Introduction to Stochastic Analysis 1

- 1. Find the law of $5W_1 W_3 + W_7$.
- 2. For which parameters a and b random variables $aW_1 W_2$ and $W_3 + bW_5$ are independent?
- 3. Find the law of the random vector $(W_{t_1}, W_{t_2}, \dots, W_{t_n})$ for $0 < t_1 < t_2 < t_2$
- 4. Show that $\lim_{t\to\infty} \frac{W_t}{t} = 0$ a.s.
- 5. Prove that the following transformation of the Wiener process are also Wiener

 - a) $X_t = -W_t$ (reflection) b) $Y_t = c^{-1/2}W_{ct}, c > 0$ (scaling of time)
 - c) $Z_t = tW_{1/t}$ for t > 0 and $Z_0 = 0$ (time inversion)

 - d) $U_t = W_{T+t} W_T, T \ge 0$ e) $V_t = W_t$ for $t \le T$, $V_t = 2W_T W_t$ for t > T, where $T \ge 0$.
- 6. Show that with probability 1 trajectories of Wiener process are unbounded
- 7. Show that with probability 1 trajectories of Wiener process are not uniformly continuous on \mathbb{R}_+ .
- 8. Let $\pi_n = \{t_0^{(n)}, t_1^{(n)}, \dots, t_{k_n}^{(n)}\}$, where $a = t_0^{(n)} < t_1^{(n)} < \dots < t_{k_n}^{(n)} = b$ is a sequence of partition of the segment [a, b] and let $\|\pi_n\| := \max_k |t_k^{(n)} t_{k-1}^{(n)}|$ denote the diameter of π_n . Prove that

$$S_n := \sum_{k=1}^{k_n} |W_{t_k^{(n)}} - W_{t_{k-1}^{(n)}}|^2 \to b - a \text{ in } L^2(\Omega, \mathcal{F}, P), \text{ when } n \to \infty$$

if
$$\|\pi_n\| \to 0$$
 and $S_n \to b-a$ a.s. if $\sum_n \|\pi_n\| < \infty$.

- 9. Show that with probability one trajectories of the Wiener process have unbounded variation on each nondegenerate interval.
- 10. Prove that with probability 1 trajectories of the Wiener process are nowhere differentiable on $[0, \infty)$. Hints:

a) If a function f is differentiable at some point in [0,1] then there exists $M < \infty$ and for sufficiently large n there exists $0 \le j \le n-3$ such that $|f((j+1)/n) - f(j/n)| \le M/n$, $|f((j+2)/n) - f((j+1)/n)| \le M/n$ and $|f((j+3)/n) - f((j+2)/n)| \le M/n.$

b) Show that $\Pr(|W_{(j+1)/n} - W_{j/n}| \le M/n, |W_{(j+2)/n} - W_{(j+1)/n}| \le M/n, |W_{(j+3)/n} - W_{(j+2)/n}| \le M/n) \le CMn^{-3/2}$ and prove that this implies nowhere differentiability of Wiener process trajectories on [0,1].

Introduction to Stochastic Analysis 2

- 1. Prove that if a set $A \in \mathcal{B}(\mathbb{R}^T)$ then there exists a countable set $T_0 \subset T$ such that if $x, y \in \mathbb{R}^T$ and x(t) = y(t) for $t \in T_0$ then $x \in A \Leftrightarrow y \in A$.
- 2. Let T = [a, b] $a < t_0 < b$, prove, that the following sets do not belong to $\mathcal{B}(\mathbb{R}^T)$.

 - i) $A_1 = \{x \in \mathbb{R}^T : \sup_{t \in [a,b]} |x_t| \le 1\};$ ii) $A_2 = \{x \in \mathbb{R}^T : t \to x_t \text{ cige na [a,b] }\};$ iii) $A_3 = \{x \in \mathbb{R}^T : \lim_{t \to t_0} x_t = 0\};$

 - iv) $A_4 = \{x \in \mathbb{R}^T : t \to x_t \text{ cige w } t_0\}.$

Prove measurability of these sets under the assumption of continuity (right continuity) of trajectories, i.e. prove that all these sets after intersecting them with C(T) (RC(T) respectively) belong to $\mathcal{B}(\mathbb{R}^T) \cap C(T)$ ($\mathcal{B}(\mathbb{R}^T) \cap$ RC(T) resp.).

- 3. Let T = [a, b]. Prove that $\mathcal{F} = \{A \cap C(T) : A \in \mathcal{B}(\mathbb{R}^T)\}$ is the Borel σ -field (for the sup metric) on C(T).
- 4. Prove that there exists a process $(X_t)_{t\geq 0}$ with independent increments, starting from 0 and such that $X_t - X_s$ has the Cauchy distribution with parameter t-s (such a process is called a Cauchy process or a 1-stable process).
- 5. A process X is a modification of the Wiener process. Which of the following properties are satisfied by X:
 - a) independence of increments,
 - b) stationarity of increments,

 - c) continuity of trajectories, d) $\lim_{t\to\infty} \frac{X_t}{t} = 0$ a.s., e) $\lim_{t\to\infty} \frac{X_t}{t} = 0$ in probability?
- 6. Consider the following properties of processes:
 - a) continuity of trajectories;

 - b) stochastic continuity (i.e. $X_t \stackrel{\mathbb{P}}{\to} X_s$ for $t \to s$); c) continuity in L_p (i.e. $\mathbb{E}|X_t X_s|^p \to 0$ for $t \to s$).

What implications between the following properties are satisfied?