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1 Wstep

W wielu problemach rachunku prawdopodobienstwa i jego zastosowan pojawiaja sie wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wyktadu bedzie przedstawienie wybranych narzedzi pozwalajacych
badaé takie obiekty. Wyklad bedzie dotyczyl tak zwanej teorii nieasymptotycznej, tzn. na-
cisk bedzie polozony na rézne szacowania, a nie na twierdzenia graniczne.

W pierwszej czesci wykltadu oméwimy pewne zagadnienia zwigzane z teoria koncen-
tracji miary, ktére pozwalaja szacowaé¢ odchylenia funkcji zaleznej od wielu zmiennych
losowych od jej wartosci oczekiwanej. W drugiej pokazemy kilka metod pozwalajacych sza-
cowad suprema proceséw stochastycznych. Oméwimy tez pewna liczbe bardziej konkretnych
przyktadéw zastosowan.

Oczywiscie podczas semestralnego wyktadu monograficznego mozna oméwié tylko nie-
wielka czed¢ bogatej i ciagle rozwijajacej si¢ teorii. Duzo szerszy wybér zagadnien zostat
przedstawiony w notatkach Ramona van Handela [7] i monografii Romana Vershynina [8],
zainteresowany Czytelnik znajdzie tam tez szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przyktady.

Wiele waznych miar probabilistycznych spetnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorac polega on na tym, ze wiekszo$¢ punktéw z przestrzeni lezy w poblizu
zbioru wypelniajacego przynajmniej potowe przestrzeni. By pojecie to sformalizowaé po-
trzebujemy dwoch waznych definicji.

Definicja 2.1. Niech (X, d) bedzie przestrzenia metryczna, za$ A dowolnym podzbiorem
X. Dla t > 0 okreslamy t-otoczenie zbioru A wzorem

Ay ={r e X:d(z,A) <t} = U B(y,t),
yeEA

gdzie B(y,t) oznacza kule otwarta w X o §rodku w y i promieniu ¢.

Definicja 2.2. Niech u bedzie borelowska miara probabilistyczna na (X, d). Funkcje kon-
centracji miary p definiujemy jako

au(t) = ax,au(t) == sup {1 — u(Ay): p(A) > %}

Na poczatek wyktadu podamy kilka przyktadéw, dla ktorych mozna dobrze oszacowaé
funkcje koncentracji. Dowody podanych oszacowan przedstawimy pozniej.

Przyklad 1. Niech d oznacza odlegto$é geodezyjna na n-wymiarowej sferze S™ =
{z € R": |z| = 1}, za$ 0, oznacza unormowang miare powierzcniowa na S”. Wéwczas



okazuje sie, ze jesli chcemy zminimalizowaé o, (A;) po wszystkich zbiorach ustalonej miary,
ekstremalne sa kule (zwane tez czapeczkami), to znaczy

on(A) = on(B(z0,7)) = 0on(As) = on(B(z0,7)t) = on(B(zo, 7 +1)).

W szczegdlnosci jesli o, (A4) > 1/2, to

on(Ap) > O‘n(B<ZL'(), g +t>) >1—exp ( — (n—21)t2)

Zatem a,,, (t) < exp(—251t2).

Uwaga 2.3. Zauwazmy, ze funkcja koncentracji o, szybko zbiega do 0 przy n — oo. Jedna
z przyczyn tego zjawiska jest to, ze miara ta nie jest dobrze unormowana. Jesli przez
on,r okredlimy rozklad jednostajny na sferze RS™, to poniewaz jest on obrazem o, przy
jednoktadnosci o skali R, to

Qg (L) = ag, (%) < exp ( - T;;;tz).

Zauwazmy tez, ze

R2
T;x:do )= —0; ;.
/RSn (g mR( ) n+1 1,J

Zatem miara jednostajna na v/n 4+ 15™ ma dobra normalizacje, to znaczy taka, ze macierz
kowariancji jest identycznoscia. Dla tej miary dla n > 2,

<_ 2(n + 1)t2)

1
Ao, ey (1) < exp < exp ( - 6t2>.

Przyktad 2. Niech 7; oznacza kanoniczny rozklad gaussowski na RF, tzn. rozklad
z gestoscia (2m) %/ exp(—|z|?/2). Wéwezas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazuja sie péiprzestrzenie, tzn. jesli

M(A) = e ((=00,7] x R¥) = 0(r),

to
Yi(Ay) > *yk(((—oo,r] X Rk_l)t> = yk((—oo, r 4 t] X ]Rk_1> =®o(r +t).
W szczegdlnosei

1
ay, (1) =1—®(t) < 56_t2/2.

Zauwazmy, ze poOwyzsze oszacowania nie zalezg od wymiaru przestrzeni.

Przyktad 3. Niech v bedzie symetrycznym rozkladem wyktadniczym, tzn. rozktadem
na R z gestoécia § exp(—|z|). Przez v* bedziemy oznaczaé rozklad produktowy v®...®v na



R*. Wyznaczenie ekstremalnych zbioréw dla problemu izoperymetrycznego zwigzanego z ta
miara jest trudne i nieznane dla k # 1. Choé¢ wiadomo, ze ekstremalne nie sg pétprzestrzenie
postaci (—oo, 7] X R*~1 to sa one optymalne z doktadnoscia do stalej, tzn.

VH(A) = v((—o00,7]) = VF(A) > 1/(( — 00,7+ 2\1/6 D

W szczegdlnosci

1 1 1
ar(t) <1 —V((—oo, 27\/64) = §exp(— ﬁt>

Zauwazmy, ze znowu uzyskane oszacowanie nie zalezy od wymiaru przestrzeni.

Przyktad 4. Niech p bedzie unormowang miara liczaca na kostce dyskretnej {0, 1}
z metryka d(z,y) = %#{’L x; # y;}. Tu problem izoperymetryczny daje sie rozwiazaé
(optymalne sa kule, ewentualnie z dodanymi niektérymi punktami na brzegu). W tym
przypadku mozna pokazaé, ze
a,(t) < g2t

Krétki przeglad wynikéw pokazuje, ze w wielu waznych zastosowaniach mozna wykazac,
ze a,(t) < Crexp(—t?/Cs) — méwimy wtedy, ze funkcja koncentracji jest typu gaussow-
skiego. Widzielismy tez przyktad, w ktérym o, (t) < Ciexp(—t/Cs) — méwimy wtedy o
koncentracji wyktadniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia sie miara otoczenia zbioru, a raczej
jak szybko maleja ogony funkcji okreslonych na przestrzeni. W tej czesci powiazemy ze
soba te zjawiska. Zacznijmy od definicji mediany i modutu ciagtosci.

Definicja 2.4. Niech p bedzie miara probabilistyczna na (X,d) oraz f bedzie mierzalna
funkcja z X w R.
Mediang funkcji f wzgledem miary p nazywamy takg liczbe M = Med,,

—~

f) dla ktérej

N | —

p{a: f@) > MY) > 5 oz p({e: f(x) < M}) >
Modutem ciggtosci f nazywamy funkcje
wy(t) := sup{|f(z) = f(y)|: d(z,y) <t}
Fakt 2.5. Dla dowolnej funkcji mierzalnej F': X — R,
u({: F(2) > Med, (F) + wr(t)}) < a(t)

u({z: |F(z) — Med,(F)| > wr(t)}) < 200,(t).



Dowdd. Niech A := {x: F(xz) < Med,(F)} wéwczas u(A) > 1/2 zatem p(A;) > 1 —
ay,(t). Ponadto, jesli x € Ay, to istnieje y € A takie, ze d(z,y) < t i1 wowczas F(x) <
F(y) +wp(t) < Med,(F)+wp(t), stad pierwsza nieréwnos¢ w fakcie. Stosujac ja do —F i
zauwazajac, ze Med,(—F) = —Med,(F') oraz w_p = wr dostajemy

p({z: F(r) < Med,(F) —wr(t)}) < au(t).
Dodajac powyzsza nieréwno$é¢ do poprzedniej otrzymamy ostatnig czesé faktu. O
Przypomnijmy definicje funkcji lipschitzowskiej
Definicja 2.6. Funkcje F': (X,d) — R nazywamy lipschitzowskq, jesli

|F(z) = F(y)|
Fllrip :=sup —F———— < .
e =2 ™ a )

Moéwimy, ze funkcja jest L-lipschitzowska jesli ||F'||rip < L, tzn. |F(z) — F(y)| < Ld(z,y)
dla wszystkich z,y € X.

Analogicznie mozna zdefiniowaé funkcje lipschitzowskie miedzy przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jesli F jest lipschitzowska ze stalq L, to dla t > 0,
p({z: F(xz) > Med,(F) +t}) < a,(t/L)

u({e: |F(z) — Med, (F)| > t}) < 2a,(t/L).

it) Na odwrdt, jesli dla kazdej funkcji 1-lipschitzowskiej F' i ustalonego t > 0,
p({x: F(z) > Med,(F) +t}) < o
to a,(t) < a.

Dowdd. i) Wynika z Faktu 2.5 i oczywistego szacowania wy(t) < tL.
ii) Ustalmy zbiér A taki, ze pu(A) > 1/2 i okreSlmy F'(z) := d(z, A). Wéwczas F jest
1-lipschitzowska oraz Med, (F') = 0, zatem

az p({F > t}) = p({z: d(z, A) > t}) = 1 — p(Ay). O

Czesto tatwiej i naturalniej jest wykazywaé koncentracje funkcji lipschitzowskich wokot
Sredniej a nie mediany. Kolejny fakt pokazuje jak odzyskaé funkcje koncentracji w takim
przypadku.



Fakt 2.8. Zaldzmy, Ze p jest miarg probabilistyczng na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F it > 0 zachodzi

u({x: F(z) > /qu+t}) < aft). (1)
Wéwczas dla dowolnego zbioru borelowskiego A takiego, zZe pu(A) > 0 zachodzi
1 1A < ou(A))
W szczegolnosci
a,(t) < a(%).

Ponadto, jeslilim;_,o a(t) = 0, to dowolna funkcja 1-lipschitzowska jest calkowalna wzgle-
dem p 1 jesli dodatkowo « jest ciggla, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowdd. Ustalmy zbiér borelowski A taki, ze u(A) > 0 oraz liczbe ¢ > 0. Zdefiniujmy
F(z) := min{d(x, A),t}, wowczas funkcja F' jest ograniczona, 1-lipschitzowska i [ Fdu <
t(1 — u(A)). Stad na mocy (1),

L= p(A) = p({F > 1)) < p({F > /qu + p(A)E}) < alp(A)).

W szczegdlnoscei, jesli p(A) > 1/2, to 1 — p(Ar) < a(t/2).
By udowodnié¢ druga czes¢ faktu, ustalmy funkcje 1-lipschitzowska F' i niech F, :=
min{|F|,n}. Z (1) zastosowanej do —F,, dostajemy

u({o: Fule) < /Fndu ~1}) <alt).

Wybierzmy ¢ takie, ze a(tg) < 1/2 oraz m := Med,|F|. Wowczas u({F, < m}) > 1/2, czyli
zbiory {F,, < m} oraz {F,, > [ F,du—to} maja niepuste przecigcie. Zatem [ F,,dp < m—+to
i z twierdzenia Lebesgue’a o zbieznosci monotonicznej dostajemy [ |F|du < m + ty < oo.
Ostatnia czes$¢ tezy dostajemy stosujac (1) do min{max{F,—n},n} i przechodzac z n —
0. 0

3 Nieréwnosci izoperymetryczne

W tej czedci oméwimy kilka nieréwnosci izoperymetrycznych, pokazujac rézne sposoby ich
dowodzenia - poprzez powigzane nierownosci funkcyjne, symetryzacje czy transport miary.



3.1 Klasyczna izoperymetria

Chociaz w tym wyktadzie bedziemy sie zajmowaé miarami probabilistycznymi, to przeglad
nieréwnosci izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a A,,.

Twierdzenie 3.1. Jesli A jest podzbiorem borelowskim R™ takim, ze A (A) = A\ (B(xo, 7)),
to dla dowolnego t > 0,

M (Ar) = An(B(z0,7)e) = A\ (B(xo, 7+ t)).

Twierdzenie 3.2 (Nieréwnosé¢ Prékopy-Leindlera). Jesli s € [0,1] oraz f,g,h: R" —
[0,00) spelniajq warunek

h(sz+ (1—s)y) > f(z)°g(y)' ™ dlaz,y € R", (2)

to
/n h(z)dz > ( - f(x)dx)s(/Rn g(x)dx)l_s.

Dowdd. Najpierw wykazemy, ze dla niepustych zbioréw A, B € B(R™) zachodzi
M(A+ B) = M(A) + \(B).

Poniewaz A\ (A) = sup{\i(K): K C A, K zwarty}, to mozemy przyjaé, ze zbiory A i B sa
zwarte. Ponadto odpowiednio je przesuwajac mozemy tez zakladaé, ze sup A = inf B = 0.
Woéwczas AN B = {0} oraz

)\1(A+B) > )\1(AU B) = )\1(14) + )\1(3)

Nierownosé Prékopy-Leindlera udowodnimy przez indukcje po n. Najpierw rozwaz-
my n = 1. Mozemy zakladaé¢, ze f,g i h sa ograniczone, a z uwagi na jednorodnos¢, ze
sup f(z) = supg(x) = suph(z) = 1. Zauwazmy, ze dla 0 < r < 1, {h > r} D s{f >
r} 4+ (1 —s){g > r}, wiec calkujac przez czesci dostajemy

/h(x)d:c _ /01 M{h > e > /01 M(s{f >} + (1= s){g > r}dr

1
> [ Mals{f 2 D) + A1 = s){g > e
0

:s/fda;+(1—s)/gdx> (/fdx)s(/gdﬂ?)l_sv

gdzie ostatnia nieréwnos$¢ wynika z poréwnywania wazonych Srednich arytmetycznych i
geometrycznych.



Zalézmy teraz, ze n > 2 oraz teza twierdzenia zachodzi dla n— 1. Niech f, g, h spelniaja
(2) i okre$lmy dla z € R

F(z) = /an f(z,2)dz, G(x)= /an g(x,z)dz oraz H(z)= /Rnil h(z,z)dz.
Zauwazmy, ze dla ustalonego =,y € R
h(sz 4+ (1 —8)y,s21 + (1 — 8)29) > f(z,21)%g(y, 22)' ™% dla 21,20 € R*7L.
Zatem na mocy zalozenia indukcyjnego
H(sz + (1= s)y) > F()°G(y)' .

Stosujac nieréwnoé¢ Prékopy-Leindlera w udowodnionym wczesniej przypadku n = 1 do-

stajemy
/Rn h(x)dx = /RH(x)dx > (/RF(:U)d‘r)S(/RG(Z‘)d;L‘)I_S

= (/nf(x)dx)s(/ng(x)d:n)l_s. O

Whniosek 3.3 (Nieréwno$é Brunna-Minkowskiego). Dla dowolnych niepustych zbioréw bo-
relowskich A, B C R",

M(sA+ (1 —=8)B) > M(A)P*N(B)' ™ dla s €[0,1]

oraz

An(A+ B)Y™ = 2\, (A 4+ 0, (B)V™

Dowdd. Pierwsza nieréwno$é natychmiast wynika z nieréwnosci Prékopy-Leindlera zasto-
sowanej do funkcji f = 14,9 =1p oraz h =1 44(1_4)B-

By udowodnié¢ druga wystarczy rozwazy¢ przypadek, gdy A i B sg zbiorami skonczonej
i niezerowej miary. Przyjmijmy wtedy

. A - B 3 An(A)L/m
A—;, B_l—s oraz S_)\n(A)l/"+)\n(B)1/”'

Wowezas Ap(A) = M(B) = (A(A)Y™ + A (B)Y™)", wiec na podstawie wykazanej po-
przednio nieréwnosci

M(A+ B) = Au(sA+ (1= 8)B) > Ma(A)°Au(B)' 7 = M ()" + A (B)V™)". O

Uwaga 3.4. Suma Minkowskiego dwu zbioréw borelowskich nie musi by¢ zbiorem borelow-
skim, ale mozna wykazaé, ze jest zbiorem mierzalnym w sensie Lebesgue’a.
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Dowdd Twierdzenia 3.1. Niech ¢, = A\, (B(0,1)), woéwczas A\p(A) = ¢,7™ 1 na podstawie
Whniosku 3.3,
An(Ar) = (A + B(0,1)) > (Aa(A)Y" + Au(B(0, 1) /)"
=cp(r+6)" = A\ (B(zo,r + t)).

O]

Definicja 3.5. Dla miary p na przestrzeni probabilistycznej (X, d) okreslamy zewnetzng
miare brzegowq pt wzorem

by i oo (A — p(A)
A=

Uwaga 3.6. Jesli miara p na R™ ma ciagla gestosé g(x) oraz zbiér A ma gladki brzeg, to
wHA) = | 9(@)dHy (),

gdzie H, 1 oznacza n — 1 wymiarows miare Haussdorffa.

Réwnowazna rozniczkowa forma klasycznej nieréwnosci izoperymetrycznej mowi, ze
sposréd zbiorow ustalonej objetoéci najmniejsza powierzchnie brzegu ma kula. Doktadniej:

Twierdzenie 3.7. Jesli A jest podzbiorem borelowskim R™ takim, Ze A, (A) = A (B(xo,7)),

to
)\r—t(A) > )\;—(B(:EO,T)) = nc%/”()\n(A))(n—l)/n’
gdzie
An(B(0,1 /2
Cp = Tl( ( ) )) - W

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jesli A jest podzbiorem borelowskim S™ takim, ze 0, (A) = op(B(x0,7)),
to dla dowolnego t > 0,

on(At) 2 on(B(x0,7)t) = on(B(xo, 7+ 1)).

Whniosek 3.9.
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Dowdd. Dla n = 1 nie ma co dowodzi¢ (bo zawsze o, (t) < 1/2). Bedziemy wiec zaktadac,
ze n > 2. Zauwazmy, ze

,
on(B(zo,7)) = 5;1/ sin ! tdt,
0

gdzie s, = [J sin"! tdt. Zatem

T w/2
g, (t) =1 —0op(B(zo,t +7/2)) = sgl/ sin™ ! udu = s,_ll/t cos™ L udu.

t+m/2

Stosujac oszacowanie cosu < exp(—u?/2) dla t € [0,7/2], dostajemy

71'/2 7r/2 %)
/ cos" L udu < / e~ (m=Du/2,, < ! / e /2ds
t t tv/n—1

n—1
= ﬁ (1—-®(tvn—1)) < 2(\2%_ 1)6_("_1)t2/2.

]

Ponadto tatwe catkowanie przez czesci daje, ze dlan > 3, s, = Z—jsn,g, stad

n—2

vn —1s, = —=sn—
n \/m’ﬂQ

ZVvn— 38n—27

zatem

inf \/n — 1s, = min{sg, v2s3} = min{2, 7/v2} = 2. O

n>2

3.3 Izoperymetria gaussowska

Przypomnijmy, ze przez 7, oznaczamy kanoniczny rozklad gaussowski na R¥, tzn. rozktad
z gestoscia (2m) %/ exp(—|z|?/2).

Gléwnym wynikiem, ktéry wykazemy jest to, ze dla rozktadow gaussowskich optymalne
dla problemu izoperymetrycznego sa pdlprzestrzenie afiniczne, to znaczy zbiory postaci

H = {z eRF: (z,u) < r} dla pewnych u € ¥~ i r € [—00, . (3)

Twierdzenie 3.10. Niech H bedzie pdlprzestrzeniq afiniczng, a A zbiorem borelowskim w
R¥ takim, ze yp(H) = v1.(A). Wéwezas dla dowolnego t > 0, vi(Hy) < vie(Ar)

Zanim przystapimy do dowodu twierdzenia pokazemy, ze 7 jest granica rzutowan roz-
ktadéw jednostajnych na /nS"~1.

Niech P = Py, oznacza kanoniczny rzut R" na RF dla k < n, za$ 6,_1 oznacza
unormowang miare powierzchniowa na /nS"~!. Oznaczmy przez Hk,n Obraz o,_1 przy
tym rzutowaniu tzn.

Hin(A) = 601 (P M (A))  dla A € B(RY).

)
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Fakt 3.11 (Lemat Poincaré). Miara i, zbiega stabo przy n — oo do miary i, co wiecej

11122() tien(A) = v5(A) dla dowolnego zbioru borelowskiego A.

Dowdd. Proste rozumowanie pokazuje, ze miara py, , ma gestosé gy, (z) = c;}lgk,n(af), gdzie
n—|z|? )(n—k=2)
n

Tren = ( /QIL{‘IK\/E} oraz Cyn = [gk Gnk(x)dx. Oczywiscie limy, oo Jin(x)
exp(—|2[2/2), ponadto [Gin(2)] < exp(—(n — k — 2)|o]?/(2n)) < exp(—|[2/(2n)) dla n >
k + 2. 7 twierdzenia Lebesgue’a o zbieznoSci zmajoryzowanej otrzymujemy lim, .o ¢, =
Jrr exp(—|z[?/2)dz, czyli gestos¢ miary iy, zbiega punktowo do gestosci miary vx. Teza
faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [3]).

O

Dowod Twierdzenia 3.10. Ze wzgledu na rotacyjng niezmienniczo$é miary 7y, mozemy dla
uproszczenia notacji zatozyé, ze H = {x: 1 < r}. Ustalmy dowolne r9 < 7 i niech
Hy = {z: 21 < ro}. Zauwazmy, ze v(Ho) < 'yk.(A), zatem na podstawie Lematu Poin-
caré, ppn(Ho) < pig,n(A) dla duzych n. Poniewaz Py L(Hp) N y/nS™ 1 jest kula w /nS™ 1,
wiec na mocy izoperymetrii sferycznej

On—1 ((Pl;gb(A))t) > 0n 1 ((Plgi(Ho))t)

Zauwazmy, ze przeksztalcenie Py, ,, jest oczywiscie 1-lipschitzowskie, wiec Ay D Py, (P TlL (A)))
i
1 (Ae) 2 e (P (P (A)e)) = ik (Pren (P (Ho))e))-
Nietrudno zauwazyc¢, ze
Pyn (P (Ho))) = {w: a1 <7}

oraz 1, — 1o +t przy n — 0o. Stad
Y (Ap) = nlgrolo L (Ar) > nlgrolo pen({x: z1 <rp}) =w({z: 1 <ro+t}),
z dowolno$ci ry < r wynika teza. O

Twierdzenie 3.12. Jesli vx(A) = ®(z) to w(A) > ®(z +1t) oraz v (A) > I,((A)),
gdzie I(z) := o(®71(z)) oraz p(z) = ¥'(z) = \/12?exp( x2/2).

Dowdd. Wystarczy zauwazy¢, ze jesli vx(H) = ®(r) i H jest postaci (3), to Hy = {x €
RF: (z,u) <r+t}iy(H) = ®(r+1t). O

Zauwazajac, ze ®(0) = 1/2 otrzymujemy:
Whiosek 3.13. ., (1) < 1— ®(t) < 5 exp(—t?/2).

Jak widzieliSmy juz w dowodzie Twierdzenia 3.10 bardzo uzyteczne jest pojecie tzw.
transportu miary.

13



Definicja 3.14. Niech p i v beda miarami na przestrzeniach mierzalnych X i Y. Powiemy,
ze funkcja mierzalna T': X — Y transportuje miare  na miare v (ew. miara v jest obrazem
miary p przy przeksztatceniu T) jesli v(A) = u(T~1(A)) dla wszystkich mierzalnych A C Y.

Szczegdlnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jesli T: X — Y jest L-lipschitzowska oraz T transportuje miare p na v, to
a,(t) < au(t/L).

Dowdd. Wystarczy zauwazy¢, ze (T1(A))y, € T7H(Ay). O

Transportujac w sposéb lipschitzowski miare gaussowska mozna uzyskaé¢ oszacowania
funkcji koncentracji dla innych miar. Pokazemy dwa przyktady.

Whiosek 3.16. Niech pg1j» 0znacza rozklad jednostajny na kostce [0,1]". Wowczas Ho,1)n

jest (2m)~ Y2 lipschitzowskim obrazem ~,. W szczegdlnosci Qg qpn S % exp(—t?).

Dowdd. Okredlmy f: R — (0,1) wzorem
f(@) = ppo,) (10, F(@)]) = (=00, 2]) = @(x).

Wowczas funkcja f transportuje miarg gaussowska v1 na pg 1], to znaczy pjo 1) =10 f -1
Ponadto f'(z) = (2r) /2 exp(—22/2) < (27)~V/2, czyli f jest (2r)~'/2-lipschitzowska. Jesli
teraz okreslimy F': R" — (0,1)" wzorem F(z) = (f(x1),..., f(zyn)), to F transportuje
Yn Na p oraz F jest (27r)*1/ 2_lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencja Faktu 3.15 i Wniosku 3.13. 0

Whiosek 3.17. Niech B, = {z € R": |z| < 1} oznacza kulg jednostkowg w R™, zas pp,
bedzie rozktiadem jednostajnym na By,. Wowczas istnieje stata C taka, zZe up, jest Cn~1/2.
lipschitzowskim obrazem ~y,. W szczegdlnosci ay,, < 3 exp(—nt?/(20)).

Poniewaz obie miary 7, i up, sa rotacyjnie niezmiennicze, bedziemy szukaé funkcji
T:R"™ — B, transportujacej v, na pp, postaci Tax = ﬁ«p(m) Dalsze szczegdly pozosta-
wiamy Czytelnikowi jako ¢wiczenie.

Otwarty problem. Rozwigzaé zagadnienie izoperymetryczne dla zbioréw symetrycz-
nych, to znaczy znalez¢ dla ustalonego t > 0, ¢ € [0, 1],

inf {7 (A¢): w(A) =c,A=—-A}
inf {7 (A): (A) =c,A=—A}.

Dos$é naturalna hipoteza moéwi, ze dla ¢ > 1/2 rozwiazaniem obu probleméw sa zbiory
postaci [—a, a] xR¥~! zag dla ¢ < 1/2 drugi problem si¢ optymalizuje dla (R\[~a, a]) x R¥~1.
Podobny problem mozna postawi¢ dla miary o,, ale tam analogiczna hipoteza okazuje si¢
by¢ niestety falszywa.
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4 Metoda Martyngalowa

4.1 Transformata Laplace’a

Wiele dalszych szacowan bedzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatqe Laplace’a zmiennej losowej Z nazywamy funkcje
Lz(\):=Ee* XeR.

Podobnie jesli i jest miara probabilistyczna na pewnej przestrzeni X oraz F': X — R, to
transformate Laplace’a F wzgledem p okreslamy

Lra(\) = / AFE) 4y ().
X
Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z>t)<infe MLz(\) dlat>0.

=

W szczegolnosci, jesli dla pewnego a > 0,
Lz(\) <exp(a)?) X €eR,

to dlat>0
t2 t2
P(Z>t)<exp(—£) oraz P(|Z|>t)<2exp(—£).
Dowdd. Pierwsza czes¢ wynika z nieréwnoéci Czebyszewa, a druga z pierwszej i prostego
rachunku. O

Zatem by udowodnié, ze funkcja koncentracji miary p jest gaussowska wystarczy wy-
kaza¢, ze Lr,()\) < exp(ar?) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, ze [ Fdp = 0.

4.2 Nieré6wnos¢ Azumy

Ponizsza nier6wno$¢ to udowodnione przez Azume uogélnienie nieréwnosci Hoeffdinga (zob.
Fakt 4.9 ponizej) na przypadek martyngatowy.

Twierdzenie 4.3 (Nieréwnos¢ Hoeffdinga-Azumy). Niech (My, Fy)i_, bedzie martynga-
lem o ograniczonych przyrostach takim, zZe | My — Mg_1||0o < ar. Wowczas

2
P(M,—My>t)< - .
( ‘ ) exp( 22?:1%2>
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Dowdd. Okreslmy dla 1 < k < n, d := My — My_1, woéwcezas E(dg|Fr—1) = 0. Mamy
I_Tu(—w) + H_Tul‘ = uzx, wiec z wypuklodci exp(z),
1—u 1+u ,

e’ < Te*z + 5 ¢ = usinh(x) 4 cosh(z) dla |u| < 1.

Stosujac te nieréwnosé dla u = di/ar 1 * = Aay dostajemy
d
E(e*M | F_y) < E(—k‘fk,l) sinh(Aag) + cosh(Aax) = cosh(Aay).
ak

Liczymy
Ee)\(Mn—Mo) — EeA(Mnfl_MO'i‘dn) — E(eA(Mnfl—Mo)E(ekdn ‘fnfl))

< cosh(Aay, ) EeNMn-1=Mo)

Zatem iterujac powyzsza nieréwnos¢ i stosujac oszacowanie (wynikajace np. z rozwiniecia
w szereg Taylora) cosh(z) < exp(2?/2) dostajemy

n 1 n
L, —ay(A) = BEeMMn=Mo) H cosh(Aag) < exp(i Z az\?).
k=1 k=1
Teza twierdzenia wynika z Faktu 4.2. O

Uwaga 4.4. Najczesciej bedziemy mieli Fy = {0, Q}, woéwczas My jest stale, a poniewaz
martyngal ma stalta wartoéé¢ oczekiwana, to My = EM,,.

W ponizszych zastosowaniach bedziemy przyjmowaé My = E,(F|F;) dla catkowalnej
funkeji F': X — R i odpowiednio dobranego (F) ciagu o-cial podzbioréw X.
4.3 Zastosowania nieréwnosci Azumy

Whniosek 4.5. Niech (X;,d;) bedg przetrzeniami metrycznymi, X = X3 x --- x X, z od-
leglosciq 11, to znaczy d(x,y) = Y iy di(zi,y;) dla z,y € X oraz niech p = 1 ® ... &
n bedzie produktem miar probabilistycznych p; na X;. Wowcezas dla dowolnej funkcji 1-
lipschitzowskiej F' na X

,u({x: F(z) > /qu—i—t}) < exp(—;l;),

gdzie D = (X7, Diam(X;)2)Y/2. W szczegdlnosci

a,(t) < exp ( - i)
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Dowdd. Na mocy Faktu 2.8 wystarczy wykazaé pierwsza nieréwnosé tezy. Niech Fi bedzie
o cialem generowanym przez pierwsze k-wspéirzednych oraz My, := E,(F|Fy). Wowczas
oczywiscie

M) = My, o) = [ F(@)dpir (i01) - din(n),
Xp+1X... xXp

stad
|Mk(aj‘) — Mk_1($)| = |Mk(x1, ey xk) — . Mk(l‘l, ey xk)d,uk(xkﬂ
k
< osup  [M(xr, .. mp—1, yk) — Mi(21, .00 -1, 21)|
Yk 2k EXg
g sup |F(x17"'7xk717yk7yk+17"'7yn)_F(xla"'7xk7172k7yk+17"'7yn)|
yeX,zp €Xg
< sup  dp(yk, zx) < Diam(Xp)
Yk 2k €EXg
i teza wynika z Twierdzenia 4.3. O

Przyktad 1. Niech X = {0,1}" z odlegloscia d(z,y) = %#{i: x; # y;} 1 unormowana
miara liczaca p. Kladac X; = {0, 1} z odlegloscia d;(z,y) = %I{z?gy} widzimy, ze mozemy
stosowaé poprzedni wniosek i D = (32, Diam(X;)?)1/2 = n=1/2. Zatem

nt?
o1} dp) S exp(— ?)

Definicja 4.6. Méwimy, ze skoficzona przestrzen metryczna (X, d) ma dlugosé co najwyzej
[, jedli istnieje rosnacy ciag podzialéw X, {X} = Ag, Ay,..., A, = {{z}: 2z € X} (A4
jest podpodziatem A;_;) oraz liczby ai,...,a, spelniajace (> 1, a?)l/2 < [ takie, ze dla
dowolnego A € A;_1 oraz B,C € A;, B,C C A istnieje bijekcja ®: B — C dla ktorej
d(z,®(z)) < a; dla z € B.

Uwaga 4.7. Biorac Ay = {X} i A1 = {{z}: z € X} widzimy, ze kazda skofczona przestrzen
metryczna ma diugos$é nie wigksza niz Diam(X).

Twierdzenie 4.8. Jesli (X,d) jest skoriczong przestrzeniqg metryczng o dlugosci co naj-
wyzej 1, za$ p unormowang miarg liczgeq na X, to dla funkcji 1-lipschitzowskich F na

X

2

t2

,u({:r:: F(z) > /qu+t}> < exp(—2—l2),

w szczegolnosci
2
a,(t) < exp ( - @)
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Dowdd. Ustalmy funkcje 1-lipschitzowska F'. Niech F; bedzie o-cialem generowanym przez
A; oraz M; := E,(F|F;) dlai=0,...,n. Wéwczas
1

Zatem, jeSli A € A;_1, B,C € A;,B,C C A oraz ®: B — C jest bijekcja jak w Definicji
4.6,todlaz € B,y € C,

Mila) = M)l = | 5 X (F(2) = F(@(2)] < sup [F(2) = F(@(:)
z€B z€

<supd(z,®(2)) < a;.
2€B
Poniewaz M; 1 na A € A;_1 jest uérednieniem M; po B C A, B € A;, to mamy |M;(z) —
M;_1(x)| < ai, czyli ||M; — M;_1]|oo < ai—1. Teza wynika z Twierdzenia 4.3 oraz Faktu
2.8. O

Przyktad 2. Niech II" bedzie grupa permutacji zbioru {1,...,n} z metryka d(o, 7) =
%#{2‘: o; # m}, a p unormowana miara liczaca na II". Niech A; sklada sie ze zbioréw
postaci

Aj1,~~~,ji = {O’ e I1": 0‘(1) = J1,... ,O‘(’i) = ]1}

Woéweczas jedli B,C' € A; sa podzbiorami pewnego A € A;_1 to B = Aj,_ i ,p, C =
Aj o jio1.q 1 mozemy zdefiniowaé bijekcje ® miedzy B i C jako ®(o) = 7,4 0 0, gdzie
Tpq jest transpozycja zamieniajaca p z ¢. Latwo sprawdzié, ze d(o, ®(0)) < 2/n, zatem
I=2/\ni

nt?

)

4.4 Nieréwnosci wykladnicze dla sum niezaleznych zmiennych losowych

W tej czesci omoéwimy kilka nieréwnosci wykladniczych dla sum niezaleznych zmiennych
losowych, ktore bazuja na szacowaniu transformaty Laplace’a. Dla uproszczenia notacji
zdefiniujemy dla zmiennej losowej Z i A € R,

Az(N\) :=InLz(\) = InEeM.

Fakt 4.9 (Hoeffding). Jesli X; sq niezaleznymi zmiennymi losowymi takimi, zZe a; < X; <
b; oraz S =311 X;, to

t2
P(S > ES+1t) <exp <_2Zn 0 a.)2>'
i=1\0i — @4
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Dowdd. Wystarczy zauwazy¢, ze My, = S8 (X; —EX;) jest martyngatem, | M, — Mj,_;| =
| X — EX| < by — ag i skorzystaé z Twierdzenia 4.3. O

Lemat 4.10. Zaléimy, ze X jest zmienng losowq o Sredniej zero takq, Ze istniejq 0%, M <
oo spetniajgee warunek

k!
E|X|* < E02MH dlak=2,3,....
Wowczas
i dla MA| < 1
Ax( )< ——— .
Dowadd. Liczymy
N AP k = ‘ ‘ 20 rk—2 Mo? & k—2
LX(A)—ZMEX <1+ ), ME2 =1+ > (MM
k=0 k=2 k=2
o2 )\? o2 )\2
14+ < L AN—
o S (2(1 . M\A]))

O]

Twierdzenie 4.11 (Nieréwnosé¢ Bernsteina). Zaldézmy, ze X; sq niezaleznymi zmiennymi
losowymi o $redniej zero, zas 0'Z-2, M < oo sqg takie, ze

k!
ElXi| < SofM*? dlai>1, k2 (4)

Wowczas

" A5 g2
E AN X ) < A dla M|\ < 1
exp( Z:ZI > exp<2(1_M|/\|)> a M|\ <

oraz dla t > 0,

n t2
P X, >t] < —
<; iz >\eXp< 22§L103+2Mt>’
n t2
P X;| >t <2 — .
(il = )\ exp< 22?_101-2—|—2Mt>

Dowéd. Niech S := Y"1, X;, 02 := 3" | 02, wéwczas Ag = 3, Ax, i pierwsze oszacowanie
wynika z Lematu 4.10. Dalej szacujemy

A2g?
P(S >t) <exp (— sup (At — AS()\))> < exp (— sup <)\t — 2())

A>0 0<t<M—1 1—M2)
t2
< 53 o7 |
TP\ 20212001
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gdzie ostatnia nieréwnosé dostajemy przyjmujac A = t(o?+ Mt)~!. Poniewaz zmienne —X;
spelniaja te same zalozenia co X;, wiec dostajemy dla ¢t < 0,

2
<t)=P(=8 > —t) < _—
P(S<t)=P(-S t) < exp ( 557 & 2Mt>

i z tozsamosci P(|S| > t) = P(S > t) + P(S < —t) wynika ostatnia czes¢ tezy. O

Uwaga 4.12. Na mocy centralnego twierdzenia granicznego oraz szacowania dystrybuanty
gaussowskiej nie mozemy sie spodziewaé lepszego oszacowania niz exp(—t2/(202)). Ponadto
zmienne X; o rozkladzie symetrycznym wykladniczym z parametrem 1 (tzn. zmienne z
gestoscig exp(—|z|)/2) spetniaja E| X;|* = k!, czyli dla takich zmiennych zachodza zalozenia
Twierdzenia 4.11 z 02 = 2, M = 1. Pokazuje to, ze nie mozemy uzyskaé szacowania lepszego
niz exp(—t/M) przy t — oo.

Whniosek 4.13. Zaloimy, Ze X; sq ograniczonymi, niezaleznymi zmiennymi losowymi o
Sredniej zero, wowczas dla t > 0,

n t2
P X;>t)] < _—,
(g ; ) eXP< 202 + 2at /3

gdzie 02 = Var(XI", X;) = 30 | EX? oraz a = max; | X oo-

Dowdd. Mamy dla k > 2,

P 1 A2 Y
BlX;|* < o' 2EX? < T (3) EX2,
zatem warunek (4) jest spelniony z M = a/3 oraz o; = EX?. O

W wielu zastosowaniach wygodniej zamiast bezposrednio oszacowania (4) uzywaé sza-
cowania stalej subwykladniczej zmiennych losowych X;.

Definicja 4.14. Méwimy, ze zmienna losowa X; jest subwykladnicza, jesli E exp(A|X|) <
oo dla pewnego A > 0. Dla zmiennej subwykladniczej X okredlamy jej stalqg subwykladniczq
wzorem

X ||y, == inf{A >0: BelXI/* <2}

Wielko$¢ || X ||, to nic innego jak norma Orlicza X dla funkcji Younga 1 (x) = e* — 1.
Lemat 4.15. Jesli X jest zmienng subwykladniczq, to || X ||y, < co. Ponadto,

EIX|* <KX|E, dlak=1,2,....
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Dowdd. Pierwsza cze$é wynika stad, ze funkcja A — (Eexp(A|X]))/* jest niemalejaca na
(0,00). Biorac t > || X[, dostajemy

Lo 1X RS
O
Twierdzenie 4.16 (Nier6éwnosé¢ Bernsteina dla zmiennych subwyktadniczych). Zalézmy,

ze X; sq niezaleznymi subwykladniczymi zmiennymi losowymi o Sredniej zero. Wowczas
dla t > 0,

P E Xizt]) <exp|-—
<i:1 Z > ( A0 1 XllG, + 4t max; || X,

t2
P >t <2exp|— .
( ) P ( AT 1XG[13, + 4t max; rXinml)

Dowdd. Lemat 4.15 implikuje, ze oszacowanie (4) zachodzi z 02 = 2HX,~||12111 i M = max; || X||y, -
Wystarczy zatem zastosowa¢ Twierdzenie 4.11. ]

oraz
n

>x

i=1

Szacowanie podane we Wniosku 4.13 jest, z uwagi na centralne twierdzenie granicz-
ne, bliskie optymalnego dla ¢ matych. Jednak dla ¢t duzych mozna je poprawi¢ o czynnik
logarytmiczy.

Lemat 4.17. Zaléimy, ze X jest zmienng losowq o $redniej zero, wariancji o oraz

| Xilloo < a. Wowezas

2
g A
AX()\)<$(€ “—Xa—1) dlaX>0.

Dowdd. Liczymy

0 )\kEXk o0 )\k k—2 2

EM =14+ AEX + <1+ 02 R Ay L VA )
k! k! a?

k=2 k=2

i teza wynika natychmiast z nieréwnosci In(1 + z) < x. O

Twierdzenie 4.18 (nieréwnos¢ Bennetta). Zalozmy, ze X; sq ograniczonymi niezalez-
nymi zmiennymi losowymi o $redniej zero, o = Var(37 1 X;) = SrEX? oraz a >
max; || Xi|loo. Wowezas dla X > 0,

n 2
Eexp </\ E Xi> < exp <02(e’\a —Aa — 1))
a

i=1
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oraz dla t > 0,

- o? ta t ta
P( Xi>t> < exp (—2h (2)> < exp (—111(1—1—2))’
i—1 a g 2a o

gdzie
h(z) :=(1+2z)In(l +z) — =.

Dowadd. Pierwsza cze$¢ wynika natychmiast z Lematu 4.17. By pokaza¢ druga zauwazamy,
zedla S =37 X;,

2
P(S>t) <exp ( sup (At — As()\))> < exp ( sup ()\t — %(6)\& —Xa — 1))) .
A>0 A>0 a

Prosty rachunek pokazuje, ze powyzsze supremum jest osiggane w punkcie

Az%ln(l—l—%)

i wynosi
2 2
o ta ta ta o ta t ta
Z e )y D = R 2 s el
a? {<1+02)1H<1+02> 0'2} a2h(o'2) = 2aln(1+g2)7
gdzie ostatnie oszacowanie wynika z ponizszego lematu. O

Lemat 4.19. Dla dowolnego x > 0,
I+z)n(l+z)—x> gln(l—i—x).

Dowdd. Niech f(x) = (14+2)In(l 4+ 2) — 2z — (x/2)In(1 +z) = (1 + 2/2)In(1 + z) — =.
Liczymy f'(z) = (In(1 + ) —z(1+2)™Y/2, f/(z) = z(1 + 2) 72, zatem f(0) = f'(0) =0
oraz f"(z) > 0 dla z > 0. O
Uwaga 4.20. Jesi P(Y,,; =1) =1 —-P(Y,,; =0) = 1/n oraz Y, ; sa niezalezne, to rozklad
>ie1 Yin zbiega do rozkladu Poissona z parametrem 1. Biorac X, ; = Y, ; — 1/n mamy
A EXZ-QJL < 1 oraz max; || Xl < 1. To pokazuje, ze przy zalozeniach Twierdzenia
4.18 nie mozna uzyskaé¢ przy t — oo oszacowania lepszego rzedu niz tInt.
Uwaga 4.21. Nieré6wno$¢ Bennetta ma swoja wersje martyngalowa. Mianowicie, dla mar-
tyngatu (Mj, Fi)i_, spelniajacego warunki

m]?X HMk — Mkleoo <a

n
STIE(My, — Miy—1)?|Fmt)l|o < 02,
k=1
zachodzi nieréwnosé

2ot t t
P(Mn—M0>t) <8Xp —ih (a) <exp (—ln <1_|_a)> .
2 0—2 2 2

a



5 Nierownosé Poincaré

5.1 Definicja i podstawowe wtasnosci

Definicja 5.1. Méwimy, ze miara probabilistyczna p na (X, d) spelnia nieréwnosé Poincaré
ze stala C jesli dla wszystkich ograniczonych lipschitzowskich funkcji f na X zachodzi

Var, () < C [ [V fPdp. (5)

e [f(z) = f(y)l
L f(z) — fly
IV fl(z) == hgljglclp TCRI

jesli x jest punktem skupienia X i |V f|(x) = 0, jesli x jest punktem izolowanym X.

Uwaga 5.2. W przypadku, gdy X = R" ze standardowa metryka euklidesowa mozemy uzy¢
twierdzenia Rademachera, ktore mowi, ze kazda funkcja Lipchitzowska jest rézniczkowalna
prawie wszedzie i wtedy |V f|(z) jest dla prawie wszystkich x réwny dlugosci zwyklego gra-
dientu f. Ponadto argument aproksymacyjny pokazuje, ze by wykazaé¢ nieréwnoé¢ Poincaré
dla miar probabilistycznych na R™ wystarczy sprawdzié¢ (5) dla ograniczonych funkcji klasy
C1(R™) o ograniczonych pochodnych rzedu jeden.

Uwaga 5.3. Bedziemy wykorzystywali tylko dwie wlasnosci |V f|. Mianowicie, ze dla funk-
cji 1-lipschitzowskich |V f| < 1 oraz, ze dla dowolnej funkcji klasy C'(R), |Vg(F)| <
|g'(F)||VF| (w szczegblnosci |V (f +¢)| = |V f])-
Uwaga 5.4. Zatézmy, ze miara p ma gestos¢ postaci e™
przez czesci pokazuje, ze

V' na R"™. Wéwezas proste catkowanie

[198Edu= [ (o8 + (V.9 5) s

Definiujac operator Lf := —Af 4+ (VV,Vf) widzimy, ze L1 = 0. Nieréwnos$¢ Poincaré
méwi, ze dla funkcji f o éredniej 0, czyli prostopadtych do 1, [ fLfdu > C~! [ f2du. Biorac
pod uwage samosprzezonos¢ L nieréwnosé (5) jest réwnowazna temu, ze kolejna warto$é
wlasna L to conajmniej 1/C. Dlatego nieréwno$é Poincaré sie nazywa nieréwnoscia ,,luki
spektralnej” (spectral gap inequality).

Czasem wygodniej w nieréwnosci Poincaré zastapi¢ wariancje funkcji przez catke kwa-
dratu odchylenia od mediany, okazuje sie, ze prowadzi to do réwnowaznej nieréwnosci.

Fakt 5.5. Nierownosé Poincaré jest rownowazna nieréwnosci
Ve Baulf —Medy [ < C [ V1 Pdp.

Co wigcej optymalne stale w obu nieréwnosciach spetniajg Copy < C’Opt < 3Copt -
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Dowdd. Poniewaz
Var,(f) = igﬂgEu(f —¢)> <E,|f — Med, f|?,

wiec oczywiscie Copt < Cop-
By udowodnié przeciwne oszacowanie zauwazmy, ze

Var,(f) > [Med,.f — E fPu({|f — Euf] > [Med,f — Euf|})
> %|Meduf —~E,.f|%

Stad
E,|f — Med, f|* < Var,(f) + |Med,.f — E,f|> < 3Var,(f)

i otrzymujemy C'Opt < 3Copt- ]

Fakt 5.6. Symetryczny rozkiad wykladniczy v na R z gestoscig %e“‘”' spetnia nierownosé
Poincaré ze stalg 4.

Dowadd. Proste catkowanie przez czesci pokazuje, ze dla funkcji h € ngr(R),

/ h(z)dv(z) = h(0) + / sgn(z)l (z)dv (x).
Niech f € CL,(R) i g(x) = f(x) — f(0) wowczas

/g2d1/ = 2/sgn(:n)g’(:v)g(x)dv($) < 2(/9'2d1/>1/2(/92dv)1/2,

stad
Var, (f) < /dez/ < 4/g’2d1/:4/f'2d1/.

5.2 Nier6éwnos¢ Poincaré a koncentracja wykladnicza

Twierdzenie 5.7. Zaldimy, zZe miara p spetnia nieréwnosé Poincaré ze stalg C. Wowczas
dla kazdej funkcji 1-lipschitzowskiej F' it > 0

u({F = /quth}) <Qexp(—\/t5).

W szczegdlnosci ax (t) < 2exp(—t/2v/C).
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Dowdd. Rozpatrujac F' — [ Fdu mozemy zalozyé, ze F' ma $rednia zero. Zauwazmy, ze dla
dowolnej funkcji rézniczkowalnej g mamy |Vg(F)| < |¢(F)||VF| < |¢/(F)|. Niech

M(A) = M, p(\) = / A .

Stosujac nieréwnosé Poincaré do eM7/? dostajemy
A2 C\?
M(\) — M(§> = Varu(eAF/Q) < C/ VM2 2dp < TM()\)

Zatem dla \ < 2/+/C dostajemy

1 A2
M) < mM(§> .

Iterujac te nieréwnosé n razy dostajemy

n—1 n
M(\) < g(m>sz(;)2 .

Poniewaz M (0) = 11 M'(0) = [ Fdu =0, to M(\/2")*" — 1 przy n — oo i

M()‘) S H (1 _C/\12/4k+1)2 )

k=0
Zauwazmy, ze
oo ok oo C
[T(1-cxah )" >1-0on Yy 2kt =1 %
2
k=0 k=0
W szczegdlnosci M (1/+/C) < 2 1 teza wynika z nieréwnosci Czebyszewa. O

Uwaga 5.8. Nierownos¢ Poincaré nie implikuje lepszej koncentracji niz wyktadnicza. Istot-
nie symetryczny rozklad wyktadniczy na prostej v spelnia nieréwnoéé Poincaré ze stata 4,
a biorac f(r) = x widzimy, ze dla ¢t > 0,

v ({a: eR: f(z) > /fdu +t}) =v([t,00)) = %e*t.
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5.3 Tensoryzacja

Fakt 5.9. Zalozmy, zZe u; s¢g miarami probabilistycznymi na X;, X = X1 X ... x X, oraz
p=p1 ® pg ® - @ . Wowezas dla dowolnej funkcji f € L2(X, p)

Var,(f) < Z E, Var,,(f).
i=1

Dowdd. Prosta indukcja pokazuje, ze wystarczy rozpatrzeé przypadek n = 2. Wowczas

Var,(f) = En,Eu, (f — E,uf)2 =Ey,[Var,, (f) + (Eu f — E,uf)Q}
- Eﬂvar,ul (f) + E,uz [E,Ml (f - E,uzf)]2
< EpVary, (f) + EEL [(f — Euzf)2] = E, Vary, (f) + E,Var,, (f),

gdzie ostatnia nieréwnos¢ wynika np. z nieréwnosci Jensena. O

Whniosek 5.10. Zalézmy, ze miary probabilistyczne p; na (X;,d;) spelniajq nieréwno$é
Poincaré ze stalg C; wzgledem gradientu |V;|. Wowczas miara p = py @ -+ - @ py, spelnia
nierownos¢ Poincaré ze stalg C' = max; C; wzgledem gradientu V f danego wzorem

n

VIR =S v

i=1

Dowdd. 7 Faktu 5.9 dostajemy

n n n

Var,(f) <> E,Var, (f) <Y _E.GE,|Vif|? <CE, Y |Vif*.
i=1 i=1 i=1
O

Whniosek 5.11. Produktowy rozklad wykladniczy v™ spelnia nieréwnosé Poincaré na R™
ze stalg 4. W szczegolnosci apn(t) < 2exp(—t/4).
5.4 Dodatkowe wlasnosci. Charakteryzacja na prostej.

Kolejng przyjemna wlasnoscia nieréwnosci Poincaré jest jej stabilnosé ze wzgledu na zabu-
rzenia miary pu.

Fakt 5.12. Zalozmy, Ze p jest miarg probabilistyczng na X, V jest ograniczonqg funkcjq bo-
relowskq oraz dv = Z='eVdu, gdzie Z = [ €V du. Wéwczas jesli miara pu spetnia nieréwnosé
Poincaré ze stalg C to v spelnia nieréwnosé Poincaré ze stalg Ce2lVlle
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Dowdd. Wezmy funkcje lipschitzowska f, odejmujac stata mozemy zalozy¢, ze E,f = 0.
Wowczas

Var,(f) <E,f* = ;/erVdu < %ellvnw /deu
< ;elvlwc/\wﬁdﬂ - Ce”Vlloo/’vf‘Qe—vdy
< CeQIIVIIOO/IVf‘QdV

O]

Fakt 5.13. Jesli miara v na (Y, p) jest L-lipschitzowskim obrazem miary u na (X,d) oraz
@ spetnia nieréwnosé Poincaré ze stalg C, to v spelnia nieréwno$é Poincaré ze stalg CL?.

Dowéd. Niech v = po !

na Y otrzymujemy

, gdzie o: X = Y i ||¢[lLip < L. Dla funkeji lipschitzowskich f

Var, (f) = Var(f 0.9) < C [ V4 0 ¢f2du < CL? [ 195 (o(w))dn(z)

_ CL2/|Vf]2dy,

gdzie przedostatnia nieréwno$é¢ wynika z oszacowania |V f o o|(z) < LIV f|(p(x)). O

Kolejne twierdzenie (ktére podamy bez dowodu) charakteryzuje miary na prostej, ktore
spelniaja nieréwnosé Poincaré.

Twierdzenie 5.14 (Muckenhaupt). Zaldzmy, ze p jest miarg probabilistyczng na R o
medianie m, zas p oznacza gestosé jej czesci absolutnie cigglej. Wowczas miara p spetnia
nieréwno$é Poincaré ze skoniczong stalg C wtedy i tylko wtedy gdy max{By,B_} < oo,
gdzie

z 1
By = sup u[fv,OO)/ ——dy
z>m m p(y)

mo1
B_ = sup ,u(foo,m]/ —dy.
z<m z p(y)

Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia

1

(1+/2)? max{B, B_} < Copy < 4max{B, B_}.
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5.5 Nier6éwnos¢ Cheegera

W tej sekcji v oznacza symetryczny rozklad wykladniczy na prostej z gestoscia %e"m'.
Zanim sformutujemy definicje zaczniemy od prostego faktu.

Fakt 5.15. Niech p bedzie miarg probabilistyczng na (X, d). Nastepujoce warunki sq réw-
nowazne dla ustalonego ¢ > 0:

(i) ut(A) > cmin{u(A),1 — u(A)} dla dowolnego zbioru borelowskiego A,

(ii) dla dowolnego zbioru borelowskiego A i = spelniajacych pu(A) = v(—oo,x] zachodzi
w(Ag) = v(—o0,x + ct].

Dowdd. (ii)=-(i). Niech p(A) = v(—o0, z], woéwczas

pt(A) = liminf wlA) = ulA) > lim inf Y((=00, 2 + ct) = v(=00, 1] = 1ei|”"3|
t—0+ t t—0+ t 2

= min{v(—o0, z], v(x,00)} = min{u(A4),1 — u(A)}.

(i)=(ii). Ustalmy najpierw § < 1 i niech
to =to(6) =inf{t > 0: u(A:) < v(—o0,z + dct].

Zal6zmy najpierw, ze tg < oo. Woéwczas z monotonicznosci p(A;) tatwo wynika, ze u(Az,) =
v(—o0,x + dctg), czyli

1 ¢ —|xz+oc
i (Ay) > eminf{pu(Ar), 1= p(Ayy)} = gm0

1 .. v(—o0,z+dc(ty + h)] — v(—o0,z + dcto]
= — lim
0 h—0+ h

Definicja dolnej i zwyktej granicy implikuja, ze istnieje hg > 0 takie, ze dla 0 < h < hy,

N(Ato-&-h})l — u(4) 5 u((Ato)hh) — w(4) S ﬁge—umml
< v(—o0,z + dc(tg + h)] — v(—o0, x + dcto)

Stad u(A¢) > v(—oo,z + det] dla tg < t < to+ h, co przeczy definicji tg.
Otrzymana sprzecznos$é pokazuje, ze to(0) = oo, czyli u(Az) > v(—oo,z+dct] dlat > 0.
Przechodzac z § do 1 otrzymujemy (ii). O

Definicja 5.16. Méwimy, ze miara probabilistyczna u na (X,d) spelnia nieréwnosé Che-
egera ze statg ¢ > 0, jesli zachodzi jeden z warunkéw réwnowaznych Faktu 5.15.

Okazuje sig, ze nier6wnos$¢ Cheegera ma tez forme funkcyjna przypominajaca nierdw-
noé¢ Poincaré.
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Twierdzenie 5.17. Miara i speinia nieréwnosé Cheegera ze stalg ¢ > 0 wtedy i tylko
wtedy, gdy dla dowolnej funkcji lipschitzowskiej ograniczonej f zachodzi

1
Blf —Med (/)] < [ 19/1d
Do dowodu bedziemy potrzebowali jednej z wersji tzw. ,,co-area formula”.

Lemat 5.18 (Nier6wnos$é co-area). Dla dowolnej funkcji Lipschitzowskiej f na X,

L1V fldn= [~ utis > epar
X —o0

Dowdd. Wystarczy udowodni¢ nieréwno$¢ dla funkeji ograniczonych. Istotnie, przyjmujac
fvr = max{—M,min{f, M }}, zauwazamy, ze |V fr| < |[Vf] i {fmr >t} = {f > t} dla
|t| < M i przechodzimy z M do nieskonczonosci.

Rozpatrujac zamiast f funkcje f + ¢, mozemy zaktadaé, ze f jest nieujemna. Okredlmy
dla t > 0 funkcje f; na X wzorem

fe(x) = sup{f(y): d(z,y) <t}.
Lipschitzowsko$¢ f implikuje, ze (f; — f)/t < M. Latwo sprawdzi¢, ze {f; > r} = {f > r},

stad caltkowanie przez czesci daje

[ = Ddn= [T wlds > 1y = w{f > rp)ar

Mamy zatem

Jt — ft —

/ IV fldp = | limsup du = lim Sup/ du
X t—>0+ t t—0+
i [ O 7Y — L > » N
t—0+ Jo t
S /0°° IEESEf p({f >r}e) ; p({f > T})dr _ /_O:o wH{f > r)dr

gdzie pierwsza i trzecia nieréwno$¢ wynikaja z Lematu Fatou (w pierwszej zastosowanego
do funkcji nieujemnych M — (f; — f)/t). O

Uwaga 5.19. Dla miar p na R™ absolutnie cigglych wzgledem miary Lebesgue’a mozna
udowodnié, ze w nieréwnosci co-area zachodzi réwnosc.

Dowdd Twierdzenia 5.17. ,=". Bez straty ogélnosci mozemy zalozy¢, ze Med,(f) = 0,
wowezas p{f >t} < 1/2dlat > 01 pu{f >t} > 1/2 dlat > 0. Nieréwnos¢ co-area
implikuje
oo oo 0
JIVfdus [t > s [T us > dere [ =i > s
= cE, max{f,0} + cE, max{—f,0} = cE,|f].
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»<" Udowodnimy szacowanie (i) z Faktu 5.15. Idea polega na aproksymacji 14 przez

funkcje lipschitzowskie. Jesli pu(A) > u(A), to u™(A) = oo i nie ma co dowodzié, bedziemy

zatem zakladaé, ze u(A) = p(A), co jest réwnowazne temu, ze u(A;) — u(A) przy ¢t — 0.
Dla 0 < t < 1/2 okreslmy

fi(z) = %min{dist(x, Ap), t— 22}

Wéwezas f; jest 1/t-lipschitzowska, f; = 0 na Ap i fy =1 — 2t poza A;_;2, zatem |V f;| <
%IAt\A- Mamy zatem

w > /|Vft\du > cBEylfy — Med,(f1)]-

Jesli p(A) > 1/2 to Med,(f;) = 0 dla wszystkich ¢ i
*(4) > climinf By |f > climinf(1 - 20)(1— p(A_2)) = 1 - p(A).
Jesli u(A) < 1/2 to p(Ay) < 1/2 dla malych t czyli Med,(f;) = 1 — 2t dla malych t i
ut(A) > clitg(i)EfEH]ft —1+2t > clitrgégf(l — 2t )u(Agp2) = u(A).
O

Nastepny fakt pokazuje, ze nier6wnosé Cheegera jest silniejsza od nieréwnosci Poincaré.

Fakt 5.20. Jesli p spelnia nieréwnosé Cheegera ze statq ¢ > 0, to spelnia nieréwnosé
Poincaré ze stalg 4c¢=2.

Dowdd. Niech f bedzie Lipschitzowska funkcja ograniczona o medianie 0, za$ g := sgn(f) f2.
Nietrudno sprawdzié, ze g jest Lipschitzowska, ograniczona, ma mediane 0. Twierdzenie
5.17 implikuje

1 2 2
E,f2 =E,|g| < “EuVyl = CEL(SIVD) <

(Eul /1) 2BV 22
Dzielac stronami przez (E,|f|?)'/? dostajemy

4
Var,u(f) < Eu’f‘Q < gEu‘vﬂz-

O]

Uwaga 5.21. 7 nieréwnosci Poincaré nie mozna wywnioskowaé nieréwnosci Cheegera. Moz-
na pokazaé, ze miara z gestoscia HTO‘|QU]O‘I{|I|<1} dla « € (0, 1) spelnia nier6wno$é¢ Poincaré,
a nie spetnia nierownosci Cheegera.
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Kolejne twierdzenie, pochodzace od Talagranda, rozwigzuje zagadnienie izoperyme-
tryczne dla miary v.

Twierdzenie 5.22. Miara v spetnia nierdwno$é Cheegera ze stalg 1.

Dowdéd. Dowdd przeprowadzimy w kilku krokach, wykorzystujac rownowaznosci z Faktu
5.15.
Krok I. v*([a,b]) > min{v([a,b]),1 — v([a,b])}.
Rozpatrzymy trzy przypadki.
i) a > 0. Wowezas vT([a,b]) =e @ +e > e @ —e = v(la,b)).
ii) b < 0. Mamy vt ([a,b]) = e + €® > e® — e = v([a, b]).
iii) @ < 0 < b. Wtedy v ([a,b]) = e +e7? =1 —v([a,b]).
Krok II. Jedli A jest skoficzona suma przedzialéw, to v (A) > min{v(A),1 — v(A)}.
W rozwazanym przypadku v(A) = v(A) i vT(A) = v (A), zatem bez straty ogélnosci
mozemy zakladaé, ze A = i, [a;, b;] oraz b; < a;4; dla1l < i < n—1. Niech p; := v([a;, bi]).
Mamy

1/+(A):Z *(las, by Zmln{pz,l pi} mln{sz,l Zp} min{r(A4),1-v(A4)}.
i=1

Pierwsza réwnosé powyzej wynika z Kroku I, a druga tatwo uzyskaé przez rozpatrzenie
dwu przypadkéw: p; < 1/2 dla wszystkich i oraz p; > 1/2 dla pewnego .

Krok III. Jesli A jest skoficzona suma przedzialéw oraz v(A) = v((—oo, z]), to v(A:) >
v((—o0,x +t]).

Zauwazamy, ze zbior A; jest réwniez skonczona suma przedziatéow, wiec z Kroku II
wynika, ze v (A;) > min{r(As), 1 — v(A¢)}. Teza Kroku IIT wynika z analogicznego rozu-
mowania jak w dowodzie implikacji (i)=(ii) Faktu 5.15.

Krok IV. Jedli A jest zbiorem otwartym oraz v(A) = v((—oo, z]), tov(A;) = v((—oo, z+
t]).

Zbior A jest przeliczalng sumg przedziatéw, wiec dla 6 > 0 istnieje B C A, ktéry jest
skoniczona suma przedziatéw i v(B) > v((—oo, x —4]). Na mocy Kroku 111 v(A;) > v(By) >
v((—oo,x — § + t]) 1 wystarczy przejsé z ¢ od zera.

Krok V. Jedli A jest dowolnym zbiorem borelowskim oraz v(A) = v((—oo,z]), to
v(Ag) = v((—o0,x +t)).

Zauwazmy, ze Ay D (As)i—s, ponadto As jest zbiorem otwartym i v(As) > v((—oo, z]).
Korzystajac z Kroku IV dostajemy v(A;) > v((As)i—s) = v((co, x +t — d]) 1 przechodzimy
z 0 do 0. O]

Na prostej mozna scharakteryzowaé¢ miary spelniajace nierownosé Cheegera.

Twierdzenie 5.23. Niech p bedzie miarg probabilistyczng na R, F(x) = pu(—o0, x], zas p
bedzie gestosciq czesci absolutnie cigglej p. Wowczas nastepujgce warunki sq rownowazne
dla ¢ > 0:
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i) p spelnia nieréwno$é Cheegera ze stalq c,

i) p jest L _lipschitzowskim obrazem v,

(&
- p(z)
i11) essinf S F @] =
Szkic dowodu. Implikacja ii)=-1) jest oczywistym wnioskiem z Twierdzenia 5.22 .
i)=iii). Wystarczy zauwazy¢, ze ut((—oo,z]) = p(z) dla p.w. x € R.
iii)=-i). Definiujemy 7: R +— R wzorem v(—o0,z] = p(—o0,Tz]. Woéwczas T trans-
portuje v na p oraz

Ty Ty

() = p(T2. Ty > [ p(ede > [ min{F().1 - F(2))d
Tx Tx

Txz—Ty
Ty

< 1/e, czyli T jest 1/c-Lipschitzowskie.
O

Stad tatwo wynika, ze T jest ciagte i limsup,,_,,

6 Logarytmiczna Nier6wnos¢ Sobolewa

6.1 Entropia funkcji

Definicja 6.1. Zalézmy, ze p jest miara probabilistyczng na X, za$ f nieujemna funkcja
mierzalng na X. Entropie f wzgledem p definiujemy wzorem

But, () o= { JF108Fdn— [ fdulog [ fdu jesti [ flog(1+ f)dp < oo
e jesti [ flog(1 + f)dp = oo

Z wypuktosci funkcji xlogx na [0,00) wynika, ze Ent,(f) > 0, tatwo tez zauwazy¢, ze
Ent,(Af) = AEnt,(f) dla XA > 0.

Lemat 6.2. Dla dowolnej funkcji nieujemnej na X,
Ent,(f) = sup{/fgdu: /6gd/L < 1}. (6)
Dowdd. Z jednorodnosci obu stron tozsamosci (6) mozemy zakladaé, ze [ fdu = 1, woéwczas
Ent,(f) = [ flog fdu.
Nietrudno sprawdzié¢, ze dla v > 0, sup,cgr(uv — €”) = ulog u — u, zatem

wo <ulogu —u+e” dlau>0,veR. (7)

Zatem biorac g takie, ze [e9du < 1 dostajemy

/fgdu < /(flogf — f+ef)dp=Ent,(f) -1+ /egdu < Ent,(f).

By udowodnié¢ nieréwnos¢ w przeciwng strone wystarczy przyja¢ g = log f. O
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7 powyzszego lematu latwo wykazaé tensoryzowalno$é¢ entropii:

Fakt 6.3. Zalozmy, zZe u; s¢ miarami probabilistycznymi na X;, X = X1 X ... x X, oraz
W= @ o ® -+ ® . Wowczas dla dowolnej nieujemnej funkcji f na X zachodzi

Ent,(f) <> E,Ent,,(f).
=1

Dowdd. Wezmy funkcje g na X taka, ze [e9du < 1 oraz przyjmijmy dla i =1,...,n,

J o) dpy () - - 'dui—1($i—1)>

g (1'17 e 733n) = 108; ( f 69($1""’xn)du1(‘r1) tet d,ul(xz)

Wowezas g < Yo7, ¢ oraz fegidui < 1, stad
[taan <y [ toan=3 [ ([ so'dus)dn <y [ Enty, ()
i=1 i=1 i=1

6.2 LNS - definicja, tensoryzowalnosé, zwiazek z koncentracja

Definicja 6.4. Méwimy, ze miara probabilistyczna na (X,d) spelnia logarytmiczng nie-
rowno$é Sobolewa ze stata C, jesli dla wszystkich ograniczonych lipschitzowskich funkeji f
na X zachodzi

Ent, (%) < 2C [ 1V fdp (8)

Fakt 6.5. Zaldzmy, zZe miary probabilistyczne p; na (X;,d;) spelniajq logarytmiczng nie-
réwno$é Sobolewa ze stalq C; wzgledem gradientu |V;|. Wowczas miara = p1 @ -+ ® pn
spetnia logarytmiczng nieréwnosé Sobolewa ze stalg C = max; C; wzgledem gradientu V f

danego wzorem
n

V=) IVif]*.

i=1
Dowdd. 7 Faktu 6.3 dostajemy

Ent,(f?) < ZE Ent,, (f?) < ZE 2CE,, |Vif|? <20E, Y |Vif*.

=1 =1 =1
L]

Twierdzenie 6.6. Zalozmy, Ze miara p spetnia logarytmiczng nieréwnosé Sobolewa ze
statg C. Wowczas dla kazdej funkcji 1-lipschitzowskiej F' it > 0,
2

M /qu+t}) exp( 2tC)

W szczegolnosci ax (t) < ( t2/8C).
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Dowdd. Ustalmy ograniczona funkcje 1-Lipschitzowska F' taka, ze [ Fdu = 0. Wystarczy,
ze pokazemy iz dla A > 0

M(N) == Mpy = /e)‘qu < eONV/2,

Zastosujmy logarytmiczng nieréwnosé Sobolewa do f2 := eM'. Wéwczas
Ent,(f?) = AE, Fe* — E e log E e = AM'(\) — M(\) log M()\)
oraz
22 A2
/]Vf\QdM: Z/\VF\%AF <TMO).
Zatem (8) daje
2

AM'(N) = M(A) log M(N) < C%M()\). (9)

Okredlmy H() := §log M(A) dla A > 0. Wéwczas

. M'(0)
lim HON = 3r0) :/Fd“:()

oraz na podstawie (9)

, 1 1M'(\) _C
== = <=
H'() = =35 log M) + 3 8 < 5
Zatem H(\) < C)\/2 czyli M(\) < exp(CA?/2). O

6.3 LNS dla miary gaussowskiej
Fakt 6.7. i) Niech g = $61 + 56_1, wowczas dla dowolnego f: {—1,1} — R,
Enty, (f?) < 2B, | Df|,
gdzie Df(z) = 5(f(x) — f(~=)).
ii) Niech p, = p1 ® -+ @ py bedzie rozkladem jednostajnym na {—1,1}", wéwczas dla
dowolnego f: {—1,1}" — R,

Enty,, (f?) < 2By, |DfI,

gdzie
1 n
IDfP(2) = 1 D (f(@) = f(si@)?,
=1
oraz si((z1,...,xn)) = (T1, ..., Tie1, —Ti, Tit1,-..,Tp) dla 1 < i< n.
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Dowdd. i) Z uwagi na jednorodnos¢ mozemy zaktadaé, ze E,, f? = 1, woéwczas istnieje
t € [-1,1] takie, ze f(1) = v/1+1t oraz f(—1) = /1 —t i nieréwno$¢ z punktu i) ma
postaé¢ a(t) > 0, gdzie

1 1-—
a(t) =1 —v1—1 - %tlog(l +)—— L hog(1 - ).

Nietrudno sprawdzi¢, ze «(0) = /(0) = 0 oraz

1 t? t2
/It: _ >0
o0 == ) 7

wiec istotnie a(t) > 0.
ii) Wynika z punktu i) i Faktu 6.3. O

Twierdzenie 6.8. Miara v, spetnia logarytmiczng nieréwnosé Sobolewa z C = 1.

Dowdd. 7 uwagi na Fakt 6.3 wystarczy rozwazy¢ przypadek n = 1. Niech f € C’égr(R).
Okreslmy g, : {—1,1}" — R wzorem

n(2) ::f($1+---+$n>.

NG

Niech p,, i |Df]| beda jak w Fakcie 6.7. Wéwczas na mocy centralnego twierdzenia granicz-
nego

M%M%=/ﬁbwﬂM—/ﬁWM%/%wW%M%U%

Ponadto kladac T),(z) = nfl/z(xl +...+xz)

[Dgnl(2)? = i; (s £ (1) 252 ) = S @ 410

gdzie r,, zbiega do zera jednostajnie wzgledem |7, (x)|. Zatem
lim By, [Dgal(2) = lim B, f'(Tu(2))? = By, f/(2)”
O

Fakt 6.9. Zalozmy, Ze u jest miarg probabilistyczng na X, V jest ograniczong funkcjg bore-
lowskq oraz dv = Z7'eVdu, gdzie Z = [ eVdu. Wéwczas jesli miara p spetnia logaryticzng
nieréwnosé¢ Sobolewa ze stalqg C to v spetnia logarytmiczng nieréwno$é Sobolewa ze stalg
CeXlVloo
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Dowdd. Funkcja ¢(u) = ulogu jest wypukla na [0, 00) stad dla dowolnych s, t, p(s+1t) >
o(t) + ¢/ (t)s, wige

o [ £2av) =g+ [(12 = 0dv) > o)+ &'(0) [ (4~ .

Zatem
Eut, (%) = inf [ [p(/3) = ¢(t) — & (O)(f* - )] dv

< el Iint [ [o(7) (1) — (07 — 1)) Ze Vo

1 2C
= VI Bn,(12) < eI [19 12y

< 2062WH°°/\Vf\2dy.

Kolejny fakt dowodzimy tak samo jak dla nieréwnosci Poincaré.

Fakt 6.10. Jesli miara v na (Y, p) jest L-lipschitzowskim obrazem miary p na (X, d)
oraz p spetnia logarytmiczng nieréwno$é Sobolewa ze stalqg C, to v spelnia logarytmiczng
nieréwnosé Sobolewa ze stalg C'L?.

Stosujac logarytmiczna nieréwno$é Sobolewa do funkcji f = 1 4+ eg dowodzimy

Fakt 6.11. Jesli miara probabilistyczna p spetnia logarytmiczng nieréwnosé Sobolewa ze
statg C, to spetnia réwniez nierowno$é Poincaré ze stalg C.

Opierajac si¢ na twierdzeniu Muckenhoupta da sie wyprowadzi¢ kryterium réwnowazne
nierownosci logarytmicznej Sobolewa dla miar na prostej.

Twierdzenie 6.12. Zaléimy, zZe p jest miarg probabilistyczng na R o medianie m, zas
p oznacza gesto$é jej czeSci absolutnie cigglej. Wowczas miara p speinia logarytmiczng
nierdwnosé Sobolewa ze skoriczong stalg C wtedy i tylko wtedy gdy max{By, B_} < oo,
gdzie

1 r o1
o= pslesoo (7 5) | iy

B_ = sup p(—o0, ] ln( ! ) /m ! dy
B T<m ’ M(_OO7$] T p(y) .
Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia

1
ﬁ<B+ "‘ Bf) < Copt < 468(B+ + Bf)
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6.4 Nieréwnos¢ Bobkowa

Logarytmiczna nieréwnosé¢ Sobolewa implikuje koncentracje gaussowska, ale nie implikuje
gaussowskiej izoperymetrii. Okazuje sie, ze jest silniejsza nieréwnosé, ktéra implikuje gaus-
sowska izoperymetrie, a jednocze$nie ma szereg réwnie dobrych wtasnosci jak nieréwnosé
Poincaré czy logarytmiczna nieréwnos$¢ Sobolewa.

Przedstawione ponizej rozumowania mozna podobnie jak w poprzednich sekcjach pro-
wadzi¢ w wiekszej ogdlnosci, jednak by uniknaé szczegdléw technicznych ograniczymy sie
do miar na R™ i funkcji gtadkich.

W tej czesci przez I bedziemy oznaczaé gaussowska funckje izoperymetryczna, tzn
I(z) = (@ (z)), gdzie p = (27)~ Y2 exp(—|z|?/2). Dodatkowo okreslamy I(0) = I(1) =
0.

Definicja 6.13. Méwimy, ze miara probabilistyczna p na R™ spetnia nierownosé Bobkowa

ze stata C, jesli dla wszystkich f € Cégr (R™) o wartosciach w przedziale [0, 1] zachodzi

1(/de) < /\/I(f)2+02wf|2du. (10)

Fakt 6.14. Jesli miary p; spetniajg nierowno$é Bobkowa ze stalymi C;, to miara p1 ®- - ®
Wn Spelnia nieréwnos$é Bobkowa ze stalqg max; Cj.

Twierdzenie 6.15. Jesli miara probabilistyczna p na R™ speinia nieréwnosé Bobkowa na
ze statqg C, to
1

W) > ZI1(u(4)  dla A€ BR")

w(A) > ®(@H(u(A) +t/C)  dla A BR"), t>0.

Twierdzenie 6.16. Kanoniczna miara gaussowska v, spetnia nieréwnosé Bobkowa z C' =
1.

6.5 Wektory i Procesy Gaussowskie

Procesy i wektory gaussowskie odgrywaja kluczowa role w rachunku prawdopodobienstwa
i statystyce matematyczne, jak rowniez w wielu zastosowaniach.
Zacznijmy od przypomnienia definicji.

Definicja 6.17. Proces (G¢)ier nazywamy procesem gaussowskim, jesli dla dowolnych
t1,...,tn € T wektor losowy (Gy,,...,Gy,) ma rozklad gaussowski. Proces nazywamy
scentrowanym, jesli EG; =0dlat e T.

By unikna¢ probleméw zwigzanych z mierzalnoscia bedziemy zaktadaé, ze zbior T jest
przeliczalny. Alternatywnie mozna zaktadaé osrodkowosé procesu.
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Twierdzenie 6.18. Zaldimy, ze (Gi)ier jest procesem gaussowskim, indeksowanym przez
przeliczalny zbior T', takim, ze Z := sup,cr Gy < 00 prawie na pewno. Wowczas EZ < oo,

EAMZB2)  o=X0%/2 g1g \ € R, (11)
u? u?

P(Z-EZ>u)<exp|—— i P(Z-EZ< —u)<exp|—— dlauw >0, (12)
202 202

gdzie

o := sup(Var(Gy))"/2.
teT

Dowdd. Nieréwnos$é (12) wynika z (11), udowodnimy zatem te pierwsza.
Krok I. T = {t1,...,t,} jest zbiorem skonczonym. Woéwczas istnieje macierz A =
(aij)1<i<ni<j<k oraz wektor m € R™ takie, ze

(th,...,th)Nm—l—AX, XN")/k

Okre$lmy F: R¥ — R wzorem

F(z) = max {mZ + Zk:aijxj},

1<isn :
Jj=1

wéwczas Z ma ten sam rozklad co FI(X) i

1/2
|Fllip = max (3 a2) " = max Var(G,)) /2 = o.

Jj=1

Stad
EcNZ-EB2) _ RAF(2)-BF(2)) ¢ ~N0*/2

gdzie ostatnia nieréwnos¢ wynika z Twierdzen 6.6 i 6.8.
Krok II. T' = {t;,ta,...} jest nieskonczone. Pol6zmy

Zy = max Gy, oraz o0, := max Var(Gti)l/Q.
1<i<n 1<i<n

Niech M spelia P(Z > M) < 1/4. Z Kroku I dostajemy
P(Zn _EZ, < —0n> <e V2

zatem

P(Zn > EZn—an> >1—e 252> P(Zn > M),
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stad M > EZ,, — 0,,. Mamy wiec z twierdzenia Lebesgue’a o zbieznosci monotonicznej,

EZ =lmEZ, <sup{M +o0,} <M+ 0 < 0.
n n

Stosujac oszacowanie z Kroku I otrzymujemy

. _ . 2 2 2.2
Ee)\(Z—EZ) _ 1ITILIlE€>\(Z" EZ,) < hTILneA oz /2 — U /2,

gdzie pierwsza réwnos¢ wynika z tego, ze EZ, — EZ oraz twierdzenia Lebesgue’a o zbiez-
noéci monotonicznej dla A > 0, badZ zmajoryzowanej dla A < 0. O

Uwaga 6.19. Laczac nieréwnosci (12) dostajemy

2

P(‘SUPGt—ESqut‘ > u) < 2exp(_ U

— dla u > 0.
teT teT 20 2)

Zauwazmy tez, ze |G| = max{Gy, —G;}, wiec w Twierdzeniu 6.18 i powyzszej nieréwnosci
mozna zastapi¢ Gy przez |Gy|.
Uwaga 6.20. Korzystajac z izoperymetrii gaussowskiej (Wniosek 3.13) zamiast nieréwnosci

logarytmicznej Sobolewa mozemy udowodnié, ze przy oznaczeniach Twierdzenia 6.18 dla

u >0,
P(sap G Ve (sp ) > 0) < #(2) < Lowp (- 1)

oraz
2

U u
— Zu) < —) < - —).
P(‘?lelilf)ct Med(ilelngtN u) 2@(0) exp( 202)
Whniosek 6.21. Przy zalozeniach i oznaczeniach Twierdzenia 6.18,
.1 1
tlggoﬁlogP@lelth > u) =53

Ponadto,

Eexp (a igg G?) < 00

wtedy © tylko wtedy gdy o < #

Dowéd. 7 Twierdzenia 6.18

1 1
ﬁlogP(squt > u) <——.
u teT
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7 drugiej strony,

lim 1nf — log P ( sup Gy > ) sup lim mf — log P(G¢ > u)
t—oo U2 teT t—o0 u2

1 1
=8 - = -
tgjlz 2V&I‘(Gt) 202

Druga cze$é tezy dla a < 53 wynika natychmiast z (12) (dla |Gy|). Ponadto, jeli

Gy ~ N(ag,02) ~ a; + 019, to dla 0 < a < 1/20?

EcoCt > Be®i9" 1 50 = EEGCWEQQ _1g 1
) 2\ 1-2ac}’

wiec E exp(asupyer G7) > sup;er Eexp(aG?) = oo dla o > ﬁ O

Definicja 6.22. Wektor losowy X w osrodkowe] przestrzeni Banacha F' nazywamy gaus-
sowskim, jesli dla dowolnego ¢ € F*, ¢(X) ma rozklad gaussowski.

Zalozenie o osrodkowosci F' ma charakter techniczny, stuzy uniknieciu problemoéow z
mierzalno$cia (w nieo$rodkowej przestrzeni Banacha suma dw6ch wektoréw losowych nie
musi by¢ mierzalna). Alternatywnie mozna zakladaé, ze norma w F jest wybijana przez
przeliczalny cigg funkcjonatéw o normie jeden.

Twierdzenie 6.23. Zaldimy, ze X jest wektorem gaussowskim w osrodkowej przestrzeni
Banacha. Wéwczas E|| X || < oo,

MIXI-BIXI) < A20%/2 g1 A € R,

2 2

P(|X| - E|X]>u) <e 7 oraz P(IX|-B|X|<-w)<e 37 dlau>0,

gdzie
o := {Var(p(X))"/?: p € F*, |lo| < 1}.

Dowdd. Wystarczy zauwazy¢, ze istnieje przeliczalny podzbiér D kuli jednostkowej w F™*
taki, Ze [|x|| = sup,ep ¢(X) i skorzysta¢ z Twierdzenia 6.18 dla procesu gaussowskiego

((X))gpeD- O

Whniosek 6.24. Przy oznaczeniach Twierdzenia 6.283 dla p > 1
(E[X[")"? <E| X + C/po,

gdzie C jest pewng stalg uniwersalng.
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Uwaga 6.25. Jak nietrudno zauwazy¢

1
(E||X”P)1/p > sup (E\@(X)\p)l/p > 6\/}30'
llell<1

Stad dla p > 1,

maX{E!XH, sup (E\sO(X)Ip)l/p} < (B[ X[P)V? < E|IX| +C sup (Blp(X)[P)"?.
lleoll<1 lell<1

7 Nier6éwnosci Splotu Infimum

7.1 Wtlasno$¢ (1) Maureya

Zacznijmy od zaproponowanej przez Maureya definicji.

Definicja 7.1. Splotem infimum dwu funkcji f i g okreslonych na R™ nazywamy funkcje
fOg dana wzorem

fOg(x) :=inf{f(y) +g(z —y): y € R"}.

Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, 0o]. Méwimy, ze para (u, ¢)
ma wlasno$é (1) badz, ze miara p spelnia nieréwno$é splotu infimum z funkcja kosztu ¢

/efDSOd,u/e_fd,u< 1

dla dowolnej ograniczonej mierzalnej funkcji f na R™.

jesli

Pierwsza uzyteczna cecha wlasnosci (7) jest jej tensoryzowalnosé.
Fakt 7.2. Jesli pary (ui, i) majg wlasnosé (1), p=pu1 @ -+ @ pyp, oraz
(1, 2n) = p1(x1) + ... + on(Tn),
to rowniez para (u, ) ma wlasnosé (7).

Dowdd. Prosty argument indukcyjny pokazuje, ze wystarczy udowodni¢ teze dla n = 2.
Niech f = f(z,y) bedzie ograniczona funkcja na R™ x R"2, okre$§lmy fY(z) = f(x,y) oraz
zdefiniujmy g na R™? jako

g(y) ==1n / B dpy ().
Wtasnoéé (1) dla (u1, 1) implikuje, ze g(y) < —In([ e™/"du1), zatem
/e_gdﬂz > /e_fd,ul ® pa.
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Ponadto dla dowolnych ¥,y
/ TN ) (1) < / TR @02 0=0) gy () = (9 HE2-),
wige g0po(y) > In(f e/ dpy () §

/engoszQ > /efﬂpdﬂl ® pia.

Teza wynika z powyzszych nieréwnosci i wlasnoscei 7 dla (uz, p2). O

Nastepny fakt pokazuje w jaki spos6b mozna transportowaé (7).

Fakt 7.3. Zalozmy, zZe p jest miarg probabilistyczng na R™, za$ ¢ funkcjqg kosztu na R™
takg, ze (u,) spelnia wlasnosé (t). Jesli T: R™ — R™ oraz funkcja ¥ na R™ spelnia
Y(Tz — Ty) < (x —y) dla wszystkich z,y, to para (uwo T~1,v) ma wlasnosé ().

Dowdd. Niech f bedzie ograniczong funkcja na R™. Zauwazmy, ze
foTUOp(z) = mt(f(Ty) + ¢(z —y)) > wi(f(Ty) + ¥(Tz — Ty)) > fOU(Tx).
Zatem

-1
/efDq/’duoT_1 = /ewa(Tx)d,u(x) < /efOTD‘p(m)du(a:) < (/e_fOpoO

_ (/e_fduoT_l)l.

7.2 Splot infimum a koncentracja

By sformutowaé zwigzki nieréwnosci splotu infimum z koncentracjg okreslmy zbior

By(t) = {z: o(z) <t}.
Zacznijmy od prostego faktu

Fakt 7.4. Jesli (p,p) ma wlasnosé (1) to dla dowolnego zbioru borelowskiego A takiego,
Ze p(A) > 0 mamy
|
——e
fu(A)

Dowdd. Zastosujmy wtlasno$é (1) do funkcji f = 0 na zbiorze A i f = co poza zbiorem A.
Zauwazmy, ze f[Jy >t poza zbiorem A+ B,(t), zatem

1 u(A+ By(1)) <

1> /efwdu/e*fdu > (1 — u(A + By (t))u(A).
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Uwaga 7.5. Funkcja f w poprzednim dowodzie nie byta oczywiscie ograniczona, ale tatwo
oming¢ ten problem stosujac nieréwnosé (7) do f, = nlgn 4 dlan > t.
Poprzedni Fakt daje dobre oszacowanie tylko dla duzych wartosci t. Nieco modyfikujac

jego dowodd da sie uzyskaé tez nieréwnosci koncentracyjne dla matych ¢.

Fakt 7.6. Zalozmy, Ze para (u, ) ma wlasnosé (7). Wowczas dla dowolnego zbioru bore-
lowskiego A it > 0,

e'u(4)
n(A+ By(t)) > (e — Dpu(A) + 1 (13)
W szczegolnosci
(A + By(t)) > min{e"?u(A),1/2} (14)
WA > 5 = 1= (At By(1) < e /(1 - u(A)) (15)
Ponadto
p(A) = v(—oo,x] = p(A+ By(t)) > v(—oo,x +1/2]. (16)

Dowdd. Niech f(z) = tlgm 4. Wéwezas f jest nieujemna, wiec fUp tez jest nieujemna
(rozpatrujemy tylko nieujemne funkcje kosztu). Dla « ¢ A + B, (t) mamy fOo(z) > t.
Zatem wlasnoé¢ (1) daje

1> /efD‘P(x)du(m)/e‘f(“*’)du(x)
> [(A+ By(#)) + €' (1 = p(A+ By(£)) | [1(A) + 7 (1 = u(A))],

skad bezposredni rachunek prowadzi do (13).
Niech fi(p) := elp/((e! — 1)p + 1), zauwazmy, ze f; is rosnaca wzgledem p oraz dla
p<e'/?)2,
1
(et - 1)p_|_ 1< et/2 +1— §(et/2 _’_eft/Q) < 6t/27

skad otrzymujemy (14). Ponadto dla p > 1/2,

__1-p 1-p —t/
LA = Gy S @z ¢ 4y

i dostajemy (15).

Niech F(x) = v(—o0, 2] i gi(p) = F(F~1(p) + t). Poprzednie rachunki pokazuja, ze dla
t,p >0, f(p) = g1/2(p), jesli F~1(p) +t/2 < 0 lub F~'(p) > 0. Poniewaz gi1s = g; © gs i
firs = fi o fs, otrzymujemy f;(p) > g4/2(p) dla wszystkich ¢,p > 0, zatem (13) implikuje
(16).

O
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7.3 Dwupoziomowa koncentracja dla rozktadu wyktadniczego

Niech jak do tej pory v oznacza miare na R z gestoscia %e_lw |, za$ V4, V— miary z gestosciami
odpowiednio €™ "1y o) 1 €1 (o0 -

Fakt 7.7. Para (v4+, o) ma wlasnosé (1), gdzie

L 32 dla |z < 2
po(x) =

18

(| —1)  dia |z > 2.

Lemat 7.8. Dla wszystkich x € R mamy 2|¢((z)] < 1 oraz
(1 = 4gh())e@ > 1.

Dowdd. Pierwsza nieréwnosé otrzymujemy przez tatwe sprawdzenie. By udowodni¢ druga,
z uwagi na symetrie g, wystarczy rozpatrywaé przypadek x > 0. Ponadto ¢f(x) jest stale
dla z > 2 a ¢ rosnace na tym przedziale, wiec mozemy zaktadac, ze 0 < x < 2. Wowczas
nieré6wnoéé po podstawieniu y = x?/18 ma postaé

8 2
V<l —y, 0<y<=.
e oY U< g
Funkcja e™¥ jest wypukla, wiec wystarczy sprawdzié¢ tylko y =01y = 2/9. O

Dowdd Faktu 7.7. Ustalmy funkcje ograniczona f, przyjmijmy g := fUyg i niech
Iy := /OO e f@=2qy Iy = /OO eI @) =Ty
0 0

Musimy pokazaé, ze IpI; < 1. Dla t € (0,1) zdefiniujmy x(¢) i y(t) wzorami

x(t) y(t)
/ e F@=qy — t1, oraz / eI T dy = ¢,
0 0

Wéwcezas

2/(t) = Tyl @®)+z(®) y(t) = Te—9W@)+y(t),

Na mocy definicii g, g(y(t)) < f(x(t)) + wo(y(t) — x(t)), wiec

Yy (t) > Lie FEO) =@ —z®)+y(®)

Niech z(t) = 3(2(t) + y(t)) — po(z(t) — y(t)), wowczas
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Piszac dla uproszczenia = i y zamiast z(t) i y(t) stosujac poprzednie oszacowanie y'(t)
oraz nier6wno$¢ miedzy Srednia arytmetyczna i geometryczng dostajemy (wykorzystujac
parzystosé ¢q)

2(0) > 51— 26w — ) Toe™ 1 + S(1+ 26w — y)) e #0010

\/1 _4()00 T — )2 /Iojleé(ﬂ”ry)*g wo(z—y)
= /IpI e \/1 — 4 (x — y)2e2?0(@Y)

Zatem na mocy Lematu 7.8, (—e *®)) = e=*)2/(t) > /IyI;, co po odcalkowaniu daje

VIl < 1. O

Uwaga 7.9. Funkcja g jest ciagta, wiec y jest rozniczkowalna. Funkcja f nie musi by¢ ciagla
wiec x nie musi by¢ rézniczkowalna. Jednak z ograniczonosci f tatwo wywnioskowaé lokalng
Lipschitzowsko$¢ z (stad tez z), a zatem rézniczkowalnoéé z prawie wszedzie. Funkcja e =*(*)
jest zatem lokalnie lipschitzowska, czyli jest calka swojej pochodnej, ktéra istnieje p.w..

Whniosek 7.10. Miara v spelnia nieréwno$é infimum z funkcjg kosztu @1 postaci

t 112 dla |t] < 4
) 6
1(t) =2 0<2) { %(]t] —2) dlalt] > 4.

Dowdd. 7 wypuktosci funkcji pg tatwo wynika, ze 1 = pgldpg. Poniewaz miara v_ jest
symetrycznym odbiciem v4 a funkcja ¢g jest symetryczna, to (v—,¢p) ma wlasnosé (1),
wiec (vy @v_, po(z) + vo(y)) tez ma (7). Miara v jest splotem miar v i v_, czyli obrazem
v4 ® v_ przy przeksztalceniu T'(z,y) = x + y. Teza wynika z Faktu 7.3 O

Wiemy, ze miara v a zatem i miara produktowa v™ spelniaja nieréwnoé¢ Poincaré, wiec
jesli v™(A) > %, to (A +tB}) > 1 — e */C dla pewnej stalej absolutnej C. Okazuje sie,
ze mozna te nieréwnosé wzmocnié.

Zanim sformulujemy twierdzenie (ktére pierwszy z gorszymi stalymi udowodnit Tala-
grand) wprowadZmy nastepujace oznaczenie kuli jednostkowej w lydlal<p<oo

n
By = {r € R™: Z\xﬂp <1
i=1

Twierdzenie 7.11. Dla dowolnego zbioru borelowskiego A w R™ takiego, ze v™(A) > 0
mamy dla t > 0,

1 —v"(A+6VtBY +9tB}) <

Ponadto

V(A) = v(—o0,z] = V(A4 6V2tBY + 18tB}) > v(—o0,z + t].
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Dowdd. Para (v™, @,) ma wlasnosé (1), gdzie o (21, ..., 2,) = @1(x1)+. ..+ 91(zy). Latwo
sprawdzi¢, ze
By, (t) C 6VtBy + 9tBY.

Teza wynika zatem z Faktéw 7.4 1 7.6. O

7.4 Wypukla wlasno$é (1)

Definicja 7.12. Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, co] wypu-
kta. Mowimy, ze para (u, ) ma wypukiq wlasnosé (1) badz, ze miara p spelnia nieréwno$é
splotu infimum z funkcjq kosztu ¢ jesli

/efD“”d,u/e*fd,u< 1

dla dowolnej wypuktej funkcji f na R™.
Wypukta nieréwnosé (7) si¢ tensoryzuje podobnie jak zwykta nieréwnosé (7).

Fakt 7.13. Jesli pary (wi, i) majg wypukle wlasnosé (1), p=pu1 @ -+  uy oraz

e(@1,...,2n) = p1(z1) + ...+ pnlan),
to rowniez para (u, ) ma wypukle wlasnosé (1).

Dowdd. Dowdd przebiega podobnie do dowodu Faktu 7.2. Stosujac taka jak w tamtym do-
wodzie notacje, wystarczy zauwazy¢, ze funkcja y — fYOp; jest wypukla (wykorzystujemy
tu zaréwno wypuklosé f jak i 1), 1 wywnioskowaé z nieréwnosci Holdera wypuklosé g. O

Tak samo jak Faktu 7.4 dowodzimy, ze wypukla nier6wno$¢ (7) implikuje koncentracje
dla zbioréw wypuktych.

Fakt 7.14. Jesli (u, p) ma wypukle wlasnosé (1) to dla dowolnego wypuklegp zbioru bore-
lowskiego A takiego, ze u(A) > 0 mamy
L

1-— ,LL(A + B@(t)) < me

Lemat 7.15 (Maurey). Zalozmy, Ze p jest miarg probabilistyczng na R™ skupiong na

2
zbiorze o Srednicy nie wiekszej niz A. Wowcezas para (ju, %) ma wypukiq wlasnosé T.

Dowdéd. Zalézmy, ze pu jest skupiona na zbiorze A i diam(A) < A. Niech f bedzie wypukta
funkcja na R™, p(z) = ﬁ@]? oraz g := fOy. Ewentualnie odejmujac od f stalag mozemy
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zakladaé, ze inf4 f = 0. Ustalmy € > 0 i wybierzmy a € A taki, ze f(a) < e. Wowczas dla
reAilel0,1] mamy

Nz — al?
+ -

g9(x) < fa+ (1 =ANz) + oMz - a)) <Af(a) + (1 = A) f(z) e

<Ae+ (1= N f(z) + %AQ.

Z dowolnosci € > 0 dostajemy

N

o(z) < inf (1—\)f(z)+ iv — k(f(z) dlagze A,

A€[0,1]

gdzie k(z) =u —u? dlau € [0,1/2] i k(z) =1/4 dlaz > 1/2.
Pokazemy, ze e < 2 — e~ Wystarczy te nieréwnoéé oczywiscie pokazaé¢ dla u €
[0,1/2], ale wtedy

1
i(ek(“) +e )= e v/ cosh(u — u?/2) < e /2 cosh(u) < 1.

Mamy zatem
-1
/egdu</ek(f)d,u<2—/e_fdu< (/e_fd,u> .

Twierdzenie 7.16. Jesli u jest rozkladem jednostajnym na {a,b}™ (lub ogdlniej dowolnym
rozkladem produktowym o nosniku w [a,b]"™), zas A jest wypuklym podzbiorem [a,b]", to

O

/exp (Mdist(:v, A)Q) dp < /i(l)

W szczegolnosci

1 t2
— < — —_— .
1 — u(Ay) (A) exp ( 10 )2> dlat >0

Dowdd. Na mocy Lematu 7.15 i tensoryzacji wiemy, ze p spelnia wypukla wlasnosé splotu
infimum z funkcja kosztu p(x) = WMQ. Stosujemy wlasno$¢ (1) do funkeji f = 0 na
Ai f =00 poza A i dostajemy

1
1> /e_fdu/efm‘pdu = M(A)/GXP (4(b—a)2diSt(x’A)2> dp.
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Uwaga 7.17. Twierdzenie powyzsze jest nieprawdziwe bez zalozenia wypuktosci A. WeZmy
bowiem za p, rozkltad jednostajny na {—1,1}", oraz

A= {:z: e{-L1}": ) x < 0}.
i=1

Woéwezas ju,(A) > 1/2 oraz korzystajac z tego, ze |a—b| < t{a—b|? dla a,b = £1 dostajemy
AN {-1,1}" C e{-1,1}": E ;< — 5.
o } {33 { } z’:lxZ b 4}

Na mocy centralnego twierdzenia granicznego lim sup,, pin(A,,1/4) = ®(t?/4) < 1.

8 Nieréwnosci transportowe

8.1 Koszt optymalnego transportu
By zdefiniowaé¢ koszt transportu miar bedziemy potrzebowali kilku definicji.

Definicja 8.1. Przez P(X) bedziemy oznaczaé rodzine miar probabilistycznych na prze-
strzeni mierzalnej X. Dla u,v € P(X) przez II(u,v) bedziemy oznaczali zbiér wszystkich
miar probabilistycznych 7 na X x X takich, ze p i v sa miarami brzegowymi m, czyli
(A X X)=p(Ad)in(X x A) =v(A) dla dowolnego zbioru mierzalnego A C X.

Uwaga 8.2. Zbiér II(u, v) jest niepusty, gdyz zawiera miare produktowa p ® v. Zauwazmy
tez, ze jesli T transportuje p na v oraz X ma rozklad pu, to rozklad zmiennej (X, 7TX)
nalezy do II(p,v).

Definicja 8.3. Zalézmy, ze c¢: X x X — [0, 00] jest funkcja mierzalng. Dla u,v € P(X)
definiujemy optymalny koszt transportu miary p na v z funkcjq kosztu ¢ wzorem

T.(p,v) := inf {/XXX c(z,y)dr(z,y): m € I(k, y)} )

W przypadku, gdy (X, d) jest przestrzenia metryczna, a c(z,y) = dP(x,y) bedziemy pisaé
T, zamiast T,. Okredlamy tez odleglo$¢é Wassersteina miar pu,v € P(X) jako

1/p

Wy, v) =T, (p, V)P = inf { (/X dp(az,y)dw(x,y)> s e (p, 1/)} , 1<p<oo,

xX

Wy, v) = Tp(p,v) = inf {/X dP(z,y)dm(z,y): m € I(u, 1/)} , pe€(0,1].

xX

Uwaga 8.4. Mozna udowodnic, ze jesli X jest przestrzenia polska, to W), jest metryka na
przestrzeni miar probabilistycznych p na X takich, ze [y d(z,zo)Pdp(x) < oo dla pewnego
(réwnowaznie kazdego) zg € X.
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Uwaga 8.5. Réwnowaznie mozemy zdefiniowaé
Te(p,v) = inf{Ec(X,Y): X ~pu, Y ~v}.
Uwaga 8.6. Zauwazmy, ze
Te(p,v) < inf{E,c(x,Tr): T transportuje x4 na v}.

W wielu przypadkach mozna udowodnié¢, ze w powyzszej nieréwnosci zachodzi réwnosé, ale
nie jest tak zawsze — np. gdy p ma atomy, a v jest bezatomowa, to nie istnieje transport p
na v.

Definicja 8.7. Jesli (X, d) jest przestrzenia metryczna, to okreslamy odleglo$é Monge’a-
Kantorowicza miar p, v € P(X) wzorem

T P

Fakt 8.8. Dia dowolnej przestrzeni metrycznej (X, d) zachodzi

: [+ X — R 1-Lipschitzowska, ograniczona} .

WLlp( s ) Wl(:u“v V) dla p,v € P(X)

Dowdéd. Zauwazmy, ze dla dowolnego 7 € II(z,y) i f 1-Lipschitzowskiego mamy

[ s [ gav

Biorac supremum po f i infimum po 7 dostajemy teze. O

— | [@) = swpinte.)| < [ 1@ -1 @)dn(e.) < [ dzg)dn).

Przy dodatkowym zatozeniu o$rodkowosci odleglosci WlL P W, sie pokrywaja.

Twierdzenie 8.9 (Dualnos¢ Monge’a-Kantorowicza-Rubinsteina). Zaldzmy, ze (X, d) jest
o$rodkowq przestrzenig metryczng. Wowczas

Wi(p,v) = WiP(p,v)  dla p,v € P(X).

8.2 Wzgledna entropia

Definicja 8.10. Niech u, v beda dwiema miarami probabilistycznymi na X. Okreslamy
entropie miary v wzgledem miary | wzorem

7 o Entu% =E, log(g—l’:), jesli v < p,
(V) = )
+00 w przeciwnym przypadku.

Lemat 8.11 (Zasada wariacyjna Gibbsa). Dla dowolnej ograniczonej z gory funkcji mie-

rzalnej f,
log Eye! = sup{E, f — H(v|u)}
12
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Dowdd. Okredlmy miare i wzorem
f
e
du.
E,ef a

dji =

Wéwczas dla dowolnej miary probabilistycznej v < u,

dv dp dv
E f-H =E,f—Eylog(—)=E,f —E,log(—) — E, log(—
f—=Hv|p) f o8(,) f o8(5,) o8(57)
= log(E,e’) — H(v|n).
Wystarczy zauwazy¢, ze H(v|f) > 01 H(fi|f@) = 0. O

Twierdzenie 8.12 (Bobkow-Goetze). Niech p bedzie miarg probabilistyczng na przestrzeni
metrycznej (X,d) i a > 0. Wowczas n.w.s.7.

i) WlLlp(Z/, ) < \/2aH (v|p) dla dowolnej miary probabilistycznej v,

i1) dla dowolnej funkcji 1-Lipschitzowskiej ograniczonej f,

Eue’\(f_E“f) < /2 dlg \ e R.

Dowdéd. Zamieniajac f na —f widzimy, ze ii) wystarczy dowodzi¢ dla A > 0. Zasada wa-
riacyjna Gibbsa pokazuje, ze warunek ii) jest réwnowazny

AQ
0>supsupsup{)\(EVf—Euf)—H(y|u)—a}
A0 f v

aX?
= sup sup sup {)\(El,f —-E.f) - H(v|p) — }
voAS0 f

Li a)?
= supsup { AW;"P(u, v) — H(v|u) — —— 3 = sup
VA0

co jest oczywiscie réwnowazne warunkowi i). O

Uwaga 8.13. Logarytmiczna nieréwnos¢ Sobolewa ze stata C implikuje zachodzenie wa-
runku ii) z @ = C (zob. dowdd Twierdzenia 6.6). W szczegélnodci miara gaussowska 7,
spelnia warunki twierdzenia Bobkowa-Goetzego z o = 1.

8.3 Tensoryzacja nieréwnosci transportowych

Definicja 8.14. Powiemy, ze miara probabilistyczna pu na X spetnia nieréwnosé T, ze
statg «, jesli
T, (v, 1) < 2aH (v|p)P?  dla v € P(X).

Uwaga 8.15. Dla p > q i p,v € P(X) zachodzi T (1, v)'/P > T, (p,v)Y/9, zatem nieréwnosé
T, pociagga za soba nieréwnos¢ Tj dla g < p.
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Naturalne jest pytanie czy nieréwnosci 7}, si¢ tensoryzuja. Wykorzystamy do tego ogélne
twierdzenie.

Twierdzenie 8.16 (Marton). Zalézmy, zZe funkcja ¢: [0,00) — [0,00) jest wypukla oraz
dla i = 1,...,n, ¢ sq¢ nieujemnymi mierzalnymi funkcjami na X; x X;, zas p; € P(X;)
spetniajg warunek

riII(lf )@(Ewci(az,y)) < H(v|pi) dla wszystkich v € P(X;).
mell(p,v

Wowczas dla wszystkich miar probabilistycznych v na X = X1 X -+ x X, zachodzi

inf ci(wi, v e .
T (i1 pim 1) ZSD wCi(i, ¥i)) < H(v|p @ -+ @ pin)

Do dowodu twierdzenia 8.16 przydatny bedzie lemat o dekompozycji miary. Nie podamy
jego dowodu, gdyz wykorzystamy go tylko dla miar z gestoscia jak w Przyktadzie 2 ponizej,
ale ogdlne sformulowanie przydaje sie, gdy np. chcemy dowies¢, ze odlegtoéé Wassersteina
jest metryka.

Twierdzenie 8.17. Zalézmy, Ze X i Y sq przestrzeniami polskimi oraz m € P(X x Y).
Niech m bedzie rozkladem brzegowym w. Wowczas istnieje rodzina miar probabilistycznych
(2,2 )zex taka, Ze

i) dla dowolnego zbioru borelowskiego A C X x Y przeksztalcenie © — (dy @ ma4)(A) jest
mierzalne,

i) ™= [x 0y @ T pdmi(x).
Przyklad 1. Jedli rozklad brzegowy m; jest miara dyskretna ), pid.,, to mozemy przyjac
rm({z}xB) . .
ron(B) =] miep ASim{z}) >0
’ 0 jesli m ({z}) = 0.

Przyktad 2. Jedli # ma gesto$¢ g wzgledem pewnej miary produktowej py ® o, to defi-
niujemy dmo ; = g2 duz, gdzie

g0y) =1 g(i(ii?paz(y) Jesli Jie g(@, y)dpa(y) > 0
7$ - X ’ . 77
0 jesli [y g(x, y)dua(y) = 0.

Dowad twierdzenia 8.16. Twierdzenie udowodnimy przez indukcje po n. Dla n = 1 teza
jest oczywista. Zalézmy zatem, ze n > 2 i teza indukcyjna zachodzi dla n — 1, pokazemy,
ze jest tez prawda dla n. Dla uproszczenia notacji przyjmijmy

X=Xy x - xXp1, =& fn_1,

ponadto dla z € X bedziemy pisaé¢ z = (%, z,,), gdzie & € X.
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Ustalmy miare probabilistyczng v na X = X x X,, taka, ze H(v|fi @ pn) < 00. Wowezas
jak wiemy z lematu o dekompozycji (zob. Przyktad 2 powyzej)

VvV = / 51 (%9 V@dﬂ(i’),
X
gdzie 7 oznacza brzegowy rozklad v na X. Eatwo sprawdzié (zob. Przyklad 2), ze

(7 o) = HEAR) + [ H(vslna) (@),

Ustalmy ¢ > 0. Zalozenie indukcyjne implikuje, ze istnieje miara probabilistyczna 7 €
(4, v) taka, ze

n—1

> o(Baci(zi, yi) < H(0|) +e.

i=1
7 zalozenia twierdzenia wynika natomiast, ze dla # € X istnieje miara mz € I(j,, vz) dla
ktorej

P(Er;cn(r,y)) < H(vilpn) + €.

Okre$lmy 7 jako miare na X x X, ktére mozemy w naturalny sposéb utozsamiaé z X x X x
X, x X,,, wzorem

= 03,5 ® mydm (T, 7).

XxX
Wéwezas m € (g @ -+ @ pp, v),

n—1 n—1
Y eErci(ziyi) = Y o(Bxci(wi,yi) < H(P|f) + ¢
=1 =1

i z wypuktosci ¢
SO(Ean(SUmZ/n)) = (p(EﬁEﬂgCn(l'na yn)) < EﬁQO(Eﬂ-gCn(l'n, yn)) < EﬁH(V§|Mn) +e€
— [ Hyli)di(G) + <.

Zatem .
Y pErci(wiyi) < H(v|p) + 2
i=1
i z dowolnosci € > 0 otrzymujemy dowdd kroku indukcyjnego. O

Whniosek 8.18. Zalozmy, Ze miary probabilistyczne u; na (X;,d;) spelniajg nierownosé Ty
ze staltymi a;, 1 < i < n. Na X =Xy x ... x X, okreslmy wazong l1-metryke d.(z,y) =
Yo cidi(x, yi). Wowezas miara gy & - -+ ® py, spelnia nieréwnosé Ty na (X, d.) ze stalg

( ?:1 C%)l/z max; o .

52



Dowdd. Niech v i p beda miarami probabilistycznymi na (X, d.). Wéwczas

n n n 1/2
T1 (V, p) = inf ZCiEﬂdi(CEi,yi) < ch inf (Z(Eﬂdz(xuyz))2> .

n€ll(v,p) i=1 i=1 me€ll(v,p) i=1

Teza wniosku wynika teraz latwo z Twierdzenia 8.16 z c¢;(xi,yi) = di(wi, ). o(x) =
(r/2)?, a == max; ;. O

Innym wnioskiem z Twierdzenia Marton jest tensoryzowalnosé nieréwnosci To wzgledem
metryki ls.

Whiosek 8.19. Zaldzmy, Ze miary probabilistyczne u; na (X;,d;) spelniajg nieréwnosé T
ze statymi o;. Na X = Xy x ... x X,, okreslmy lo-metryke d(z,y) = (X0 di(2i, y:)?) /2.
Wowczas miara g @ -+ - ® py, spelnia nieréwnosé Ty ze stalg max; a; na (X, d).

Dowéd. Stosujemy Twierdzenie 8.16 z ¢(x) 1= o=, a = max; a; oraz c;(w;, yi) 1= d> (x4, ;).

T 2a
]

8.4 Nier6éwnosé T, Talagranda a bezwymiarowa koncentracja

Whniosek 8.20. Zaldzmy, Ze miara p speinia nierdwno$c To ze stalg o na przestrzens
metrycznej (X,d). Wowczas dla dowolnej funkcji 1-Lipschitzowskiej na X" z la-metrykq
(2, ) = (S0 d(i, yi))Y/? zachodzi

p'({x e X" f(x) —Eupnf >t}) < e /2
W szczegdlnosci ayn (t) < exp(—t?/8a).

Dowdd. 7 Wniosku 8.19 wynika, ze u'* spetnia nieréwnosc Ts ze stala o, zatem dla dowolnej
miary probabilistycznej v na X" zachodzi

WP (U v) < Wi(u™,v) < Wa(p™,v) < \/2aH (v|pn)
i teza tatwo wynika z Twierdzenia 8.12. O

Okazuje sie, ze nieréwnosé Ty jest rownowazna bezwymiarowej koncentracji.

Twierdzenie 8.21 (Gozlan). Zaldzmy, zZe p jest miarg probablistyczng na osrodkowej
przestrzeni polskiej (X,d), za$ d,, sq la-metrykami na X". Wowczas nastepujgce warunki
sq rownowazne:

i) 1 spetnia nieréwno$é Ty na (X, d) ze stalg a:

Wa(v, p) < y/2aH (v|p)  dla kazdego v € (X),
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i1) dla kazdego n miara p" spetnia nierownosé Ty na (X", d,) ze stalg a:
Wi(v, ") < \/2aH (v|p™)  dla kazdego v € P(X™),
i11) istnieje stata C taka, Ze dla kazdego n i kazdej funckji 1-Lipschitzowskiej f na (X", d,,),
pt{r e X" f(z) —E;nf >1t}) < Ce /2,

Dowéd i) = ii) = iii) dowodzimy jak we Wniosku 8.20. By udowodnié¢ najbardziej za-
skakujaca implikacje #ii) = i) wykorzystamy twierdzenie o wielkich odchyleniach Sanowa.

Twierdzenie 8.22 (Sanow). Niech X1, Xo, ... bedq niezaleznymi zmiennymi losowymi o
wartoSciach w przestrzeni polskiej X @ jednakowym rozkladzie . Wowczas dla dowolnego
zbioru otwartego G w przestrzent miar probabilistycznych na X z topologiq stabej zbieznosci
zachodzi

1 & .
11nni1£f—logP (an;Xk €G> 2*31612H(V|,u). (17)
Uwaga 8.23. Twierdzenie 8.22 to tak naprawde tylko polowa twierdzenia Sanowa dotyczaca
szacowania wielkich odchylen dla miar empirycznych z dolu. Druga czes¢ moéwi, ze dla
dowolnego zbioru zwartego F' w przestrzeni miar probabilistycznych na X z topologia stabej
zbieznosci mamy

1 1 &
limsup —logP | — 0x, € F — inf H(v
Dowdd Twierdzenia 8.22. Ustalmy v € U takie, ze H(v|u) < oo (jesli takie v nie istnieje
to infimum po lewej stronie (17) jest réwne +oo i nieréwnosé jest oczywista). Niech g = d

oraz Y1, Ys,... beda niezaleznymi zmiennymi o rozkladzie v. Wéwczas ¢(Y;) > 0 p.n. oraz
dla dowolnej funkcji mierzalnej f na X",

Ef(Y1,...,Yn) =E(f(X1,....X,) [ 9(X
k=1
Mamy
1 n
P<Z§XkeG>>P< ZéxkeG Hng >o>
Lyt k=1 k=1

-5 (157 e [T
k=1

1 1<
e MEvloggta)p [ 2N 50 G =S  logg(Yi) < Eylogg+e .
nkz::l 3 nkz::l (Yr) <E,

\V
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Mocne prawo wielkich liczb implikuje, ze z prawdopodobienstwem 1 przy n — oo zachodzi
% Y r—q1logg(Yr) — E, log g oraz % > k=1 0y, — v stabo. Stad z otwartoéci G otrzymujemy,
ze

n—oo n,

1 1 &
liminf — log P ( E dx, € G) > —-Eylogg—e¢=—H(v|u) —e.
n
k=1

Przechodzac z € do 0 i biorac supremum prawej strony ostatniej nieréwnosci po v € G
dostajemy teze. O

Zanim udowodnimy twierdzenie Gozlana, wykazemy kilka faktéw dotyczacych metryki
Wassersteina. We wszystkich trzech faktach zaktadamy, ze p jest rozktadem probabilistycz-
nym na przestrzeni polskiej X oraz 1 < p < oo.

Fakt 8.24. Funkcja v — Wy(v, 1) jest pélcigglta z dotu na P(X), tzn. jesli vy, zbiega stabo
do p, to
lim inf Wy (U, i) = Wy (v, ).

Dowdd. Niech m, € II(vy,, ) beda takie, ze

Wy (v, v) > (En, d(z,y)P) /P — l
n

Pokazemy najpierw, ze ciag (m,) jest ciasny w P(X x X). Dla € > 0 z ciasnoéci ciagu (vy,)
mozemy znalezé zbiér zwarty K1 C X taki, ze v,(K7) > 1 — /2 dla wszystkich n. Istnieje
tez zbiér zwarty Ko C X taki, ze pu(K2) > 1 — /2. Poniewaz v, i p to rozklady brzegowe
T, wiee 1 — m, (K1 X K9) <1 — v, (K7) +1— pu(K2) <e.

Uzywajac ciasnosci (m,) mozemy wybra¢ podciag ciag ny taki, ze m,, — m slabo w
P(X x X) i liminf,, Wy(vp, p) = limg Wy(vy,, p). Latwo sprawdzamy, ze © € II(v, u) oraz
dla dowolnego a < oo,

limninf Wy (Un, 1) > limkinf(Emk d(z,y)P)/P > limkinf(Emk min{a, d?(z,y)})"/?
= (E, min{a, d”(z,y)})"/?.
7 dowolnosci @ > 0 mamy
W, (v, 1) < (EpdP(z,y))/P < lim inf W (v, 12)-
0

Fakt 8.25. Funkcja gn(x1,...,%n) = Wp(L S0} 62y, 1) jest n~=YP_lipschitzowska na X"
2 lp-metrykg dp(x,y) := (Ykoy dzk, yn)")V/?.
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Dowdéd. Zauwazmy wpierw, ze kazde m € H(% > k=10, 1) jest postaci m = % > b1 Ozy @k
dla pq, ..., pu, € P(X) takich, ze %Zzzl i = p. Stad dla x,y € X™ mamy

1 & 1 &
WP <Z§$k’u> _WP (Zéykhu)
"= "=

1/p n 1/p
inf ( Z/d Tiy 2 d,u’L )) Y %ilf _ (;;/d(ylaz)pdul(z)>

= i
T D ME=L D pe H=H
) 1/p | o 1/p
< _sw <n Z/d(mi,z)pdui(z)> - (n Z/d(yiaZ)pdﬂi(2)>
T Dk MR=L k=1 =1
n l/p n l/p
1 _
< Eup (n Z / |d Tiy 2 y’Lv )| dl%( )) N 1/p (Z *Ik’yk > .
%Zk:l HEe=H k=1 h=1

O]

Fakt 8.26. Jesli X1, Xo,... sq niezalezne o rozkladzie p, oraz B d(z,x0)P™¢ < oo dia
pewnego xg € X i€ >0, to EWP(% >oh—10x,, )P =0.

Dowdd. Ustalmy a > 0. Mamy
Wy(v,p)? = inf (Eﬂdp(x7y)]l{d(x,y)<a} + Eﬁdp(x7y)]l{d(x,y)>a})

mell(v,u)
E7r (d(.f()’ ZL‘) + d(x(]v y))erE)

< inf <ap_1Eﬂmin{d(x,y),a}+ .
a

mell(v,p)

E, d pte E. d pt+e
<! it Bomin{d(e,y),ap + e el T+ Budlo p)
well(v,p) af

7 twierdzenia Skorochoda wynika, ze jesli v, — p stabo, to istnieja zmienne losowe Y;, ~ v,
iY ~ pu takie, ze Y, — Y p.n, w konsekwencji z twierdzenia Lebesgue’a o zbieznosci
zmajoryzowanej dostajemy

v, — pstabow P(X) = ﬁ?f )ETr min{d(z,y),a} — 0.
mell(vn,pu

Poniewaz + =2 k=1 0x, — p stabo z prawdopodobiefistwem 1 przy n — oo, wigc ponownie
uzywajac tw1erdzen1a Lebesgue’a o zbieznosci zmajoryzowanej dostajemy

E inf E; min{d(z,y),a} — 0.
mell( Y i Ox, 1)

Stad dla dowolnego a > 0,

1 n p 1 n
lim sup EW), <n Z 5Xk,,u,> L opteg—e <En Z d(zo, Xp)PTe + E, d(xo, y)p+a>
k=1

< 2p+€+1a_EE“d(l‘0, y)p+s
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i biorac a — oo dostajemy teze.

Dowéd Twierdzenia 8.21. i)=+ii). Stosujemy Wniosek 8.19 i to, ze W1 < Wha.
ii)=iii). Wystarczy wykorzystac to, ze W{"® < W, i Twierdzenie 8.12.
iii)=1). Okreslmy

1 n
gn(T1, ... ) =W 725%,;1 .
"=

Fakt 8.24 implikuje, ze zbior
Gt :={v e P(X): Wa(v,u) >t}

jest otwarty. Zatem z twierdzenia Sanowa

. .. .1
— ulencflt H(v|p) < hnnr_1>£f ElogP (gn(X1,..., Xp) > 1).

7 zalozenia iii) i n~/%lipschitzowskoéci g, (Fakt 8.25) dostajemy

P (gn(X1,.. ., X)) > 1) < Cexp (-27;(15 — Egu(X1,... ,Xn))+2> .

Stad

. . (t —Egn(X1,...,Xn))2 12
zzlenGt (l/|,U) lrILILSo%p 20 2o

gdzie ostatnia nier6wno$é wynika z Faktu 8.26 (warunek iii) z n = 1 i 1-Lipschitzowsko$é
metryki implikuja, ze E,d(xo,z)? < oo dla dowolnego p < 00). Otrzymana nier6wnos¢ jest

rownowazna
\2aH (v|p) > t,  jesli Wa(u,v) > t,
skad tatwo wynika nieréwnosé Ts. O

9 Aproksymacja przez otoczke wypuklag

9.1 Definicje

W tej czesSci bedziemy zakladaé, ze przestrzen X ma strukture produktowa, tzn. X =
X3 x -+ x X,. Okredlmy metryke na X wzorem

da(xv y) = Z azﬂ{xﬁﬁyz}
=1
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Z Whiosku 4.5 wynika, ze dla |a| = 1, o, x.4,(t) < exp(—|t|?/8), jednak poszerzenie
zbioru w kazdej z metryk d, wyglada nieco inaczej. Celem tego rozdziatu jest uzyskanie
jednostajnej wersji tego wyniku.

Dla A C X iz € X okredlmy

D4 (z) := sup dg(z, A).
la]=1

Okazuje sie, ze D (x) mozna zdefiniowaé¢ w réwnowazny, nieco bardziej abstrakcyjny
sposéb.

Dla A € Xi z € X okreslmy

Ua(x) = {(1{a, 23 1<i<ns y € A} {0, 1}"
oraz
Va(z) := conv{Ua(z)} C [0,1]".
Latwo zauwazy¢, ze V4 (x) jest domknietym wielo$cianem wypuklym. Ponadto 0 € Vy(x)
wtedy i tylko wtedy gdy 0 € A.
Kolejny fakt taczy Va(z) i DY (x).
Fakt 9.1. Dla dowolnego A C X iz € X,

dist(0, Va(x)) = inf |y| = D4(x).
yeVa(z)

Dowad. i) D (x) < dist(0, Va(x)). Niech z € Va(x) takie, ze |z| = dist(0, Va(z)). Ustalmy
a€ 8", wtedy

inf (a,s) = inf {(a,y) < {a,z) < |z|.
ot (as) = ot (a,y) < (0,2) <[

Zatem istnieje y € A takie, ze s = (1y4,2,,))i € Ua(z) spemia (a,s) < |z|. Stad

da(xaA) < da(xay) = Zazﬂ{zz;éyz} = <a7 S) < |Z|7
=1

czyli DG (z) < |z| = dist(0, Va(x)).

ii) DG (z) > dist(0, Va(zx)). Ustalmy z € Va(x) taki, ze |z| = dist(0, Va(x)). Jedli z =0,
to nieréwnos¢é jest oczywista, w przeciwnym przypadku niech a := z/|z|. Zauwazmy, ze dla
dowolnego s € Va(z) i 0 € [0,1], 0s + (1 — 0)z € V4(z), zatem

|22 <105+ (1 = 0)2]* = |2+ 0(s — 2)|? = |2]® + 20(2, s — 2) + 0%|s]%.
Biorac # — 0+ dostajemy (z,s — z) > 0, czyli
1 1
<a78> = 7<Z¢3> > 7<Z?Z> = ‘Z|
2] ]
Stad

Di(z) = do(x, A) = seiUI;f(x)(a, s) = |z] = dist(0, V4 (x)).
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9.2 Twierdzenie Talagranda

Twierdzenie 9.2. Zalozimy, ze p = pu1 ® - - - Q py, jest produktowq miarg probabilistyczng

ne X =X; X -+ X X,. Wowczas dla dowolnego niepustego, mierzalnego zbioru A w X,
(D5)? !
—2 dpy < ——.
/exP( 17 )du < ()
W szczegolnosci dla t > 0,
1 _ 42 4
p({DG > t}) < ——e /4
4 u(A)

Dowéd. Przeprowadzimy indukcje po n. Dla n = 1, mamy DG (r) = Lx\ a(x), wiec

(D4)° 1/4
exp (AL )y = €41 - p(A)) + u(A) < 201 — p(A)) + p(A) < ——.
/ ( 4 ) p(A)
Zalézmy, ze n > 2 i teza zachodzi dla n — 1. Dla uproszczenia notacji przyjmiemy
X=Xy x - xXpo1, A=m® @ tp_1

oraz dla z € X bedziemy pisa¢ z = (&,,), gdzie # € X. Ustalmy A € X = X x X,, i
przyjmijmy
B={z:3yeX,z=(2,y) € A} oraz A(y)={z:2=(Z,y) € A} dlay eX,,.
Zauwazmy, ze jesli s € Uy(y,)(7), to (s,0) € Ua(x), a jesli t € Up(x), to (t,1) lub ( 0)
naleza do Ua(x). Zatem jesli wybierzemy s € Vy(,,)(z) oraz t € Vg(z), to (s,0) € Ua(x)
), (

s
oraz (t,b) € Vu(x) dla pewnego b € [0,1], czyli z wypuklosci zbioru Va(z),
0)t, (1 — 0)b) € Va(x). Stad z wypuklosci funkcji |z|?,

) €
Os + (1 -

DG (x)2 < [0s+ (1 —0)t) + (1 —0)b]2 < 0]s]> + (1 —0)|t]* + (1 — )2,
czyli z dowolnoéci wyboru ¢ i s,

Di(2)* < 0D, (@)* + (1 = 0)DR(2)* + (1 - 0).

Odcaltkowywujac i korzystajac z nierownoéci Holdera dostajemy
Di(i‘, xn)Q ~ i~
[ e (FASE dga)

c 12 c (a _
<00 [ o (P 433)" ([ exp (P )
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Zatem na mocy zalozenia indukcyjnego (zastosowanego do zbioréw A(z,) i B w X) dosta-
jemy dla dowolnego 6 € [0, 1],

DG (T, xn)?N . 2 1 0, 1 \1-6
Jrew (P55 < M (s ) 09

Zauwazmy teraz, ze

=

inf =04y 0<2_y dlaue [0, 1]. (19)
0€l0,1]
Istotnie dla u > e /2 mozemy przyjaé¢ § = 1 + 2logu i po zlogarytmowaniu pozostaje

sprawdzié, ze f(u) := log(2 — u) + log(u) + log?(u) > 0. Prosty rachunek pokazuje, ze dla
u € [0,1], (uf’) = —2(u—2)"2+2u"! > 0, czyli uf’(u) < f'(1) = 0, wiec f(u) > f(1) = 0.
Dla v < e~ /2 kladziemy 6 = 0 i sprawdzamy (numerycznie lub korzystajac z poprzed-
niego rozumowania dla u = e~ /2), ze e!/* <2 —e /2 <2 — .
Nieréwnosci (18) oraz (19) z u = fi(A(x,))/i(B) implikuja

[ exp (PAE g ) < L (- B

1 aB)\" " (B)
Zatem
(7,20 L AAwa)
J oo (P @) < = (2 S ()
1 ~ pu(4) 1
“mmC wm) <
gdyz v(2 —v) < 1dlawv e [0,1]. O

9.3 Wybrane zastosowania

Przyklad. Niech X = {0, 1}" oraz p = py, gdzie p, = pdy + (1 — p)do. Zatdzmy, ze zbior
A C {0,1}" jest monotonicznie dziedziczny, w sensie

reAye{0,1}"y<z = ye A

Niech dla z € X
N(z) =#{1<i<n:z; =1},
wowczas
dy(z, A) < Dh(x)y/N(z),
gdzie dp oznacza metryke Hamminga. Istotnie, przyjmijmy a = N(m)_l/z(ﬂ{zizl})i i wez-
my y € A takie, ze
d(a:y):;Z]l < DY ().
a\ls \/W {yi#z:} A

x;=1
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Z uwagi na monotoniczng dziedziczno$é¢ A mozemy przyjaé, ze y; = 0 dla z; = 0, zatem

da(x,y) = Z ]l{wﬁéyi} = Z ]l{yi#xi} < VN(m)Di(m)
i=1

x;=1

Stad dla s > 0,

wp({dr(z, A) > r}) <pp({Da(e) > 7572} + uy ({N () > s})

L x)>s
T NG > 5)

Mozna sprawdzié¢, ze drugi czynnik jest maty dla s = na z a > p.

<

Twierdzenie 9.2 prowadzi do koncentracji pewnej klasy funkcji lipschitzowskich w od-
powiednim sensie . Mianowicie zachodzi

Whniosek 9.3. Zaloimy, Ze funkcja F: X — R spelnia warunek
V:celea:a(x)vyex F(.CI}) < F(y) + da(xa y) = F(y) + Z ai(x)]l{zﬁéyi}' (20)
i=1

Wowczas dla dowolnej probabilistycznej miary produktowej p na X,
2
p({|F' —Med,(F)| > t}) < 4exp (—42> dlat >0,
o

gdzie
n

o? :=sup Z ai(z)?.

zeX i=1

Dowdd. Dla m € R polézmy A = {F < m}, zauwazmy, ze warunek (20) implikuje, ze dla
dowolnego x € X,
F(l’) <Sm+ da(x)(x>A) Sm+ UIDiX(x)a

stad
HUE 3 mo+ 1)) < (D) > tfo}) < e /07,

Zatem dla dowolnego m,
p({F <mpp({F > m+t}) < e /07,

Biorac m = Med,,(F') i m = Med,(F) —t dostajemy teze. O
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10 Poréwnywanie supremoéw proceséw stochastycznych

W kolejnych wyktadach zajmiemy sie badaniem supreméw proceséw stochastycznych, czyli
zmiennych losowych postaci sup,c X;. Zbiér T' nie musi by¢ podzbiorem prostej rzeczywi-
stej, by unikna¢ probleméw z mierzalnoécia bedziemy zaktadaé, ze zbior jest przeliczalny,
alternatywnie mozna zakltadaé¢ osrodkowosé procesu (Xi)ier.

Przyktady.

i) Norma wektora losowego w osrodkowej przestrzeni Banacha [|X|| = sup, ¢(X), gdzie
supremum jest brane po przeliczalnym podzbiorze kuli jednostkowej wybijajacym norme
wektora.

ii) Norma operatorowa macierzy losowej || X || = sup, ; >=;; Xijtis;, gdzie supremum bierze-
my po przeliczalnym gestym podzbiorze BY.

iii) Supremum procesu empirycznego sup ez > iy f(X;) - tutaj X1, Xo, ..., X, sa nieza-
leznymi zmiennymi losowymi o wartosciach w pewnej przestrzeni X, a F przeliczalna klasa
funkcji mierzalnych na X.

10.1 Nier6wnosci symetryzacyjne

Od tej pory ¢,e1,€9,... oznaczaja niezalezne zmienne losowe takie, ze P(g; = +1) =
1/2 (ciag Bernoulliego), a ¢, g1, g2, . . . ciag niezaleznych zmiennych losowych o rozkladzie
N(0,1). Bedziemy tez zakladaé, ze ciagi (¢x) i (gx) sa od siebie niezalezne i niezalezne od
pozostalych zmiennych losowych.

Fakt 10.1. Zalozmy, ze X1, Xo,..., X, sq¢ niezaleznymi zmiennymi losowymi o warto-
Sciach w przestrzeni X, F jest przeliczalng klasq funkcji mierzalnych na X oraz Ef(Xy) =0
dla wszystkich k i f € F. Wowczas dla dowolnej niemalejgcej funkcji wypuklej G na R,

EG (sup Zf Xy > EG <2 sup Zakf Xk)> EG( T sup ngf Xy ) (21)

FeF k=1 FEF k=1 FEF k=1
oraz
EG | = sup exf(Xk) ) < (sup f(Xg) ) EG <2 sup exf Xk)>
(2 feF |t Z fer kz:l fer kz:l
EG( meup > ngf Xk) ) (22)

Dowdd. Niech (Y1, ...,Y,) bedzie niezalezna kopia ciagu (X1, ..., X,,), niezalezna od zmien-
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nych e;. Wéwczas na mocy nierownosci Jensena,

EG (sup zn: f(Xk)> =ExG (; sup Xn:(f(Xk) - EYf(Yk))>

JeF =1 feF =1

< ExG (;Ey sup zn:(f(Xk) - f(Yk))>

f€.7: k=1

< EG (; sup zn:(f(Xk) - f(Yk))>

fef k=1

= EG (; sup En: er(f(Xg) — f(Yk))>

feF k=1

< %EG <2 ?ggggkﬂ){k)) + %EG <2 ?gg;(—sk)f(ifk)>
= EG X, .
(2 Jsclelgl; enf( k))

Wykorzystaliémy powyzej tez fakt, ze zmienne (Xj, Yy) sa niezalezne i maja ten sam roz-
ktad co (Y, Xj), zatem dla dowolnego ciagu znakéw n, = £1, proces (37— ni(f(Xk) —
f(Y%))) fer ma ten sam rozklad co proces (3 p_;(f(Xk) — fF(Yi))) rer-

By udowodnié¢ druga nieréwnos$¢ w (21) zauwazamy, ze (gr) ma ten sam rozklad co
(eklgr|) i V27E|gk| = 2. Zatem z nieréwnosci Jensena

EG <2 sup i skf(Xk)> = EG <\/ﬂ sup i EkEg|gk’f(Xk)>

fEF 1 FeF =1

< EG <\/ﬂ sup znj 5k9k|f(Xk‘)>

feF k=1

— EG (\/ﬂ sup zn: gkf(Xk)>

f€.7'— k=1

Druga i trzecia nieréwnos¢ w (21) wynika z (22) zastosowanego do —F U —F. W do-
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wodzie pierwszej nierownosci ponownie wykorzystujemy nieréwnos¢ Jensena:

( sup Zekf Xp) ) —Ex.G (2 up > ZEk —Ev/ (YWD

<Ex.G ( Ey sup )

n

> en(f(Xk) — f(YR))

fEF |11

<EG| = sup
feF

Za‘k Xi) — f(Yk))D
k=1

> (f(Xg) — f(Yk))D

k=1
+ EG sup
fer

Z f(Xk)
Z f(Xk)

W szczegdlnym przypadku, gdy X = F, a F to klasa funkcjonatéw liniowych na FF

otrzymujemy.

=EG| = sup
fer

—_

Zka

k=1

\]

< zEG | sup
fer

)

= EG | sup
feF

k=1

O]

Whniosek 10.2. Zaiéimy, ze X1, ..., X, sq niezaleznymi scentrowanymi wektoramsi losowy-
mi o wartoSciach w osrodkowej przestrzeni Banacha F. Wowczas dla dowolnej niemalejgcej

funkcji wypuktej G na Ry,
1 n n
Z < < < .
G (2 kzzjlekxk ) EG( kz::lxk ) EG <2 > EG (\/QW )

10.2 Zasada kontrakcji dla proceséw Bernoulliego

n

> 9k Xk

n
Z Eka
k=1

Zacznijmy od tatwego faktu zwanego zasada kontrakcji.

Fakt 10.3. Zalozmy, ze |\g| <1 dla1 <k <n, za§ T jest ograniczonym podzbiorem R™.
Wowczas dowolnej wypuklej niemalejgcej funckji G na R,

EG <5up Z )\ktkek> EG (sup Z tk5k>

teT |- teT 1.

Dowdd. Funkcja (Ai,...,An) — EG(sup;cr > ji—q Aitker) jest wypukla na [—1,1]", wiec
przyjmuje swoje maksimum w ktoryms$ z wierzchotkdw. O
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Kolejna nieréwnoéé¢ miedzy procesami Bernoulliego, uogélniajaca znaczaco poprzedni
fakt, zostata sformutowana i udowodniona przez Talagranda.

Twierdzenie 10.4. Zalozmy, Ze dla k =1,...,n, pr: R — R sq 1-lipschitzowskie oraz
0r(0) = 0, zas§ G: R — R jest funkcja wypuklq i niemalejgcg. Wowczas dla dowolnego
zbioru ograniczonego T C R™,

EG <sup Z cpk(tk)sk> < EG <sup Z tk€k> .

teT =1 teT 11

Dowdd. Yatwy argument indukcyjny pokazuje, ze wystarczy wykazaé, ze dla ograniczonego
podzbioru T' C R? i funkcji 1-lipschitzowskiej ¢ na R takiej, ze ¢(0) = 0 zachodzi

teT teT

EG (sup(tl + <p(t2)£)> < EG (sup(tl + t2€)> .

Wystarczy zatem pokazac, ze dla dowolnego s,t € T prawa strona powyzszej niedwnosci
jest wieksza rowna

I:= %(G(tl + ¢(t2)) + G(s1 — ¢(s2)))-

Bez straty ogdélnosci mozemy tez zakladacé, ze

t1+ o(t2) > 51+ @(s2) oraz  s1 — @(s2) > t1 — p(t2). (23)

Rozpatrzymy 4 przypadki.
Przypadek 1. ta > 01 sg > 0. Zalézmy wpierw dodatkowo, ze so < to. Wykazemy, ze

2] < G(t1 +t2) + G(s1 — s2), czyli G(a) — G(b) < G(c) — G(d)
dla a := s1 — @(s2), b:= 81 — 89, c:=t1 + ta, d := t1 + p(t2). Z 1-lipschitzowskosci ¢ mamy
lo(s2)] < s2, skad wynika, ze a > b oraz, biorac pod uwage pierwsza nieréwnosé¢ w (23),
d > b. Mamy tez (wobec tego, ze ¢ jest 1-lipschitzowska oraz so < t2)
a—b=sy—p(s2) <ta—(ta) =c—d.
Funkcja = — G(z + y) — G(y) jest rosnaca dla y > 0, zatem
G(a) — G(b) < G(d+ (a — b)) — G(d) < G(c) — G(d).
Jesli so > to to pokazemy, ze

21 < G(t1 —t2) + G(s1 + s2), czyli G(a) — G(b) < G(c) — G(d)
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dla a := t1 + @(t2), b :=t] — to, ¢ := s1 + 52, d := 51 — @(s2). Mamy |p(t2)| < t2, skad
wynika, ze a > b oraz, biorac pod uwage druga nier6wnos$¢ w (23), d > b. Mamy tez (wobec
tego, ze ¢ jest 1-lipschitzowska oraz sg > t2)

a—b=1ts+ p(t2) < s2+ @(s2) =c—d.

i dalej argumentujemy jak poprzednio.
Przypadek 2. t3 < 01 so < 0. Rozumujemy analogicznie jak w przypadku 1.
Przypadek 3. ta > 01 s9 < 0. Wowcezas p(t2) < ta i —p(s2) < —s2, stad

21 < G(tl + tg) + G(Sl — 82).

Przypadek 4. ta < 01 sy > 0. Wowcezas p(ta) < —t2 1 —p(s2) < s, stad

21 < G(tl — tg) + G(81 + 82).

10.3 Lemat Slepiana

Celem tej czesci jest udowodnienie nastepujacego twierdzenia, bedacego jednym z warian-
téw tzw. lematu Slepiana.

Twierdzenie 10.5 (Slepian-Fernique). Zalézmy, ze X i Y sq n-wymiarowymi wektorami
gaussowskimi o $redniej zero oraz

E|X; - X;? > E|Y; - Y;|* dla1<i,j<n.
Wowczas

Emax X; > Emax Y.

i<n i<n

Idea dowodu polega na rozwazeniu procesu
Z(t) = VX +V1—tY, telo,1]. (24)

interpolujacego miedzy X i Y. By obliczy¢ %Ef(Z(t)) dla gladkich funkcji f bedziemy
potrzebowa¢ dwbch lematow dotyczacych gaussowskiego catkowania przez czesci.

Lemat 10.6 (Jednowymiarowe gaussowskie catkowanie przez czesci). Zaldézimy, zZe f €
CHR"™) oraz |f(z)| + | f'(x)| < Cell”l” dla pewnego t < 1/2. Wéwczas

Egf(9) =Ef'(g9) dlag~N(0,1).
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Dowdd. Calkujac przez czesci dostajemy:

d

Egf(g \ﬁ dx

e 2y = — f(z)e ™2+ / f(z)e ™ *de = Bf'(g).

O

Lemat 10.7 (Wielowymiarowe gaussowskie calkowanie przez czesci). Zaloimy, ze f €
CH(R") oraz dla € > 0 istnieje C. < oo taki, ze |f(x)| + |V f(z)] < Cee®l**. Wowezas dla
dowolnego n-wymiarowego wektora gaussowskiego X o $redniej 0,

of

Ly

E(X;f(X Zcov (X, X;,)E

7=1

LX) dla1<i<n.

Dowdd. Wiemy, ze X ma ten sam rozklad co AY dla Y ~ N(0, I,,) i pewnego A € My, ,,.
Stad
E(X;f(X Z aB(Yif(AY)) =) awE(Yig(Y)),
k=1 k=1
gdzie g(z) = f(Ax). Stosujac warunkowo Lemat 10.7 dostajemy

n

=2

=1 J

B(Vig(Y)) = By (¥

By dokoniczyé dowdd wystarczy zauwazyc, ze
0
Z ainajiBo of X) =) (AA"),E a;kf (X).
Jk=1 J J

O]

Whniosek 10.8. Zalozmy, e X 1Y sq niezaleznymi n-wymiarowymi wektorami gaussow-
skimi o Sredniej zero oraz proces Z(t) jest zadany przez (24). Wowczas dla f € C%(R™)
takiej, ze dla € > 0 istnieje Ce < 0o, f(z) + |V f(x)| + [Hessf(x)] < Ceefl™ zachodzi

o
al'ial‘j

LB(2(1) = 1 3 (Cov(X,, X,) ~ Cov(Vi,¥;) B
,j=1

(Z(t)) dlat e (0,1).

Dowéd. Mamy

Seiz) - B (3L Z) - 15 e (L (- 1))
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Stosujac Lemat 10.7 do 2n-wymiarowego wektora (X,Y) i funkCJl (\/x + V1 —ty)
dostajemy

of 0’ f
E E X, X:)E Z
(8%2( (t))\/%) COV 19 ) 8.73%8(17]( (t))

7j=1

oraz

of Y\ - S covr v B2t
E (axi(z(t))\/ﬁ) jZICoV(Yz,Y])Eamiaxj(Z(t))_
O

Dowéd Twierdzenia 10.5. Funkcja f(z) = max; x; nie jest gladka, bedziemy zatem ja od-
powiednio aproksymowaé, by moéc stosowaé wyprowadzone powyzej wzory. Okreslmy dla
B>0

fa(x) := ; log Z P,
i=1

Wéwcezas
logn

/B )
zatem wystarczy wykazacé, ze Ef3(X) > Efg(Y) dla dowolnego 5 > 0.

Bez straty ogélnosci mozemy zaktadaé, ze wektory X i Y sa niezalezne. Zdefiniujmy
Z(t) wzorem (24), zauwazmy, ze Z(1) = X, Z(0) = Y, wystarczy zatem iz pokazemy
LEf3(Z(t) >0dlate (0,1).

Prosty rachunek pokazuje, ze dla 1 < 4,5 < n,

o eﬁfi 82
J(;ﬂaf - S B pi(z), ax{%(a:; = B(8ipi(x) — pi()p;(x)).

max z; < fa(x) < max i +
(2

Stosujac Wniosek 10.8 dostajemy

n

SEf(2(0) :§ > (Var(X;) — Var(Y)E((Z(0)(1 - pi(Z(1))

1= 1

3 (Cov(X;, X;) — Cov(¥i, V) B(wi(Z(0)ns (Z(1)).
Z#J

Zauwazmy jednak, ze 1 — p;(x) = 37, pj(z), stad dla dowolnych liczb a;

n
Z aip; (1’ 1 - pz Z CLsz Z ajpz
=1

i#] i#]
Wykorzystujac powyzsza tozsamosé otrzymujemy
d B
T Bfa(2(1) = 7 2 (BIX; - Xj1? = ElY: - V;)E@i(Z(1)p;(Z(t))) > 0.
i#]
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11 Metoda tancuchowa I - szacowania supremow procesow
przy pomocy entropii metrycznej

11.1 Entropia metryczna

Zacznijmy od waznej definicji liczb pokryciowych.

Definicja 11.1. Niech (T, d) bedzie przestrzenia metryczna. Dla ¢ > 0 przez N(T,d,¢)
oznaczamy najmniejsza liczbe kul otwartych o promieniu ¢, ktore pokrywaja 7', tzn.

N
N(T,d,e) := inf{N: T C U B(x;,¢e) dla pewnych z1,...,zy € T}.
i=1

Uwaga 11.2. Mozemy zdefiniowaé
S(T,d,e) := sup {N: istniejg x1,...,an € T, d(x;,xj) > e dla i # j},

wtedy N(T,d,e) < S(T,d,e) < N(T,d,e/2).

Uwaga 11.3. Czesto rozwaza si¢ liczby entropijne zdefiniowane jako

en(T,d) :==inf{e > 0: N(T,d,e) <2"}.

11.2 Goérne oszacowania entropijne

Zalézmy, ze ¢ jest funkcja Younga na [0,00), tzn. ¢ jest wypukle, Scisle rosnace oraz
©(0) = 0. Przyjmijmy tez, ze na T jest okreslona metryka d taka, ze

| Xt — Xsl)
Eop|— ) <1 dlat,seT, t . 25
@ ( d(t, S) = a S 7é S ( )

Przez A(T) = A(T,d) bedziemy oznaczali $rednice przestrzeni metrycznej (T, d).
Kolejne twierdzenie pokazuje jak szacowaé suprema proceséw przy pomocy entropii

metrycznej. Udowodnili je niezaleznie, uogdlniajac wezesniejszy wynik Dudleya z 1967 roku
(Wniosek 11.7) Kono i Pisier w 1980 roku.

Twierdzenie 11.4 (Kéno-Pisier). Jesli proces (Xi)ier spetnia warunek (25), to dla do-
wolnego tg € T,

A(T)
E sup (X — X;) < 2Esup | Xy — Xy | < 8/ @ 1 (N(t,d,e))de.
s, teT teT 0
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Dowdd. Oczywiscie mozemy zalozy¢, ze prawa strona postulowanego oszacowania jest skon-
czona. Niech ¢, = 27*A(T) dla k = 0,1,... i niech Ty = {t¢} a dla k > 1, T}, bedzie pod-
zbiorem T mocy N(t,d, ) takim, ze T' C User, B(t, ex). Mozemy zatem znalezé funkcje
up: T — Ty taka, ze d(t,ux(t)) < .

Ustalmy zbiér skonczony S C T, niech 6 := inf; scg 425 d(t, s) i wybierzmy ko takie, ze
€k < 0/2. Wtedy kazda kulka B(t,ep,) zawiera conajwyzej jeden punkt z S wiec |S| <
N(T,d,ep,). Zdefinujmy przeksztalcenia 7, na S wzorami

T (t) =t oraz  mp(t) :==ugougyio...oup—1 dla0 <k <ky—1.

Zauwazmy, ze T, (S) = S 1 mp(S) C Tk, zatem |m4(S)| < N(T,d,ex) dla 0 < k < ko.
Mamy 7o (t) = to, zatem

ko
sup | X; — Xy, | = sup Z(Xﬂk(t) = Xy t) ZSUP‘XW - 7TIC71(75)|
ko X: — X |
ug_1(t)
= sup | Xy — Xy, ol <D _er—1 sup ——————o.
kz::ltewk(S) e-1() Z temy(s) At ugp-1(t))
Mamy
X - X, X - X,
E sup [ Xe — Xuy ) B, Z SD [ Xi = Xup oy )]
temy(s) At ug—1(t)) Wy d(t, up-1(t))

|Xt_Xuk—1(t)| 1|z
(Eke; w(d(t,wc_l(t)) )) <@ (Ime(S))
<@ YN(T,d,eyp)).

1

gdzie druga nier6wno$é¢ wynika z wklestosci funkeji o=, a trzecia z zalozenia (25). Otrzy-

mujemy zatem

ko
Esup | X; — Xy, | < Zek 1o Y (N(T, d, Ek) —QZskgo 1 N(T,d,eg)).
tesS k=1
By zakonczy¢ dowdd wystarczy zauwazyC, ze
ko+1 k0+1

Z/ N(T,d,er—1) Z k19 (N(T,d, e5-1))

A(T)
/ ¢ Y(N(t,d,e))d
0

oraz

Esup | X; — Xy | = sup{Esup\Xt — Xyl SCT, |S| < oo}.
teT teT
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Uwaga 11.5. Oszacowanie z Twierdzenia 11.3 mozna rozszerzy¢ na procesy nieosrodkowe
pod warunkiem, ze zdefiniujemy

E sup (X, — X) = sup{E sup (X; — Xs): SCT, |S< oo} :
s,teT s,teS

Uwaga 11.6. Jesli proces X; jest symetryczny (tzn. ma ten sam rozklad co (—X¢)ier), to

E sup (X; — X;) = Esup X; + Esup(—X;) = 2Esup X;.
t,s€T teT seT teT

Kolejny wynik to wniosek z Twierdzenia 11.4, ktéry byl udowodniony pierwotnie (w
nieco innym sformulowaniu) przez Dudleya.

Whniosek 11.7 (Dudley). Zaléimy, ze (Xi)ier jest scentrowanym procesem gaussowskim
oraz d(t,s) = (E|X; — X,|?)Y2. Wowczas

1 A(T) 00
EsupthiE sup(Xs—Xt)éC/ \/lnN(T,d,&t)des:C/ VInN(T,d,e)de,
0 0

tel s,teT

gdzie C jest stalg numeryczng (mozna przyjeé C = 4,/8/3(1 + 1/In3/1In2) < 15).

Dowéd. Ostatnia réwnoéé wynika stad, ze N(T,d,e) = 1 dla ¢ > A(T). Niech d(s,t) =
V/8/3d(s,t) oraz io(x) = exp(2?) — 1. Wykorzystujac fakt, ze Eexp(Ag?) = (1 — 2))~1/2
dla g ~ N(0,1) i A < 1/2 nietrudno udowodnié, ze dla s # ¢,

| X — X B
Ew(‘%ﬁ)>_1

Stad z Twierdzenia 11.4 otrzymujemy

E sup (X, — X;) < 8 /O VA vy (N (T,d,e)) de

s,teT
] [A(T)
= — log(N (T 1).
sy [ sV T 49 + )

Zauwazmy, ze log(n + 1)/logn < log3/log2 dla n > 2, ponadto N(T,d,e) > 2 dla d <
A(T)/2, zatem

A(T) log 3 0o
log(N (T, d 1)de < 1 log N (T, d, ¢)de.
| Vios (T d o)+ 1) (1%2+)A Vlog N (T d, )de
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11.3 Minoryzacja Sudakowa dla procesé6w gaussowskich

W tej czesci bedziemy zakladaé, ze Xy jest scentrowanym procesem gaussowskim oraz
d(t,s) = (B|X; — X,|>)"? dla t,s € T.

Oszacowania Dudleya nie mozna w ogdlnej sytuacji odwrocié¢. Prawdziwe jest stabsze osza-
cowanie udowodnione przez Sudakowa.

Twierdzenie 11.8 (Minoryzacja Sudakowa). Zaldzmy, ze (X;)ier jest scentrowanym pro-
cesem gaussowskim. Wowczas

1
—supey/log N(T',d,e) < Esup X;.
4 >0 teT

Dowdd. Zalézmy, ze N(T,d,c) > N, woéwczas istnieje S C T takie, ze |S| = N oraz
1 X; — Xsllo > edlatseS, t# s Polozmy Y; = eg:/v/?2, gdzie (g¢)ies sa niezaleznymi
zmiennymi N (0, 1). Twierdzenie Slepiana-Fernique’a implikuje, ze

€ 1
EE max g > Zex/log n,

gdzie ostatnia nieréwno$¢ wynika z ponizszego Lematu 11.10. O

Esup X; > Emax X; > EmaxY; =
teT tesS tesS
Lemat 11.9. Jesli g ~ N(0,1), to

t e 2L Pg>t) < L e

V2 (12 + 1)

Dowdd. Gérna nieréwnosé wynika z szacowania

/OO e 24y < /OO Leme® 2y = 1e_lt2/2.
t t t t

By udowodni¢ dolna definiujemy funkcje

F) = (2 + 1)/75 e " 2dy — te /2

i pokazujemy, ze lim;_,o f(t) = 0 oraz na podstawie udowodnionego juz gérnego oszaco-
wania

Ft) = 2t/ e~ /2 20 1/2 .
t
0

Lemat 11.10. Zaldzmy, Ze g1,92,-- -, gn $q niezaleznymi zmiennymi N (0,1). Wowczas

1
> — .
Er}glg:l(gk > 2ﬁ\/logn
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Dowdéd. Dla n = 1 nieréwnos¢ jest oczywista. Dla 2 < n < 12 mamy logn < 8/7 i

Viogn.

1
Emax gy > Emax{g1,02} = Eg1 + E(92 — 1)+ = zE|g2 — 91| =

1
k<n 2 T 2/2
Dla n > 13 pokazujemy, ze
Viogn —a "
P ( maxg; < VlIo n) <P(g<Viogn)" < [1— —Y—2" ¢ (logn)/2
<i<n g & (9 gn) < V27 (1 +logn)

< vnlogn 1
<exp| ——F———"—-| <€,
V27 (1 +logn)

przy czym ostatnie szacowanie wynika stad, ze wobec monotonicznoéci z/ log x na [e, 00),

\/n/logn > \/13/10g13 > 5 > Var(1+ n/8) > V2r (1 + 1/logn).
Zatem
Emax g; > B(V10g 11 {1y, > iogm) + 91 Lmas gi<0))
> \/@P(mgxgi > Viogn) — (Eg?)"/*P(maxg; < 0)!/?

(1—e1)logn — 2 1/2 > 1 V1ogn.

2V2
0

Ponizszy lemat pokazuje, ze oszacowanie z Lematu 11.10 jest optymalne z doktadnoscia
do stalej.

Lemat 11.11. Zalozimy, ze zmienne X1,..., X, spelniajq warunek subgaussowskosci
Eexp(A\X;) < exp(ar?) dla1<i<n, A>0.

Wowczas
E max X; < 2+/alogn.
1<i<n
Zauwazmy, ze w lemacie nie ma zalozenia niezaleznosci oraz, ze zmienne N (0, 1) spel-
niaja zalozenia z a = 1/2.

Dowdd. Dla A > 0,

1 logn
E max X; < ~ log Ee* ma¥i<n Xi 10 EeMN < === 4 g
ien IS N08 S gz; P
Optymalizujac powyzsza nierownos¢ po A > 0 dostajemy teze. O
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Do szacowania supremow proceséw gaussowskich z dotu bedziemy potrzebowali wzmoc-
nionego oszacowania Sudakowa.

Twierdzenie 11.12. Zalézimy, ze (Xy)ier jest scentrowanym procesem gaussowskim oraz

t,...,tn €T, € > 0 spelniajg warunek d(t;,t;) > € dla i # j. Wowczas

1
Esup X; > —ey/log N +minE  sup Xy,
teT 8 SN d(t,t)<ae

gdzie o > 0 jest pewng stalg uniwersalng (mozna przyjeé a = 1/(8v/2)).
Dowdd. Okredlmy zmienne losowe

Yii= sup (Xi—Xy)—E sup (Xy—Xy)= sup (Xy—Xy,,)—E sup X
d(t,t;)<ae d(t,t;)<ae d(t,t;)<ae d(t,t;)<ae

Koncentracja proceséw gaussowskich implikuje, ze Eexp(\Y;) < exp(A\2a?e?) dla A € R.
Stad Lemat 11.11 (zastosowany do zmiennych X; = —Y;) implikuje

Errg\}f((—Yz) < asy/2log N.
i<
Poniewaz
max(a; + b; + ¢;) > maxa; — max(—b;) + min ¢;,
1 1 1 1

wiec

EsupX; > Emax sup Xy=Emax|Xy +Y;+E sup X;
teT SN gt <oe iSN d(t,t;)<ae

> Emax X;, — Emax(—Y;,) + minE sup X;

iSN g iSN d(tt;)<ae

> E\/logN —aey/2log N +minE sup X > E\/logN—|—1(ninE sup  Xq,
4 iN d(tt;)<ae 8 SN d(t,t;)<ae
o ile np. a = 1/(8v/2). O

11.4 Stacjonarne procesy gaussowskie

Definicja 11.13. Proces (X;)ier nazywamy stacjonarnym, jesli istnieje grupa G dzialajaca
na T taka, ze

i) dzialanie G jest tranzytywne, tzn. dla t,s € T istnieje g € G takie, ze g(t) = s

ii) dla dowolnego g € G proces (X;)ier ma ten sam rozklad co (Xg))eer-

Uwaga 11.14. W przypadku, gdy (X;) jest scentrowanym procesem gaussowskim bby do-
wies¢ warunku ii) definicji wystarczy sprawdzi¢, ze Cov(Xy, Xs) = Cov(Xyq, Xy()) dla
s,teT, ged.
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Przyktad. Niech ¢ bedzie ciggiem sumowalnym z kwadratem i okreslmy

Xy = Z cr(gr sin(kt) + gf, cos(kt))
k

gdzie g1, 4}, 92, - . . sa niezaleznymi zmiennymi N (0,1), a t € T := R/27xZ. Tu T dziala na
siebie poprzez dodawanie i wystarczy zauwazyc¢, ze

Cov(Xy, X ch cos(k(t — s)) = Cov(Xitu, Xstu)-

Twierdzenie 11.15 (Fernique). Zalézimy, Ze (Xi)ier jest stacjonarnym procesem gaus-
sowskim. Wowczas

c/ \/logN(T,d,s)ds<EsupXt<C/ \/1og N(T,d,e)de
0 0

teT

gdzie 0 < ¢ < C < oo sq statymi uniwersalnymi (moina np. przyjeé ¢ = (192y/2)7"
C=15)

Dowdd. Twierdzenie da sie wywnioskowaé ze znacznie ogdlniejszego twierdzenia Talagran-
da o mierze majoryzujacej, ale pokazemy bardziej bezposredni dowdd.

Dla uproszczenia notacji ustalmy to € T' i okre$lmy B(e) = B(to, ¢) - kula jednostkowa
o $rodku w ¢y i promieniu . Zauwazmy, ze stacjonarno$¢ implikuje w szczegdlnodci, ze

E sup X;=E sup X; dlateT.
s€B(t,e) s€B(g)

Niech a < 1/2 bedzie stala z Twierdzenia 11.12. Zauwazmy, ze jeéli t € B(a™!) to
B(t,a""3) C B(a") stad Twierdzenie 11.12 implikuje

E sup X;> oz”+2\/logN B(antl),d,a™2)+ E  sup X;.
teB(an) 8 teB(ant3)

Iterujac poprzednia nieréwnoéé dostajemy dla dowolnego n

Esup > Z o H3I+2 \/k)g N(B(ant3i+1), d, an+3i+2)

stad stosujac te nieréwnoéé dla n, n+1,n-+2 mamy i dobierajac n € Z tak by a2 > A(T)
dostajemy

1
Esup > > ozkﬂ\/logN( B(ak),d, ak+1) Zak+1\/logN ), d, akt1),
rer 24 s
n+1 kEZ
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Zbiér T da si¢ pokryé kulami B(t;,a¥), i = 1,...,N(T,d,o*) a kazda z tych kul da si¢
pokryé N(B(t;, o), d, o) = N(B(a¥),d,a**!) kularm o promieniu o1 wiec
N(T,d,o*™) < N(T,d,a*)N(B(a*),d, ™).

Stad

Esup X; > 2 Zak+1\/logN T,d,aktl) — Zak+1\/logN(T d, k)

teT keZ kEZ
1

24

(1-a) Zak+1\/logN T,d,ak+1).
keZ

7 drugiej strony

oo Oék
/0 \/01og N(T,d,e) < Z /k+1 \/log N(T,d, ok +1)de
kEZ

1 —
a Z ak+1\/logN T,d,ak+1).
keZ

12 Miary majoryzujace

Oszacowania entropijne omawiane w poprzednim rozdziale sg bardzo uzyteczne w zastoso-
waniach, poniewaz istnieje szereg narzedzi do szacowania z gory liczb pokryciowych (szcze-
gélnie w przypadku, gdy metryka jest euklidesowa). Jednak, chociaz w wielu przykladach,
Twierdzenie 11.4 prowadzi do dobrych oszacowan, to w ogélnosci nie mozna go odwroécié.
Trudnosé ta jest zwiazana z tym, ze entropia metryczna traktuje réwnomiernie cata prze-
strzen metryczna, nie rozrézniajac miejsc w ktérych jest ona bardziej lub mniej zageszczo-
na. Fernique zaproponowal nowy sposéb szacowania, za pomoca tzw. miar majoryzujacych
(czyli odpowiednio dobranych miar probabilistycznych na T'), a Talagrand wykazal, ze w
przypadku gaussowskim oszacowanie Fernique’a daje si¢ odwroécié. Obecnie, czeéciej niz
miar majoryzujacych, uzywa sie bardziej kombinatorycznego podejscia za pomoca ciggdw
podzialéw przestrzeni, ale zaczniemy od klasycznego podejécia.

12.1 Oszacowania z goéry

W przypadku proceséw subgaussowskich (tzn. takich, ktére spelniaja warunek (25) z func-
kja Younga ¢ = 19) oszacowanie gérne z uzyciem miar majoryzujacych udowodnit Ferni-
que. Oszacowanie to byto potem uogdlniane, miedzy innymi przez Talagranda. Ostateczne
sformutowanie, bez dodatkowych warunkéw wzrostu naktadanych na funkcje Younga, wy-
kazal w 2006 roku Bednorz.
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Twierdzenie 12.1 (Bednorz). Zalézmy, Ze ¢ jest funkcjg Younga, (T,d) jest przestrzeniq
metryczng, a proces (Xi)ier spelnia warunek (25). Wéwczas dla dowolnej miary probabi-
listycznej p na (T,d), ktorej nosnik jest gesty w T oraz przeliczalnego podzbioru Ty C T,

E (Xs — X¢) <32 /A(T) —1< ! >d
su s — < su —— | de.
ety ! erdo 7 \u(Bte)

Uwaga 12.2. Talagrand wykazal, ze dla dowolnej przestrzeni metrycznej (T, d) i dowolnej
funkeji Orlicza ¢ istnieje miara probabilistyczna p na (7', d) taka, ze

/A(T) —1( ! )d <4/A(T) N (t,d, e))d
Su RS 6\ b ’8 57
werdo ¥ \uBE9) 0o 7

zatem (z dokladnoscia do stalych) Twierdzenie 12.1 jest silniejsze niz Twierdzenie 11.4.
By skroécié notacje zdefiniujmy
W= [0 (g e oras ST = S(Tpe) = supo, 1)
o = ————— | de oraz L) = , by ) :=sup o,(t).
B P B e) 8 R

Kluczem do dowodu Twierdzenia 12.1 jest nastepujace deterministyczne szacowanie.

Twierdzenie 12.3. Dla dowolnej funkcji Younga ¢ i miary probabilistycznej p na (T, d)
istnieje miara probabilistyczna v na T X T taka, ze

£lt) - /fdu’ < 165(T, ) @ + % [ v (W) du(u,w)) .

sup
teT

Dowdd twierdzenia 12.1. . Ustalmy to € T' i potézmy Y; := X; — X;,. Wowezas Yy — Y, =
X — X oraz E|Y;| < d(t, to) + Eo(|Y:|/d(t,t0))/e(1) < co. Mozemy zatem zakladaé, ze
proces (Xy)ier jest calkowalny.

Zalézmy najpierw, ze o-ciatlo F jest skonczone. Sklejajac wszystkie elementy wchodza-
ce w sklad jednego atomu (i wyrzucajac atomy o mierze zerowej) mozemy zakladaé, ze
przestrzen zdarzen elementarnych € jest skonczona i P({w}) > 0 dla w € Q. Zauwazmy, ze
dla s,t €T,

| Xs(w) = Xy(w)| < d(s, )¢ (1/P({w})),
w szczegdlnoéei X; ma ciagte trajektorie. Stad stosujac Twierdzenie 12.3 do kazdej trajek-

torii z osobna dostajemy po odcatkowaniu

E sup |X; — X¢| < 2Esup
s,teTyp teT

X~ [ Xuduw)

2 1 | X — Xl
<329(T. ) (2 + = Eop (12e 2wl “w)) < 328(T, ).
325(T, ) (3 + 3/TXT tp( d(uw) )du(u w)) 325(T, i)
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Jedli Ty jest skonczonym podzbiorem T, to istnieje rosnacy ciag skonczonych o-ciat
(Fn)n>1 taki, ze o((Xp)ter,) = 0(U,, Fr). OkreSlmy X[ := E(X|F,), wowczas X' zbiega
do X; p.n. i w L', ponadto na mocy nieréwnosci Jensena

e (S ) <o (M) <

Stad

E sup |X; — Xy =limE sup | X3 — X' < 325(T, ).
s,teTp s,t€Tp

Jedli Ty jest przeliczalne, to jest wstepujaca sumg zbioréw skonczonych i proste przejécie
graniczne pokazuje teze w tym przypadku. O

By udowodnié¢ Twierdzenie 12.3 mozemy zakladaé, ze S(T', 1) < 0o, co w szczegdlnosei
implikuje, ze A(T) < oo (bo S(T, 1) > A(T)¢(1)). Niech kg € Z spelnia

gko < 71 (1) < gho L,
Okredlmy dla t € T,
1
t) = A(T t) := mi > 0: 1(><4k} dla k > kg.
Tko (1) (T) oraz ri(t) := min {5 0 (B9 a 0

Lemat 12.4. i) Funkcje v sq 1-Lipschitzowskie na (T, d).
it) Dla t € T zachodzi

4
Z ()47 < Sou(t).
k>ko 3
i11) Diam > kg it €T,
8
k k

Z 4 221 i(1) < gau(t).
k=ko i=k

Dowdd. i) Funkcja 7, jest stala, a dla k > ko mamy B(s,e+d(s,t)) D B(t,¢), skad tatwo
wynika, ze 74 (s) < ri(t) +d(s,t).
ii) Mamy

- Z ri(t)4” = Z re(t)(4F — 4F—1) < Z (1 (t) — Tigr (8))4F + lim sup ry (£)4F

k>ko k>ko k>ko k—o0

<3 [0 Gaay) v [ (g )

. /OA(T) @_1 (W) de.
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iii) Liczymy

m—1 mo m—1 m o 00 ) ] ]
ST ARy o e = SN TRl <N 27 Y Al =2 Al
k=ko  i=k k=ko i=k j=0  ixko i>ko
i korzystamy z ii). O

Okredlmy dla k > kg operatory liniowe Sy, dzialajace na ograniczonych funkcjach bo-
relowskich na T', wzorem

1 3 R
Sef(0) = f, o ) = s /. o ), sdvie Bu(t) = Bt ().

Kolejny lemat podsumowuje proste wtasnosci Sy, ktore przydadza nam sie pozniej.

Lemat 12.5. Dla k > ko,

i) Spl =1,

i1) Spf < Skg dla f < g, w szczegdlnosci | Sk f| < Sk|f],
iii) SkSkof = Skof = [ fi,

i) limg 00 Sk f(t) = f(t) dla funkcji cigglych f it e T,

Dowdd. Warunki 1)-iii) sa oczywiste, a iv) wynika stad, ze limg_,o 75 (t) = 0. O
Zanim przejdziemy do dowodu Twierdzenia 12.1 wykazemy jeszcze jeden fakt.

Lemat 12.6. Zachodzg nastepujgce oszacowania:
Z) Sﬂ“j < T’l’—|—’l“j dla i,j > ]{30,
’ii) SinSm—1""" Sk+1rk < Zﬁk 2i7k7“i dla m >k > k.
Dowdd. i) Lipschitzowskosdci r; implikuje r;(u) < r3(t) + r;j(t) dla u € Bj(t).
ii) Udowodnimy oszacowanie przez indukcje po m. Dla m = k+ 1 z i) mamy Sk117% <

Tra1+7E < rp+2rpe1. By wykazaé krok indukeyjny zalézmy, ze ii) zachodzi dlam > k > k.
Zalozenie indukeyjne, liniowos¢ Sp,4+1 1 cze$¢ i) implikuja
mo mo mo m+1 )
Sm41Sm ++ Se1Th < Smg1 D27y =3 27K G ey KT 27 () <Y 20 Py
i=k i=k i=k i=k

O]
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Dowdd Twierdzenia 12.3. Mamy

50~ [ fdu] = i [Sinf ~ SnSno- - Sia ()

m—1

= n%gnoo Z SmSm—l T Sk+1(I - Sk)f (t)
k=ko
m—1

< lm Y 0SSt Spra S (L = Sp)f| (1) (26)
k=ko

Dla k > kg zachodzi
Skl =Sl =|f, £ w))dp(u)du(w)

Bpy1(t) J Bi(u

ﬁw ﬁ% w)dps(u)dpu(w).

Mamy p(zy) > z¢(y) dlaz > 1, y > 0, zatem

Stad dla u # w

|f(w) = f(w)] [f (u) = f(w)]
w0 ¢(4’“+1>‘p< d(u, w) ) '

Zauwazmy, ze dla w € By (u) zachodzi d(u,w) < ri(u), ponadto, z definicji ri41 wynika,
ze u(Bry1(t)) > 1/@(41). Zatem

rﬂw—fmw<mwm“++maﬁw»mWM“w(”w”‘§”0 dla w € By(u)

Ska(T =SS (1) < 44 Seane®) + [ @ £
T Bk(u)

Stad, wobec Lematu 12.6,

SmSm—1- - Sky2 [Ses1(I = Sk) f] ()
<4’f+122z Fr +4/ ri(u 4'“]{9 (u)so('f(?(;igw”)du(w)du(U)

i=k
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Powyzsze oszacowanie, (26) oraz Lemat 12.4 implikuja

10 [ i < oo a3 [t f o (FGT) dnerint

Niech v bedzie miarg probabilistyczng na T x T' dang wzorem

>=;§Aﬁwﬂﬁmumwmwmm
k=ko k(U

gdzie

(OUN IS

S, T).

M= Z/W‘Wﬂ A@www<

k=kq
Wéwczas

‘f(t) - /deu‘ < 3—32%(1&) vau [ g <W) dv(u, w)

2 !f(U)—f(w)!> )
< 16S5(7T, -+ - ———— ) dv(u, .
@ (5+3 ) e (™) dvtuw)
O
Twierdzenie 12.1 implikuje w szczegdlnosci oszacowanie supremow procesow gaussow-

skich, udowodnione pierwotnie przez Fernique’a.

Whiosek 12.7 (Fernique). Zalézmy, ze (Xi)ier jest scentrowanym procesem gaussowskim
oraz d(t,s) = (E|X; — X,|?)'/2. Wéwczas

A(T) 1 o0 1
Esup X; < C / ] ()d =C / ] ()d,
apars Leb ¢“mmm»€ erdo VM \uBte) )"

gdzie C jest stalg numeryczng (mozna przyjeé C = 48,/8/3/In3/1n2 < 100).
Dowadd. Postepujemy jak w dowodzie Wniosku 11.7. Stosujac Twierdzenie 12.1 do ¢ = 19
i metryki 1/8/3d dostajemy

Esup X, — B (X X)<16\/g /A(T) 1 (1+ ! >d
su = = su s — B —Su n —_— £.
wer 't 2 ar t 3t Jo u(B(t,))

Zauwazmy, ze

/ \/ln 1+ tg)))de\FA \/E/ \/ln ds.

Ponadto dla ¢ < A(T )/2 istnieje t € T taki, ze u(B( < 1/2, wiec
/ o ( ! )d > 1\/1 SA(T)
su n(———J)de>-vln .
et Jo uBEe)) 72
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12.2 Dwustronne szacowania supreméw procesow gaussowskich

W tej sekcji bedziemy rozwazaé scentrowane procesy gaussowskie (Xi)ier. Twierdzenie
Fernique’a (Wniosek 12.7) méwi, ze dla takich proceséw i metryki d(t,s) = || Xt — Xs||2
zachodzi

Esup X; < C32(T, d),
teT

gdzie

2(T,d) := inf {sup / \/ In )dz—:: 4 miara probabilistyczna na T} .
teT

Czesto, wygodniej niz z miare probablhstycznz% na T konstruowaé ciag rozbi¢ T'.
Definicja 12.8. Méwimy, ze (Ap)n>0 jest dopuszczalnym ciggiem rozbi¢ T, jesli jest to
ciag rosnacy (tzn. A,11 jest podrozbiciem A,), Ay = {T'} oraz |A,| < N, := 22" dla
n > 1.

Dla przestrzeni metrycznej (7', d) okreslamy ~2(T, d) wzorem

o0

v2(T, d) := inf {sup > 22A(A,(t)): (An)nso dopuszczalny ciag rozbié T} ,
teT n=0

gdzie A, (t) oznacza taki zbiér z rozbicia A,, dla ktérego t € A, (t).
Fakt 12.9. Dla dowolnej przestrzeni metrycznej (T, d), 32(T,d) < v/2v(T, d).

Dowdd. Ustalmy dopuszczalny ciag podzialéw (A, )n>o0 przestrzeni 7. By wykazaé teze
wystarczy skonstruowaé miare probabilistyczng p na T taka, ze

A(T) 0
SUP/ \/ln (,u(B(lt,e))>dE <V2sup ) 2N (An(t)).

teT Jo teT =0

Wybierzmy T,, C T dlan = 1,2... takie, ze |T,,| < N,, i T,, zawiera po jednym punkcie z
kazdego ze zbiéréw nalezacych do rozbicia A,,. Wowczas

ST Tnle ™ <de™? + 164 + Y 2FeF < 1,
n=1 k=8

wiec istnieje miara probabilistyczna taka, ze u({t}) > exp(—2") dlat € T,,. Stad dlan > 1
u(B(t, A(An(t)))) > exp(—2") zatem

/ \/h“ Bi,e) )d—i/f;(z % (i3 (B, A(ZW()))))‘“

<2 DA(A,L (1) < V2 Z 22 A(Ap(t)).
n=1 n=0

8
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Twierdzenie 12.10 (Talagrand). Niech (X;)ier bedzie scentrowanym, osrodkowym pro-
cesem gaussowskim oraz d(t,s) = || X — Xs||2. Wowczas v2(T,d) < CEsup,cp X;.

Dowdd, ktory pokazemy ponizej pochodzi od van Handela. Zanim przedstawimy klu-
czowy fakt na ktérym on sie opiera, bedziemy potrzebowali kilku definicji.

Definicja 12.11. Dla n > 0 i przestrzeni metrycznej (7', d) definiujemy
en(T) = en(T,d) := inf{r >0: N(T,d,r) < N, =2%"}.

Nietrudno zauwazy¢, ze SA(T) < eo(T) < A(T), N(T,d,r) < Ny, dla r > e,(T), za$
dla r < e,(T), N(T,d,r) > N,. W szczegblnosci istnieja punkty z1,...,zn, € T takie, ze
d(zi,zj) > 1en(T) dla 1 <i < j < N,

Fakt 12.12 (van Handel). Zaldzmy, Ze funkcje rn,: T — [0,00), n = 0,1,... spelniajg
warunek

VnzoVacT en(A) < ZA(A) + supry(t). (28)

teA

D=

Wowczas

o0
v2(T') < 70sup Z 2 2p, (1).
teT n=0

Dowdd. Dla dopuszczalnego ciagu podzialéw A = (Ay,)n>0 przestrzeni T okreslmy

[e.9]

Ya(A) ==sup Y 2"2A(A4,(1)).
teT n=0
Zauwazmy, ze funkcje 7, := min{r,, A(T)} spelniaja (28), wiec mozemy bez straty

ogblnosci zaktadaé, ze r, < A(T).

Okreslimy w sposéb indukeyjny dopuszczalny ciag podziatéw (A, )n>o. Kladziemy Ay =
Ay = {T}. Zalézmy, ze mamy okreslony podzial A, dla n > 1 taki, ze |A,| < Np,
skonstruujemy jego podpodzial A, 1. Ustalmy w tym celu zbiér A € A,, i podzielmy go
najpierw na zbiory A!,... A"*! dane wzorami:

Al={tc A: 27°A(T) < rpq(t) < 2VPA(T)} dla 1 <i <,
A=t e A, () < 27A(T)).

Wéwezas jak tatwo zauwazy¢
Tro1(8) < 2rp_1(t) +27"A(T) dlas,t€ A, 1<i<n+1,

zatem z zalozenia (28)

en 1(A) < ZA(A) +2r, 1 () +27"A(T) dlate A, 1<i<n+1,

| =
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w szczegblnosci kazdy A’ da sie podzieli¢ na mniej niz N,_; zbioréw A% takich, ze

A(AT) < SA(A) + dry 1 (1) + 2 A(T).

Okreslmy
Api1 = {Aiﬂ‘: Ac A, i<n+1,j <Nn}.

Wéwczas
|Ans1] < No(n +1)Np—1 < Npqy.

Zauwazmy, ze na mocy indukcyjnej konstrukcji

1
A(Aus1 (1) < GAMA(H) +draa () + 2 7"AT) dlat €T, n> 1.

Stad
S 9V2A(AL(1) < (1 + VI)A(T) + i 2n/2 @A(Anl(t)) +drn—(t) + 22_"A(T)>
n=0 =2
*3[ i 22A(A, () + 8 i 2", (t) + (5 + 3V2)A(T).

n=0

Zauwazmy, ze (28) implikuje

1
A(T) < 2e0(T) < =A(T) + 2supro(t),
3 teT
stad
A(T) < 3supro(t)
teT
Zatem
- n/2 \/i - n/2 n/2
STEA(AL () < - ST 2Y2A(A,(1)) + (23 + 9V2) sup Z 2
n=0 3 n=0 teT =
Zatem biorac supremum obu stron po ¢ otrzymujemy
\/é .- n/2
72(A) < = 72(A) + (23 + 9V2)sup > 2", (t).
teT n=0
Stad
3
T) < 72(A 23 4+ 9v2)sup ¥ 227, () < T0sup > 2"/27,
(1) <) < 5= S ap S 2V,
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Zalézmy, ze (Xi)ier jest scentrowanym procesem gaussowskim takim, ze Esup,cr X <

00. Okreslmy

g(A):=EsupX;, ACT
teA

oraz
K(a,t) := ir>1g {ar +¢g(T) — g(B(t,r))} a>0,teT.

Ponadto dla 6 > 0 niech 7s5(a,t) € [0,,00) spelnia nieréwnosé
ars(a,t) + g(T) = g(B(t,75(a, 1)) < K(a,1).

Lemat 12.13. Dla € > 0 i ciggu 6, zachodzi

supZQ”/Q (e22 ¢ )\2+\/§<g(T)+§:5n>.

tETn 0 €
Dowdd. Mamy K (b,t) < brs(a,t) + g(T) — g(B(t,rs(a,t))), zatem

d+ K(a,t) — K(b,t) > (a —b)r(a,t)+6 a,b,6 >0,t €T,

stad
> e2™2(1 — 27125 (£27/2 1) <Y ( K(e2V2 1) — K (2 D/2 1) 4 5n)
n=0 n=0
= K(2™?,t) = K272, 0) + 3 00 < g(T) + > b,

n>=0 n>0
gdzie ostatnia nieréwnosé¢ wynika z szacowania 0 < K (a,t) < g(7).

Dowdéd Twierdzenia 12.10. Wykazemy wpierw, ze dla €,0 > 0in > 0,

en(4) < CeA(A) + (z + C’e) suprs(e2™/2,t) + C27/%5,
tcA

gdzie C jest stalg uniwersalna, za$ o stala z Twierdzenia 11.12.
Okredlmy

o :=suprs(e2?,t), r:=o0+ A(A).
teA

By udowodni¢ (29) wystarczy rozpatrze¢ przypadek, gdy o < §e,(T). Na mocy definicji
en(T), istnieja t; € T, 1 < i < N, takie, ze d(t;,t;) > e, (T')/2 dla i # j. Twierdzenie 11.12

implikuje, ze

Nn
g <U B(ti,0)> > —en )V 1log N, + Imn g (ti,0)).
i=1
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Stad istnieje k < N, takie, ze

V 10g22n/2

T en(T).

Np,
9(T)—g <U B(ti,0)> <y(T) — g(B(ty,0)) —
=1

Mamy

9(T) — g(B(ty, o)) < g(T) — g(Bty, rs(2™%,13))) < K (22, t3) + 0

Ny
<e2"2r+ g(T) — g(Bltg,r)) + 6 < 2"?r 4+ g(T) — g (U B(%U)) +9,
i=1

gdzie ostatnia nieréwno$¢ wynika stad, ze U;<, B(ti; o) C B(ty,7). Poréwnujac ostatnie
dwa oszacowania dostajemy

16
vlog 2

i nieréwnosé (29) zachodzi z C' = 16/+/log 2.
By zakonczy¢ dowdd wystarczy wybrad

en(4) < (57“ + 2*”/26)

1 1 2 1 _
=g nim gD maim (245 20 + 02,
1 zastosowaé Fakt 12.12 i Lemat 12.13. UJ

Whiosek 12.14 (Fernique-Talagrand). Niech (Xi)ier bedzie scentrowanym, osrodkowym
procesem gaussowskim oraz d(t, s) = || Xy — Xs||2. Wowczas

Esup X; ~ 72(T7 d) ~ &Q(Ta d)
teT

12.3 Zmienne i procesy subgaussowskie

Fakt 12.15. Niech Z bedzie zmienng losowq. Nastepujace wiasnosci zmiennej Z sq row-
nowazne:
i) Ogony zmiennej Z spelniajq

P(|Z] > t) < 2exp(—t*/K?) dlat > 0.
it) Momenty zmiennej Z spelniajq
1Zllp = (E|Z]P)'/? < Ko/p dlap>1.

iii) Transformata Laplace’a Z* spelnia

1
Eexp(A\?Z%) < exp(K3\?)  dla |\ < T
3
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i) Zmienna Z ma skoniczong norme y-Orlicza , tzn.
Eexp(Z?/K?) <2

Jesli dodatkowo EZ = 0 to warunki i)-iv) sq rownowazne
v) Transformata Laplace’a X? spelnia

Eexp(\Z) < exp(KZM\?) dla A € R.

Ponadto optymalne state dla ktorych zachodzg powyzisze mieréwnosci sg porownywalne ze
sobg z doktadnosciq do stalej uniwersalnej, tzn. K; < CKj dlai,j =1,...,5.

Dowdd. 1)=-ii) Stosujemy calkowanie przez czesci:
o0 o0
E|Z]P = p/ PP (|Z] > t)dt < 2p/ P~ exp(—t2/K?)dt
0 0
[e.e]
— pK? / sP2/2 exp(—s)ds = 2KPT(p/2 + 1).
0

Funkcja T" jest logarytmicznie wypukla, stad dla z € [1,2], I'(x) < max{I'(1),T'(2)} =1,
oraz dla z € [k, k+ 1], k =1,2,... mamy

N+ =z@z—-1)(x—k+ 1)z —-k+1) <z’ <z

Zatem || Z||, < 2K14/p/2 iii) zachodzi z K2 = V2K].
ii)=>iii) Mamy dla 2eA’K3 < 1,

k )

Eexp(\2Z?) =1+ Z E]Z]% <1+ Z SN <14 (eNK3)F
k=1

e)\QKQ

W <1 —+ 26)\2K2 eXp(2€K2A2)

=1+
Stad dostajemy iii) z K3 = v/2eKo.
iii)=iv) Oczywiste z K4 = K3/vIn2.
iv)=-1) Natychmiastowy wniosek z nier6wnoéci Czebyszewa z Ky = Kj.
iii)=v) Mamy ¢ < z +¢* dla z € R (funkcja f(z) = z + € — e® spelnia f(0) =
f(0) =01 f">0), zatem dla |\| < K3 ' mamy

Eexp(AZ) < E(AZ + exp(\2Z?)) < exp(K3\?).

Dla A > K3 korzystamy z nieréwnosci 2\x < A\2K3 + x2K3 i dostajemy

1 2 1
Eexp(AZ) < exp <2K§/\2) E exp (( ) > < exp (2(K§/\2 + 1)) < exp(K3)\?),

Z
V2K
czyli v) zachodzi z K5 = K.

v)=-1) Wynika z Faktu 4.2 z K| = 2K5. O
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Definicja 12.16. Jedli Z spelnia réwnowazne witasnosci wymienione w Fakcie 12.15, to
moéwimy, ze Z jest subgaussowka.

Uwaga 12.17. Uzywa sie réznych definicji stalej subgaussowskosci zmiennej Z. Najczesciej
si¢ definiuje te stalg albo poprzez transformate Laplace’a jako:

inf {0 > 0: Eexp(\(Z — EZ)) < exp(\0?/2) dla A € R},
albo poprzez norme Orlicza 1)s:
| Z ||, = inf{t > 0: Eexp((Z/t)%) < 2.

Dla procesu subgaussowskiego najwygodniej jest przyjaé¢ definicje oparta o norme Or-
licza.

Definicja 12.18. Moéwimy, ze proces (X;)ier jest subgaussowski wzgledem metryki d, jesli

X — X,

B2 < d(t, s)

> <1 dlat,seT.
Tweirdzenia 12.1 (dla ¢ = 19, zob. tez Fakt 12.9) i 12.10 implikuja nastepujace wazne
twierdzenie dotyczace poréwnywania proceséw subgaussowskich i gaussowskich.

Twierdzenie 12.19. Zaldézimy, Ze X; jest osrodkowym procesem gaussowskim o $redniej
zero. Wowczas dla dowolnego osrodkowego procesu (Yi)ier, ktory jest subgaussowski wzgle-
dem metryki d(t,s) = || X; — Xs||2 zachodzi

E sup (Y; — Y;) < CE sup (X; — X,).
t,seT t,seT
Jednym z mozliwych przyktadéw proceséw subgaussowskich sa procesy kanoniczne po-
staci Xy = (X, t) = >, ;X; dla t € R™. Proces taki jest subgaussowski wzgledem (wie-
lokrotnosci) metryki euklidesowej, jesli ||(X,t)|y, < K|t|. Mowimy wtedy o wektorach
subgaussowskich.

Definicja 12.20. Méwimy, ze n-wymiarowy wektor losowy X = (X1,...,X,,) jest sub-
gaussowski, jesli

HXH¢’2 = \ilu—pl H<t7X>H¢2 < 0.

Norme || X||y, nazywamy stalq subgaussowskosci wektora X.

Przyktad 1. Jedli X, Xo,..., X, sa niezaleznymi subgaussowskimi zmiennymi loso-
wymi o sredniej zero to X = (X1, ..., X,,) jest subgaussowski oraz

1w ~ mase | X s

Przyktad 2. Jesli wektor X jest jednostajnie rozlozony na S™ ! to X jest Cn~1/2
subgaussowski.
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12.4 Oszacowania przez cigg metryk L,

Nie wszystkie procesy stochastyczne maja przyrosty kontrolowane tylko przez jedng metry-
ke. Jednym ze sposobow radzenia sobie z tym problemem jest uogélnienie kombinatorycznej
definicji funkcjonatu 2 na przypadek, gdy na n-tej partycji rozpatrujemy odlegloéé¢ L, z
p = 2". Przypomijmy, ze dla zmiennej losowej Z i p > 1 kladziemy ||Z]|, := (B|Z[P)1/P.

Definicja 12.21. Niech (X})ier bedzie osrodkowym procesem stochastycznym, ktérego
przyrosty maja wszystkie momenty skoficzone. Okredlmy

An(A) = sup{|| X; — Xy|lan: t,s€ A}, ACT,n=0,1,....

Definiujemy

T) := inf su An(An(t)),
() 1= infsnp 3 A,(4u(0)

gdzie infimum jest brane po wszystkich dopuszczalnych ciagach podzialéw A = (A,)n>0
zbioru T.

Fakt 12.22. i) Jesli (X;) jest scentrowanym procesem gaussowskim, to cy2(T) < yx(T) <
72(T).
i) Jesli (X) jest procesem subgaussowskim wzgledem metryki d, to vx(T) < V2v(T, d).

Dowéd. Dla procesu gaussowkiego o §redniej zero mamy c,/p|| Xy — X|| < [ Xy — X[ <
VP Xy — Xsll2 dla p > 1, a dla procesu subgaussowskiego || X; — X[, < /2pd(t,s) dla
p > 1 (zobacz Fakt 12.15 i jego dowéd by dostaé stata v/2). O

Twierdzenie 12.23. Niech (X;)ier bedzie osrodkowym procesem stochastycznym, ktdrego
przyrosty majg wszystkie momenty skoriczone. Wowczas dla dowolnego p > 1,

sup |Xs — Xy
t,seT

< 487vx (T') + 256 sup || Xs — X¢|p.
t,seT

p

Dowéd. Wystarczy udowodnié¢ oszacowanie dla zbioréw skonczonych. Niech 2F0~1 < 2p <
2o dla pewnego ko = 2,3, ... oraz wybierzmy ki > ko takie, ze Ny, = 221 > |T.
Ustalmy ¢ > 0 i wybierzmy dopuszczalny ciag podzialéw A,, zbioru T taki, ze

sup Y An(An(t)) < (1+)yx (D).

Mozemy przyjaé, ze Ay, (t) = {t}. Wybierzmy zbiory T}, C T takie, ze Ty = {to} oraz
|Tk| < Ni i Ty zawiera po jednym punkcie z kazdego ze zbioréw k-tej partycji A dla
k=0,...,ki. Niech dla 0 < k < ky, mi(t) € T N Ax(t), w szczegblnosci mo(t) = to oraz
Ty (t) =t.
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Z nieréwnosci trojkata w L, dostajemy

sup | X; — X < 2|sup | X — X supX - X
t’seT! s — Xt ) t€T| t = X, )] I [ Xy (5) = Xrgy (0)] )
Zauwazmy, ze Ty41(t) € Apy1(t) C Ag(t), wiec
ki1—1 ki1—1
M :=sup Y [ Xn, ) = Xnp(ollor <sup Y Ap(Ax(t) < (1+e)yx(T).
teT p—ky tET —jq

Dla u > 16 szacujemy

P(sup | X — Xﬂko(t)\ > uM)

teT
k1—1
< P(sup Z X () = Xy > ub)

< P(3k0<k<k1—13teT | X t) = Xmpo)l = ull Xy 0) — ka(t)HQ’f)
ki1—1

<3 Y N PX - Xy| > ull X — X o)

k=ko SETk+1 s' €Ty

< S malim® < 5 (3) <2(3)" <o)
k=ko k=ko

Calkujac przez czesci dostajemy

o0
Esup |X; — X7, " < (8M)” (2” +p/ u”_12u‘2pdu>
teT 0 2

= (8M)P(2P + 2172P) < (24M)P < (24(1 + &)yx (T))P.
Ponadto

E sup |X,rk (t) — Xﬂko(s)|p < Z E| Xy — Xyo|P < |T,y€0|2 sup E|X; — X,|P
t,s€ t’,S’ETkO t,seT
< 2% sup || X; — X|E.
s,teT

Powyzsze szacowania implikuja

<48(L+ )y (T) +2° sup |1, — X,
P s,te

sup | Xg — Xy
t,s€T

i teza wynika z dowolnoéci € > 0.

90



Uwaga 12.24. Poniewaz sup; e || X — Xsl[1 < vx(T), wige Twierdzenie 12.23 implikuje,
ze
E sup | X — X¢| < 304vx (T).
t,s€T

Whniosek 12.25. Zalozmy, ze (Xi)ier jest oSrodkowym procesem subgaussowskim wzgle-
dem metryki d. Wowczas

P (sup | Xt — Xg| > C(72(T,d) + udiam(T, d))> <exp(—u?) dlau>0.
s,teT

Dowdéd. Dal v < 1 teza latwo wynika z uwagi i nieréwnosci Czebyszewa (bierzemy C =
304e). Dla u > 1 teza wynika z nieréwnosci Czebyszewa i Twierdzenia 12.23 dla u = /p
(na mocy Faktu 12.15 || X; — X,||, < C/pd(t, 5)). O

13 Macierze losowe o subgaussowskich rzedach

W tym rozdziale poznamy kilka silnych szacowan dla pewnej klasy macierzy losowych. Be-
dziemy potrzebowali jej pewnego unormowania. Typowym normowaniem wektora losowego
jest zalozenie jego izotropowosci.

Definicja 13.1. Moéwimy, ze n-wymiarowy wektor losowy X jest izotropowy, jesli ma
srednig zero i identyczno$ciowa macierz kowariancji, tzn. EX; = 0 oraz EX; X, = ¢;; dla
1, < n.

Fakt 13.2. Jesli wektor X jest izotropowy, to
E(X,t)(X,s) = (t,s) dlat,seR"
Dowadd. Liczymy

E<X, t><X, $> = ZtiSjEXin = Ztisi = <t, $>.

O

Sprecyzujemy teraz klase macierzy, ktére bedziemy bada¢ podczas dalszych rozwazan.

Definicja 13.3. Powiemy, ze macierz losowa m X n spelnia zafozZenie o subgaussowskos$ci
z parametrem K| jesli jej wiersze Ay, ..., Ay, sa niezaleznymi, izotropowymi, subgaussow-
skimi n-wymiarowymi wektorami losowymi oraz

max | Aslly, = maxmax||{4i, 8) [l < K.

91



Uwaga 13.4. Zauwazmy, ze € —1 > 22, zatem || X ||, > || X||2 i izotropowosé A; implikuje,
ze K > 1.

Podamy teraz kilka przyktadéw klas macierzy spelniajacych zatozenia Definicji 13.3.
Literami C| ¢ oznaczamy dodatnie state skoniczone, ktorych wartoéci moga si¢ zmieniaé
przy kazdym wystapieniu (jesli bedziemy chcieli ustali¢ warto$é jakiej$ stalej bedziemy
pisa¢ ¢1,C1, c2,Co, . . .).

Przyktad 1. Macierz A = (A;;), ktérej wspélezynniki sa niezaleznymi subgaussowskimi
zmiennymi losowymi o Sredniej zero i wariancji 1 spelnia zatozenia Definicji 13.3 z pa-
rametrem K < Cmax; [|Ajjlg,. W szczegdlnodci macierz, ktorej wyrazy sa niezaleznymi
zmiennymi A (0, 1) spelia to zalozenie z K = /8/3.

Przyklad 2. Macierz, ktérej wiersze A; sa niezalezne i maja rozklad jednostajny na
/1S ! spetnia zatozenia Definicji 13.3 z parametrem K < C.

Przyktad 3. Macierz, ktérej wiersze A; sa niezalezne, izotropowe i maja rozklady spelnia-
jace logarytmiczna nieréwnos$¢ Sobolewa z parametrem « spelnia zatozenia Definicji 13.3
z parametrem K < Ca.

Bedziemy tez uzywaé nastepujacych wielkosci dla T C R”,

Z t;g;

9(T) = Esupztzgz, V(T) == g(T'U-T) =Esup
teT i1 teT

,  R(T) :=suplt],
teT
gdzie jak zwykle g1, ..., g, oznacza niezalezne zmienne losowe N (0, 1).

13.1 Odchylenia dla subgaussowskich macierzy losowych

Twierdzenie 13.5. Zaldzmy, Ze A jest macierzg m X n, ktora spetnia zatozenia Defini-
cji 13.8 z parametrem K. Wowczas dla dowonego niepustego ograniczone zbioru T C R™
zachodzi
Esup ||At| — vmlt|| < OK?*y(T).
teT

Ponadto
P (sup ||At| — vmlt|| > CK*(v(T) + uR(T))) < exp(—u?) dlau>0.
teT

Okreslmy proces (X;) wzorem
= |At| — v/mlt|, teR™ (30)

Kluczowym elementem dowodu Twierdzenia 13.5 jest wykazanie subgaussowskosci tego
procesu.
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Twierdzenie 13.6. Zaldimy, Ze macierz losowa A spelnia zaloZenia speinia zalozenia
Definicji 13.3 z parametrem K oraz proces Xy jest zadany wzorem (30). Wowczas

1X; — Xsllyy < CK?|t —s| dlat,s€R™ (31)
Dowdd Twierdzenia 13.5. Niech T =T U {0}.

sup | X;| = sup || At] — v/mlt|| < sup (X; — X;)
teT teT t,s€T

oraz

g(T) <2y(T) i sup |t —s| <2R(T).
t,sET
Szacowanie wartosci oczekiwanej wynika natychmiast z Twierdzenia 13.6 i Twierdzenia
12.19 (zastosowanego do zbioru T'). Szacowanie prawdopodobiefistwa jest konsekwencja
Twierdzenia 13.6 oraz Wniosku 12.25 i Twierdzenia 12.10 (réwniez zastosowanych do zbiéru
T). O

By wykaza¢ Twierdzenie 13.6 bedziemy potrzebowali kilku lematéw.

VA

Lemat 13.7. Dla dowolnych subgaussowskich zmiennych losowych X,Y zachodzi || XY |y,
[ X o Y Tl

Dowdéd. Zatézmy, ze a > || X ||y, 10> ||Y ||y, Wowezas

1/2 o\ \ 1/2
| XY| X2 y? X? Y
Eexp (ab ) < Eexp 22 + — 2 < [Eexp 2 Eexp =l < 2,

czyli || XY ||y, < ab. O
Lemat 13.8. Oszacowanie (31) zachodzi dla s = 0, tzn.
[|At] — vmlt|||y, < CK?|t| dlat € R™

Dowdd. Z uwagi na jednorodno$é bedziemy zakltadaé, ze |t| = 1. Na mocy Faktu 12.15
wystarczy udowodnié, ze P(||At| — /m| > K?u) < 2exp(—cu?) dla u > 0. Rozpatrzymy
dwa przypadki.

Przypadek 1. K?u < \/m. Mamy

P(||At] — V/m| > K*u) = P(||At]* — m| > K?ul|At] + v/m]) < P(||At]* —m| > K*uv/m).

Zauwazmy, ze

|At]?2 —m = Z (|(A;, t)> = 1),
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zmienne |(A;,t)|?> — 1 sa niezalezne, maja $rednig zero oraz
1AL B = Uy < (A P llyy + Ll < KA I, + 1111y, < 22,
gdzie wykorzystaliSmy to, ze dla u > K,
> Bexp((Ai, )2 /u?) > exp(B(A;, 1) /u?) = exp(1/u?).
Stad nier6wno$¢ Bernsteina dla zmiennych subwykladniczych (Twierdzenie 4.16) implikuje

K4u’m
P(||At| — > K2 At2 —m| > K2 2 —
(I|At| = v/m]| ) < P(||At]* —m| > K*uy/m) < 2exp 16mK* + 8K uy/m
u2
<2
exp< 24)

w ostatniej nieréwnosci skorzystalismy z tego, ze u < K?u < /m. O

Przypadek II. K?u > /m. Wéwczas
P(||At| — v/m| > K?u) = P(|At| > K*u+ vm) < P(|At]> —m > K*?)

Ponownie stosujac nieréwnoéé Bernsteina i to, ze K > 1 oraz m < K*u? dostajemy

K8yt 2
P(|[Af] — Vi) > K?u) < 2exp <_ u > e <_u> |

16mK* + 8 K62 24

Lemat 13.9. Oszacowanie (31) zachodzi dla |t| = |s| = 1, tzn.
[|At| — |As|||ly, < CK?|t —s| dlat,se€ S™

Dowdd. Na mocy Faktu 12.15 i tego, ze min{l,4u} < 2\/u wystarczy udowodnié, ze
P(||At| — |As|| > uK?|t — s]) < 4exp(—cu?) dla v > 0. W tym celu rozpatrzymy dwa
przypadki.

Przypadek 1. uK? < 2y/m. Mamy

P(||At] — [As|| > uK?|t — s]) = P(||At]* — |As]*| > uk*[t — s|(|At] + |As]))
=P([(A(t +5), At — 5))| > uK>|t — s[(|At] + |As]))

i
<P (|At| < \/ﬁ> +P ((A(t+5),A(t— s))| > %\/Rulﬂt— s|) .

Na mocy Lematu 13.8,

1
2

1 1
P (]At] < 2\/5) <P (HAt\ —Vm| > 2\/%) < 2exp(—em/K*) < 2exp(—cu?/4).
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Zauwazmy, ze
m

(A +5), At — ) = S (Aist + 8)(Aist — 5)
i=1
Zmienne (A;, t+5s)(A;,t—s) maja (na mocy Faktu 13.2) érednia (t+s,t—s) = [t|>—]|s|> =0
oraz

1(Aist+ 5) (At = )y < 1At + gl {Aus = 8)ln < K21+ st — 5] < 2K2]¢ — s].
Stosujac nieréwno$é Bernsteina dla zmiennych subwyktadniczych (Twierdzenie 4.16) do-
stajemy
1 mu? K|t — s /4
P ([(A(t At —s))| > = K2t —s|) <2 —
(|< (t+5), At = )}l > 5 vmuk’] 8) P ( 16mKA|t — 52 + dy/muK [t — s[2

< 2exp(—u®/96),

gdzie w ostatniej nieréwnoéci uzylismy tego, ze u < uK? < 2\/m.
Przypadek II. uK? > 2\/m. Wéwczas

P(||At] — |As|| > ul®[t — s|) <P(JA(t - )| > uK’[t — s)
<||At—s—\rt—sH uKzt—so
< 2exp(—cu?)
na mocy Lematu 13.8. O

Dowdd Twierdzenia 13.6. Z uwagi na jednorodnosé, wystarczy wykazaé (31) dla [t| =1 <
|s|. Niech § = s/|s|, wéwczas

1 Xt = Xollyy <1 Xt — Xslly, + 1 X5 — Xslly, = [Xe = Xsllgy + 15 — s/l X5y,
Stosujac Lematy 13.8 i 13.9 dostajemy
1X = Xollya < CE(t — 5] + 15 — ).
By zakonczy¢ dowdd wystarczy zauwazyé, ze trojkat A(t, 5, s) jest rozwartokatny, zatem
It — 5+ |5 —s| <V2(t — 5> + 5 — s)))V2 < V2|t — 5.
O

Whniosek 13.10. Niech A bedzie macierzqg losowg m X n spetniajocq zatozZenia zalozZenia
Definicji 13.3. Wéwczas dlau > 1 z prawdopodobieristwem nie mniejszym niz 1 —exp(—u?)
zachodzi

Vm — CK?*(v/n +u) < ﬁnfl |At| < sup |At| < vVm + CK?*(v/n + u).
tl=

ItI=1

Dowéd. Stosujemy Twierdzenie 13.5 do T = S™~! i zauwazamy, ze v(T') = /n oraz R(T) =
1. O
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13.2 Lemat Johnsona-Lindenstraussa

Whiosek 13.11. (Addytywny lemat Johnsona-Lindenstraussa) Niech T C R", za$ A bedzie
macierzg losowg m X n spetniajocg zatozenia Definicji 13.3. Wowczas z prawdopodobieri-
stwem 0.99 zachodzi zdarzem'e

[t —s| — s|<|t—s|+06 dla wszystkich s,t € T,

\F \F

gdzie § < %KQQ(T).

Dowasd. Wystarczy zastosowaé¢ Twierdzenie 13.5 do T' — T otrzymujac

< Rryr-m),

E sup t—s
o || e = e 1o ol| <
zauwazy¢, ze (T — T) = 2¢g(T) i skorzystaé z nieréwnosci Czebyszewa. O

Whniosek 13.12 (Multyplikatywny Lemat Johnsona-Lindenstraussa). Zalézmy, ze T jest
zbiorem skoriczonym w R"™, a A jest macierzg losowg m X n spetniajgcq zaloZenia Definicji
13.8. Wowczas z prawdopodobienstwem 0.99 zachodzi

(I—¢)t

gdzie € < CKQ\/IO%T‘.

Dowdd. Niech

< +e)ft —sl,

o<

S::{‘i_ ok tsETt;és}

Zauwazmy, ze na mocy Lematu 11.11,

7(5) = 9(5) < y/2log |S] < 24/log [T],

zatem Twierdzenie 13.5 zastosowane do zbioru S implikuje

|At — As| ’ 1 , , 5 |log|T|
——— — 1| = —=Esup||At'| — Vm|t'|| < CK*| ——.
vmlt — s vm t/eSH | m

Uwaga 13.13. Klasyczny Lemat Johnsona Lindenstraussa mial posta¢ jak we Wniosku
13.12, ale dotyczyl przypadku, gdy zamiast TA bada si¢ przeksztalcenia /- P, gdzie

E sup
t,s€T t#s

O]

P jest rzutem ortogonalnym na losowo wybrang podprzestrzen E € Gy, . To jakie si¢
rozpatruje losowe przeksztalcenie jest mato istotne, kluczowe jest to, ze z duzym prawdo-
podobienstwem jest ono (po obcieciu do zbioru skonczonego) bliskie izometrii i ma wartosci
w przestrzeni nie za wysokiego wymiaru m, ktéry (przy ustalonym ) jest proporcjonalny
do log |T.
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13.3 Losowe przekroje

W tej czesci bedziemy badaé srednice losowego przekroju podzbioru R™. Nasza losowosé
bedzie wyznaczona poprzez branie podprzestrzeni F := KerA, gdzie A jest macierza m xn
o niezaleznych subgaussowskich rzedach. Zauwazmy, ze dim(E) > n —m oraz jesli A; maja
ciagte rozklady, to dim(E) = n —m p.n. Co wiecej, jesli wspélczynniki A sa niezaleznymi
zmiennymi losowymiu N (0,1), to z niezmienniczosci rozkladu gaussowskiego na obroty
wynika, ze £ ma rozklad jednostajny na przestrzeni Grassmana Gy, y—m.

Twierdzenie 13.14. Niech T C R", za$ A bedzie macierzq losowg m X n spelniajgcq
zatozenia Definicji 153.3. Wowczas

: ¢ o
< —F—= .
Ediam(7 N KerA) \/EK 9(T)

Dowdd. Wystarczy zauwazy¢, ze na mocy Twierdzenia 13.5,

Eymdiam(T NKerA) =E  sup |[|At — As| —vm|t —s|| <E sup [||AY|—vm|t||
t,seTNKerA telT—T

< CK*y(T —T) = 2CK?¢(T).
O
Przyktlad. Zauwazmy, ze diam(B}) = 2, ale g(B}) = Emax; |g;| < /2log(2n), stad

1
Ediam(B" N E) < Oy 2",
m

gdzie érednia jest brana po losowej podprzestrzeni E € Gy, y—p. Np dla m = n/10 otrzy-
mujemy, ze losowy przekréj B} wymiaru 0,9n ma $rednice rzedu +/logn/n.

Twierdzenie 13.15. Zaléimy, ze T C S™ ! oraz A jest macierzq losowg mxn spetniajgcg
zatozenia Definicji 13.3. Wéwczas dla m > CK*(T)?

P(T Nker(A) = ) > 1 — exp(—cm/K*).

Dowdd. Oczywiscie R(T) = 1, wiec Twierdzenie 13.5 méwi, ze z prawdopodobienstwem
przynajmniej 1 — exp(—u?) mamy

sup| 4] — Vil < G ((T) + )
te

Zalézmy, ze zachodzi powyzsze zadarzenie i istnieje ¢ € T' N ker(A). Wowczas
Vi < CLEX(y(T) + u).
Jedli u = /m/(2C1 K?), to dostajemy

Vi < G ((T) + 5 im

czyli m < 4C2 K42(T). O
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14 Oszczedne probkowanie

Ten wyktad jest poswiecony zastosowaniom macierzy losowych w teorii oszczednego prob-

kowania (ang. compressed sensing). Z konieczno$ci oméwimy skrétowo jedynie kilka wy-

branych zagadnien w mozliwie prostych sformutowaniach. Czytelnika szukajacego obszer-

niejszego wprowadzenia w tematyke odsylamy do notatek z kursu w Marne-la-Vallée [2].
Bedziemy zajmowaé sie rozwiazywaniem réwnania postaci

y=Ax xze€T,

gdzie A jest macierza m X n (z m typowo duzo mniejszym niz n), a T jest podzbiorem R".
Réwnanie mozemy zapisaé¢ jako

yi:<Ai,fL’>, /L':]-a"wmv

gdzie A; € R™ to wiersze macierzy A.

Wielkosé (A;, ) mozna interpretowaé jako i-ty pomiar nieznanego wektora x. Przyjmuje
sie, ze znamy zbior T', dobieramy odpowiednia macierz A tak by odtworzyé¢ na podstawie
y wektor x.

Gdy m < n réwnanie Ax = y ma typowo nieskonczenie wiele rozwiazan, bedziemy wiec
zaktadaé, ze zbior T jest maty. Podobnie jak w poprzednim wyktadzie bedziemy rozwazaé
macierze losowe A o niezaleznych subgaussowskich rzedach.

W dalszej cze$ci bedziemy uzywaé nastepujacej notacji. Dla I C [n] := {1,...,n} i

x € R™ okreslamy
n

Ty = ('Ti]l{iEI})izlﬂ I¢ = [n] \[
Normeg ¢, wektora z oznaczamy przez ||x||,, piszemy |z| zamiast |z(2. Dla ¢ > 1, By
oznacza kule jednostkowa w £, czyli

n
B} = {xeR": > il < 1}.
=1

Zacznijmy od przypadku, gdy w = 0. Najprostszy algorytm prowadzacy do rozwiazania
naszego rownania, to
znalezé & € T takie, ze AT = y. (32)

Twierdzenie 14.1. Niech A bedzie macierzq losowg n X m spelniajgcq zalozenia Definicji
13.8. Zalézmy, ze x jest ustalonym wektorem z T, y = Ax za$ T jest rozwigzaniem (32).
Wowczas

Eli — 2| < £K2g(T).

Jm
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Dowdéd. Zauwazmy, ze & — x € (T — x) N Ker(A), stad na mocy Twierdzenia 13.14 mamy

E|i — x| < Ediam((T — z) N Ker(A4)) < \/Cszg(T —x) = \/CRK%(T).

Uwaga 14.2. 1) Inaczej mozna przeformutowaé Twierdzenie 14.1 jako
E|z — z| < ediam(T),
o ile (1)?
T
> CK*%2d(T), gdzie d(T) = — 2.
ii) Zagadnienie (32) jest zlozone obliczeniowo, jesli T nie jest wypukly. Zauwazmy jednak, ze
g(conv(T)) = g(T), zatem mozemy zawsze zastapi¢ zbiér T' jego uwypukleniem i otrzymaé
zagadnienie rozsadne obliczeniowo i majace podobne oszacowanie bledu |Z — z|.

14.1 'Wektory o malym nos$niku

Typowe zalozenie (bardzo uzyteczne w zastosowaniach) méwi, ze x ma maly nosnik.

Definicja 14.3. Noénikiem wektora x € R™ nazywamy zbiér
supp(z) := {1 <i<n: z; #0}.
Norme ¢y wektora x definiujemy jako ||z||o := |supp(x)|. Kladziemy tez dla 1 < p < n,
Y, ={z eR": |lz]o <p}.

Wiedzac, ze * ma maly nosnik rozwigzania réwnania chcialoby sie poszukiwaé rozwia-
zujac zagadnienie
A . / /
& = argmin{||z'[|o: Az’ = y}.

Jednak, z uwagi na to, ze £p-norma nie jest norma zagadnienie to jest ztozone obliczeniowo.
Dlatego wygodniej rozwazaé norme ¢ i rozwigzywaé problem

& = argmin{||z'||1: Az’ = y}. (33)

Fakt 14.4. Dla 1 < p < n zachodzi

p
1
5(\/133? N By) C conv(X, N By) C /pBy' N By.
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Dowdd. Zauwazmy, ze

1/2
lzlli= > |z < [supp(z 1/2(235) = |l2ll5? =],

t€supp(x)

stad ¥, N By C /pBY i tatwo otrzymujemy gérne zawieranie.

By udowodni¢ dolne zawieranie ustalmy x € /pBf N By. Niech I oznacza podzbiér
[n] ={1,2,...,n} zawierajacy indeksy p najwiekszych moduléw wspélrzednych z, Is zbiér
indekséw kolejnych p co do wielkosci modutéw wspdirzednych itd. Zauwazmy, ze dla k > 2,

1
1 o< =
max fzi| < min fzi] < Cllen,
stad
21, < —=loz,_, |
Ty Tr,. 4|l1-
kLS \/]3 k—1

Oczywiscie |z, | < |z| < 1, zatem

1
dlen| <1+> — Hl‘fk e <1+ —Jlzfl < 2.
% >2 v

Ponadto, zj, € ¥,, zatem

x = Z xy, € Z |z, |conv (3, N By) C 2conv (X, N By).
k>1 k

Fakt 14.5. Dla 1 < p < n mamy

2
9(VPBY N BY) < 2¢(5, N BE) < 4 [plog
p

Dowdd. Pierwsza nieréwnos¢ wynika z dolnego zawierania w Fakcie 14.4. By udowodnié
druga zauwazamy wpierw, ze

9(X, N By) Emax /ZgZ E, (g7)?
i€l i=1

gdzie gf > g5 > ... > ¢ oznacza monotoniczne uporzadkowanie wektora (|gi|,...,|gn|),
czyli g = k-max; |g;|.
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Wypuktoéé funkeji exp(aa?) oraz exp(z) implikuje dla 0 < a < 1/2,

2
exp | « (E 12(9;)2) < Eexp (041 Z(Q:y) < 1Ez:eXP(O‘(Qf)z)
D p -

i=1 i=1

1 & n
< EEZGXP(OKQ?) =

] pv/1—2a’

Biorac oo = 1/4 dostajemy g(¥X, N By) < 2¢/plog(2n/p). O

Uwaga 14.6. Mozna udowodnié, ze

2
g(VBBY N BY) > g(S, N BY) > ¢ [plog .
p

Twierdzenie 14.1 (zastosowane do z/|x| 1 T = ¥,NBY i Fakt 14.5 implikuja nastepujacy
wniosek.

Whniosek 14.7. Niech A bedzie macierzg losowg m X n spelniajoce zalozenia zatozZenia

Definicji 13.3. Niech x € ¥, Ax =y, za$ T bedzie rozwigzaniem (33). Wowczas

plog(2n/p)kpy

Eli — 2| < CK?
m

14.2 Dokladna rekonstrukcja wektoréw o malym nosniku

Dla macierzy A € Mpy,xn 1 1 < p < n okreslmy

ap(A) = inf |Az|, A):= su Ax|, A):= .
)= int sl A= s sl 5p(4) = 2

Innymi stowy a,(A) 1 5,(A) to optymalne stale takie, ze
ap(A)|z| < |Az| < Bp(A)|z| dlax e X).

Definicja 14.8. Powiemy, ze macierz A ma wiasnos¢ dokladnej {1-rekonstrukcji rzedu p,
jesli dla dowolnego wektora z € ¥, rozwiazaniem zagadnienia (33) z y = Az jest wektor
T ==z

Twierdzenie 14.9. Zaléimy, ze r > p(1 + v2(A)). Wéwczas A ma wlasnosé dokladnej
U1 -rekonstrukcyi rzedu p.
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Dowéd. Niech s :=r —p > 72(A)p. Dla uproszczenia notacji potozymy a = a,.(A), f =
Br(A). Ustalmy = € 3, niech y = Az, & bedzie rozwigzaniem (33) oraz h = & — . Musimy
pokazaé, ze h = 0.

Niech 7 bedzie permutacja [n] taka, ze

Innymi stowy |h, )| = I-max; [h;]. Niech
ILy:=n({1,....,p}), L:=7({p+{U-1Ds+1,p+({(—-1)s+2,...,p+is}n[n])dlal>1,

tzn. Iy zawiera indeksy p najwiekszych modutéw wspoédlrzednych wektora h, I; indeksy
kolejnych s co do wielkosci modutéw wspotrzednych itd.
Niech S := supp(x), wowczas

][y = 12l = llz 4+ hlly = llzs + hslly + llhsells = lzlly = sl + [lhsellx
> |zl = kgl + [[hg 1,
gdzie ostatnia nieréwnos¢ wynika z tego, ze |S| < p = |Iy| oraz ze sposobu wyboru Ij.

Zatem
hrgll < [h1olln < V/plhs -

Nastepnie zauwazmy, ze

0= ‘Ai‘ — A(E‘ = ’Ah’ = A(h[o + h]l) + ZAhIz ,
1>2

zatem wykorzystujac definicje o = o, (A) i B = 5, (A) i to, ze |[[gU 1| =71 oraz |} < s <7
dostajemy

o lhsy + | < [Ahty +hi)| < 30| Any, | < 32 810 -
1>2 >2

Zauwazmy, ze dla [ > 2,

. 1
|hp,| < Vsmax|h;| < /s min |hi| < —=[lhy_ 1.
S i€l S

Stad
g g Bv/p By/p
alhay + | < Lol = Tl < D2 1h ] < 22 by + .

1>2

Ale z naszych zalozen wynika, ze 5+/p/s < o, zatem hy,+hy, = 0, stad latwo otrzymujemy,
ze h =0. ]
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Niestety nie sa znane deterministyczne macierze losowe takie, ze 7y, jest ograniczone
oraz m jest poréwnywalne z p z doktadnoécia do logarytméw. Okazuje sie jednak, ze sub-
gaussowska macierz losowa z duzym prawdopodobienistwem spelnia takie warunki.

Twierdzenie 14.10. Niech A bedzie macierzqg losowg mxn spetniajocq zatozenia zatozenia
Definicji 13.8 oraz m > CK*plog(en/p). Wéwczas

9 11 m
P <10\/ﬁ < ap(A) < Bp(A) < 10\/%) >1—exp (—CK4> .
Dowdd. Niech I bedzie podzbiorem [n] = {1,...,n} mocy p zas A; oznacza macierz m X p

powstala z A przez wybranie kolumn o indeksach z I. Latwo sprawdzi¢, ze macierz Aj
spelnia zalozenia Definicji 13.3 (z p zamiast n). Wniosek 13.10 implikuje, ze z prawdopo-
dobienstwem wigkszym niz 1 — exp(—u?) zachodzi

Vm — C1K?(\/p+u) < li‘n_f1 |Arz| < sup |Arz| < Vm + C1K?(/p + u).

|z[=1

Zauwazmy, ze jesli supp(z) C I, to x mozemy traktowaé jako wektor z RY =2 RP i przy tym
utozsamieniu A;x = Az. Zatem z prawdopodobiefistwem wigkszym niz 1 — (Z) exp(—u?)
mamy

Vm — C1K*(p+u) < inf  |Arz| < sup  |Arz| < m+ CLK2 (D + u).

z€XpNBy z€,NBY

Wystarczy teraz zauwazy¢, ze jesli m > 400C3K*piu = /m/(20C1 K?) to C1 K*(,/p+u) <
v/m/10, ponadto wtedy

") exp(—u?) < exp (p log(en/p) — m) < exp (—m> ,
P 400C7 K 800C?K*

o ile m > 800CZ K*plog(en/p). O

Whniosek 14.11. Niech A bedzie macierzq losowg m X n speiniajgcq zatozenia zalozenia
Definicji 13.3 oraz m > CK*plog(en/p). Wéwczas z prawdopodobieristwem przynajmniej
1 — exp(—em/K*) macierz A ma wlasnoéé doktadnej ¢1-rekonstrukcji rzedu p.

Dowdd. Stosujemy Twierdzenie 14.10 z 3p zamiast p, a nastepnie Twierdzenie 14.9 z r =
3p > (1+(11/9)?)p. O
14.3 Algorytm Lasso

W praktyce kazdy wykonywany pomiar jest obarczony pewnym bledem. Dlatego naturalnie
jest rozpatrywacé ogdlniejsze réwnanie postaci

y=Arx+w x€T,
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badz réwnowaznie
y1:<Az,a:>—i—wz, izlv"'vmv

gdzie w; € R mozna interpretowaé jako blad i-tego pomiaru.
Tutaj musimy zmodyfikowaé algorytm (33). Jedna z mozliwosci jest tzw. algorytm Lasso
postaci
% = argmin{|Az’ —y|: ||2'|1 < R}. (34)

Twierdzenie 14.12. Niech A bedzie macierzqg losowg mxn spetniajocq zatoZenia zatozenia
Definicji 13.3, x € %, dla 1 < p < n orazm > CK*plog(en/p). Wéwczas rozwigzanie (34)
z R = |z[}1 spetnia

p (yae al< CK!wlx/plog(en/p)> -
m

> 1 —2exp(—plog(en/p)).

Niech h = & — x. Dowdd twierdzenia rozbijemy na kilka lematow.

Lemat 14.13. Zachodzi
Al < 24/plh|

oraz
|Ah|? < 2(Ah, w).

Dowaéd. Niech S = supp(x). Mamy
[zlly = 1Z]l = [z + Rhlly = llzs + ksl + [hsells = llzll = [[hsll + [[hsells,

zatem
Il = |l + [|sellr < 2l|hslly < 2|SV2|hs| < 24/D|h).

By udowodnié¢ drugie oszacowanie zauwazamy, ze
|lw—Ah| = |lw+ Az — Az| = |y — Az| < |y — Az| = |w|.
Wystarczy teraz podniesé obie strony do kwadratu i zredukowaé czynnik |w]|?. O

Lemat 14.14. Przy zalozeniach Twierdzenia 14.12,

P <\Ah|2 > T|h|2> > 1 —exp(—plog(en/p)).
Dowdd. Na mocy pierwszego oszacowania z Lematu 14.13,

h -
T €T, :=2pByNnS" .
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Fakt 14.5 implikuje

R(Ty) =1, (Ty) < 29(\/pB} N B}) < 4y/plog(2n/p).

Stosujemy druga cze$¢ Twierdzenia 13.5 z u = /plog(en/p) i dostajemy, ze z prawdopo-
dobiefistwem przynajmniej 1 — exp(—plog(en/p)) zachodzi

1
sujp ||At| — /m]| < C1K? plog(en/p) < 5\/5,
teT,

gdzie ostatnia nieréwno$é zachodzi o ile m > 4C2K*plog(en/p). Zatem

1
p <|Ah|2 > T’W) > P (|At| > Vi diate Tp) > 1 — exp(—plog(en/p)).

Lemat 14.15. Przy zalozZeniach Definicji 13.3,
|(At, w) — (As, w)||y, < CK|w||t —s| dlat,seR".

Dowadd. Korzystajac z Faktu 12.15 mamy dla A € R

Eexp(A((At,w) — (As,w))) = Eexp (i Aw; (A, t — s>> = ﬁ Eexp(Aw;(A;, t — s))

i=1 i=1
< H m exp (C’)\2wi2||<Ai,t - 3>”12pz) < exp (C’)\QKQ\wﬂt — s]2>
i=1
i teza wynika z ponownego uzycia Faktu 12.15. O

Lemat 14.16. Przy zaloZeniach Twierdzenia 14.12,

P ((Ah,w CK |h||w|y/plog(en/p) ) 1 — exp(—4plog(en/p)).

Dowdd. Niech X; := (At,w) oraz Tp bedzie jak w dowodzie poprzedniego Lematu. Wéwczas

(Ah w) < sup X;.
] LT,

Na mocy Lematu 14.15 mamy
[ Xt = Xslly, < d(t,s) := CiEw||t — s| = |G — G2,
gdzie

n
Gi = C1K|w| Y tigi
i=1
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Zauwazmy, ze
diam(7T,, d) < 201 K |w|

oraz na podstawie T'wierdzenia 12.10 i Faktu 14.5,

v2(Tp, d) < CEsup Gy = CK|w|g(T)) < CK|w|\/plog(en/p).

teT

Stad Wniosek 12.25 implikuje dla u > 0,

P ((Ah,w} > CK|h||w| < plog(en/p) + u>> <P <sup Xt = C(y2(T, d) + udiam(T, d)))
teT,

< exp(—u?)

i wystarczy wzia¢ u = \/plog(en/p). O

Dowdd Twierdzenia 14.12. Na podstawie Lematéw 14.13, 14.14 1 14.16 z prawdopodobien-
stwem 1 — 2exp(—plog(en/p)) zachodzi zdarzenie

IR < AR < 2(Ah,w) < CK|h||w]y/plog(en/p).

ktore implikuje

h| < CK\prlog(en/p).
m
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