in which Σ is a
finite alphabet whose elements are calledterminals, Γ is a
disjoint set whose elements are callednonterminals, andS ∈
Γ is a special nonterminal called thestart symbol. All other
nonterminals are calledsecondary. In general, the wordsymbol
refers to any terminal or nonterminal. The last component of
a grammar, denoted∆, is a set ofrules of the formT → α,
whereT ∈ Γ is a nonterminal andα ∈ (Σ ∪ Γ)∗ is a string
of symbols referred to as thedefinitionof T .

The left side of a ruleT → α is the symbolT , and theright
side of the ruleor definition ofT is the stringα. Similarly,
the left side of a grammarconsists of all nonterminals on the
left sides of rules, and theright side of a grammarconsists
of all strings on the right sides of rules.

In the grammars we consider, there is exactly one rule
T → α in ∆ for each nonterminalT ∈ Γ. Furthermore, all

grammars are acyclic; that is, there exists an ordering of the
nonterminalsΓ such that each nonterminal precedes all the
nonterminals in its definition. These properties guarantee that
a grammar generates exactly one finite-length string.

A grammar naturally defines anexpansionfunction of the
form (Σ ∪ Γ)∗ 7→ Σ∗. The expansion of a string is obtained
by iteratively replacing each nonterminal by its definition until
only terminals remain. We denote the expansion of a stringα
by 〈α〉, and the length of the expansion of a string by[α];
that is, [α] = |〈α〉|. (In contrast,|α| denotes the length of the
stringα in the traditional sense; that is, the number of symbols
in the string.) For the example grammar on the first page, we
have 〈A〉 = a roseand [A] = 6. The expansion of the start
symbol,〈S〉, is the stringgeneratedby the grammar, and we
typically refer toG as a grammarfor the string〈S〉.

The sizeof a grammarG is the total number of symbols in
all definitions:

|G| =
∑

T→α ∈ ∆

|α|

We use several notational conventions to compactly express
strings. The symbol| represents a terminal that appears only
once in a string. (For this reason, we refer to| as aunique
symbol.) When| is used several times in the same string, each
appearance represents a different symbol. For example,a | bb |
cc contains five distinct symbols and seven symbols in total.1

Product notation is used to express concatenation, and
parentheses are used for grouping. For example:

(ab)5 = ababababab
3∏

i=1

abi | = ab | abb | abbb |

The input to the smallest grammar problem is never specified
using such shorthand; we use it only for clarity of exposition
in proofs, counterexamples, etc.

Finally, we observe the following variable-naming conven-
tions throughout: terminals are lowercase letters or digits,
nonterminals are uppercase letters, and strings of symbols
are lowercase Greek. In particular,σ denotes the input to
a compression algorithm, andn denotes its length; that is,
n = |σ|. The size of a particular grammar forσ is m, and the
size of the smallest grammar ism∗. Unless otherwise stated,
all logarithms are base two.

B. Approximation Ratio

Our focus is on theapproximation ratioof algorithms for
the smallest grammar problem. The approximation ratio of an
algorithmA is a functiona(n) defined by:

a(n) = max
x∈Σn

(
grammar size forx produced byA
size of the smallest grammar forx

)
Thus, our focus is on the performance of algorithms in the
worst case. The focus on worst-case analysis is motivated by

1For the lower bounds on LONGEST MATCH and RE-PAIR and in our
hardness results, the use of unique symbols in the input implies that the
alphabet size for these classes of examples grows unbounded. For the rest of
the lower bounds, however, the alphabet sizes are fixed.

3

the goal of establishing provableguaranteeson performance,
and therefore establishing a fair basis for comparing algo-
rithms. In addition, the worst-case analysis addresses an in-
herent problem with characterizing compression performance
on low-entropy strings. Kosaraju and Manzini [27] point out
that the standard notions of universality and redundancy are
not meaningful measures of a compressor’s performance on
low entropy strings. Our approximation ratio measure handles
all cases and therefore sidesteps this issue.

C. Basic Lemmas

In this subsection, we give some easy lemmas that highlight
basic points about the smallest grammar problem. In proofs
here and elsewhere, we ignore the possibility of degeneracies
where they raise no substantive issue, e.g. a nonterminal with
an empty definition or a secondary nonterminal that never
appears in a definition.

Lemma 1:The smallest grammar for a string of lengthn
has sizeΩ(log n).

Proof: Let G be an arbitrary grammar of sizem. We
show thatG generates a string of lengthO(3m/3), which im-
plies the claim. Define a sequence of nonterminals recursively
as follows. LetT1 be the start symbol of grammarG. Let Ti+1

be the nonterminal in the definition ofTi that has the longest
expansion. (Break ties arbitrarily.) The sequence ends when a
nonterminalTn, defined only in terms of terminals, is reached.
Note that the nonterminals in this sequence are distinct, since
the grammar is acyclic.

Let ki denote the length of the definition ofTi. Then the
length of the expansion ofTi is upper-bounded byki times the
length of the expansion ofTi+1. By an inductive argument,
we find:

[T1] ≤ k1 · k2 · · · kn

On the other hand, we know that the sum of the sizes of
the definitions ofT1, . . . , Tm is at most the size of the entire
grammar:

k1 + k2 + . . . + kn ≤ m

It is well known that a set of positive integers with sum at
most m has product at most3dm/3e. Thus the length of the
string generated byG is O(3m/3) as claimed.

Next we show that certain highly structured strings are
generated by small grammars.

Lemma 2:Let α be the string generated by grammarGα,
and letβ be the string generated by grammarGβ . Then:

1) There exists a grammar of size|Gα| + |Gβ | + 2 that
generates the stringαβ.

2) There exists a grammar of size|Gα| + O(log k) that
generates the stringαk.

Proof: To establish (1), create a grammar containing all
rules in Gα, all rules in Gβ , and the start ruleS → SαSβ

whereSα is the start symbol ofGα andSβ is the start symbol
of Gβ .

For (2), begin with the grammarGα, and call the start
symbolA1. We extend this grammar by defining nonterminals
Ai with expansionαi for various i. The start rule of the

new grammar isAk. If k is even (say,k = 2j), define
Ak → AjAj and defineAj recursively. If k is odd (say,
k = 2j + 1), define Ak → AjAjA1 and again defineAj

recursively. Whenk = 1, we are done. With each recursive
call, the nonterminal subscript drops by a factor of at least
two and at most three symbols are added to the grammar.
Therefore, the total grammar size is|Gα|+ O(log k).

Lemma 2 is helpful in lower-bounding the approxima-
tion ratios of certain algorithms when it is necessary to
show that there exist small grammars for strings such as
ak(k+1) (bak)(k+1).

The following lemma is used extensively in our analysis of
previously-proposed algorithms. Roughly, it upper-bounds the
complexity of a string generated by a small grammar.

Lemma 3 (mk Lemma): If a string σ is generated by a
grammar of sizem, then σ contains at mostmk distinct
substrings of lengthk.

Proof: Let G be a grammar forσ of size m. For each
rule T → α in G, we upper-bound the number of length-
k substrings of〈T 〉 that are not substrings of the expansion
of a nonterminal inα. Each such substring either begins at
a terminal inα, or else begins with between1 and k − 1
terminals from the expansion of a nonterminal inα. Therefore,
the number of such strings is at most|α| · k. Summing over
all rules in the grammar gives the upper boundmk.

All that remains is to show that all substrings are accounted
for in this calculation. To that end, letτ be an arbitrary length-
k substring ofσ. Find the ruleT → α such thatτ is a substring
of 〈T 〉, and〈T 〉 is as short as possible. Thus,τ is a substring
of 〈T 〉 and is not a substring of the expansion of a nonterminal
in α. Therefore,τ was indeed accounted for above.

V. HARDNESS

We establish the hardness of the smallest grammar problem
in two ways. First, we show that approximating the size of
the smallest grammar to within a small constant factor is NP-
hard. Second, we show that approximating the size to within
o(log n/ log log n) would require progress on an apparently
difficult computational algebra problem. These two hardness
arguments are curiously complementary, as we discuss in
Section V-C.

A. NP-Hardness

Theorem 1:There is no polynomial-time algorithm for the
smallest grammar problem with approximation ratio less than
8569/8568 unless P= NP.

Proof: We use a reduction from a restricted form of
vertex cover based closely on arguments by Storer and Szy-
manski [23], [24]. LetH = (V,E) be a graph with maximum
degree three and|E| ≥ |V |. We can map the graphH to
a stringσ over an alphabet that includes a distinct terminal
(denotedvi) corresponding to each vertexvi ∈ V as follows:

σ =
∏

vi∈V

(#vi | vi# |)2
∏

vi∈V

(#vi# |)

×
∏

(vi,vj)∈E

(#vi#vj# |)

4

There is a natural correspondence between vertex covers of
the graphH and grammars for the stringσ. In particular, we
will show that the smallest grammar forσ has size15|V | +
3|E|+k, wherek is the size of the minimum vertex cover for
H. However, the size of the minimum cover for this family
of graphs is known to be hard to approximate below a ratio
of 145/144 unless P= NP [28]. Therefore, it is equally hard
to approximate the size of the smallest grammar forσ below
the ratio:

ρ =
15|V |+ 3|E|+ 145

144k

15|V |+ 3|E|+ k

Since all vertices inH have degree at most three,|E| ≤ 3
2 |V |.

Furthermore, each vertex can cover at most three edges the size
of the minimum vertex cover,k, must exceed13 |E| ≥

1
3 |V |.

The expression above achieves its minimum when|E| is large
andk is small. From the constraints|E| ≤ 3

2 |V | andk ≥ 1
3 |V |,

we get the lower bound:

ρ ≥
15|V |+ 3 · 3

2 |V |+
145
144 (1

3 |V |)
15|V |+ 3 · 3

2 |V |+ (1
3 |V |)

=
8569
8568

Now we show that the minimal grammars forσ must assume
a particular structure related to the vertex cover ofH. Let
G be an arbitrary grammar that generatesσ. Suppose that
there exists a nonterminal with an expansion of some form
other than#vi, vi#, or #vi#. Then that nonterminal either
appears at most once inG or else expands to a single
character, since no other substring of two or more characters
appears multiple times inσ. Replacing each occurrence of
this nonterminal by its definition and deleting its defining rule
can only decrease the size ofG. Thus, in searching for the
smallest grammar forσ, we need only consider grammars in
which every nonterminal has an expansion of the form#vi,
vi#, or #vi#.

Next, suppose grammarG does not contain a nonterminal
with expansion#vi. Then this string must appear at least twice
in the start rule, since the two occurrences generated by the
first product term can not be written another way. Adding a
nonterminal with expansion#vi costs two symbols, but also
saves at least two symbols, and consequently gives a grammar
no larger thanG. Similar reasoning applies for strings of the
form vi#. Thus, we need only consider grammars in which
there are nonterminals with expansions#vi and vi# for all
verticesvi in the graphH.

Finally, let C ⊆ V denote the set of verticesvi such that
G contains a rule for the substring#vi#. Now suppose that
C is not a vertex cover forH. Then there exists an edge
(vi, vj) ∈ E such thatG does not contain rules for either
#vi# or #vj#. As a result, the occurrences of these strings
generated by the second product term ofσ must be represented
by at least four symbols in the start rule ofG. Furthermore,
the string#vi#vj# generated by the third product term must
be represented by at least three symbols. However, defining a
nonterminal with expansion#vi# costs two symbols (since
there is already a nonterminal with expansion#vi), but saves
at least two symbols as well, giving a grammar no larger than
before. Therefore, we need only consider grammars such that
the corresponding set of verticesC is a vertex cover.

The size of a grammar with the structure described above is
8|V | for the first section of the start rule, plus3|V |−|C| for the
second section, plus3|E| for the third section, plus4|V | for
rules for strings of the form#vi andvi#, plus2|C| for rules
for strings of the form#vi#, which gives15|V |+3|E|+ |C|.
This quantity is minimized whenC is a minimum vertex cover.
In that case, the size of the grammar is15|V | + 3|E| + k as
claimed.

B. Hardness via Addition Chains

This section demonstrates the hardness of the smallest
grammar problem in an alternative sense: a procedure with an
approximation ratioo(log n/ log log n) would imply progress
on an apparently difficult algebraic problem in a well-studied
area.

Consider the following problem. Letk1, k2, . . . , kp be
positive integers. How many multiplications are required to
computexk1 , xk2 , . . . , xkp , wherex is a real number? This
problem has a convenient, alternative formulation. Anaddition
chain is an increasing sequence of positive integers starting
with 1 and with the property that every other term is the sum
of two (not necessarily distinct) predecessors. The connection
between addition chains and computing powers is straight-
forward: the terms in the chain indicate the powers to be
computed. For example,1, 2, 4, 8, 9, 18, 22, 23 is an addition
chain which computesx9 andx23 using seven multiplications.

The problem of computing, say,x9 andx23 using the fewest
multiplications is closely tied to the problem of finding the
smallest grammar for the stringσ = x9 | x23. Roughly
speaking, a grammar forσ can be regarded as an algorithm for
computingx9 andx23 and vice versa. The following theorem
makes these mappings precise.

Theorem 2:Let T = {k1, . . . kp} be a set of distinct posi-
tive integers, and define the stringσ = xk1 | xk2 | . . . | xkp .
Let l∗ be the length of the shortest addition chain containingT
and letm∗ be the size of the smallest grammar for the string
σ. Then the following relationship holds :

l∗ ≤ m∗ ≤ 4l∗

Proof: We translate the grammar of sizem∗ for stringσ
into an addition chain containingT with length at mostm∗.
This will establish the left inequality,l∗ ≤ m∗. For clarity, we
accompany the description of the procedure with an example
and some intuition. LetT be the set{9, 23}. Thenσ = x9 |
x23. The smallest grammar for this string has sizem∗ = 13:

S → A | AABxx

A → BBB

B → xxx

We begin converting the grammar to an addition chain by
ordering the rules so that their expansions increase in length.
Then we underline symbols in the grammar according to the
following two rules:

1) The first symbol in the first rule is underlined.
2) Every symbol preceded by a nonterminal or anx is

underlined.

5

Thus, in the example, we would underline as follows:

B → xxx

A → BBB

S → A | AABxx

Each underlined symbol generates one term in the addition
chain as follows. Starting from the underlined symbol, work
leftward until the start of the definition or a unique symbol is
encountered. This span of symbols defines a substring which
ends with the underlined symbol. The length of the expansion
of this substring is a term in the addition chain. In the example,
we would obtain the substrings:

x, xx, xxx,BB,BBB,AA, AAB, AABx,AABxx

and the addition chain1, 2, 3, 6, 9, 18, 21, 22, 23.
Intuitively, the terms in the addition chain produced above

are the lengths of the expansions of the secondary nontermi-
nals in the grammar. But these alone do not quite suffice.
To see why, note that the ruleT → ABC implies that
[T] = [A] + [B] + [C]. If we ensure that the addition chain
contains[A], [B], and [C], then we still can not immediately
add [T] because[T] is the sum of three preceding terms,
instead of two. Thus, we must also include, say, the term
[AB], which is itself the sum of[A] and [B]. The creation of
such extra terms is what the elaborate underlining procedure
accomplishes. With this in mind, it is easy to verify that the
construction detailed above gives an addition chain of length
at mostm∗ that containsT .

All that remains is to establish the second inequality,
m∗ ≤ 4l∗. We do this by translating an addition chain of
length l into a grammar for the stringσ of size at most4l.
As before, we carry along an example. LetT = {9, 23}.
The shortest addition chain containingT has lengthl = 7:
1, 2, 4, 5, 9, 18, 23.

We associate the symbolx with the first term of the se-
quence and a distinct nonterminal with each subsequent term.
Each nonterminal is defined using the symbols associated with
two preceding terms, just as each term in the addition sequence
is the sum of two predecessors. The start rule consists of the
nonterminals corresponding to the terms inT , separated by
uniques. In the example, this gives the following grammar:

T2 → xx T4 → T2T2

T5 → T4x T9 → T5T4

T18 → T9T9 T23 → T18T5

S → T9 | T23

The start rule has length2|T | − 1 ≤ 2l∗, and thel∗ − 1
secondary rules each have exactly two symbols on the right.
Thus, the total size of the grammar is at most4l∗.

Addition chains have been studied extensively for decades
(see surveys in Knuth [29] and Thurber [30]). In order to
find the shortest addition chain containing a single, specified
integer n, a subtle algorithm known as theM -ary method
gives a1+O(1/ log log n) approximation. (This is apparently
folklore.) One writesn in a baseM , which is a power of 2:

n = d0M
k + d1M

k−1 + d2M
k−2 + . . . + dk−1M + dk

The addition chain begins1, 2, 3, . . . ,M − 1. Then one puts
d0, doubles itlog M times, addsd1 to the result, doubles that
log M times, addsd2 to the result, etc. The total length of the
addition chain produced is at most:

(M − 1) + log n +
log n

log M
= log n + O(log n/ log log n)

In the expression on the left, the first term counts the firstM−
1 terms of the addition chain, the second counts the doublings,
and the third counts the increments ofdi. The equality follows
by choosingM to be the smallest power of two which is at
leastlog n/ log log n.

The M -ary method is very nearly the best possible.
Erdös [31] showed that, in a certain sense, the shortest addition
chain containingn has length at leastlog n + log n/ log log n
for almost alln. Even if exponentially more time is allowed, no
exact algorithm (and apparently even no better approximation
algorithm) is known.

The general addition chain problem, which consists of
finding the shortest addition chain containing a specified set
of integersk1, . . . , kp, is known to be NP-hard if the integers
ki are given in binary [32]. There is an easyO(log(

∑
ki))

approximation algorithm. First, generate all powers of two
less than or equal to the maximum of the input integerski.
Then form eachki independently by summing a subset of
these powers corresponding to 1’s in the binary representa-
tion of ki. In 1976, Yao [33] pointed out that the second
step could be tweaked in the spirit of theM -ary method.
Specifically, he groups the bits ofki into blocks of size
log log ki−2 log log log ki and tackles all blocks with the same
bit pattern at the same time. This improves the approximation
ratio slightly toO(log n/ log log n).

Yao’s method retains a frustrating aspect of the naive
algorithm: there is no attempt to exploit special relationships
between the integerski; each one is treated independently. For
example, supposeki = 3i for i = 1 to p. Then there exists a
short addition chain containing all of theki: 1, 2, 3, 6, 9, 18,
27, But Yao’s algorithm effectively attempts to represent
powers of three in base two.

However, even if theki are written in unary, apparently no
polynomial time algorithm with a better approximation ratio
than Yao’s is known. Since Theorem 2 links addition chains
and small grammars, finding an approximation algorithm for
the smallest grammar problem with ratioo(log n/ log log n)
would require improving upon Yao’s method.

C. An Observation on Hardness

We have demonstrated that the smallest grammar problem
is hard to approximate through reductions from two different
problems. Interestingly, there is also a marked difference in
the types of strings involved.

Specifically, Theorem 1 maps graphs to strings with large
alphabets and few repeated substrings. In such strings, the
use of hierarchy does not seem to be much of an advantage.
Thus, we show the NP-completeness of the smallest grammar
problem by analyzing a class of input strings that specifically
avoids the most interesting aspect of the problem: hierarchy.

6

On the other hand, Theorem 2 maps addition chain problems
to strings over a unary alphabet (plus unique symbols). The
potential for use of hierarchy in representing such strings is
enormous; in fact, the whole challenge now is to construct an
intricate hierarchy of rules, each defined in terms of the others.
Thus, this reduction more effectively captures the most notable
aspect of the smallest grammar problem.

Taken together, these two reductions show that the smallest
grammar problem is hard in both a “combinatorial packing”
sense and a seemingly orthogonal “hierarchical structuring”
sense.

VI. A NALYSIS OF PREVIOUS ALGORITHMS

In this section, we establish upper and lower bounds on the
approximation ratios of six previously proposed algorithms for
the smallest grammar problem: LZ78, BISECTION, SEQUEN-
TIAL , LONGESTMATCH, GREEDY, and RE-PAIR. In addition,
we discuss some closely-related algorithms: LZW, MPM, and
SEQUITUR.

Although most of the algorithms in this section were orig-
inally designed as compression algorithms, we view them as
approximation algorithms for the smallest grammar problem.
Generally speaking, a good grammar-based compression al-
gorithm should attempt to find the smallest possible grammar
generating the input string. Nonetheless, there do exist discon-
nects between our theoretical study of the smallest grammar
problem and practical data compression.

First, our optimization criteria is grammar size, whereas
the optimization criteria in data compression is the bit length
of the compressed string. A grammar with a smaller size
does not necessarily translate into a smaller compression rate
as described in [4]. However, a grammar of sizem can
be represented with at mostm log m bits by assigning each
distinct symbol a unique(log m)-bit representation. Such a
log m factor is small by the standards of our worst-case theo-
retical analyses, but enormous by practical data compression
standards.

Perhaps more importantly, data compression algorithms are
typically designed with an eye towarduniversality(asymptot-
ically optimal compression of strings generated by a finite-
state source) andlow redundancy(fast convergence to that
optimum). Informally, strings generated by a finite-state source
have high entropy; that is, they are compressible by only
a constant factor. Thus, the main focus in the design of a
data compressor is on high entropy strings. In fact, Kosaraju
and Manzini [27] point out that universality and redundancy
are not meaningful measures of a compressor’s performance
on low entropy strings. Consequently, performance on low-
entropy strings is typically neglected completely.

The situation is quite different when one studies the worst-
case approximation ratio instead of universality and redun-
dancy. If the smallest grammar for a high-entropy input string
of length n has size, say,n/ log n, then any compressor can
approximate the smallest grammar to within alog n factor. The
low-entropy strings, however, present a serious challenge. If an
input string is generated by a grammar of size, say,n1/3, then a
carelessly designed algorithm could exhibit an approximation

ratio as bad asn2/3. There is little hope that mapping the
grammar to a binary string in a clever manner could offset
such a failure. Thus, grammar-based data compressors and
approximation algorithms can both be viewed as approaches to
the smallest grammar problem, but they target different ranges
of inputs.

Finally, practical data compression mandates linear running
time in the length of the input string, with particular atten-
tion to the specific constants hidden by asymptotic notation.
Ideally, a compressor should also be on-line; that is, a single
left-to-right pass through the input string should suffice. Space
consumption throughout this pass should, preferably, be a
function of the size of the compressed string, not the size
of the string being compressed.

As a result of these disconnects, one must take the results
in the remainder of this section with a caveat: while we
show that many grammar-based data compression algorithms
exhibit mediocre approximation ratios, the designers of these
algorithms were concerned with slightly different measures,
different inputs, and many practical issues that we ignore.

A. LZ78

The well-known LZ78 compression scheme was proposed
by Lempel and Ziv [1]. In traditional terms, the LZ78 algo-
rithm represents a stringσ by a sequence of pairs. Each pair
represents a substring ofσ, and is of the form(i, c), where
i is an integer andc is a symbol inσ. If i is zero, then the
expansion of the pair is simplyc. Otherwise, the expansion is
equal to the expansion of thei-th pair followed by the symbol
c. The concatenation of the expansions of all pairs isσ. For
example, the following sequence :

(0, a) (1, b) (0, b) (2, a) (3, a) (2, b)

represents the stringaab b aba ba abb, where spaces are added
to clarify the correspondence.

The sequence-of-pairs representation of a string is generated
by LZ78 in a single left-to-right pass as follows. Begin with
an empty sequence of pairs. At each step, while there is
input to process, find the shortest, nonempty prefix of the
remaining input that is not the expansion of a pair already
in the sequence. There are two cases:

1) If this prefix consists of a single symbolc, then append
the pair(0, c) to the sequence.

2) Otherwise, this prefix must be of the formαc, whereα
is the expansion of some pair already in the sequence
(say, thei-th one) andc is a symbol. In this case, append
the pair(i, c) to the sequence.

For a cleaner analysis, we assume that an implicit “end-of-
file” character is appended to the string in order to guarantee
that one of the above two cases always applies. This special
character is omitted from the examples below for clarity.

1) LZ78 in Grammar Terms:An LZ78 pair sequence maps
naturally to a grammar. Associate a nonterminalT with each
pair (i, c). If i is zero, define the nonterminal byT → c.
Otherwise, define the nonterminal to beT → Uc, whereU is
the nonterminal associated with thei-th pair. The right side

7

of the start rule contains all the nonterminals associated with
pairs. For example, the grammar associated with the example
sequence is as follows:

S → X1X2X3X4X5X6

X1 → a X3 → b X5 → X3a
X2 → X1b X4 → X2a X6 → X2b

Given this easy mapping, hereafter we simply regard the output
of LZ78 as a grammar rather than as a sequence of pairs.

Note that the grammars produced by LZ78 are of a re-
stricted form in which the right side of each secondary rule
contains at most two symbols and at most one nonterminal.
Subject to these restrictions, the smallest grammar for even
the stringxn has sizeΩ(

√
n). (On the other hand, grammars

with such a regular form can be more efficiently encoded into
bits.)

The next two theorems provide nearly-matching upper and
lower bounds on the approximation ratio of LZ78 when it
is interpreted as an approximation algorithm for the smallest
grammar problem.

Theorem 3:The approximation ratio of LZ78 is
Ω(n2/3/ log n).

Proof: The lower bound follows by analyzing the behav-
ior of LZ78 on input strings of the form

σk = ak(k+1)/2 (bak)(k+1)2

wherek > 0. The length of this string isn = Θ(k3). Repeated
application of Lemma 2 implies that there exists a grammar
for σk of sizeO(log k) = O(log n).

The stringσk is processed by LZ78 in two stages. During
the first, thek(k +1)/2 leadinga’s are consumed and nonter-
minals with expansionsa, aa, aaa, . . . , ak are created. During
the second stage, the remainder of the string is consumed
and a nonterminal with expansionaibaj is created for alli
and j between0 and k. For example,σ4 is represented by
nonterminals with expansions as indicated below:

a aa aaa aaaa
b aaaab aaaaba aaab aaaabaa aab aaaabaaa

ab aaaabaaaa
ba aaaba aaabaa aaba aaabaaa aba aaabaaaa
baa aabaa aabaaa abaa aabaaaa
baaa abaaa abaaaa
baaaa

The pattern illustrated above can be shown to occur in general
with an induction argument. As a result, the grammar produced
by LZ78 has sizeΩ(k2) = Ω(n2/3). Dividing by our upper
bound on the size of the smallest grammar proves the claim.

Theorem 4:The approximation ratio of LZ78 is
O
(
(n/ log n)2/3

)
.

Our techniques in the following proof of Theorem 4 form
the basis for two other upper bounds presented in this section.
The core idea is that nonterminals must expand to distinct
substrings of the input. By themk Lemma, however, there
are very few short distinct substrings of the input. Thus most
nonterminals expand to long substrings. However, the total

expansion length of all nonterminals must be equal to the
size of the input. As a result, there cannot be too many
nonterminals in the grammar.

Proof: Suppose that the input to LZ78 is a stringσ of
lengthn, and that the smallest grammar generatingσ has size
m∗. Let S → X1 . . . Xp be the start rule generated by LZ78.

First observe that the size of the LZ78 grammar is at most
3p, since each nonterminalXi is used once in the start rule and
is defined using at most two symbols. Therefore, it suffices to
upper-boundp, the number of nonterminals in the start rule.

To that end, list the nonterminals of the grammar in order
of increasing expansion length. Group the firstm∗ of these
nonterminals, the next2m∗, the next3m∗, and so forth. Let
g be the number of complete groups of nonterminals that can
be formed in this way. By this definition ofg, we have

m∗ + 2m∗ + . . . + gm∗ + (g + 1)m∗ > p

and sop = O(g2m∗).
On the other hand, the definition of LZ78 guarantees that

each nonterminalXi expands to a distinct substring ofσ.
Moreover, Lemma 3 states thatσ contains at mostm∗k
distinct substrings of lengthk. Thus, there can be at most
m∗ nonterminals which have expansion length1, and at most
2m∗ nonterminals which have expansion length2, and so on.

It follows that each nonterminal in thej-th group must
expand to a string of length at leastj. Therefore, we have

n = [X1] + . . . + [Xp]
≥ 12m∗ + 22m∗ + 32m∗ + . . . + g2m∗

and sog = O
(
(n/m∗)1/3

)
. The inequality follows since we

are ignoring the incomplete(g + 1)-th group.
Substituting this bound ong into the upper bound onp

obtained previously gives:

p = O

((n

m∗

)2/3

m∗
)

= O

((
n

log n

)2/3

m∗

)
The second equality follows from Lemma 1, which says that
the smallest grammar for a string of lengthn has sizeΩ(log n).

2) LZW: Some practical improvements on LZ78 are em-
bodied in a later algorithm, LZW [2]. The grammars implicitly
generated by the two procedures are not substantively differ-
ent, but LZW is more widely used in practice. For example,
it is used to encode images in the the populargif format.
Interestingly, the bad strings introduced in Theorem 3 have
a natural graphical interpretation. Below,σ4 is written in a
15× 9 grid pattern using2 and for a andb respectively.

2222222222 2222
2222 2222 2222
2222 2222 2222
2222 2222 2222
2222 2222 2222
2222 2222 2222
2222 2222 2222
2222 2222 2222
2222 2222 2222

Thus, an image with colors in this simple vertical stripe pattern
yields a worst-case string in terms of approximation ratio. This

8

effect can be observed in practice on even small examples.
For example, a68 × 68 image consisting of four horizontal
lines spaced 16 pixels apart is stored by Corel PhotoPaint, a
commercial graphics program, in a 933 byte file. When the
image is rotated ninety degrees to create vertical lines instead,
the stored file grows to 1142 bytes.

B. BISECTION

The BISECTION algorithm was proposed by Kieffer, Yang,
Nelson, and Cosman [3], [16]. For binary input strings of
length 2k, the same technique was employed much earlier
in binary decision diagrams (BDDs), a data structure used to
represent and easily manipulate boolean functions.

1) The Procedure:BISECTION works on an input stringσ
as follows. Select the largest integerj such that2j < |σ|.
Partition σ into two substrings with lengths2j and |σ| − 2j .
Repeat this partitioning process recursively on each substring
produced that has length greater than one. Afterward, create
a nonterminal for every distinct string of length greater than
one generated during this process. Each such nonterminal can
then be defined by a rule with exactly two symbols on the
right.

Example 1. Consider the stringσ = 1110111010011.
We recursively partition and associate a nonterminal with
each distinct substring generated as shown below:

1110111010011︸ ︷︷ ︸
S

S → T1T2

11101110︸ ︷︷ ︸
T1

10011︸ ︷︷ ︸
T2

T1 → U1U1 T2 → U21

1110︸︷︷︸
U1

1110 1001︸︷︷︸
U2

1 U1 → V1V2 U2 → V2V3

11︸︷︷︸
V1

10︸︷︷︸
V2

111010 01︸︷︷︸
V3

1 V1 → 11 V2 → 10 V3 → 01

2) Bounds: The following two theorems give nearly-
matching lower and upper bounds on the approximation ratio
of BISECTION

Theorem 5:The approximation ratio of BISECTION is
Ω(
√

n/ log n).
Proof: We analyze the behavior of BISECTION on input

strings of the form

σk = a(b2k

a)2
k−1

where k > 0. This string has lengthn = 22k. After k
bisections,σk is partitioned into2k distinct substrings of
length2k. In particular, each contains a singlea, which appears
in thei-th position in thei-th substring. For example, bisecting
σ2 twice gives four distinct strings:abbb babb bbab bbba.
A routine induction argument shows that this pattern holds
in general forσk. Since each distinct substring generates a
nonterminal, BISECTION produces a grammar of sizeΩ(2k) =
Ω(
√

n) on inputσk.
On the other hand, Lemma 2 implies that there exists a

grammar forσk of sizeO(k) = O(log n). The approximation
ratio of Ω(

√
n/ log n) follows.

Theorem 6:The approximation ratio of BISECTION is
O(
√

n/ log n).
Proof: Suppose that the input to BISECTION is a string

σ of length n, and that the smallest grammar generatingσ
has sizem∗. Let j be the largest integer such that2j ≤ n.
Note that the size of the BISECTION grammar forσ is at most
twice the number of distinct substrings generated during the
recursive partitioning process. Thus, it suffices to upper-bound
the latter quantity.

At most one string at each level of the recursion has a length
that is not a power of two; therefore, there are at mostj strings
with irregular lengths. All remaining strings have length2i for
somei between 1 andj. We can upper-bound the number of
these remaining strings in two ways. On one hand, BISECTION

creates at most one string of length2j , at most two of length
2j−1, at most four of length2j−2, etc. On the other hand,
Lemma 3 says thatσ contains at most2im∗ distinct substrings
of length2i. The first observation gives a good upper bound on
the number of distinct long strings generated by the recursive
partitioning process, and the second is tighter for short strings.
Putting this all together, the size of the BISECTION grammar
is at most:

2 ·

j +

1
2 (j−log j)∑

i=1

m∗2i +
j∑

i= 1
2 (j−log j)

2j−i


= O(log n) + O

(
m∗
√

n

log n

)
+ O

(√
n log n

)
= O

(
m∗
√

n

log n

)
In the second equation, we use the fact thatm∗ = Ω(log n)
by Lemma 1.

3) MPM: BISECTION was generalized to an algorithm
called MPM [3], which permits a string to be split more than
two ways during the recursive partitioning process and allows
that process to terminate early. For reasonable parameters,
performance bounds are the same as for BISECTION.

C. SEQUENTIAL

Nevill-Manning and Witten introduced the SEQUITUR al-
gorithm [6], [13]. Kieffer and Yang subsequently offered a
similar, but improved algorithm that we refer to here as
SEQUENTIAL [4].

1) The Procedure: SEQUENTIAL processes a string as
follows. Begin with an empty grammar and make a single
left-to-right pass through the input string. At each step, find
the longest prefix of the unprocessed portion of the input
that matches the expansion of a secondary nonterminal, and
append that nonterminal to the start rule. If no prefix matches
the expansion of a secondary nonterminal, then append the
first terminal in the unprocessed portion of the input to the
start rule. In either case, if the newly created pair of symbols
at the end of the start rule already appears elsewhere in the
grammar without overlap, then replace both occurrences by a
new nonterminal whose definition is that pair. Finally, if some

9

nonterminal occurs only once after this substitution, replace it
by its definition, and delete the corresponding rule.

Example 2. As an example, consider the input string
σ = xxxxx♦xxxxx♥. After three steps, the grammar
is: S → xxx. When the nextx is appended to the start
rule, there are two copies of the substringxx. Therefore
a new rule,R1 → xx, is added to the grammar and both
occurrences ofxx are replaced byR1 to produce the
following intermediate grammar:

S → R1R1

R1 → xx

During the next two steps, the start rule expands toS →
R1R1x♦. At this point, the expansion ofR1 is a prefix of
the unprocessed part ofσ, so the next two steps consume
xx and appendR1 to S twice.
Now the pairR1R1 appears twice inS, and so a new
rule is R2 → R1R1 is added and applied:

S → R2x♦R2

R1 → xx

R2 → R1R1

In the next step,x is consumed and nowR2x appears
twice. A new ruleR3 → R2x is created and substituted
into S. Notice that the ruleR2 only appears once after
this substitution. Therefore, the occurrence ofR2 in
the definition ofR3 is replaced withR1R1, and R2 is
removed from the grammar. After the next step, we have
the following final output:

S → R3♦R3♥
R1 → xx

R3 → R1R1x

2) Bounds: The next two theorems bound the approxima-
tion ratio of SEQUENTIAL. Both the upper and lower bounds
are considerably more complex than the analysis for LZ78
and BISECTION.

Theorem 7:The approximation ratio of SEQUENTIAL is
Ω(n1/3).

Proof: We analyze the behavior of SEQUENTIAL on
strings σk for k > 0, defined below, over an alphabet
consisting of four symbols:{x, y,♦,♥}.

σk = α♦βk/2

α = xk+1♦xk+1♥δ0♦δ0♥δ1♦δ1♥ . . . δk♦δk♥
β = δkδk δkδk−1 δkδk−2 δkδk−3 . . . δkδk/2 xk

δi = xiyxk−i

As SEQUENTIAL processes the prefixα, it creates nontermi-
nals for the stringsx2i

for eachi from 1 to log(k+1), a non-
terminal with expansionxk+1, a nonterminal with expansion
δi for eachi from 0 to k, and some nonterminals with shorter
expansions that are not relevant here. With regard to the third
assertion, note that SEQUENTIAL parses the first occurrence
of the stringδi in some particular way. It then consumes the

♦, and proceeds to consume the second occurrence ofδi in
exactly the same way as the first one. This process generates
a nonterminal with expansionδi. Notice that the♦ and ♥
symbols are never added to a secondary rule.

The remainder of the input, the stringβk/2, is consumed in
segments of lengthk + 1. This is because, at each step, the
leadingk +1 symbols of the unprocessed portion of the input
string are of the formxk+1 or δi for somei. Consequently,
the corresponding nonterminal is appended to the start rule at
each step.

At a high level, this is the inefficiency that we exploit. The
length ofβ is not a multiple ofk + 1. As a result, each copy
of β is represented by a different sequence of nonterminals.

Now we describe the parsing ofβk/2 in more detail. The
first copy of β is parsed almost as it is written above. The
only difference is that the finalxk at the end of this first copy
is combined with the leading zero in the second copy ofβ
and read as a single nonterminal. Thus, nonterminals with the
following expansions are appended to the start rule as the first
copy of β is processed:

δkδk δkδk−1 δkδk−2 δkδk−3 . . . δkδk/2 xk+1

SEQUENTIAL parses the second copy ofβ differently, since the
leading zero of this second copy has already been processed.
Furthermore, the finalxk−1 in the second copy ofβ is
combined with the two leading zeroes in the third copy and
read as a single nonterminal:

δk−1δk−1 δk−1δk−2 δk−1δk−3 . . . δk−1δk/2−1 xk+1

With two leading zeros already processed, the third copy ofβ
is parsed yet another way. In general, an induction argument
shows that thej-th copy (indexed from0) is read as:

δk−jδk−j δk−jδk−j−1 δk−jδk−j−2 . . . δk−jδk/2−j xk+1

No consecutive pair of nonterminals ever appears twice in this
entire process, and so no new rules are created. Since the input
string containsk/2 copies ofβ and each is represented by
aboutk nonterminals, the grammar generated by SEQUENTIAL

has sizeΩ(k2).
On the other hand, there exists a grammar forσk of

size O(k). First, create a nonterminalXi with expansion
xi for each i up to k + 1. Each such nonterminal can be
defined in terms of its predecessors using only two symbols:
Xi → xXi−1. Next, define a nonterminalDi with expansion
δi for each i using three symbols:Di → XiyXk−i. Now
it is straightforward to define nonterminalsA and B which
expand toα and β respectively. Finally, using Lemma 2,
O(log k) additional symbols suffice to define a start symbol
with expansionα♦βk/2. In total this grammar has sizeO(k).
Therefore the approximation ratio of SEQUENTIAL is Ω(k) =
Ω(n1/3).

3) Irreducible Grammars:Our upper bound on the approxi-
mation ratio of SEQUENTIAL relies on a property of the output.
In particular, Kieffer and Yang [4] show that SEQUENTIAL

produces anirreducible grammar; that is, one which has the
following three properties:

10

(I1) All non-overlapping pairs of adjacent symbols of the
grammar are distinct.

(I2) Every secondary nonterminal appears at least twice on
the right side of the grammar.

(I3) No two nonterminals in the grammar have the same
expansion.

In upper-bounding the approximation ratio of SEQUENTIAL,
we rely on properties of irreducible grammars established in
the following two lemmas.

Lemma 4:The sum of the lengths of the expansions of all
distinct nonterminals in an irreducible grammar is at most2n.

(This result also appears as equation 9.33 in Appendix B
of [5].)

Proof: Let S be the start symbol of an irreducible
grammar for a string of lengthn, and letR1, . . . , Rk be the
secondary nonterminals. Observe that the sum of the expansion
lengths of all symbols on the left side of the grammar must be
equal to the sum of the expansion lengths of all symbols on
the right side of the grammar. Furthermore, every secondary
nonterminal appears at least twice on the right side by (I2).
Therefore, we have:

[S] + [R1] + . . . + [Rk] ≥ 2([R1] + . . . + [Rk])

Adding [S]− [R1]+ . . .+[Rk] to both sides of this inequality
and noting that2[S] = 2n finishes the proof.

Lemma 5:Every irreducible grammar of sizem contains
at least 2m/9 distinct, non-overlapping pairs of adjacent
symbols.

Proof: For each rule, group the first and second symbols
on the right side to form one pair, the third and fourth for
a second pair, and so forth. If a rule has an odd number of
symbols, ignore the last one.

We must show that only a few symbols are ignored in this
process. In particular, we ignore at mostm/3 lonely symbols,
which appear alone on the right side of a rule. Each such rule
accounts for three distinct symbols in the grammar: one in the
rule’s definition and at least two for the occurrences of the
nonterminal defined by the rule. Thus, there can be at most
m/3 such lonely symbols.

Among rules with 2 or more symbols on the right, at least
2
3 of those symbols are in pairs. (The worst case is a rule of
length3.) Thus at least23 (m− m

3) = 4m
9 symbols must have

been paired in our process. Putting this all together, there are
at least2m

9 non-overlapping pairs of adjacent symbols.

4) Upper Bound:We can now upper-bound the approxima-
tion ratio of SEQUENTIAL by using the fact that SEQUENTIAL

always produces an irreducible grammar.

Theorem 8:Every irreducible grammar for a string is
O((n/ log n)3/4) times larger than the size of the smallest
grammar for that string.

Corollary 1: The approximation ratio of SEQUENTIAL is
O((n/ log n)3/4).

Proof: (of Theorem 8) This argument closely follows that
of Theorem 4. As before, letm be the size of an irreducible
grammar generating a stringσ of lengthn, and letm∗ be the
size of the smallest grammar.

Identify 2m/9 distinct, non-overlapping pairs of adjacent
symbols in the irreducible grammar that are guaranteed to exist
by Lemma 5. Note that at mostk− 1 pairs can expand to the
same length-k substring ofσ. To see why, suppose there are
k or more pairs that expand to represent the same length-k
substring ofσ. The first nonterminal in each such pair must
expand to a string with length between 1 andk−1. Hence by
pigeonholing, there must exist two pairsUV and XY such
that 〈U〉 = 〈X〉 and 〈V 〉 = 〈Y 〉. Since all pairs are distinct,
eitherU 6= X or V 6= Y . In either case, we have two distinct
symbols with the same expansion, which violates (I3).

List the pairs in order of increasing expansion length and
group the first1 · 2m∗ of these pairs, the next2 · 3m∗, etc.
Let g be the number ofcompletegroups formed in this way.
Then we have:

1·2m∗+2·3m∗+. . .+g ·(g+1)m∗+(g+1)·(g+2)m∗ >
2m

9

And so m = O(g3m∗). Lemma 3 implies thatσ contains at
most m∗k distinct substrings of lengthk. As in Theorem 4,
at most m∗k(k − 1) pairs have an expansion of lengthk.
Consequently, each pair in thej-th group expands to a string
of length at leastj+1. Thus, the total length of the expansions
of all pairs is at least1 ·22m∗+2 ·32m∗+ . . .+g(g +1)2m∗.

The 2m/9 pairs constitute a subset of the symbols on the
right side of the grammar. The total expansion length of all
symbols on the right side of the grammar is equal to the total
expansion length of all symbols on the left. Lemma 4 upper
bounds the latter quantity by2n. Therefore, we have:

1 · 22m∗ + 2 · 32m∗ + . . . + g(g + 1)2m∗ ≤ 2n

As a result,g = O
(
(n/m∗)1/4

)
. As before, substituting

this upper-bound ong into the upper-bound onm obtained
previously implies the theorem:m = O((n/m∗)3/4m∗) =
O((n/ log n)3/4m∗).

D. Global Algorithms

The remaining algorithms analyzed in this section all belong
to a single class, which we refer to asglobal algorithms. We
upper bound the approximation ratio of every global algorithm
by O

(
(n/ log n)2/3

)
with a single theorem. However, our

lower bounds are all different, complex, and weak (o(log n)).
Moreover, the lower bounds rely on strings over unbounded
alphabets. Thus, it may be that every global algorithm has an
excellent approximation ratio. Because they are so natural and
our understanding is so incomplete, global algorithms are one
of the most interesting topics related to the smallest grammar
problem that deserve further investigation.

1) The Procedure:A global algorithm begins with the
grammarS → σ . The remaining work is divided into rounds.
During each round, one selects amaximal stringγ. (Global
algorithms differ only in the way they select a maximal string
in each round.) A maximal stringγ has three properties:

(M1) It has length at least two.
(M2) It appears at least twice on the right side of the grammar

without overlap.

11

(M3) No strictly longer string appears at least as many times
on the right side without overlap.

After a maximal stringγ is selected, a new ruleT →
γ is added to the grammar. This rule is then applied by
working left-to-right through the right side of every other
rule, replacing each occurrence ofγ by the symbolT . The
algorithm terminates when no more maximal strings exist.

Example 3. An example illustrates the range of moves
available to a global algorithm. (Throughout this section,
we will use the input stringσ = abcabcabcabcaba for
our examples.) We initially create the grammarS →
abc abc abc abc ab a where spaces are added for clarity.
The maximal strings areab, abc, and abcabc. Suppose
that we select the maximal stringab, and introduce the
rule T → ab. The grammar becomes:

S → Tc Tc Tc Tc T a

T → ab

Now the maximal strings areTc andTcTc. Suppose that
we selectTcTc. Then we add the ruleU → TcTc, and
the definition ofS becomesS → U U T a. Now the only
maximal string isTc. Adding the ruleV → Tc yields
the final grammar:

S → U U T a

T → ab

U → V V

V → Tc

2) Upper Bound:The approximation ratio of every global
algorithm isO((n/ log n)2/3). This follows from the fact that
grammars produced by global algorithms are particularly well-
conditioned; not only are they are irreducible, but they possess
an additional property described in the lemma below.

Lemma 6:Every grammar produced by a global algorithm
has the following property. Letα and β be strings of length
at least two on the right side. If〈α〉 = 〈β〉, thenα = β.

Proof: We show that this is actually an invariant property
of the grammar maintained throughout the execution of a
global algorithm. The invariant holds trivially for the initial
grammarS → σ. So suppose that the invariant holds for
grammarG, and then grammarG′ is generated fromG by
introducing a new ruleT → γ. Let α′ and β′ be strings
of length at least two on the right side ofG′ such that
〈α′〉 = 〈β′〉. We must show thatα′ = β′.

There are two cases to consider. First, suppose that neither
α′ nor β′ appears inγ. Thenα′ andβ′ must be obtained from
non-overlapping stringsα and β in G such that〈α〉 = 〈α′〉
and 〈β〉 = 〈β′〉. Since the invariant holds forG, we have
α = β. But thenα andβ are transformed the same way when
the ruleT → γ is added; that is, corresponding instances of
the stringγ within α and β are replaced by the nonterminal
T . Therefore,α′ = β′. Otherwise, suppose that at least one of
α′ or β′ appears inγ. Then neitherα′ nor β′ can containT .
Therefore, bothα′ and β′ appear in grammarG, where the
invariant holds, and soα′ = β′ again.

Lemma 7:Every grammar produced by a global algorithm
is irreducible.

Proof: We must show that a grammar produced by a
global algorithm satisfies the three properties of an irreducible
grammar.
(I1). First, note that all non-overlapping pairs of adjacent
symbols on the right side are distinct since a global algorithm
does not terminate until this condition holds.
(I2). We must show that every secondary nonterminal appears
at least twice on the right side of the grammar. This property
is also an invariant maintained during the execution of a global
algorithm.

The property holds vacuously for the initial grammarS →
σ. Suppose that the property holds for a grammarG which
has been generated by a global algorithm, and then we obtain
a new grammarG′ by introducing a new ruleT → γ where
γ is a maximal string. By the definition of maximal string,
the nonterminalT must appear at least twice on the right side
of G′. If γ contains only terminals or nonterminals which
appear twice on the right-side ofG′, then the invariant clearly
holds for G′. Suppose, by contradiction, thatγ contains a
nonterminalV which appears only once on the right side of
G′. Let V → β be the definition ofV in G′. This implies that
V only appears in the definition ofT , and therefore the string
β occurs exactly as many times asγ in G. Sinceγ is maximal,
it must have length at least two, and therefore[γ] > [β].
In particular, this implies that during the step in which the
rule for V was introduced, the intermediate grammar at that
point contained a strictly longer string which appeared exactly
the same number of times, which contradicts the assumption
thatG has been produced by a global algorithm. (I3). Finally,
we must show that distinct symbols have distinct expansions,
unless the start symbol expands to a terminal. Once again,
we use an invariant argument. The following invariants hold
for every secondary ruleU → γ in the grammar maintained
during the execution of a global algorithm:

1) The stringγ appears nowhere else in the grammar.
2) The length ofγ is at least two.
Both invariants hold trivially for the initial grammarS → σ.

Suppose that the invariants hold for every rule in a grammar
G, and then we obtain a new grammarG′ by introducing the
rule T → δ.

First, we check that the invariants hold for the new rule.
The stringδ can not appear elsewhere in the grammar; such
an instance would have been replaced by the nonterminalT .
Furthermore, the length ofδ is at least two, sinceδ is a
maximal string.

Next, we check that the invariant holds for each ruleU → γ′

in G′ that corresponds to a ruleU → γ in G. If γ′ does not
containT , then both invariants carry over fromG. Suppose
that γ′ does containT . The first invariant still carries over
from G. The second invariant holds unlessδ = γ. However,
sinceδ is a maximal string, that would imply thatγ appeared
at least twice inG, violating the first invariant.

The third property of an irreducible grammar follows from
these two invariants. No secondary nonterminal can expand to
a terminal, because the second invariant implies that each sec-
ondary nonterminal has an expansion of length at least two. No

12

two nonterminals can expand to the same string either; their
definitions have length at least two by the second invariant,
and therefore their expansions are distinct by Lemma 6.

Theorem 9:The approximation ratio of every global algo-
rithm is O

(
(n/ log n)2/3

)
.

Proof: This argument is similar to the upper bound on
irreducible grammars and LZ78. Suppose that on inputσ of
lengthn, a global algorithm outputs a grammarG of sizem,
but the smallest grammar has sizem∗. First note thatG is
irreducible by Lemma 7.

As before, list 2m/9 distinct, non-overlapping pairs of
adjacent symbols inG (guaranteed to exist by Lemma 5) in
order of increasing expansion length. This time, group the
first 2m∗ pairs, the next3m∗, and so forth so thatg complete
groups can be formed. Therefore, we have2m∗+3m∗+ . . .+
(g + 1)m∗ > 2m/9 which impliesm = O(g2m∗).

Lemma 6 implies that every pair expands to a distinct
substring ofσ. With Lemma 3, this implies every pair in thej-
th group expands to a string of length at leastj+1. As before,
the total length of the expansions of all pairs must be at least
22m∗ + 32m∗ + . . . + g2m∗ ≤ 2n . The upper bound follows
from Lemma 4. Therefore,g = O

(
(n/m∗)1/3

)
. Substituting

this bound ong into the upper bound onm and applying
Lemma 1 gives the theorem:m = O((n/m∗)2/3m∗) =
O((n/ log n)2/3m∗).

In the following sections, we describe three natural global
algorithms. The preceding theorem provides an upper bound
on the approximation ratio for all of them. Below, we establish
a weak lower bound on the approximation ratio for each one
individually.

E. LONGESTMATCH

Kieffer and Yang [5] proposed the LONGESTMATCH pro-
cedure, a global algorithm in which one always selects the
longestmaximal string. In our running example, the first rule
added isT → abc abc.

LONGEST MATCH has two elegant features that simplify
analysis of its behavior:

1) No rule is ever introduced with a nonterminal on the
right side.

2) Each nonterminal created appears in the final grammar.

If the first principle were violated, and a rule with a nontermi-
nal X on the right was introduced, then the definition of the
nonterminalX could not have been the longest maximal string
when it was created, which contradicts the definition of the
algorithm. The second principle follows from the first; since
every new rule has only terminals on the right, nonterminals
are only added to the grammar over the course the procedure
and never eliminated.

The second principle offers a simple way to lower bound
the size of a grammar generated by LONGEST MATCH; we
need only sum up the number of nonterminals created over
the course of the procedure.

The first principle allows one to simplify the grammar
maintained during the execution of LONGESTMATCH without
altering the subsequent behavior of the algorithm. During the

execution of LONGESTMATCH, we can replace each nonter-
minal on the right by a unique symbol. This does not alter
subsequent behavior, since no rule containing a nonterminal
will ever be introduced anyway. The example grammar from
the start of this section can be transformed in this way into
the following:

S → || ab a

T → abc abc

Furthermore, we can append the definitions of secondary rules
to the start rule (as long as they are separated by unique
symbols), and then delete all secondary rules. Segments of the
rule that are between unique symbols can be rearranged within
the string as well. Finally, we can delete unique symbols at
the start and end of this rule and merge consecutive unique
symbols. Transforming the example in this way gives:

S → ab a | abc abc

We refer to this three-step simplification procedure ascon-
solidatinga grammar. In analyzing the behavior of LONGEST

MATCH on an input string, we are free to consolidate the
grammar at any point to simplify analysis; the subsequent
behavior of the procedure is unchanged.

1) Lower Bound:
Theorem 10:The approximation ratio of LONGEST

MATCH is Ω(log log n).
Proof: We analyze the performance of LONGESTMATCH

on a stringσk, which consists ofk + 2 segments that are
separated by uniques. First, define

γ[a,b] =

{
x2a

y2a+1
x2a+2

. . . y2b

if a is even
y2a

x2a+1
y2a+2

. . . x2b

otherwise

For example,γ[0,7] = x y2 x4 y8 x16 y32 x64 y128.
Now, for i in the range0 to k − 1, define theith segment of
σk as γ[i,i+2j−1] where j is the largest possible value such
that i + 2j ≤ k. The final two segments arex2k

andy2k

. For
example,

σ10 = γ[0,7] | γ[1,8] | γ[2,9] | γ[3,6] | γ[4,7] | γ[5,8] |
γ[6,9] | γ[7,8] | γ[8,9] | γ[9,9] | x1024 | y1024

which expands to the following string (with indentation and
line breaks added for clarity):

x y2 x4 y8 x16 y32 x64 y128 |
y2 x4 y8 x16 y32 x64 y128 x256 |

x4 y8 x16 y32 x64 y128 x256 y512 |
y8 x16 y32 x64 |

x16 y32 x64 y128 |
y32 x64 y128 x256 |

x64 y128 x256 y512 |
y128 x256 |

x256 y512 |
y512 |
x1024 |
y1024

13

We analyze how LONGEST MATCH processes this string.
Observe that in the example, the longest match isγ[6,9] =
x64 y128 x256 y512. In general, the longest match inσk is
always thesecondlargest segment of the formγ[a,k−1]. After
this rule is added and the grammar rewritten, the next longest
match is the third longest segment of the formγ[a′,k−1], (γ[8,9]

in our example) which is wholly contained in the first longest
match. In the next round, the longest match is the fourth
longest segment, and so forth. Afterlog k rounds of this type,
the next two longest matches arex2k−1

and y2k−1
. At this

point, the grammar is as follows (abbreviations introduced
above are used for clarity):

S → γ[0,7] | γ[1,8] | γ[2,5]T1 | γ[3,6] | γ[4,7] |
γ[5,8] | T1 | γ[7,8] | T2 | T3 | T4T4 | T3T3

T1 → x64y128T2

T2 → x256T3

T3 → y512

T4 → x512

and after consolidating the grammar, we obtain

S2 → γ[0,7] | γ[1,8] | γ[2,5] | γ[3,6] | γ[4,7] |
γ[5,8] | γ[6,7] | γ[7,8] | γ[8,8] | x512 | y512

The critical observation is that the consolidated grammar
is the same as the initial grammar for input stringσ9.
After another succession of rounds and a consolidation, the
definition of the start rule becomesσ8, and thenσ7, and
so forth. Reducing the right side of the start rule fromσi

to σi−1 entails the creation of at leastblog ic nonterminals.
Since nonterminals created by LONGEST MATCH are never
eliminated, we can lower bound the total size of the grammar
produced on this input by:

k∑
i=1

blog ic = Ω(k log k)

On the other hand, there exists a grammar of sizeO(k) that
generatesσk. What follows is a sketch of the construction.
First, we create nonterminalsX2i

andY 2i

with expansionsx2i

andy2i

respectively for alli up tok. We can define each such
nonterminal using two symbols, and so onlyO(k) symbols
are required in total.

Then we define a nonterminal corresponding to each seg-
ment ofσk. We define these nonterminals in batches, where a
batch consists of all nonterminals corresponding to segments
of σk that contain the same number of terms. Rather than de-
scribe the general procedure, we illustrate it with an example.
Suppose that we want to define nonterminals corresponding to
the following batch of segments inσ10.

γ[3,6] | γ[4,7] | γ[5,8] | γ[6,9] |

This can be done by defining the following auxiliary non-
terminals which expand to prefixes and suffixes of the string

γ[3,9] = y8 x16 y32 x64 y128 x256 y512:

P1 → X64 S1 → Y 128

P2 → Y 32P1 S2 → S1X
256

P3 → X16P2 S3 → S2Y
512

P4 → Y 8P3

Now we can define nonterminals corresponding to the de-
sired segmentsγ[i,j] in terms of these “prefix” and “suffix”
nonterminals as follows:

G[3,6] → P4 G[4,7] → P3S1

G[5,8] → P2S2 G[6,9] → P1S3

In this way, each nonterminal corresponding to aγ[i,j] in σk

is defined using a constant number of symbols. Therefore,
defining all k such nonterminals requiresO(k) symbols.
We complete the grammar forσk by defining a start rule
containing anotherO(k) symbols. Thus, the total size of the
grammar isO(k).

Therefore, the approximation ratio for LONGESTMATCH is
Ω(log k). Since the length ofσk is n = Θ(k2k), this ratio is
Ω(log log n) as claimed.

F. GREEDY

Apostolico and Lonardi [11], [25], [10] proposed a variety
of greedy algorithms for grammar-based data compression.
The central idea, which we analyze here, is to select the
maximal string that reduces the size of the grammar as much
as possible. For example, on our usual starting grammar, the
first rule added isT → abc, since this decreases the size of
the grammar by 5 symbols, which is the best possible.

Theorem 11:The approximation ratio of GREEDY is at
least 5 log 3

3 log 5 = 1.137
Proof: We consider the behavior of GREEDY on an input

string of the formσk = xn, wheren = 52k

.
GREEDY begins with the grammarS → σk. The first rule

added must be of the formT → xt. The size of the grammar
after this rule is added is thent+bn/tc+(n mod t) where the
first term reflects the cost of definingT , the second accounts
for the instances ofT itself, and the third represents extraneous
x’s. This sum is minimized whent = n1/2. The resulting
grammar is:

S → T 52k−1

T → x52k−1

Since the definitions ofS andT contain no common symbols,
we can analyze the behavior of GREEDY on each indepen-
dently. Notice that both subproblems are of the same form
as the original, but have sizek − 1 instead ofk. Continuing
in this way, we reach a grammar with2k nonterminals, each
defined by five copies of another symbol. Each such rule is
transformed as shown below in a final step that does not alter
the size of the grammar.

X → Y Y Y Y Y =⇒ X → X ′X ′Y
X ′ → Y Y

Therefore, GREEDY generates a grammar forσk of size5×2k.

14

On the other hand, we show that for alln, xn has a grammar
of size3 log3(n)+ o(log n). Substitutingn = 52k

then proves
the theorem.

Write n as a numeral in a baseb = 3j , where j is a
parameter defined later:n = d0b

t + d1b
t−1 + d2b

t−2 + . . . +
dt−1b

1 + dt.
The grammar is constructed as follows. First, create a

nonterminalTi with expansionxi for eachi between1 and
b − 1. This can be done with2 · b = 2 · 3j symbols, using
rules of the formTi+1 → Tix. Next, create a nonterminal
U0 with expansionxd0 via the rule U0 → Td0 . Create
a nonterminalU1 with expansionxd0b+d1 by introducing
intermediate nonterminals,Z1 which triples U0, Z2 which
triples Z1, and so onj times, and then by appendingTd1 :

Z1 → U0U0U0

Z2 → Z1Z1Z1

. . .

Zj → Zj−1Zj−1Zj−1

U1 → ZjTd1

This requires3j + 2 symbols. Similarly, createU2 with
expansionxd0b2+d1b+d2 , and so on. The start symbol of the
grammar isUt. The total number of symbols used is at most:

2 · 3j + (3j + 2) · t = 2 · 3j + (3j + 2) · logb n

= 2 · 3j + 3 log3 n +
2
j

log3 n

The second equality uses the fact thatb = 3j . Setting j =
1
2 log3 log3 n makes the last expression3 log3(n) + o(log n)
as claimed.

G. RE-PAIR

Larsson and Moffat [7] proposed the RE-PAIR algorithm.
(The byte-pair encoding (BPE) technique of Gage [34] is
based on similar ideas.) Essentially, this is a global algorithm
in which the maximal string chosen at each step is the one
which appears most often. In our running example, the first
rule added isT → ab, since the stringab appears most often.

There is a small difference between the algorithm originally
proposed by Larsson and Moffat and what we refer to here
as RE-PAIR: the original algorithm always makes a rule for
the pair of symbols that appears most often without overlap,
regardless of whether that pair forms a maximal string. For
example, on inputxyzxyz, the original RE-PAIR algorithm
generates the following grammar:

S → UU U → xV V → yz

This is unattractive, since one could replace the single oc-
currence of the nonterminalV by its definition and obtain a
smaller grammar. Indeed, RE-PAIR, as described here, would
give the smaller grammar:

S → UU U → xyz

The original approach was motivated by implementation effi-
ciency issues.

Theorem 12:The approximation ratio of RE-PAIR is
Ω(
√

log n).
Proof: Consider the performance of RE-PAIR on input

strings of the form:

σk =
2
√

k∏
w=

√
k

w−1∏
i=0

(xbw,i |)

wherebw,i is an integer that, when regarded as ak-bit binary
number, has a 1 at each positionj such thatj ≡ i (mod w).
(Position 0 corresponds to the least significant bit.) On such
an input, RE-PAIR creates rules for strings ofx’s with lengths
that are powers of two:X1 → xx, X2 → X1X1,
At this point, each run ofx’s with length bw,i in σk is
represented using one nonterminal for each 1 in the binary
representation ofbw,i. For example, the beginning ofσ16 and
the beginning of the resulting start rule are listed below:

σ16 = x0001000100010001 | x0010001000100010 |
x0100010001000100 | x1000100010001000 |
x1000010000100001 | x0000100001000010 | . . .

S → X12X8X4x | X13X9X5X1 |
X14X10X6X2 | X15X11X7X3 |
X15X10X5x | X11X6X1 | . . .

Note that no other rules are introduced, because each pair of
adjacent symbols now appears only once. RE-PAIR encodes
each string ofx’s usingΩ(

√
k) symbols. Since there areΩ(k)

such strings, the size of the grammar produced isΩ(k3/2).
On the other hand, there exists a grammar of sizeO(k) that

generatesσk. First, we create a nonterminalXj with expansion
x2j

for all j up tok−1. This requiresO(k) symbols. Then for
eachw we create a nonterminalBw,0 for xbw,0 usingO(

√
k)

of the Xj nonterminals, just as RE-PAIR does. However, we
can then define a nonterminal for each remaining string ofx’s
using only two symbols:Bw,i → Bw,i−1Bw,i−1, for a total of
O(k) additional symbols. Finally, we expendO(k) symbols on
a start rule, which consists of all theBw,i separated by unique
symbols. In total, the grammar size isO(k) as claimed.

To complete the argument, note thatn = |σk| = Θ(
√

k2k),
and so the approximation ratio is no better thanΩ(

√
k) =

Ω(
√

log n).

VII. N EW ALGORITHMS

In this section, we present a simpleO(log3 n) approx-
imation algorithm for the smallest grammar problem. We
then give a more complex algorithm with approximation ratio
O(log n/m∗) based on an entirely different approach.

A. An O(log3 n) Approximation Algorithm

To begin, we describe a useful grammar construction, prove
one lemma, and cite an old result that we shall use later.

Thesubstring constructiongenerates a set of grammar rules
enabling each substring of a stringη = x1 . . . xp to be
expressed with at most two symbols.

The construction works as follows. First, create a nontermi-
nal for each suffix of the stringx1 . . . xk and each prefix of
xk+1 . . . xp, wherek = dp

2e. Note that each such nonterminal

15

can be defined using only two symbols: the nonterminal for
the next shorter suffix or prefix together with one symbol
xi. Repeat this construction recursively on the two halves of
the original string,x1 . . . xk and xk+1 . . . xp. The recursion
terminates when a string of length one is obtained. This
recursion haslog p levels, andp nonterminals are defined at
each level. Since each definition contains at most two symbols,
the total cost of the construction is at most2p log p.

Now we show that every substringα = xi . . . xj of η is
equal to 〈AB〉, where A and B are nonterminals defined
in the construction. There are two cases to consider. Ifα
appears entirely within the left-half ofη or entirely within
the right-half, then we can obtainA andB from the recursive
construction onx1 . . . xk or xk+1 . . . xp. Otherwise, letk =
dp

2e as before, and letA be the nonterminal forxi . . . xk, and
let B be the nonterminal forxk+1 . . . xj .

For example, the substring construction for the stringη =
abcdefgh is given below:

C1 → d C2 → cC1 C3 → bC2 C4 → aC3

D1 → e D2 → D1f D3 → D2g D4 → D3h
E1 → b E2 → aE1 F1 → c F2 → F1d
G1 → f G2 → eG1 H1 → g H2 → H1h

With these rules defined, each substring ofabcdefgh is
expressible with at most two symbols. For example,defg =
〈C1D3〉. In the next lemma, we present a variation of Lemma 3
needed for the new algorithm.

Lemma 8:Let σ be a string generated by a grammar of size
m. Then there exists a stringβk of length at most2mk that
contains every length-k substring ofσ.

Proof: We can constructβk by concatenating strings
obtained from the rules of the grammar of sizem. For each
rule, T → α, do the following:

1) For each terminal inα, take the length-k substring of
〈T 〉 beginning at that terminal.

2) For each nonterminal inα, take the length-(2k − 1)
substring of〈T 〉 consisting of the last character in the
expansion of that nonterminal, the precedingk − 1
characters, and the followingk − 1 characters.

In both cases, we permit the substrings to be shorter if they
are truncated by the start or end of〈T 〉.

Now we establish the correctness of this construction. First,
note that the stringβk is a concatenation of at mostm strings
of length at most2k, giving a total length of at most2mk as
claimed. Next, letγ be a length-k substring ofσ. Consider
the ruleT → α such that〈T 〉 containsγ and 〈T 〉 is as short
as possible. Eitherγ begins at a terminal ofα, in which case
it is a string of type 1, or else it begins inside the expansion
of a nonterminal inα and ends beyond, in which case it is
contained in a string of type 2. (Note thatγ can not be wholly
contained in the expansion of a nonterminal inα; otherwise,
we would have selected that nonterminal for consideration
instead ofT .) In either case,γ is a substring ofβk as desired.

Our approximation algorithm for the smallest grammar
problem makes use of Blum, Jiang, Li, Tromp, and Yan-
nakakis’ 4-approximation for the shortest superstring prob-
lem [35]. In this procedure, we are given a collection of

strings and want to find the shortest superstring; that is, the
shortest string that contains each string in the collection as a
substring. The procedure works greedily. At each step, find
the two strings in the collection with largest overlap. Merge
these two into a single string. (For example,abaa and aaac
have overlapaa and thus can be merged to formabaaac.)
Repeat this process until only one string remains. This is the
desired superstring, and Blum et. al. proved that it is at most
four times longer than the shortest superstring.

B. The Algorithm

In this algorithm, the focus is on certain sequences of
substrings ofσ. In particular, we constructlog n sequencesCn,
Cn/2, Cn/4, . . ., C2, where the sequenceCk consists of some
substrings ofσ that have length at mostk. These sequences are
defined as follows. The sequenceCn is initialized to consist of
only the stringσ itself. In general, the sequenceCk generates
the sequenceCk/2 via the following operations, which are
illustrated in the figure that follows.

1) Use Blum’s greedy 4-approximation algorithm to form
a superstringρk containing all the distinct strings inCk.

2) Cut the superstringρk into small pieces. First, determine
where each string inCk ended up insideρk, and then
cut ρk at the left endpoints of those strings.

3) Cut each piece ofρk that has length greater thank/2 at
the midpoint. During the analysis, we shall refer to the
cuts made during this step asextra cuts.

The sequenceCk/2 is defined to be the sequence of pieces
of ρk generated by this three-step process. By the nature of
Blum’s algorithm, no piece ofρk can have length greater than
k after step 2, and so no piece can have length greater than
k/2 after step 3. Thus,Ck/2 is a sequence of substrings ofσ
that have length at mostk/2 as desired.

Now we translate these sequences of strings into a grammar.
To begin, associate a nonterminal with each string in each
sequenceCk. In particular, the nonterminal associated with

16

the single string inCn (which is σ itself) is the start symbol
of the grammar.

All that remains is to define these nonterminals. In doing
so, the following observation is key: each string inCk is the
concatenation of several consecutive strings inCk/2 together
with a prefix of the next string inCk/2. This is illustrated
in the figure above, where the fate of one string inCk

(shaded and markedT) is traced through the construction
of Ck/2. In this case,T is the concatenation ofV , W , X,
and a prefix ofY . Similarly, the prefix ofY is itself the
concatenation of consecutive strings inCk/4 together with a
prefix of the next string inCk/4. This prefix is in turn the
concatenation of consecutive strings inCk/8 together with a
prefix of the next string inCk/8, etc. As a result, we can
define the nonterminal corresponding to a string inCk as a
sequence of consecutive nonterminals fromCk/2, followed by
consecutive nonterminals fromCk/4, followed by consecutive
nonterminals fromCk/8, etc. For example, the definition ofT
would beginT → V WX . . . and then contain sequences of
consecutive nonterminals fromCk/4, Ck/8, etc. As a special
case, the nonterminals corresponding to strings inC2 can be
defined in terms of terminals.

We can use the substring construction to make these defini-
tions shorter and hence the overall size of the grammar smaller.
In particular, for each sequence of stringsCk, we apply
the substring construction on the corresponding sequence of
nonterminals. This enables us to express any sequence of
consecutive nonterminals using just two symbols. As a result,
we can define each nonterminal corresponding to a string
in Ck using only two symbols that represent a sequence of
consecutive nonterminals fromCk/2, two more that represent
a sequence of consecutive nonterminals fromCk/4, etc. Thus,
every nonterminal can now be defined withO(log n) symbols
on the right.

Theorem 13:The procedure described above is an
O(log3 n)-approximation algorithm for the smallest grammar
problem.

Proof: We must determine the size of the grammar
generated by the above procedure. In order to do this, we must
first upper-bound the number of strings in each sequenceCk.
To this end, note that the number of strings inCk/2 is equal to
the number of strings inCk plus the number of extra cuts made
in step 3. Thus, given thatCn contains a single string, we can
upper-bound the number of strings inCk by upper-bounding
the number of extra cuts made at each stage.

Suppose that the smallest grammar generatingσ has size
m∗. Then Lemma 8 implies that there exists a superstring
containing all the strings inCk with length 2m∗k. Since we
are using a 4-approximation, the length ofρk is at most8m∗k.
Therefore, there can be at most16m∗ pieces ofρk with length
greater thank/2 after step 2. This upper-bounds the number of
extra cuts made in the formation ofCk/2, since extra cuts are
only made into pieces with length greater thank/2. It follows
that every sequence of stringsCk has lengthO(m∗ log n),
since step 2 is repeated onlylog n times over the course of
the algorithm.

On one hand, there arelog n sequencesCk, each contain-
ing O(m∗ log n) strings. Each such string corresponds to a

nonterminal with a definition of lengthO(log n). This gives
O(m∗ log3 n) symbols in total. On the other hand, for each
sequence of stringsCk, we apply the substring construction
on the corresponding sequence of nonterminals. Recall that
this construction generates2p log p symbols when applied to
a sequence of lengthp. This creates an additional

O((log n) · (m∗ log n) log(m∗ log n)) = O(m∗ log3 n)

symbols. Therefore, the total size of the grammar generated
by this algorithm isO(m∗ log3 n), which proves the claim.

C. An O(log n/m∗)-Approximation Algorithm

We now present a more complex solution to the smallest
grammar problem with approximation ratioO(log n/m∗). The
description is divided into three sections. First, we introduce a
variant of the well-known LZ77 compression scheme. This
serves two purposes: it gives a new lower bound on the
size of the smallest grammar for a string and is the starting
point for our construction of a small grammar. Second, we
introduce balanced binary grammars, the variety of well-
behaved grammars that our procedure employs. In the same
section, we also introduce three basic operations on balanced
binary grammars. Finally, we present the main algorithm,
which translates a string compressed using our LZ77 variant
into a grammar at mostO(log n/m∗) times larger than the
smallest.

D. An LZ77 Variant

We begin by describing a flavor of LZ77 compression [21].
We use this both to obtain a lower bound on the size of the
smallest grammar for a string and as the basis for generating
a small grammar. In this scheme, a string is represented by a
sequence of characters and pairs of integers. For example, one
possible sequence is:

a b (1, 2) (2, 3) c (1, 5)

An LZ77 representation can be decoded into a string by
working left-to-right through the sequence according to the
following rules:

• If a characterc is encountered in the sequence, then the
next character in the string isc.

• Otherwise, if a pair(x, y) is encountered in the sequence,
then the nexty characters of the string are the same as
they characters beginning at positionx of the string. (We
require that they characters beginning at positionx be
represented by earlier items in the sequence.)

The example sequence can be decoded as follows:

Index: 1 2 3 4 5 6 7 8 9 10 11 12 13
LZ77: a b (1, 2) (2, 3) c (1, 5)
String: a b a b b a b c a b a b b

The shortest LZ77 sequence for a given string can be found in
polynomial time. Make a left-to-right pass through the string.
If the next character in the unprocessed portion of the string
has not appeared before, output it. Otherwise, find the longest
prefix of the unprocessed portion that appears in the processed

17

portion and output the pair(x, y) describing that previous
appearance. It is easy to show (and well known) that this
procedure finds the shortest LZ77 sequence.

The following lemma states that this procedure implies a
lower bound on the size of the smallest grammar.

Lemma 9:The length of the shortest LZ77 sequence for a
string is a lower bound on the size of the smallest grammar
for that string.

Proof: Suppose that a string is generated by a grammar
of size m∗. We can transform this grammar into an LZ77
sequence of length at mostm∗ as follows. Begin with the
sequence of symbols on the right side of the start rule. Select
the nonterminal with longest expansion. Replace the leftmost
instance by its definition and replace each subsequent instance
by a pair referring to the first instance. Repeat this process
until no nonterminals remain. Note that each symbol on the
right side of the original grammar corresponds to at most one
item in the resulting sequence. This establishes the desired
inequality.

A somewhat similar process was described in [36]. In con-
trast, our O(log n/m∗)-approximation algorithm essentially
inverts the process and maps an LZ77 sequence to a grammar.
This other direction is much more involved.

E. Balanced Binary Grammars

In this section, we introduce the notion of a balanced binary
grammar. The approximation algorithm we are developing
works exclusively with this restricted class of well-behaved
grammars.

A binary rule is a grammar rule with exactly two symbols
on the right side. Abinary grammaris a grammar in which
every rule is binary. Two strings of symbols,β and γ, are
α-balancedif

α

1− α
≤ [β]

[γ]
≤ 1− α

α

for some constantα between 0 and12 . Intuitively, α-balanced
means “about the same length”. Note that inverting the fraction
[β]
[γ] gives an equivalent condition. Anα-balanced ruleis a
binary rule in which the two symbols on the right areα-
balanced. Anα-balanced grammaris a binary grammar in
which every rule isα-balanced. For brevity, we use “balanced”
to signify “α-balanced”.

The remainder of this section defines three basic operations
on balanced binary grammars:AddPair , AddSequence ,
and AddSubstring . Each operation adds a small number
rules to an existing balanced grammar to produce a new
balanced grammar that has a nonterminal with specified prop-
erties. For these operations to work correctly, we require that
α be selected from the limited range0 < α ≤ 1− 1

2

√
2, which

is about0.293. These three operations are detailed below.

1) TheAddPair Operation: This operation begins with a
balanced grammar containing symbolsX andY and produces
a balanced grammar containing a nonterminal with expansion
〈XY 〉. The number rules added to the original grammar is:

O

(
1 +

∣∣∣∣log
[X]
[Y]

∣∣∣∣)

Suppose that[X] ≤ [Y]; the other case is symmetric. The
AddPair operation is divided into two phases.

In the first phase, we decomposeY into a string of symbols.
Initially, this string consists of the symbolY itself. Thereafter,
while the first symbol in the string is not in balance withX,
we replace it by its definition. A routine calculation, which we
omit, shows that balance is eventually achieved. At this point,
we have a string of symbolsY1 . . . Yt with expansion〈Y 〉 such
that Y1 is in balance withX. Furthermore, note thatY1 . . . Yi

is in balance withYi+1 for all 1 ≤ i < t by construction.
In the second phase, we build a balanced binary grammar

for the following sequence of nonterminals generated during
the first phase:

X Y1 Y2 . . . Yt

The analysis of the second phase runs for many pages, even
though we omit some routine algebra. Initially, we create a
new ruleZ1 → XY1 and declare this to be theactive rule.
The remainder of the second phase is divided into steps. At the
start of thei-th step, the active rule has the formZi → AiBi,
and the following three invariants hold:
(B1) 〈Zi〉 = 〈XY1 . . . Yi〉
(B2) 〈Bi〉 is a substring of〈Y1 . . . Yi〉.
(B3) All rules in the grammar are balanced, including the

active rule.
The relationships between strings implied by the first two
invariants are indicated in the following diagram:

Zi︷ ︸︸ ︷
X Y1 Y2 . . .︸ ︷︷ ︸

Ai

. . . Yi−1 Yi︸ ︷︷ ︸
Bi

Yi+1 . . . Yt

After t steps, the active rule defines a nonterminalZt with
expansion〈XY1 . . . Yt〉 = 〈XY 〉 as desired, completing the
procedure.

The invariants stated above imply some inequalities that are
needed later to show that the grammar remains in balance.
SinceY1 . . . Yi is in balance withYi+1, we have:

α

1− α
≤ [Yi+1]

[Y1 . . . Yi]
≤ 1− α

α

Since〈Bi〉 is a substring of〈Y1 . . . Yi〉 by invariant (B2), we
can conclude:

α

1− α
≤ [Yi+1]

[Bi]
(1)

On the other hand, since〈Zi〉 is a superstring of〈Y1 . . . Yi〉
by invariant (B1), we can conclude:

[Yi+1]
[Zi]

≤ 1− α

α
(2)

All that remains is to describe how each step of the second
phase is carried out. Each step involves intricate grammar
transformations, and so for clarity, we supplement the text with
diagrams. In these diagrams, a ruleZi → AiBi is indicated
with a wedge:

Zi

Ai Bi

Zi → AiBi

18

Preexisting rules are indicated with shaded lines, and new rules
with dark lines.

At the start of thei-th step, the active rule isZi → AiBi.
Our goal is to create a new active rule that definesZi+1

while maintaining the three invariants. There are three cases
to consider.
Case 1: If Zi andYi+1 are in balance, then we create a new
rule:

Zi+1 → ZiYi+1

Yi+1Zi

Zi+1

This becomes the active rule. It is easy to check that the three
invariants are maintained.

If Zi andYi+1 are not in balance, this implies thatα1−α ≤
[Yi+1]
[Zi]

≤ 1−α
α does not hold. Since the right inequality is (2),

the left inequality must be violated. Thus, hereafter we can
assume:

α

1− α
>

[Yi+1]
[Zi]

(3)

Case 2: Otherwise, ifAi is in balance withBiYi+1, then we
create two new rules:

Yi+1

Zi+1

Ti

Zi

Ai Bi

Zi+1 → AiTi

Ti → BiYi+1

The first of these becomes the active rule. It is easy to check
that the first two invariants are maintained. In order to check
that all new rules are balanced, first note that the ruleZi+1 →
AiTi is balanced by the case assumption. For the ruleTi →
BiYi+1 to be balanced, we must show:

α

1− α
≤ [Yi+1]

[Bi]
≤ 1− α

α

The left inequality is (1). For the right inequality, begin with
(3):

[Yi+1] <
α

1− α
[Zi] =

α

1− α
([Ai] + [Bi])

≤ α

1− α

(
1− α

α
[Bi] + [Bi]

)
≤ 1− α

α
[Bi]

The equality follows from the definition ofZi by the rule
Zi → AiBi. The subsequent inequality uses the fact that
this rule is balanced, according to invariant (B3). The last
inequality uses only algebra and holds for allα ≤ 0.381.

If case 2 is bypassed thenAi andBiYi+1 are not in balance
which implies that α

1−α ≤ [Ai]
[BiYi+1]

≤ 1−α
α does not hold.

SinceAi is in balance withBi alone by invariant (B3), the
right inequality holds. Therefore, the left inequality must not;
hereafter, we can assume:

α

1− α
>

[Ai]
[BiYi+1]

(4)

Combining inequalities (3) and (4), one can use algebraic
manipulation to establish the following bounds, which hold
hereafter:

[Ai]
[Bi]

≤ α

1− 2α
(5)

[Yi+1]
[Bi]

≤ α

1− 2α
(6)

Case 3: Otherwise, suppose thatBi is defined by the rule
Bi → UV . We create three new rules:

Yi+1

Zi+1

Zi

Ai Bi

U V

QiPiZi+1 → PiQi

Pi → AiU

Q1 → V Yi+1

The first of these becomes the active rule. We must check that
all of the new rules are in balance. We begin withPi → AiU .
In one direction, we have:

[Ai]
[U]

≥ [Ai]
(1− α)[Bi]

≥ [Ai]
[Bi]

≥ α

1− α

The first inequality uses the fact thatBi → UV is balanced.
The second inequality follows because1 − α ≤ 1. The final
inequality uses the fact thatAi andBi are in balance. In the
other direction, we have:

[Ai]
[U]

≤ [Ai]
α[Bi]

≤ 1
1− 2α

≤ 1− α

α

The first inequality uses the fact thatBi → UV is balanced,
and the second follows from (5). The last inequality holds for
all α < 0.293. The argument to show thatQi → V Yi+1 is
balanced is similar.

Finally, we must check thatZi+1 → PiQi is in balance. In
one direction, we have:

[Pi]
[Qi]

=
[AiU]

[V Yi+1]
≤ [Ai] + (1− α)[Bi]

α[Bi] + [Yi+1]
=

[Ai]
[Bi]

+ (1− α)

α + [Yi+1]
[Bi]

≤
α

1−2α + (1− α)
α + α

1−α

≤ 1− α

α

The equality follows from the definitions ofPi and Qi. The
first inequality uses the fact that the ruleBi → UV is
balanced. The subsequent equality follows by dividing the top
and bottom by[Bi]. In the next step, we use (5) on the top, and
(1) on the bottom. The final inequality holds for allα ≤ 1

3 .

19

In the other direction, we have:

[Pi]
[Qi]

=
[AiU]

[V Yi+1]
≥ [Ai] + α[Bi]

(1− α)[Bi] + [Yi+1]

=
[Ai]
[Bi]

+ α

(1− α) + [Yi+1]
[Bi]

≥
α

1−α + α

(1− α) + α
1−2α

≥ α

1− α

As before, the first inequality uses the definitions ofPi and
Qi. Then we use the fact thatBi → UV is balanced. We
obtain the second equality by dividing the top and bottom by
[Bi]. The subsequent inequality uses the fact thatAi andBi

are in balance on the top and (6) on the bottom. The final
inequality holds for allα ≤ 1

3 .
All that remains is to upper-bound the number of rules

created during theAddPair operation. At most three rules
are added in each of thet steps of the second phase. Therefore,
it suffices to upper boundt. This quantity is determined
during the first phase, whereY is decomposed into a string
of symbols. In each step of the first phase, the length of the
expansion of the first symbol in this string decreases by a
factor of at least1 − α. When the first symbol is in balance
with X, the process stops. Therefore, the number of steps is
O(log [Y]/[X]). Since the string initially contains one symbol,
t is O(1 + log [Y]/[X]). Therefore, the number of new rules
is:

O

(
1 +

∣∣∣∣log
[X]
[Y]

∣∣∣∣)
Because we take the absolute value, this bound holds regard-
less of whether[X] or [Y] is larger.

2) The AddSequence Operation: The AddSequence
operation is a generalization ofAddPair . Given a balanced
grammar with symbolsX1 . . . Xt, the operation creates a
balanced grammar containing a nonterminal with expansion
〈X1 . . . Xt〉. The number of rules added is:

O

(
t

(
1 + log

[X1 . . . Xt]
t

))
The idea is to place theXi at the leaves of a balanced binary
tree. (To simplify the analysis, assume thatt is a power of
two.) We create a nonterminal for each internal node by com-
bining the nonterminals at the child nodes usingAddPair .
Recall that the number of rules thatAddPair creates when
combining nonterminalsX and Y is O

(
1 +

∣∣∣log [X]
[Y]

∣∣∣) =
O (log [X] + log [Y]). Let c denote the hidden constant on the
right, and lets equal[X1 . . . Xt]. Creating all the nonterminals
on the bottom level of the tree generates at most

c
t∑

i=1

log [Xi] ≤ ct log
s

t

rules. (The inequality follows from the concavity oflog.)
Similarly, the number of rules created on the second level
of the tree is at mostc(t/2) log s

t/2 , because we pairt/2

nonterminals, but the sum of their expansion lengths is stills.
In general, on thei-th level, we create at most

c(t/2i) log
s

t/2i
= c(t/2i) log

s

t
+ cti/2i

new rules. Summingi from 0 to log t, we find that the total
number of rules created is

log t∑
i=0

c(t/2i) log
s

t
+ cti/2i = O

(
t

(
1 + log

[X1 . . . Xt]
t

))
as claimed.

3) TheAddSubstring Operation: This operation takes
a balanced grammar containing a nonterminal withβ as a
substring and produces a balanced grammar containing a
nonterminal with expansion exactlyβ while addingO(log |β|)
new rules.

Let T be the nonterminal with the shortest expansion such
that its expansion containsβ as a substring. LetT → XY
be its definition. Then we can writeβ = βpβs, where the
prefix βp lies in 〈X〉 and the suffixβs lies in 〈Y 〉. (Note,βp

is actually a suffix of〈X〉, and βs is a prefix of 〈Y 〉.) We
generate a nonterminal that expands to the prefixβp, another
that expands to the suffixβs, and then merge the two with
AddPair . The last step generates onlyO(log |β|) new rules.
So all that remains is to generate a nonterminal that expands
to the prefix,βp; the suffix is handled symmetrically. This task
is divided into two phases.

In the first phase, we find a sequence of symbolsX1 . . . Xt

with expansion equal toβp. To do this, we begin with an empty
sequence and employ a recursive procedure. At each step, we
have adesired suffix(initially βp) of some current symbol
(initially X). During each step, we consider the definition of
the current symbol, sayX → AB. There are two cases:

1) If the desired suffix wholly contains〈B〉, then we
prependB to the nonterminal sequence. The desired
suffix becomes the portion of the old suffix that overlaps
〈A〉, and the current nonterminal becomesA.

2) Otherwise, we keep the same desired suffix, but the
current symbol becomesB.

A nonterminal is only added to the sequence in case 1. But in
that case, the length of the desired suffix is scaled down by
at least a factor1 − α. Therefore the length of the resulting
nonterminal sequence ist = O(log |β|).

This construction implies the following inequality, which
we use later:

[X1 . . . Xi]
[Xi+1]

≤ 1− α

α
(7)

This inequality holds because〈X1 . . . Xi〉 is a suffix of the ex-
pansion of a nonterminal in balance withXi+1. Consequently,
X1 . . . Xi is not too long to be in balance withXi+1.

In the second phase, we merge the nonterminals in the
sequenceX1 . . . Xt to obtain the nonterminal with expansion
βp. The process goes from left to right. Initially, we set
R1 = X1. Thereafter, at the start of thei-th step, we have a
nonterminalRi with expansion〈X1 . . . Xi〉 and seek to merge

20

in symbolXi+1. There are two cases, distinguished by whether
or not the following inequality holds:

α

1− α
≤ [Ri]

[Xi+1]

• If so, then Ri and Xi+1 are in balance. (Inequality
(7) supplies the needed upper-bound on[Ri]/[Xi+1].)
Therefore, we add the ruleRi+1 → RiXi+1.

• If not, thenRi is too small to be in balance withXi+1.
(It can not be too large, because of inequality (7).)
We useAddPair to merge the two, which generates
O(1 + log [Xi+1]/[Ri]) new rules. Since[Ri] is at most
a constant times the size of its largest component,[Xi],
the number of new rules isO(1 + log [Xi+1]/[Xi]).

Summing the number of rules created during this process
gives:

t∑
i=1

O

(
1 + log

[Xi+1]
[Xi]

)
= O(t + log[Xt]) = O(log |β|)

The second equality follows from the fact, observed previ-
ously, thatt = O(log |β|) and from the fact that〈Xt〉 is a
substring ofβ. Generating a nonterminal for the suffixβs

requiresO(log |β|) rules as well. Therefore, the total number
of new rules isO(log |β|) as claimed.

F. The Algorithm

We now combine all the tools of the preceding two sections
to obtain anO(log n/m∗)-approximation algorithm for the
smallest grammar problem.

We are given an input stringσ. First, we apply the LZ77
variant described in Section VII-D. This gives a sequence
L1 . . . Lp of terminals and pairs. By Lemma 9, the length of
this sequence is a lower bound on the size of the smallest
grammar forσ; that is,p ≤ m∗. Now we employ the tools of
Section VII-E to translate this sequence to a grammar. We
work through the sequence from left to right and build a
balanced binary grammar as we go. Throughout, we maintain
an active listof grammar symbols.

Initially, the active list isL1, which must be a terminal. In
general, at the beginning ofi-th step, the expansion of the
active list is the string represented byL1 . . . Li. Our goal for
the step is to augment the grammar and alter the active list
so that the expansion of the symbols in the active list is the
string represented byL1 . . . Li+1.

If Li+1 is a terminal, we can accomplish this goal by simply
appendingLi+1 to the active list. IfLi+1 is a pair, then it
specifies a substringβi of the expansion of the active list. Ifβi

is contained in the expansion of a single symbol in the active
list, then we useAddSubstring to create a nonterminal
with expansionβi usingO(log |βi|) rules. This nonterminal is
then appended to the active list.

On the other hand, ifβi is not contained in the expansion of
a single symbol in the active list, then it is the concatenation of
a suffix of 〈X〉, all of 〈A1 . . . Ati〉, and a prefix of〈Y 〉, where
XA1 . . . Ati

Y are consecutive symbols in the active list. We
then perform the following operations:

1) Construct a nonterminal M with expansion
〈A1 . . . Ati〉 using AddSequence . This produces
O(ti(1 + log |βi|/ti)) rules.

2) ReplaceA1 . . . Ati
in the active list by the single symbol

M .
3) Construct a nonterminalX ′ with expansion equal to the

prefix of βi in 〈X〉 using AddSubstring . Similarly,
construct a nonterminalY ′ with expansion equal to
the suffix of βi in 〈Y 〉 using AddSubstring . This
producesO(log |βi|) new rules in total.

4) Create a nonterminalN with expansion〈X ′MY ′〉 us-
ing AddSequence on X ′, M , and Y ′. This creates
O(log |βi|) new rules. AppendN to the end of the active
list.

Thus, in total, we addO(ti+ti log |βi|/ti+log |βi|) new rules
during each step. The total number of rules created is:

O

(
p∑

i=1

ti + ti log |βi|/ti + log |βi|

)
=

O

(
p∑

i=1

ti +
p∑

i=1

ti log |βi|/ti +
p∑

i=1

log |βi|

)
The first sum is upper-bounded by the total number of symbols
inserted into the active list. This is at most two per step (M
andN), which gives a bound of2p:

∑p
i=1 ti ≤ 2p. To upper-

bound the second sum, we use the concavity inequality:

p∑
i=1

ai log bi ≤

(
p∑

i=1

ai

)
log
(∑p

i=1 aibi∑p
i=1 ai

)
and setai = ti, bi = |βi|/ti to give:

p∑
i=1

ti log
|βi|
ti

≤

(
p∑

i=1

ti

)
log
(∑p

i=1 |βi|∑p
i=1 ti

)
= O

(
p log

(
n

p

))
The latter inequality uses the fact that

∑p
i=1 |βi| ≤ n and that∑p

i=1 ti ≤ 2p. Note that the functionx log n/x is increasing
for x up ton/e, and so this inequality holds only if2p ≤ n/e.
This condition is violated only when input string (lengthn)
turns out to be only a small factor (2e) longer than the LZ77
sequence (lengthp). If we detect this special case, then we
can output the trivial grammarS → σ and achieve a constant
approximation ratio.

By concavity again, the third sum is upper-bounded by:

p log
∑
|βi|
p

≤ p log
n

p

The total grammar size is therefore:

O

(
p log

n

p

)
= O

(
m∗ log

n

m∗

)
where we use the inequalityp ≤ m∗ and, again, the observa-
tion thatx log n/x is increasing forx < n/e. This proves the
claim.

21

G. Grammar-Based Compression versusLZ77

We have now shown that a grammar of sizem can be
translated into an LZ77 sequence of length at mostm. In the
reverse direction, we have shown that an LZ77 sequence of
lengthp can be translated to a grammar of sizeO(p log n/p).
Furthermore, the latter result is nearly the best possible.
Consider strings of the form

σ = xk1 | xk2 | . . . | xkq

where k1 is the largest of theki. This string can be rep-
resented by an LZ77 sequence of lengthO(q + log k1):
x (1, 1) (1, 2) (1, 4) (1, 8) . . . (1, ki−2j) | (1, k2) | . . . | (1, kq)
Here, j is the largest power of 2 less thanki. If we setq =
Θ(log k1), then the sequence has lengthO(log k1).

On the other hand, Theorem 2 states that the smallest gram-
mar for σ is within a constant factor of the shortest addition
chain containingk1, . . . , kq. Pippinger [37] has shown, via
a counting argument, that there exist integersk1, . . . , kq such
that the shortest addition chain containing them all has length:

Ω
(

log k1 + q · log k1

log log k1 + log q

)
If we choose q = Θ(log k1) as before, then the above
expression boils down to:

Ω
(

log2 k1

log log k1

)
Putting this all together, we have a stringσ of length n =
O(k1 log k1) for which there exists an LZ77 sequence of
lengthO(log k1), but for which the smallest grammar has size

Ω
(

log2 k1
log log k1

)
. The ratio between the grammar size and the

length of the LZ77 sequence is therefore:

Ω
(

log k1

log log k1

)
= Ω

(
log n

log log n

)
Thus our algorithm for transforming a sequence of LZ77
triples into a grammar is almost optimal.

The analysis in this section brings to light the relationship
between the best grammar-based compressors and LZ77.
One would expect the two to achieve roughly comparable
compression performance since the two representations are
quite similar. Which approach achieves superior compression
(over all cases) in practice depends on many considerations
beyond the scope of our theoretical analysis. For example, one
must bear in mind that a grammar symbol can be represented
by fewer bits than an LZ77 pair. In particular, each LZ77
pair requires about2 log n bits to encode, although this may
be somewhat reduced by representing the integers in each pair
with a variable-length code. On the other hand, each grammar
symbol can be naively encoded using aboutlog m bits, which
could be as small aslog log n. This can be further improved via
an optimized arithmetic encoding as suggested in [4]. Thus,
the fact that grammars are can be somewhat larger than LZ77
sequences may be roughly offset by the fact that grammars
can also translate into fewer bits. Empirical comparisons in
[4] suggest precisely this scenario, but they do not yet seem
definitive one way or the other [4], [9], [6], [7], [10], [11],
especially in the low-entropy case.

The procedures presented here are not ready for immedi-
ate use as practical compression algorithms. The numerous
hacks and optimizations needed in practice are lacking. Our
algorithms are designed not for practical performance, but for
good,analyzableperformance. In practice, the best grammar-
based compression algorithm may yet prove to be a simple
scheme like RE-PAIR, which we do not yet know how to
analyze.

VIII. F UTURE DIRECTIONS

A. Analysis of Global Algorithms

Our analysis of previously-proposed algorithms for the
smallest grammar problem leaves a large gap of understand-
ing surrounding the global algorithms, GREEDY, LONGEST

MATCH, and RE-PAIR. In each case, we upper-bound the
approximation ratio byO((n/ log n)2/3) and lower bound it
by some expression that iso(log n). Elimination of this gap
would be significant for several reasons. First, these algorithms
are important; they are simple enough to be practical for ap-
plications such as compression and DNA entropy estimation.
Second, there are natural analogues to these global algorithms
for other hierarchically-structured problems. Third, all of our
lower bounds on the approximation ratio for these algorithms
are well below theΩ(log n/ log log n) hardness implied by the
reduction from the addition chain problem. Either there exist
worse examples for these algorithms or else a tight analysis
will yield progress on the addition chain problem.

B. Algebraic Extraction

The need for a better understanding of hierarchical ap-
proximation problems beyond the smallest grammar problem
is captured in the smallest AND-circuit problem. Consider
a digital circuit which has several input signals and several
output signals. The function of each output is a specified sum-
of-products over the input signals. How many two-input AND
gates must the circuit contain to satisfy the specification?

This problem has been studied extensively in the context
of automated circuit design. Interestingly, the best known
algorithms for this problem are closely analogous to the
GREEDY and RE-PAIR algorithms for the smallest grammar
problem. (For details on these analogues, see [38], [39] and
[40] respectively.) No approximation guarantees are known.

C. String Complexity in Other Natural Models

One motivation for studying the smallest grammar problem
was to shed light on a computable and approximable variant of
Kolmogorov complexity. This raises a natural follow-on ques-
tion: can the complexity of a string be approximated in other
natural models? For example, the grammar model could be
extended to allow a nonterminal to take a parameter. One could
then write a rule such asT (P) → PP , and write the string
xxyzyz asT (x)T (yz). Presumably as model power increases,
approximability decays to incomputability. Good approxima-
tion algorithms for strong string-representation models could
be applied wherever the smallest grammar problem has arisen.

22

ACKNOWLEDGMENTS

We sincerely thank Yevgeniy Dodis, Martin Farach-Colton,
Michael Mitzenmacher, Madhu Sudan, and the reviewers for
helpful comments.

REFERENCES

[1] Jacob Ziv and Abraham Lempel, “Compression of individual sequences
via variable-rate coding,”IEEE Transactions on Information Theory,
vol. 24, no. 5, pp. 530–536, September 1978.

[2] Terry A. Welch, “A technique for high-performance data compression,”
Computer Magazine of the Computer Group News of the IEEE Computer
Group Society, vol. 17, no. 6, pp. 8–19, 1984.

[3] John C. Kieffer, En hui Yang, Gregory J. Nelson, and Pamela Cosman,
“Universal lossless compression via multilevel pattern matching,”IEEE
Transactions on Information Theory, vol. IT-46, no. 5, pp. 1227–1245,
July 2000.

[4] En hui Yang and John C. Kieffer, “Efficient universal lossless data com-
pression algorithms based on a greedy sequential grammar transform–
part one: Without context models,”IEEE Transactions on Information
Theory, vol. IT-46, no. 3, pp. 755–777, May 2000.

[5] John C. Kieffer and En hui Yang, “Grammar based codes: A new class
of universal lossless source codes,”IEEE Transactions on Information
Theory, vol. IT-46, no. 3, pp. 737–754, May 2000.

[6] Craig G. Nevill-Manning, Inferring Sequential Structure, Ph.D. thesis,
University of Waikato, 1996.

[7] N. Jesper Larsson and Alistair Moffat, “Offline dictionary-based com-
pression,”Proceedings of the IEEE, vol. 88, pp. 1722–1732, November
2000.

[8] J. Kevin Lanctot, Ming Li, and En hui Yang, “Estimating DNA sequence
entropy,” in Symposium on Discrete Algorithms, 2000, pp. 409–418.

[9] Carl G. de Marcken,Unsupervised Language Acquisition, Ph.D. thesis,
MIT, 1996.

[10] Alberto Apostolico and Stefano Lonardi, “Off-line compression by
greedy textual substitution,”Proceedings of the IEEE, vol. 88, no. 11,
pp. 1733–1744, November 2000.

[11] Alberto Apostolico and Stefano Lonardi, “Some theory and practice
of greedy off-line textual substitution,” inIEEE Data Compression
Conference, DCC, March 1998, pp. 119–128.

[12] Andrei N. Kolmogorov, “Three approaches to the quantitative definition
of information,” Problems of Information Transmission, pp. 1–7, 1965.

[13] Craig G. Nevill-Manning and Ian H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm,”Journal of Artificial
Intelligence, vol. 7, pp. 67–82, 1997.

[14] Takuya Kida, Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara,
and Setsuo Arikawa, “A unifying framework for compressed pattern
matching,” in International Symposium on String Processing and
Information Retrieval, 1999, pp. 89–96.

[15] John C. Kieffer and En hui Yang, “Sequential codes, lossless com-
pression of individual sequences, and kolmogorov complexity,”IEEE
Transactions on Information Theory, vol. 42, no. 1, pp. 29–39, January
1996.

[16] G. Nelson, John C. Kieffer, and Pamela C. Cosman, “An interesting
hierarchical lossless data compression algorithm,” inIEEE Information
Theory Society Workshop, 1995, Invited Presentation.

[17] Randal E. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Transactions on Computers, vol. C-35, no. 8, pp.
677–691, August 1986.

[18] John C. Kieffer, Philippe Flajolet, and En-Hui Yang, “Data compression
via binary decision diagrams,” inIEEE International Symposium on
Information Theory, June 2000, p. 296.

[19] Chung-Hung Lai and Tien-Fu Chen, “Compressing inverted files in
scalable information systems by binary decision diagram encoding,” in
Supercomputing, 2001.

[20] Abraham Lempel and Jacob Ziv, “On the complexity of finite se-
quences,” IEEE Transactions on Information Theory, vol. IT-23, no.
1, pp. 75–81, January 1976.

[21] Jacob Ziv and Abraham Lempel, “A universal algorithm for sequential
data compression,”IEEE Transactions on Information Theory, vol. IT-
23, no. 3, pp. 337–343, May 1977.

[22] James A. Storer,Data Compression: Methods and Complexity, Ph.D.
thesis, Princeton University, 1978.

[23] James A. Storer and Thomas G. Szymanski, “Data compression via
textual substitution,”Journal of the ACM, vol. 29, no. 4, pp. 928–951,
October 1982.

[24] James A. Storer,Data Compression: Methods and Theory, Computer
Science Press, 1988.

[25] Alberto Apostolico and Stefano Lonardi, “Compression of biological
sequences by greedy off-line textual substitution,” inIEEE Data
Compression Conference, DCC, March 2000, pp. 143–152.

[26] Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda,
Ayumi Shinohara, Takeshi Shinohara, and Setsuo Arikawa, “Byte pair
encoding: A text compression scheme that accelerates pattern matching,”
Technical Report DOI-TR-CS-161, Department of Informatics, Kyushu
University, April 1999.

[27] S. Rao Kosaraju and Giovanni Manzini, “Compression of low entropy
strings with Lempel-Ziv algorithms,”SIAM Journal on Computing, vol.
29, no. 3, pp. 893–911, 2000.

[28] Piotr Berman and Marek Karpinski, “On some tighter inapproxima-
bility results, further improvements,” Tech. Rep. TR98-065, Electronic
Colloquium on Computational Complexity, 1998.

[29] Donald E. Knuth,Seminumerical Algorithms, Addison-Wesley, 1981.
[30] Edward G. Thurber, “Efficient generation of minimal length addition

chains,” SIAM Journal on Computing, vol. 28, no. 4, pp. 1247–1263,
1999.

[31] Paul Erd̈os, “Remarks on number theory III,”ACTA Arithmetica, vol.
VI, pp. 77–81, 1960.

[32] Peter Downey, Benton Leong, and Ravi Sethi, “Computing sequences
with addition chains,”SIAM Journal on Computing, vol. 10, no. 3, pp.
638–646, August 1981.

[33] Andrew Chi-Chih Yao, “On the evaluation of powers,”SIAM Journal
on Computing, vol. 5, no. 1, pp. 100–103, March 1976.

[34] Philip Gage, “A new algorithm for data compression,”The C Users
Journal, vol. 12, no. 2, 1994.

[35] Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis,
“Linear approximation of shortest superstrings,” inSymposium on
Theory of Computing, 1991, pp. 328–336.

[36] Craig G. Nevill-Manning and Ian H. Witten, “Compression and
explanation using hierarchical grammars,”Computer Journal, vol. 40,
no. 2/3, pp. 103–116, 1997.

[37] Nicholas Pippenger, “On the evaluation of powers and monomials,”
SIAM Journal on Computing, vol. 9, no. 2, pp. 230–250, May 1980.

[38] Robert K. Brayton and C. McMullen, “The decomposition and factor-
ization of boolean expressions,” inInternational Symposium on Circuits
and Systems, 1982, pp. 49–54.

[39] Robert K. Brayon, Richard L. Rudell, Alberto L. Sangiovanni-
Vincentelli, and A. R. Wang, “Multi-level logic optimization and the
rectangle covering problem,” inInternational Conference on Computer
Aided Design, November 1987, pp. 66–69.

[40] Janusz Rajski and Jagadeesh Vasudevamurthy, “The testability-
preserving concurrent decomposition and factorization of boolean ex-
pressions,”IEEE Transactions on Computer-Aided Design, vol. 11, no.
6, pp. 778–793, June 1992.

23

