wykładowca: Piotr Rybka

Zasadnicze źródło to książka Analiza funkcjonalna W.Rudina.

03.10 def. przestrzeni Banacha, przestrzenie Lp, p[1,] i ich zupełność
10.10 zupełność L(X,Y) przestrzeni unormowanej ograniczonych odwzorowań liniowych, tw. Baire'a, tw. Banacha-Steinhausa.
17.10 tw. o odwzorwaniu otwartym, def. słabej zbieżności w Lp, p(1,)
24.10 Tw. o wykresie domkniętym. Przestrzenie Hilberta i ich podstawowe właściwości, tw. o rzucie na zbiór domknięty wypukły.
31.10 Rzut na domkniętą podprzestrzeń liniową jest liniowy o normnie 1. Tw. głoszące, że przestrzeń Hilberta H jest izometrycznie izomorficzna z H. Tw. Radona-Nikodyma.
07.11 Miary rzeczywiste i zespolone, zespolona wersja tw. Radona-Nikodyma. Analityczna wersja tw. Hahna-Banacha
14.11 Twierdzenia o rozdzielaniu i wnioski z nich.
15.11. kolokwium nocne od 17:00 do 24:00. Zadania będą TU.
Lista dopuszczalnych sposobów dostarczania prac:
poczta elektroniczna,
odnośniki do dysku w google'u.
Nazwy plików muszą zawierać IMIĘ i NAZWISKO studenta. Dopuszczam jedynie pliki typu pdf.
21.11. Twierdzenia o postaci funkcjonału na Lp, p[1,).
28.11. Dokończenie (L1(Ω,μ))=L(Ω,μ). Przestrzenie refleksywne, przykład: przestrzenie Lp(Ω,μ), p(1,). Analiza operatorów na przestrzeni Hilberta, zbiór rezolwenty i jego otwartość. Operatory sprzężone.
05.12. Bazy w przestrzeniach Hilbert, treść wykładu
12.12. Tw o rzeczywistości widma i ortogonalności wektorów własnych operatorów samosprzężonych na przestrzeni Hilberta. Operatory zwarte. Tw. charakteryzujące operatory zwarte na przestrzeni Hilberta jako granice operatorów skończenie wymiarowych. Zwartość operatorów całkowych o ciągłym jądrze. Twierdzenie o widmie samosprzężonego operatora zwartego na przestrzeni Hilberta.
19.12.2019 Tw. Hilberta-Schmidta. Przestrzeń liniowa funkcji szybko malejących S(RN) jest przestrzenią Frecheta z metryką przesuwną. Splot funkcji z L1(RN)
09.01.2020 Właściwości splotów. Definicja transformacji Fouriera i jej podstawowe właściwości.
10.01.2020 kolokwium nocne od 17:00 do 24:00. Zadania są TU.
16.01.2020. Tw. Plancherela, tranformacja odwrotna, przykład zastosowania transformacji Fouriera. Słaba zbieżność; tw. Banacha-Alaoglu w ośrodkowych przestrzeniach Hilberta
23.01.2020. Przykład zastosowania słabej zbieżności w zagadnieniu minimalizacyjnym. Dowód tw. o widmie operatora zwartego na przestrzeni Hilberta.
Last modified: 01/23/2020 19:36:09