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1 Wstęp

W wielu problemach rachunku prawdopodobieństwa i jego zastosowań pojawiają się wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wykładu będzie przedstawienie wybranych narzędzi pozwalających
badać takie obiekty. Wykład będzie dotyczył tak zwanej teorii nieasymptotycznej, tzn. na-
cisk będzie położony na różne szacowania, a nie na twierdzenia graniczne.

W pierwszej części wykładu omówimy pewne zagadnienia związane z teorią koncen-
tracji miary, które pozwalają szacować odchylenia funkcji zależnej od wielu zmiennych
losowych od jej wartości oczekiwanej. W drugiej pokażemy kilka metod pozwalających sza-
cować suprema procesów stochastycznych. Omówimy też pewną liczbę bardziej konkretnych
przykładów zastosowań.

Oczywiście podczas semestralnego wykładu monograficznego można omówić tylko nie-
wielką część bogatej i ciągle rozwijającej się teorii. Dużo szerszy wybór zagadnień został
przedstawiony w notatkach Ramona van Handela [7] i monografii Romana Vershynina [8],
zainteresowany Czytelnik znajdzie tam też szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przykłady.

Wiele ważnych miar probabilistycznych spełnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorąc polega on na tym, że większość punktów z przestrzeni leży w pobliżu
zbioru wypełniającego przynajmniej połowę przestrzeni. By pojęcie to sformalizować po-
trzebujemy dwóch ważnych definicji.

Definicja 2.1. Niech (X, d) będzie przestrzenią metryczną, zaś A dowolnym podzbiorem
X. Dla t > 0 określamy t-otoczenie zbioru A wzorem

At := {x ∈ X : d(x,A) < t} =
⋃
y∈A

B(y, t),

gdzie B(y, t) oznacza kulę otwartą w X o środku w y i promieniu t.

Definicja 2.2. Niech µ będzie borelowską miarą probabilistyczną na (X, d). Funkcję kon-
centracji miary µ definiujemy jako

αµ(t) = α(X,d,µ)(t) := sup
{

1− µ(At) : µ(A) ­ 1
2

}
.

Na początek wykładu podamy kilka przykładów, dla których można dobrze oszacować
funkcję koncentracji. Dowody podanych oszacowań przedstawimy później.

Przykład 1. Niech d oznacza odległość geodezyjną na n-wymiarowej sferze Sn =
{x ∈ Rn+1 : |x| = 1}, zaś σn oznacza unormowaną miarę powierzcniową na Sn. Wówczas
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okazuje się, że jeśli chcemy zminimalizować σn(At) po wszystkich zbiorach ustalonej miary,
ekstremalne są kule (zwane też czapeczkami), to znaczy

σn(A) = σn(B(x0, r)) ⇒ σn(At) ­ σn(B(x0, r)t) = σn(B(x0, r + t)).

W szczególności jeśli σn(A) ­ 1/2, to

σn(At) ­ σn
(
B
(
x0,

π

2
+ t
))
­ 1− exp

(
− (n− 1)t2

2

)
.

Zatem ασn(t) ¬ exp(−n−1
2 t2).

Uwaga 2.3. Zauważmy, że funkcja koncentracji σn szybko zbiega do 0 przy n→∞. Jedną
z przyczyn tego zjawiska jest to, że miara ta nie jest dobrze unormowana. Jeśli przez
σn,R określimy rozkład jednostajny na sferze RSn, to ponieważ jest on obrazem σn przy
jednokładności o skali R, to

ασn,R(t) = ασn

( t
R

)
¬ exp

(
− n− 1

2R2 t
2
)
.

Zauważmy też, że ∫
RSn

xixjdσn,R(x) =
R2

n+ 1
δi,j .

Zatem miara jednostajna na
√
n+ 1Sn ma dobrą normalizację, to znaczy taką, że macierz

kowariancji jest identycznością. Dla tej miary dla n ­ 2,

ασn,√n+1(t) ¬ exp
(
− n− 1

2(n+ 1)
t2
)
¬ exp

(
− 1

6
t2
)
.

Przykład 2. Niech γk oznacza kanoniczny rozkład gaussowski na Rk, tzn. rozkład
z gęstością (2π)−k/2 exp(−|x|2/2). Wówczas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazują się półprzestrzenie, tzn. jeśli

γk(A) = γk
(
(−∞, r]× Rk−1

)
= Φ(r),

to
γk(At) ­ γk

((
(−∞, r]× Rk−1)

t

)
= γk

(
(−∞, r + t]× Rk−1

)
= Φ(r + t).

W szczególności

αγk(t) = 1− Φ(t) ¬ 1
2
e−t

2/2.

Zauważmy, że powyższe oszacowania nie zależą od wymiaru przestrzeni.

Przykład 3. Niech ν będzie symetrycznym rozkładem wykładniczym, tzn. rozkładem
na R z gęstością 1

2 exp(−|x|). Przez νk będziemy oznaczać rozkład produktowy ν⊗. . .⊗ν na
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Rk. Wyznaczenie ekstremalnych zbiorów dla problemu izoperymetrycznego związanego z tą
miarą jest trudne i nieznane dla k 6= 1. Choć wiadomo, że ekstremalne nie są półprzestrzenie
postaci (−∞, r]× Rk−1, to są one optymalne z dokładnością do stałej, tzn.

νk(A) = ν((−∞, r]) ⇒ νk(At) ­ ν
((
−∞, r +

1

2
√

6
t
])
.

W szczególności

ανk(t) ¬ 1− ν
((
−∞, 1

2
√

6
t
])

=
1
2

exp
(
− 1

2
√

6
t
)
.

Zauważmy, że znowu uzyskane oszacowanie nie zależy od wymiaru przestrzeni.

Przykład 4. Niech µ będzie unormowaną miarą liczącą na kostce dyskretnej {0, 1}n
z metryką d(x, y) = 1

n#{i : xi 6= yi}. Tu problem izoperymetryczny daje się rozwiązać
(optymalne są kule, ewentualnie z dodanymi niektórymi punktami na brzegu). W tym
przypadku można pokazać, że

αµ(t) ¬ e−2nt2 .

Krótki przegląd wyników pokazuje, że w wielu ważnych zastosowaniach można wykazać,
że αµ(t) ¬ C1 exp(−t2/C2) – mówimy wtedy, że funkcja koncentracji jest typu gaussow-
skiego. Widzielismy też przykład, w którym αµ(t) ¬ C1 exp(−t/C2) – mówimy wtedy o
koncentracji wykładniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia się miara otoczenia zbioru, a raczej
jak szybko maleją ogony funkcji określonych na przestrzeni. W tej części powiążemy ze
sobą te zjawiska. Zacznijmy od definicji mediany i modułu ciągłości.

Definicja 2.4. Niech µ będzie miarą probabilistyczną na (X, d) oraz f będzie mierzalną
funkcją z X w R.
Medianą funkcji f względem miary µ nazywamy taką liczbę M = Medµ(f) dla której

µ({x : f(x) ­M}) ­ 1
2

oraz µ({x : f(x) ¬M}) ­ 1
2
.

Modułem ciągłości f nazywamy funkcję

wf (t) := sup{|f(x)− f(y)| : d(x, y) ¬ t}.

Fakt 2.5. Dla dowolnej funkcji mierzalnej F : X→ R,

µ({x : F (x) > Medµ(F ) + wF (t)}) ¬ αµ(t)

oraz
µ({x : |F (x)−Medµ(F )| > wF (t)}) ¬ 2αµ(t).
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Dowód. Niech A := {x : F (x) ¬ Medµ(F )} wówczas µ(A) ­ 1/2 zatem µ(At) ­ 1 −
αµ(t). Ponadto, jeśli x ∈ At, to istnieje y ∈ A takie, że d(x, y) < t i wówczas F (x) ¬
F (y) +wF (t) ¬ Medµ(F ) +wF (t), stąd pierwsza nierówność w fakcie. Stosując ją do −F i
zauważając, że Medµ(−F ) = −Medµ(F ) oraz w−F = wF dostajemy

µ({x : F (x) < Medµ(F )− wF (t)}) ¬ αµ(t).

Dodając powyższą nierówność do poprzedniej otrzymamy ostatnią część faktu.

Przypomnijmy definicję funkcji lipschitzowskiej

Definicja 2.6. Funkcję F : (X, d)→ R nazywamy lipschitzowską, jeśli

‖F‖Lip := sup
x 6=y

|F (x)− F (y)|
d(x, y)

<∞.

Mówimy, że funkcja jest L-lipschitzowska jeśli ‖F‖Lip ¬ L, tzn. |F (x) − F (y)| ¬ Ld(x, y)
dla wszystkich x, y ∈ X.

Analogicznie można zdefiniować funkcje lipschitzowskie między przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jeśli F jest lipschitzowska ze stałą L, to dla t > 0,

µ({x : F (x) > Medµ(F ) + t}) ¬ αµ(t/L)

oraz
µ({x : |F (x)−Medµ(F )| > t}) ¬ 2αµ(t/L).

ii) Na odwrót, jeśli dla każdej funkcji 1-lipschitzowskiej F i ustalonego t > 0,

µ({x : F (x) ­ Medµ(F ) + t}) ¬ α,

to αµ(t) ¬ α.

Dowód. i) Wynika z Faktu 2.5 i oczywistego szacowania wf (t) ¬ tL.
ii) Ustalmy zbiór A taki, że µ(A) ­ 1/2 i określmy F (x) := d(x,A). Wówczas F jest

1-lipschitzowska oraz Medµ(F ) = 0, zatem

α ­ µ({F ­ t}) = µ({x : d(x,A) ­ t}) = 1− µ(At).

Często łatwiej i naturalniej jest wykazywać koncentrację funkcji lipschitzowskich wokół
średniej a nie mediany. Kolejny fakt pokazuje jak odzyskać funkcję koncentracji w takim
przypadku.
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Fakt 2.8. Załóżmy, że µ jest miarą probabilistyczną na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F i t > 0 zachodzi

µ
({
x : F (x) >

∫
Fdµ+ t

})
¬ α(t). (1)

Wówczas dla dowolnego zbioru borelowskiego A takiego, że µ(A) > 0 zachodzi

1− µ(At) ¬ α(µ(A)t).

W szczególności

αµ(t) ¬ α
( t

2

)
.

Ponadto, jeśli limt→∞ α(t) = 0, to dowolna funkcja 1-lipschitzowska jest całkowalna wzglę-
dem µ i jeśli dodatkowo α jest ciągła, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowód. Ustalmy zbiór borelowski A taki, że µ(A) > 0 oraz liczbę t > 0. Zdefiniujmy
F (x) := min{d(x,A), t}, wówczas funkcja F jest ograniczona, 1-lipschitzowska i

∫
Fdµ ¬

t(1− µ(A)). Stąd na mocy (1),

1− µ(At) = µ({F ­ t}) ¬ µ
({
F ­

∫
Fdµ+ µ(A)t

})
¬ α(µ(A)t).

W szczególności, jeśli µ(A) ­ 1/2, to 1− µ(At) ¬ α(t/2).
By udowodnić drugą część faktu, ustalmy funkcję 1-lipschitzowską F i niech Fn :=

min{|F |, n}. Z (1) zastosowanej do −Fn dostajemy

µ
({
x : Fn(x) ¬

∫
Fndµ− t

})
¬ α(t).

Wybierzmy t0 takie, że α(t0) < 1/2 orazm := Medµ|F |. Wówczas µ({Fn ¬ m}) ­ 1/2, czyli
zbiory {Fn ¬ m} oraz {Fn >

∫
Fndµ−t0} mają niepuste przecięcie. Zatem

∫
Fndµ ¬ m+t0

i z twierdzenia Lebesgue’a o zbieżności monotonicznej dostajemy
∫
|F |dµ ¬ m + t0 < ∞.

Ostatnią część tezy dostajemy stosując (1) do min{max{F,−n}, n} i przechodząc z n →
∞.

3 Nierówności izoperymetryczne

W tej części omówimy kilka nierówności izoperymetrycznych, pokazując różne sposoby ich
dowodzenia - poprzez powiązane nierówności funkcyjne, symetryzacje czy transport miary.
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3.1 Klasyczna izoperymetria

Chociaż w tym wykładzie będziemy się zajmować miarami probabilistycznymi, to przegląd
nierówności izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a λn.

Twierdzenie 3.1. Jeśli A jest podzbiorem borelowskim Rn takim, że λn(A) = λn(B(x0, r)),
to dla dowolnego t > 0,

λn(At) ­ λn(B(x0, r)t) = λn(B(x0, r + t)).

Twierdzenie 3.2 (Nierówność Prékopy-Leindlera). Jeśli s ∈ [0, 1] oraz f, g, h : Rn →
[0,∞) spełniają warunek

h(sx+ (1− s)y) ­ f(x)sg(y)1−s dla x, y ∈ Rn, (2)

to ∫
Rn
h(x)dx ­

( ∫
Rn
f(x)dx

)s( ∫
Rn
g(x)dx

)1−s
.

Dowód. Najpierw wykażemy, że dla niepustych zbiorów A,B ∈ B(Rn) zachodzi

λ1(A+B) ­ λ1(A) + λ1(B).

Ponieważ λ1(A) = sup{λ1(K) : K ⊂ A,K zwarty}, to możemy przyjąć, że zbiory A i B są
zwarte. Ponadto odpowiednio je przesuwając możemy też zakładać, że supA = inf B = 0.
Wówczas A ∩B = {0} oraz

λ1(A+B) ­ λ1(A ∪B) = λ1(A) + λ1(B).

Nierówność Prékopy-Leindlera udowodnimy przez indukcję po n. Najpierw rozważ-
my n = 1. Możemy zakładać, że f, g i h są ograniczone, a z uwagi na jednorodność, że
sup f(x) = sup g(x) = suph(x) = 1. Zauważmy, że dla 0 ¬ r < 1, {h ­ r} ⊃ s{f ­
r}+ (1− s){g ­ r}, więc całkując przez części dostajemy∫

h(x)dx =
∫ 1

0
λ1({h ­ r})dr ­

∫ 1

0
λ1(s{f ­ r}+ (1− s){g ­ r})dr

­
∫ 1

0
λ1(s{f ­ r}) + λ1((1− s){g ­ r})dr

= s

∫
fdx+ (1− s)

∫
gdx ­

( ∫
fdx

)s( ∫
gdx

)1−s
,

gdzie ostatnia nierówność wynika z porównywania ważonych średnich arytmetycznych i
geometrycznych.
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Załóżmy teraz, że n ­ 2 oraz teza twierdzenia zachodzi dla n−1. Niech f, g, h spełniają
(2) i określmy dla x ∈ R

F (x) =
∫

Rn−1
f(x, z)dz, G(x) =

∫
Rn−1

g(x, z)dz oraz H(x) =
∫

Rn−1
h(x, z)dz.

Zauważmy, że dla ustalonego x, y ∈ R

h(sx+ (1− s)y, sz1 + (1− s)z2) ­ f(x, z1)sg(y, z2)1−s dla z1, z2 ∈ Rn−1.

Zatem na mocy założenia indukcyjnego

H(sx+ (1− s)y) ­ F (x)sG(y)1−s.

Stosując nierówność Prékopy-Leindlera w udowodnionym wcześniej przypadku n = 1 do-
stajemy ∫

Rn
h(x)dx =

∫
R
H(x)dx ­

( ∫
R
F (x)dx

)s( ∫
R
G(x)dx

)1−s

=
( ∫

Rn
f(x)dx

)s( ∫
Rn
g(x)dx

)1−s
.

Wniosek 3.3 (Nierówność Brunna-Minkowskiego). Dla dowolnych niepustych zbiorów bo-
relowskich A,B ⊂ Rn,

λn(sA+ (1− s)B) ­ λn(A)sλn(B)1−s dla s ∈ [0, 1]

oraz
λn(A+B)1/n ­ λn(A)1/n + λn(B)1/n.

Dowód. Pierwsza nierówność natychmiast wynika z nierówności Prékopy-Leindlera zasto-
sowanej do funkcji f = 1A, g = 1B oraz h = 1sA+(1−s)B.

By udowodnić drugą wystarczy rozważyć przypadek, gdy A i B są zbiorami skończonej
i niezerowej miary. Przyjmijmy wtedy

Ã =
A

s
, B̃ =

B

1− s
oraz s =

λn(A)1/n

λn(A)1/n + λn(B)1/n .

Wówczas λn(Ã) = λn(B̃) = (λn(A)1/n + λn(B)1/n)n, więc na podstawie wykazanej po-
przednio nierówności

λn(A+B) = λn(sÃ+ (1− s)B̃) ­ λn(Ã)sλn(B̃)1−s = (λn(A)1/n + λn(B)1/n)n.

Uwaga 3.4. Suma Minkowskiego dwu zbiorów borelowskich nie musi być zbiorem borelow-
skim, ale można wykazać, że jest zbiorem mierzalnym w sensie Lebesgue’a.
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Dowód Twierdzenia 3.1. Niech cn = λn(B(0, 1)), wówczas λn(A) = cnr
n i na podstawie

Wniosku 3.3,

λn(At) = λn(A+B(0, t)) ­ (λn(A)1/n + λn(B(0, t))1/n)n

= cn(r + t)n = λn(B(x0, r + t)).

Definicja 3.5. Dla miary µ na przestrzeni probabilistycznej (X, d) określamy zewnętzną
miarę brzegową µ+ wzorem

µ+(A) := lim inf
t→0+

µ(At)− µ(A)
t

.

Uwaga 3.6. Jeśli miara µ na Rn ma ciągłą gęstość g(x) oraz zbiór A ma gładki brzeg, to

µ+(A) =
∫
∂A
g(x)dHn−1(x),

gdzie Hn−1 oznacza n− 1 wymiarową miarę Haussdorffa.

Równoważna różniczkowa forma klasycznej nierówności izoperymetrycznej mówi, że
spośród zbiorów ustalonej objętości najmniejszą powierzchnię brzegu ma kula. Dokładniej:

Twierdzenie 3.7. Jeśli A jest podzbiorem borelowskim Rn takim, że λn(A) = λn(B(x0, r)),
to

λ+
n (A) ­ λ+

n (B(x0, r)) = nc1/n
n (λn(A))(n−1)/n,

gdzie

cn = λn(B(0, 1)) =
πn/2

Γ(n/2 + 1)
.

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jeśli A jest podzbiorem borelowskim Sn takim, że σn(A) = σn(B(x0, r)),
to dla dowolnego t > 0,

σn(At) ­ σn(B(x0, r)t) = σn(B(x0, r + t)).

Wniosek 3.9.

ασn(t) ¬
√
π

8
exp

(
− (n− 1)

2
t2
)
.
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Dowód. Dla n = 1 nie ma co dowodzić (bo zawsze αµ(t) ¬ 1/2). Będziemy więc zakładać,
że n ­ 2. Zauważmy, że

σn(B(x0, r)) = s−1
n

∫ r

0
sinn−1 tdt,

gdzie sn =
∫ π

0 sinn−1 tdt. Zatem

ασn(t) = 1− σn(B(x0, t+ π/2)) = s−1
n

∫ π

t+π/2
sinn−1 udu = s−1

n

∫ π/2

t
cosn−1 udu.

Stosując oszacowanie cosu ¬ exp(−u2/2) dla t ∈ [0, π/2], dostajemy∫ π/2

t
cosn−1 udu ¬

∫ π/2

t
e−(n−1)u2/2du ¬ 1√

n− 1

∫ ∞
t
√
n−1

e−s
2/2ds

=

√
2π√
n− 1

(1− Φ(t
√
n− 1)) ¬

√
π√

2(n− 1)
e−(n−1)t2/2.

Ponadto łatwe całkowanie przez części daje, że dla n ­ 3, sn = n−2
n−1sn−2, stąd

√
n− 1sn =

n− 2√
n− 1

sn−2 ­
√
n− 3sn−2,

zatem
inf
n­2

√
n− 1sn = min{s2,

√
2s3} = min{2, π/

√
2} = 2.

3.3 Izoperymetria gaussowska

Przypomnijmy, że przez γk oznaczamy kanoniczny rozkład gaussowski na Rk, tzn. rozkład
z gęstością (2π)−k/2 exp(−|x|2/2).

Głównym wynikiem, który wykażemy jest to, że dla rozkładów gaussowskich optymalne
dla problemu izoperymetrycznego są półprzestrzenie afiniczne, to znaczy zbiory postaci

H = {x ∈ Rk : 〈x, u〉 < r} dla pewnych u ∈ Sk−1 i r ∈ [−∞,∞]. (3)

Twierdzenie 3.10. Niech H będzie półprzestrzenią afiniczną, a A zbiorem borelowskim w
Rk takim, że γk(H) = γk(A). Wówczas dla dowolnego t > 0, γk(Ht) ¬ γk(At)

Zanim przystąpimy do dowodu twierdzenia pokażemy, że γk jest granicą rzutowań roz-
kładów jednostajnych na

√
nSn−1.

Niech P = Pk,n oznacza kanoniczny rzut Rn na Rk dla k < n, zaś σ̃n−1 oznacza
unormowaną miarę powierzchniową na

√
nSn−1. Oznaczmy przez µk,n obraz σ̃n−1 przy

tym rzutowaniu tzn.

µk,n(A) = σ̃n−1

(
P−1
k,n(A)

)
dla A ∈ B(Rk).
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Fakt 3.11 (Lemat Poincaré). Miara µk,n zbiega słabo przy n→∞ do miary γk, co więcej

lim
n→∞

µk,n(A) = γk(A) dla dowolnego zbioru borelowskiego A.

Dowód. Proste rozumowanie pokazuje, że miara µk,n ma gęstość gk,n(x) = c−1
k,ng̃k,n(x), gdzie

g̃k,n = (n−|x|
2

n )(n−k−2)/2
1{|x|¬

√
n} oraz ck,n =

∫
Rk g̃n,k(x)dx. Oczywiście limn→∞ g̃k,n(x) =

exp(−|x|2/2), ponadto |g̃k,n(x)| ¬ exp(−(n − k − 2)|x|2/(2n)) ¬ exp(−|x|2/(2n)) dla n ­
k + 2. Z twierdzenia Lebesgue’a o zbieżności zmajoryzowanej otrzymujemy limn→∞ cn,k =∫
Rk exp(−|x|2/2)dx, czyli gęstość miary µk,n zbiega punktowo do gęstości miary γk. Teza

faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [3]).

Dowód Twierdzenia 3.10. Ze względu na rotacyjną niezmienniczość miary γk możemy dla
uproszczenia notacji założyć, że H = {x : x1 < r}. Ustalmy dowolne r0 < r i niech
H0 = {x : x1 < r0}. Zauważmy, że γk(H0) < γk(A), zatem na podstawie Lematu Poin-
caré, µk,n(H0) ¬ µk,n(A) dla dużych n. Ponieważ P−1

k,n(H0)∩
√
nSn−1 jest kulą w

√
nSn−1,

więc na mocy izoperymetrii sferycznej

σ̃n−1

(
(P−1

k,n(A))t
)
­ σ̃n−1

(
(P−1

k,n(H0))t
)
.

Zauważmy, że przekształcenie Pk,n jest oczywiście 1-lipschitzowskie, więcAt ⊃ Pk,n((P−1
k,n(A))t)

i
µk,n(At) ­ µk,n(Pk,n((P−1

k,n(A))t)) ­ µk,n(Pk,n((P−1
k,n(H0))t)).

Nietrudno zauważyć, że
Pk,n((P−1

k,n(H0))t) = {x : x1 < rn}

oraz rn → r0 + t przy n→∞. Stąd

γk(At) = lim
n→∞

µk,n(At) ­ lim
n→∞

µk,n({x : x1 < rn}) = γk({x : x1 < r0 + t}),

z dowolności r0 < r wynika teza.

Twierdzenie 3.12. Jeśli γk(A) = Φ(x) to γk(At) ­ Φ(x + t) oraz γ+
k (A) ­ Iγ(γk(A)),

gdzie Iγ(x) := ϕ(Φ−1(x)) oraz ϕ(x) = Φ′(x) = 1√
2π

exp(−x2/2).

Dowód. Wystarczy zauważyć, że jeśli γk(H) = Φ(r) i H jest postaci (3), to Ht = {x ∈
Rk : 〈x, u〉 < r + t} i γk(Ht) = Φ(r + t).

Zauważając, że Φ(0) = 1/2 otrzymujemy:

Wniosek 3.13. αγk(t) ¬ 1− Φ(t) ¬ 1
2 exp(−t2/2).

Jak widzieliśmy już w dowodzie Twierdzenia 3.10 bardzo użyteczne jest pojęcie tzw.
transportu miary.
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Definicja 3.14. Niech µ i ν będą miarami na przestrzeniach mierzalnych X i Y. Powiemy,
że funkcja mierzalna T : X→ Y transportuje miarę µ na miarę ν (ew. miara ν jest obrazem
miary µ przy przekształceniu T ) jeśli ν(A) = µ(T−1(A)) dla wszystkich mierzalnych A ⊂ Y.

Szczególnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jeśli T : X → Y jest L-lipschitzowska oraz T transportuje miarę µ na ν, to
αν(t) ¬ αµ(t/L).

Dowód. Wystarczy zauważyć, że (T−1(A))t/L ⊂ T−1(At).

Transportując w sposób lipschitzowski miarę gaussowską można uzyskać oszacowania
funkcji koncentracji dla innych miar. Pokażemy dwa przykłady.

Wniosek 3.16. Niech µ[0,1]n oznacza rozkład jednostajny na kostce [0, 1]n. Wówczas µ[0,1]n

jest (2π)−1/2-lipschitzowskim obrazem γn. W szczególności αµ[0,1]n ¬
1
2 exp(−πt2).

Dowód. Określmy f : R→ (0, 1) wzorem

f(x) = µ[0,1]([0, f(x)]) = γ1((−∞, x]) = Φ(x).

Wówczas funkcja f transportuje miarę gaussowską γ1 na µ[0,1], to znaczy µ[0,1] = γ1 ◦ f−1.
Ponadto f ′(x) = (2π)−1/2 exp(−x2/2) ¬ (2π)−1/2, czyli f jest (2π)−1/2-lipschitzowska. Jeśli
teraz określimy F : Rn → (0, 1)n wzorem F (x) = (f(x1), . . . , f(xn)), to F transportuje
γn na µ oraz F jest (2π)−1/2-lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencją Faktu 3.15 i Wniosku 3.13.

Wniosek 3.17. Niech Bn = {x ∈ Rn : |x| ¬ 1} oznacza kulę jednostkową w Rn, zaś µBn
będzie rozkładem jednostajnym na Bn. Wówczas istnieje stała C taka, że µBn jest Cn−1/2-
lipschitzowskim obrazem γn. W szczególności αµBn ¬

1
2 exp(−nt2/(2C)).

Ponieważ obie miary γn i µBn są rotacyjnie niezmiennicze, będziemy szukać funkcji
T : Rn → Bn transportującej γn na µBn postaci Tx = x

|x|ϕ(|x|). Dalsze szczegóły pozosta-
wiamy Czytelnikowi jako ćwiczenie.

Otwarty problem. Rozwiązać zagadnienie izoperymetryczne dla zbiorów symetrycz-
nych, to znaczy znaleźć dla ustalonego t > 0, c ∈ [0, 1],

inf
{
γk(At) : γk(A) = c, A = −A

}
oraz

inf
{
γ+
k (A) : γk(A) = c, A = −A

}
.

Dość naturalna hipoteza mówi, że dla c ­ 1/2 rozwiązaniem obu problemów są zbiory
postaci [−a, a]×Rk−1 zaś dla c < 1/2 drugi problem się optymalizuje dla (R\[−a, a])×Rk−1.
Podobny problem można postawić dla miary σn, ale tam analogiczna hipoteza okazuje się
być niestety fałszywa.
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4 Metoda Martyngałowa

4.1 Transformata Laplace’a

Wiele dalszych szacowań będzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatą Laplace’a zmiennej losowej Z nazywamy funkcję

LZ(λ) := EeλZ λ ∈ R.

Podobnie jeśli µ jest miarą probabilistyczną na pewnej przestrzeni X oraz F : X → R, to
transformatę Laplace’a F względem µ określamy

LF,µ(λ) :=
∫
X
eλF (x)dµ(x).

Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z ­ t) ¬ inf
λ­0

e−λtLZ(λ) dla t ­ 0.

W szczególności, jeśli dla pewnego a > 0,

LZ(λ) ¬ exp(aλ2) λ ∈ R,

to dla t ­ 0

P(Z ­ t) ¬ exp
(
− t2

4a

)
oraz P(|Z| ­ t) ¬ 2 exp

(
− t2

4a

)
.

Dowód. Pierwsza część wynika z nierówności Czebyszewa, a druga z pierwszej i prostego
rachunku.

Zatem by udowodnić, że funkcja koncentracji miary µ jest gaussowska wystarczy wy-
kazać, że LF,µ(λ) ¬ exp(aλ2) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, że

∫
Fdµ = 0.

4.2 Nierówność Azumy

Poniższa nierówność to udowodnione przez Azumę uogólnienie nierówności Hoeffdinga (zob.
Fakt 4.9 poniżej) na przypadek martyngałowy.

Twierdzenie 4.3 (Nierówność Hoeffdinga-Azumy). Niech (Mk,Fk)nk=0 będzie martynga-
łem o ograniczonych przyrostach takim, że ‖Mk −Mk−1‖∞ ¬ ak. Wówczas

P(Mn −M0 ­ t) ¬ exp
(
− t2

2
∑n
i=1 a

2
i

)
.
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Dowód. Określmy dla 1 ¬ k ¬ n, dk := Mk −Mk−1, wówczas E(dk|Fk−1) = 0. Mamy
1−u

2 (−x) + 1+u
2 x = ux, więc z wypukłości exp(x),

eux ¬ 1− u
2

e−x +
1 + u

2
ex = u sinh(x) + cosh(x) dla |u| ¬ 1.

Stosując tę nierówność dla u = dk/ak i x = λak dostajemy

E(eλdk |Fk−1) ¬ E
(dk
ak

∣∣∣Fk−1

)
sinh(λak) + cosh(λak) = cosh(λak).

Liczymy

Eeλ(Mn−M0) = Eeλ(Mn−1−M0+dn) = E(eλ(Mn−1−M0)E(eλdn |Fn−1))

¬ cosh(λan)Eeλ(Mn−1−M0).

Zatem iterując powyższą nierówność i stosując oszacowanie (wynikające np. z rozwinięcia
w szereg Taylora) cosh(x) ¬ exp(x2/2) dostajemy

LMn−M0(λ) = Eeλ(Mn−M0) ¬
n∏
k=1

cosh(λak) ¬ exp(
1
2

n∑
k=1

a2
kλ

2).

Teza twierdzenia wynika z Faktu 4.2.

Uwaga 4.4. Najczęściej będziemy mieli F0 = {∅,Ω}, wówczas M0 jest stałe, a ponieważ
martyngał ma stałą wartość oczekiwaną, to M0 = EMn.

W poniższych zastosowaniach będziemy przyjmować Mk = Eµ(F |Fk) dla całkowalnej
funkcji F : X→ R i odpowiednio dobranego (Fk) ciągu σ-ciał podzbiorów X.

4.3 Zastosowania nierówności Azumy

Wniosek 4.5. Niech (Xi, di) będą przetrzeniami metrycznymi, X = X1 × · · · × Xn z od-
ległością l1, to znaczy d(x, y) =

∑n
i=1 di(xi, yi) dla x, y ∈ X oraz niech µ = µ1 ⊗ . . . ⊗

µn będzie produktem miar probabilistycznych µi na Xi. Wówczas dla dowolnej funkcji 1-
lipschitzowskiej F na X

µ
({
x : F (x) ­

∫
Fdµ+ t

})
¬ exp(− t2

2D2 ),

gdzie D = (
∑n
i=1 Diam(Xi)2)1/2. W szczególności

αµ(t) ¬ exp
(
− t2

8D2

)
.
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Dowód. Na mocy Faktu 2.8 wystarczy wykazać pierwszą nierówność tezy. Niech Fk będzie
σ ciałem generowanym przez pierwsze k-współrzędnych oraz Mk := Eµ(F |Fk). Wówczas
oczywiście

Mk(x) = M̃k(x1, . . . , xk) =
∫

Xk+1×...×Xn
F (x)dµi+1(xi+1) · · · dµn(xn),

stąd

|Mk(x)−Mk−1(x)| = |M̃k(x1, . . . , xk)−
∫

Xk
M̃k(x1, . . . , xk)dµk(xk)|

¬ sup
yk,zk∈Xk

|M̃k(x1, . . . , xk−1, yk)− M̃k(x1, . . . , xk−1, zk)|

¬ sup
y∈X,zk∈Xk

|F (x1, . . . , xk−1, yk, yk+1, . . . , yn)− F (x1, . . . , xk−1, zk, yk+1, . . . , yn)|

¬ sup
yk,zk∈Xk

dk(yk, zk) ¬ Diam(Xk)

i teza wynika z Twierdzenia 4.3.

Przykład 1. Niech X = {0, 1}n z odległością d(x, y) = 1
n#{i : xi 6= yi} i unormowaną

miarą liczącą µ. Kładąc Xi = {0, 1} z odległością di(x, y) = 1
nI{x 6=y} widzimy, że możemy

stosować poprzedni wniosek i D = (
∑n
i=1 Diam(Xi)2)1/2 = n−1/2. Zatem

α({0,1}n,d,µ) ¬ exp(−nt
2

8
).

Definicja 4.6. Mówimy, że skończona przestrzeń metryczna (X, d) ma długość co najwyżej
l, jeśli istnieje rosnący ciąg podziałów X, {X} = A0,A1, . . . ,An = {{x} : x ∈ X} (Ai
jest podpodziałem Ai−1) oraz liczby a1, . . . , an spełniające (

∑n
i=1 a

2
i )

1/2 ¬ l takie, że dla
dowolnego A ∈ Ai−1 oraz B,C ∈ Ai, B, C ⊂ A istnieje bijekcja Φ: B → C dla której
d(x,Φ(x)) ¬ ai dla x ∈ B.

Uwaga 4.7. Biorąc A0 = {X} i A1 = {{x} : x ∈ X} widzimy, że każda skończona przestrzeń
metryczna ma długość nie większą niż Diam(X).

Twierdzenie 4.8. Jeśli (X, d) jest skończoną przestrzenią metryczną o długości co naj-
wyżej l, zaś µ unormowaną miarą liczącą na X, to dla funkcji 1-lipschitzowskich F na
X,

µ
({
x : F (x) ­

∫
Fdµ+ t

})
¬ exp(− t2

2l2
),

w szczególności

αµ(t) ¬ exp
(
− t2

8l2
)
.

17



Dowód. Ustalmy funkcję 1-lipschitzowską F . Niech Fi będzie σ-ciałem generowanym przez
Ai oraz Mi := Eµ(F |Fi) dla i = 0, . . . , n. Wówczas

Mi(x) =
1

#A

∑
y∈A

F (y) dla x ∈ A ∈ Ai.

Zatem, jeśli A ∈ Ai−1, B,C ∈ Ai, B,C ⊂ A oraz Φ: B → C jest bijekcją jak w Definicji
4.6, to dla x ∈ B, y ∈ C,

|Mi(x)−Mi(y)| =
∣∣∣ 1
#B

∑
z∈B

(F (z)− F (Φ(z))
∣∣∣ ¬ sup

z∈B
|F (z)− F (Φ(z))|

¬ sup
z∈B

d(z,Φ(z)) ¬ ai.

Ponieważ Mi−1 na A ∈ Ai−1 jest uśrednieniem Mi po B ⊂ A,B ∈ Ai, to mamy |Mi(x)−
Mi−1(x)| ¬ ai, czyli ‖Mi −Mi−1‖∞ ¬ ai−1. Teza wynika z Twierdzenia 4.3 oraz Faktu
2.8.

Przykład 2. Niech Πn będzie grupą permutacji zbioru {1, . . . , n} z metryką d(σ, π) =
1
n#{i : σi 6= πi}, a µ unormowaną miarą liczącą na Πn. Niech Ai składa się ze zbiorów
postaci

Aj1,...,ji = {σ ∈ Πn : σ(1) = j1, . . . , σ(i) = ji}.

Wówczas jeśli B,C ∈ Ai są podzbiorami pewnego A ∈ Ai−1 to B = Aj1,...,ji−1,p, C =
Aj1,...,ji−1,q i możemy zdefiniować bijekcję Φ między B i C jako Φ(σ) = τp,q ◦ σ, gdzie
τp,q jest transpozycją zamieniającą p z q. Łatwo sprawdzić, że d(σ,Φ(σ)) ¬ 2/n, zatem
l = 2/

√
n i

α(Πn,d,µ) ¬ exp(−nt
2

32
).

4.4 Nierówności wykładnicze dla sum niezależnych zmiennych losowych

W tej części omówimy kilka nierówności wykładniczych dla sum niezależnych zmiennych
losowych, które bazują na szacowaniu transformaty Laplace’a. Dla uproszczenia notacji
zdefiniujemy dla zmiennej losowej Z i λ ∈ R,

ΛZ(λ) := lnLZ(λ) = ln EeλZ .

Fakt 4.9 (Hoeffding). Jeśli Xi są niezależnymi zmiennymi losowymi takimi, że ai ¬ Xi ¬
bi oraz S =

∑n
i=1Xi, to

P(S ­ ES + t) ¬ exp

(
− t2

2
∑n
i=1(bi − ai)2

)
.
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Dowód. Wystarczy zauważyć, że Mk =
∑k
i=1(Xi−EXi) jest martyngałem, |Mk−Mk−1| =

|Xk −EXk| ¬ bk − ak i skorzystać z Twierdzenia 4.3.

Lemat 4.10. Załóżmy, że X jest zmienną losową o średniej zero taką, że istnieją σ2,M <
∞ spełniające warunek

E|X|k ¬ k!
2
σ2Mk−2 dla k = 2, 3, . . . .

Wówczas

ΛX(λ) ¬ σ2t2

2(1−M |λ|)
dla M |λ| < 1.

Dowód. Liczymy

LX(λ) =
∞∑
k=0

λk

k!
EXk ¬ 1 +

∞∑
k=2

|λ|k

2
σ2Mk−2 = 1 +

λ2σ2

2

∞∑
k=2

(|λ|M)k−2

= 1 +
σ2λ2

2(1−M |λ|)
¬ exp

(
σ2λ2

2(1−M |λ|)

)
.

Twierdzenie 4.11 (Nierówność Bernsteina). Załóżmy, że Xi są niezależnymi zmiennymi
losowymi o średniej zero, zaś σ2

i ,M <∞ są takie, że

E|Xi|k ¬
k!
2
σ2
iM

k−2 dla i ­ 1, k ­ 2. (4)

Wówczas

E exp

(
λ

n∑
i=1

Xi

)
¬ exp

(
λ2∑n

i=1 σ
2
i

2(1−M |λ|)

)
dla M |λ| < 1

oraz dla t > 0,

P

(
n∑
i=1

Xi ­ t
)
¬ exp

(
− t2

2
∑n
i=1 σ

2
i + 2Mt

)
,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ­ t
)
¬ 2 exp

(
− t2

2
∑n
i=1 σ

2
i + 2Mt

)
.

Dowód. Niech S :=
∑n
i=1Xi, σ2 :=

∑n
i=1 σ

2
i , wówczas ΛS =

∑
i ΛXi i pierwsze oszacowanie

wynika z Lematu 4.10. Dalej szacujemy

P(S ­ t) ¬ exp

(
− sup
λ>0

(λt− ΛS(λ))

)
¬ exp

(
− sup

0<t<M−1

(
λt− λ2σ2

2(1−Mλ)

))

¬ exp

(
− t2

2σ2 + 2Mt

)
,
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gdzie ostatnią nierówność dostajemy przyjmując λ = t(σ2 +Mt)−1. Ponieważ zmienne −Xi

spełniają te same założenia co Xi, więc dostajemy dla t < 0,

P(S ¬ t) = P(−S ­ −t) ¬ exp

(
− t2

2σ2 + 2Mt

)

i z tożsamości P(|S| ­ t) = P(S ­ t) + P(S ¬ −t) wynika ostatnia część tezy.

Uwaga 4.12. Na mocy centralnego twierdzenia granicznego oraz szacowania dystrybuanty
gaussowskiej nie możemy się spodziewać lepszego oszacowania niż exp(−t2/(2σ2)). Ponadto
zmienne Xi o rozkładzie symetrycznym wykładniczym z parametrem 1 (tzn. zmienne z
gęstością exp(−|x|)/2) spełniają E|Xi|k = k!, czyli dla takich zmiennych zachodzą założenia
Twierdzenia 4.11 z σ2

i = 2,M = 1. Pokazuje to, że nie możemy uzyskać szacowania lepszego
niż exp(−t/M) przy t→∞.

Wniosek 4.13. Załóżmy, że Xi są ograniczonymi, niezależnymi zmiennymi losowymi o
średniej zero, wówczas dla t > 0,

P

(
n∑
i=1

Xi ­ t
)
¬ exp

(
− t2

2σ2 + 2at/3

)
,

gdzie σ2 = Var(
∑n
i=1Xi) =

∑n
i=1 EX2

i oraz a = maxi ‖Xi‖∞.

Dowód. Mamy dla k ­ 2,

E|Xi|k ¬ ak−2EX2
i ¬

k!
2

(
a

3

)k−2
EX2

i ,

zatem warunek (4) jest spełniony z M = a/3 oraz σi = EX2
i .

W wielu zastosowaniach wygodniej zamiast bezpośrednio oszacowania (4) używać sza-
cowania stałej subwykładniczej zmiennych losowych Xi.

Definicja 4.14. Mówimy, że zmienna losowa Xi jest subwykładnicza, jeśli E exp(λ|X|) <
∞ dla pewnego λ > 0. Dla zmiennej subwykładniczej X określamy jej stałą subwykładniczą
wzorem

‖X‖ψ1 := inf{λ > 0: Ee|X|/λ ¬ 2}.

Wielkość ‖X‖ψ1 to nic innego jak norma Orlicza X dla funkcji Younga ψ1(x) = ex− 1.

Lemat 4.15. Jeśli X jest zmienną subwykładniczą, to ‖X‖ψ1 <∞. Ponadto,

E|X|k ¬ k!‖X‖kψ1 dla k = 1, 2, . . . .
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Dowód. Pierwsza część wynika stąd, że funkcja λ 7→ (E exp(λ|X|))1/λ jest niemalejąca na
(0,∞). Biorąc t > ‖X‖ψ1 dostajemy

1
k!

E
( |X|

t

)k
¬ E exp

( |X|
t

)
− 1 ¬ 1

Twierdzenie 4.16 (Nierówność Bernsteina dla zmiennych subwykładniczych). Załóżmy,
że Xi są niezależnymi subwykładniczymi zmiennymi losowymi o średniej zero. Wówczas
dla t > 0,

P

(
n∑
i=1

Xi ­ t
)
¬ exp

(
− t2

4
∑n
i=1 ‖Xi‖2Ψ1 + 4tmaxi ‖Xi‖Ψ1

)
oraz

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ­ t
)
¬ 2 exp

(
− t2

4
∑n
i=1 ‖Xi‖2Ψ1 + 4tmaxi ‖Xi‖Ψ1

)
.

Dowód. Lemat 4.15 implikuje, że oszacowanie (4) zachodzi z σ2
i = 2‖Xi‖2ψ1 iM = maxi ‖X‖ψ1 .

Wystarczy zatem zastosować Twierdzenie 4.11.

Szacowanie podane we Wniosku 4.13 jest, z uwagi na centralne twierdzenie granicz-
ne, bliskie optymalnego dla t małych. Jednak dla t dużych można je poprawić o czynnik
logarytmiczy.

Lemat 4.17. Załóżmy, że X jest zmienną losową o średniej zero, wariancji σ2 oraz
‖Xi‖∞ ¬ a. Wówczas

ΛX(λ) ¬ σ2

a2 (eλa − λa− 1) dla λ ­ 0.

Dowód. Liczymy

EeλX = 1 + λEX +
∞∑
k=2

λkEXk

k!
¬ 1 + σ2

∞∑
k=2

λkak−2

k!
= 1 +

σ2

a2 (eλa − λa− 1)

i teza wynika natychmiast z nierówności ln(1 + x) ¬ x.

Twierdzenie 4.18 (nierówność Bennetta). Załóżmy, że Xi są ograniczonymi niezależ-
nymi zmiennymi losowymi o średniej zero, σ2 = Var(

∑n
i=1Xi) =

∑n
i=1 EX2

i oraz a ­
maxi ‖Xi‖∞. Wówczas dla λ > 0,

E exp

(
λ

n∑
i=1

Xi

)
¬ exp

(
σ2

a2 (eλa − λa− 1)

)
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oraz dla t > 0,

P

(
n∑
i=1

Xi ­ t
)
¬ exp

(
−σ

2

a2 h

(
ta

σ2

))
¬ exp

(
− t

2a
ln
(

1 +
ta

σ2

))
,

gdzie
h(x) := (1 + x) ln(1 + x)− x.

Dowód. Pierwsza część wynika natychmiast z Lematu 4.17. By pokazać drugą zauważamy,
że dla S =

∑n
i=1Xi,

P(S ­ t) ¬ exp

(
− sup
λ>0

(λt− ΛS(λ))

)
¬ exp

(
− sup
λ>0

(
λt− σ2

a2 (eλa − λa− 1)

))
.

Prosty rachunek pokazuje, że powyższe supremum jest osiągane w punkcie

λ =
1
a

ln
(
1 +

at

σ2

)
i wynosi

σ2

a2

[(
1 +

ta

σ2

)
ln
(
1 +

ta

σ2

)
− ta

σ2

]
=
σ2

a2 h
( ta
σ2

)
­ t

2a
ln
(
1 +

ta

σ2

)
,

gdzie ostatnie oszacowanie wynika z poniższego lematu.

Lemat 4.19. Dla dowolnego x ­ 0,

(1 + x) ln(1 + x)− x ­ x

2
ln(1 + x).

Dowód. Niech f(x) = (1 + x) ln(1 + x) − x − (x/2) ln(1 + x) = (1 + x/2) ln(1 + x) − x.
Liczymy f ′(x) = (ln(1 + x) − x(1 + x)−1)/2, f ′′(x) = x(1 + x)−2, zatem f(0) = f ′(0) = 0
oraz f ′′(x) ­ 0 dla x ­ 0.

Uwaga 4.20. Jeśli P(Yn,i = 1) = 1−P(Yn,i = 0) = 1/n oraz Yn,i są niezależne, to rozkład∑n
i=1 Yi,n zbiega do rozkładu Poissona z parametrem 1. Biorąc Xn,i = Yn,i − 1/n mamy∑n
i=1 EX2

i,n ¬ 1 oraz maxi ‖Xi,n‖∞ ¬ 1. To pokazuje, że przy założeniach Twierdzenia
4.18 nie można uzyskać przy t→∞ oszacowania lepszego rzędu niż t ln t.

Uwaga 4.21. Nierówność Bennetta ma swoją wersję martyngałową. Mianowicie, dla mar-
tyngału (Mk,Fk)nk=0 spełniającego warunki

max
k
‖Mk −Mk−1‖∞ ¬ a

i
n∑
k=1

‖E((Mk −Mk−1)2|Fk−1)‖∞ ¬ σ2,

zachodzi nierówność

P(Mn −M0 ­ t) ¬ exp

(
−σ

2

a2 h

(
ta

σ2

))
¬ exp

(
− t

2a
ln
(

1 +
ta

σ2

))
.
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5 Nierówność Poincaré

5.1 Definicja i podstawowe własności

Definicja 5.1. Mówimy, że miara probabilistyczna µ na (X, d) spełnia nierówność Poincaré
ze stałą C, jeśli dla wszystkich ograniczonych lipschitzowskich funkcji f na X zachodzi

Varµ(f) ¬ C
∫
|∇f |2dµ, (5)

gdzie

|∇f |(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y)

,

jeśli x jest punktem skupienia X i |∇f |(x) = 0, jeśli x jest punktem izolowanym X.

Uwaga 5.2. W przypadku, gdy X = Rn ze standardową metryką euklidesową możemy użyć
twierdzenia Rademachera, które mówi, że każda funkcja Lipchitzowska jest różniczkowalna
prawie wszędzie i wtedy |∇f |(x) jest dla prawie wszystkich x równy długości zwykłego gra-
dientu f . Ponadto argument aproksymacyjny pokazuje, że by wykazać nierówność Poincaré
dla miar probabilistycznych na Rn wystarczy sprawdzić (5) dla ograniczonych funkcji klasy
C1(Rn) o ograniczonych pochodnych rzędu jeden.

Uwaga 5.3. Będziemy wykorzystywali tylko dwie własności |∇f |. Mianowicie, że dla funk-
cji 1-lipschitzowskich |∇f | ¬ 1 oraz, że dla dowolnej funkcji klasy C1(R), |∇g(F )| ¬
|g′(F )||∇F | (w szczególności |∇(f + c)| = |∇f |).
Uwaga 5.4. Załóżmy, że miara µ ma gęstość postaci e−V na Rn. Wówczas proste całkowanie
przez części pokazuje, że ∫

|∇f |2dµ =
∫

(−4f + 〈∇V,∇f〉)fdµ.

Definiując operator Lf := −4f + 〈∇V,∇f〉 widzimy, że L1 = 0. Nierówność Poincaré
mówi, że dla funkcji f o średniej 0, czyli prostopadłych do 1,

∫
fLfdµ ­ C−1 ∫ f2dµ. Biorąc

pod uwagę samosprzężoność L nierówność (5) jest równoważna temu, że kolejna wartość
własna L to conajmniej 1/C. Dlatego nierówność Poincaré się nazywa nierównością „luki
spektralnej” (spectral gap inequality).

Czasem wygodniej w nierówności Poincaré zastąpić wariancję funkcji przez całkę kwa-
dratu odchylenia od mediany, okazuje się, że prowadzi to do równoważnej nierówności.

Fakt 5.5. Nierówność Poincaré jest równoważna nierówności

∀f∈Lip(X) Eµ|f −Medµf |2 ¬ C̃
∫
|∇f |2dµ.

Co więcej optymalne stałe w obu nierównościach spełniają Copt ¬ C̃opt ¬ 3Copt.
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Dowód. Ponieważ

Varµ(f) = inf
c∈R

Eµ(f − c)2 ¬ Eµ|f −Medµf |2,

więc oczywiście Copt ¬ C̃opt.
By udowodnić przeciwne oszacowanie zauważmy, że

Varµ(f) ­ |Medµf −Eµf |2µ({|f −Eµf | ­ |Medµf −Eµf |})

­ 1
2
|Medµf −Eµf |2.

Stąd
Eµ|f −Medµf |2 ¬ Varµ(f) + |Medµf −Eµf |2 ¬ 3Varµ(f)

i otrzymujemy C̃opt ¬ 3Copt.

Fakt 5.6. Symetryczny rozkład wykładniczy ν na R z gęstością 1
2e
−|x| spełnia nierówność

Poincaré ze stałą 4.

Dowód. Proste całkowanie przez części pokazuje, że dla funkcji h ∈ C1
ogr(R),∫

h(x)dν(x) = h(0) +
∫

sgn(x)h′(x)dν(x).

Niech f ∈ C1
ogr(R) i g(x) = f(x)− f(0) wówczas∫
g2dν = 2

∫
sgn(x)g′(x)g(x)dν(x) ¬ 2

( ∫
g′2dν

)1/2( ∫
g2dν

)1/2
,

stąd

Varν(f) ¬
∫
g2dν ¬ 4

∫
g′2dν = 4

∫
f ′2dν.

5.2 Nierówność Poincaré a koncentracja wykładnicza

Twierdzenie 5.7. Załóżmy, że miara µ spełnia nierówność Poincaré ze stałą C. Wówczas
dla każdej funkcji 1-lipschitzowskiej F i t > 0

µ
({
F ­

∫
Fdµ+ t

})
¬ 2 exp

(
− t√

C

)
.

W szczególności αX(t) ¬ 2 exp(−t/2
√
C).
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Dowód. Rozpatrując F −
∫
Fdµ możemy założyć, że F ma średnią zero. Zauważmy, że dla

dowolnej funkcji różniczkowalnej g mamy |∇g(F )| ¬ |g′(F )||∇F | ¬ |g′(F )|. Niech

M(λ) := Mµ,F (λ) =
∫
eλFdµ.

Stosując nierówność Poincaré do eλF/2 dostajemy

M(λ)−M
(λ

2

)2
= Varµ(eλF/2) ¬ C

∫
|∇eλF/2|2dµ ¬ Cλ2

4
M(λ).

Zatem dla λ < 2/
√
C dostajemy

M(λ) ¬ 1
1− Cλ2/4

M
(λ

2

)2
.

Iterując tę nierówność n razy dostajemy

M(λ) ¬
n−1∏
k=0

( 1
1− Cλ2/4k+1

)2k

M
( λ

2n
)2n

.

Ponieważ M(0) = 1 i M ′(0) =
∫
Fdµ = 0, to M(λ/2n)2n → 1 przy n→∞ i

M(λ) ¬
∞∏
k=0

( 1
1− Cλ2/4k+1

)2k

.

Zauważmy, że

∞∏
k=0

(
1− Cλ24−k−1

)2k

­ 1− Cλ2
∞∑
k=0

2k4−k−1 = 1− C

2
λ2.

W szczególności M(1/
√
C) ¬ 2 i teza wynika z nierówności Czebyszewa.

Uwaga 5.8. Nierówność Poincaré nie implikuje lepszej koncentracji niż wykładnicza. Istot-
nie symetryczny rozkład wykładniczy na prostej ν spełnia nierówność Poincaré ze stałą 4,
a biorąc f(x) = x widzimy, że dla t > 0,

ν

({
x ∈ R : f(x) ­

∫
fdν + t

})
= ν([t,∞)) =

1
2
e−t.

25



5.3 Tensoryzacja

Fakt 5.9. Załóżmy, że µi są miarami probabilistycznymi na Xi, X = X1 × . . . × Xn oraz
µ = µ1 ⊗ µ2 ⊗ · · · ⊗ µn. Wówczas dla dowolnej funkcji f ∈ L2(X, µ)

Varµ(f) ¬
n∑
i=1

EµVarµi(f).

Dowód. Prosta indukcja pokazuje, że wystarczy rozpatrzeć przypadek n = 2. Wówczas

Varµ(f) = Eµ2Eµ1(f −Eµf)2 = Eµ2 [Varµ1(f) + (Eµ1f −Eµf)2]

= EµVarµ1(f) + Eµ2 [Eµ1(f −Eµ2f)]2

¬ EµVarµ1(f) + Eµ2Eµ1 [(f −Eµ2f)2] = EµVarµ1(f) + EµVarµ2(f),

gdzie ostatnia nierówność wynika np. z nierówności Jensena.

Wniosek 5.10. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają nierówność
Poincaré ze stałą Ci względem gradientu |∇i|. Wówczas miara µ = µ1 ⊗ · · · ⊗ µn spełnia
nierówność Poincaré ze stałą C = maxiCi względem gradientu ∇f danego wzorem

|∇f |2 =
n∑
i=1

|∇if |2.

Dowód. Z Faktu 5.9 dostajemy

Varµ(f) ¬
n∑
i=1

EµVarµi(f) ¬
n∑
i=1

EµCiEµi |∇if |2 ¬ CEµ

n∑
i=1

|∇if |2.

Wniosek 5.11. Produktowy rozkład wykładniczy νn spełnia nierówność Poincaré na Rn

ze stałą 4. W szczególności ανn(t) ¬ 2 exp(−t/4).

5.4 Dodatkowe własności. Charakteryzacja na prostej.

Kolejną przyjemną własnością nierówności Poincaré jest jej stabilność ze względu na zabu-
rzenia miary µ.

Fakt 5.12. Załóżmy, że µ jest miarą probabilistyczną na X, V jest ograniczoną funkcją bo-
relowską oraz dν = Z−1eV dµ, gdzie Z =

∫
eV dµ. Wówczas jeśli miara µ spełnia nierówność

Poincaré ze stałą C to ν spełnia nierówność Poincaré ze stałą Ce2‖V ‖∞.
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Dowód. Weźmy funkcję lipschitzowską f , odejmując stałą możemy założyć, że Eµf = 0.
Wówczas

Varν(f) ¬ Eνf
2 =

1
Z

∫
f2eV dµ ¬ 1

Z
e‖V ‖∞

∫
f2dµ

¬ 1
Z
e‖V ‖∞C

∫
|∇f |2dµ = Ce‖V ‖∞

∫
|∇f |2e−V dν

¬ Ce2‖V ‖∞
∫
|∇f |2dν.

Fakt 5.13. Jeśli miara ν na (Y, ρ) jest L-lipschitzowskim obrazem miary µ na (X, d) oraz
µ spełnia nierówność Poincaré ze stałą C, to ν spełnia nierówność Poincaré ze stałą CL2.

Dowód. Niech ν = µ ◦ ϕ−1, gdzie ϕ : X → Y i ‖ϕ‖Lip ¬ L. Dla funkcji lipschitzowskich f
na Y otrzymujemy

Varν(f) = Varµ(f ◦ ϕ) ¬ C
∫
|∇f ◦ ϕ|2dµ ¬ CL2

∫
|∇f |2(ϕ(x))dµ(x)

= CL2
∫
|∇f |2dν,

gdzie przedostatnia nierówność wynika z oszacowania |∇f ◦ ϕ|(x) ¬ L|∇f |(ϕ(x)).

Kolejne twierdzenie (które podamy bez dowodu) charakteryzuje miary na prostej, które
spełniają nierówność Poincaré.

Twierdzenie 5.14 (Muckenhaupt). Załóżmy, że µ jest miarą probabilistyczną na R o
medianie m, zaś p oznacza gęstość jej części absolutnie ciągłej. Wówczas miara µ spełnia
nierówność Poincaré ze skończoną stałą C wtedy i tylko wtedy gdy max{B+, B−} < ∞,
gdzie

B+ = sup
x>m

µ[x,∞)
∫ x

m

1
p(y)

dy

B− = sup
x<m

µ(−∞, x]
∫ m

x

1
p(y)

dy.

Co więcej optymalna stała Copt w nierówności Poincaré spełnia

1

(1 +
√

2)2
max{B+, B−} ¬ Copt ¬ 4 max{B+, B−}.
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5.5 Nierówność Cheegera

W tej sekcji ν oznacza symetryczny rozkład wykładniczy na prostej z gęstością 1
2e
−|x|.

Zanim sformułujemy definicję zaczniemy od prostego faktu.

Fakt 5.15. Niech µ będzie miarą probabilistyczną na (X, d). Następujące warunki są rów-
noważne dla ustalonego c > 0:
(i) µ+(A) ­ cmin{µ(A), 1− µ(A)} dla dowolnego zbioru borelowskiego A,
(ii) dla dowolnego zbioru borelowskiego A i x spełniających µ(A) = ν(−∞, x] zachodzi
µ(At) ­ ν(−∞, x+ ct].

Dowód. (ii)⇒(i). Niech µ(A) = ν(−∞, x], wówczas

µ+(A) = lim inf
t→0+

µ(At)− µ(A)
t

­ lim inf
t→0+

ν((−∞, x+ ct)− ν(−∞, x]
t

=
1
2
e−|x|

= min{ν(−∞, x], ν(x,∞)} = min{µ(A), 1− µ(A)}.

(i)⇒(ii). Ustalmy najpierw δ < 1 i niech

t0 = t0(δ) = inf{t > 0: µ(At) < ν(−∞, x+ δct].

Załóżmy najpierw, że t0 <∞. Wówczas z monotoniczności µ(At) łatwo wynika, że µ(At0) =
ν(−∞, x+ δct0], czyli

µ+(At0) ­ cmin{µ(At0), 1− µ(At0)} =
c

2
e−|x+δct0|

=
1
δ

lim
h→0+

ν(−∞, x+ δc(t0 + h)]− ν(−∞, x+ δct0]
h

.

Definicja dolnej i zwykłej granicy implikują, że istnieje h0 > 0 takie, że dla 0 < h ¬ h0,

µ(At0+h)− µ(A)
h

­ µ((At0)h)− µ(A)
h

­
√
δ
c

2
e−|x+δct0|

­ ν(−∞, x+ δc(t0 + h)]− ν(−∞, x+ δct0]
h

.

Stąd µ(At) ­ ν(−∞, x+ δct] dla t0 ¬ t ¬ t0 + h, co przeczy definicji t0.
Otrzymana sprzeczność pokazuje, że t0(δ) =∞, czyli µ(At) ­ ν(−∞, x+δct] dla t > 0.

Przechodząc z δ do 1 otrzymujemy (ii).

Definicja 5.16. Mówimy, że miara probabilistyczna µ na (X, d) spełnia nierówność Che-
egera ze stałą c > 0, jeśli zachodzi jeden z warunków równoważnych Faktu 5.15.

Okazuje się, że nierówność Cheegera ma też formę funkcyjną przypominającą nierów-
ność Poincaré.
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Twierdzenie 5.17. Miara µ spełnia nierówność Cheegera ze stałą c > 0 wtedy i tylko
wtedy, gdy dla dowolnej funkcji lipschitzowskiej ograniczonej f zachodzi

Eµ|f −Medµ(f)| ¬ 1
c

∫
|∇f |dµ

Do dowodu będziemy potrzebowali jednej z wersji tzw. „co-area formula”.

Lemat 5.18 (Nierówność co-area). Dla dowolnej funkcji Lipschitzowskiej f na X,∫
X
|∇f |dµ ­

∫ ∞
−∞

µ+({f > t})dt.

Dowód. Wystarczy udowodnić nierówność dla funkcji ograniczonych. Istotnie, przyjmując
fM = max{−M,min{f,M}}, zauważamy, że |∇fM | ¬ |∇f | i {fM > t} = {f > t} dla
|t| < M i przechodzimy z M do nieskończoności.

Rozpatrując zamiast f funkcję f + c, możemy zakładać, że f jest nieujemna. Określmy
dla t > 0 funkcję ft na X wzorem

ft(x) := sup{f(y) : d(x, y) < t}.

Lipschitzowskość f implikuje, że (ft−f)/t ¬M . Łatwo sprawdzić, że {ft > r} = {f > r}t,
stąd całkowanie przez części daje∫

X
(ft − f)dµ =

∫ ∞
0

(µ({f > r}t)− µ({f > r}))dr.

Mamy zatem∫
X
|∇f |dµ =

∫
X

lim sup
t→0+

ft − f
t

dµ = lim sup
t→0+

∫
X

ft − f
t

dµ

­ lim inf
t→0+

∫ ∞
0

µ({f > r}t)− µ({f > r})
t

dr

­
∫ ∞

0
lim inf
t→0+

µ({f > r}t)− µ({f > r})
t

dr =
∫ ∞
−∞

µ+({f > r})dr,

gdzie pierwsza i trzecia nierówność wynikają z Lematu Fatou (w pierwszej zastosowanego
do funkcji nieujemnych M − (ft − f)/t).

Uwaga 5.19. Dla miar µ na Rn absolutnie ciągłych względem miary Lebesgue’a można
udowodnić, że w nierówności co-area zachodzi równość.

Dowód Twierdzenia 5.17. „⇒”. Bez straty ogólności możemy założyć, że Medµ(f) = 0,
wówczas µ{f > t} ¬ 1/2 dla t > 0 i µ{f > t} ­ 1/2 dla t > 0. Nierówność co-area
implikuje∫

|∇f |dµ ­
∫ ∞
−∞

µ+({f > t})dt ­ c
∫ ∞

0
µ({f > t})dt+ c

∫ 0

−∞
(1− µ{f > t})dt

= cEµ max{f, 0}+ cEµ max{−f, 0} = cEµ|f |.
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„⇐” Udowodnimy szacowanie (i) z Faktu 5.15. Idea polega na aproksymacji 1A przez
funkcje lipschitzowskie. Jeśli µ(Ā) > µ(A), to µ+(A) =∞ i nie ma co dowodzić, będziemy
zatem zakładać, że µ(Ā) = µ(A), co jest równoważne temu, że µ(At) → µ(A) przy t → 0.
Dla 0 < t < 1/2 określmy

ft(x) =
1
t

min{dist(x,At2), t− 2t2}.

Wówczas ft jest 1/t-lipschitzowska, ft = 0 na At2 i ft = 1− 2t poza At−t2 , zatem |∇ft| ¬
1
t IAt\A. Mamy zatem

µ(At)− µ(A)
t

­
∫
|∇ft|dµ ­ cEµ|ft −Medµ(ft)|.

Jeśli µ(A) ­ 1/2 to Medµ(ft) = 0 dla wszystkich t i

µ+(A) ­ c lim inf
t→0+

Eµ|ft| ­ c lim inf
t→0+

(1− 2t)(1− µ(At−t2)) = 1− µ(A).

Jeśli µ(A) < 1/2 to µ(At) < 1/2 dla małych t czyli Medµ(ft) = 1− 2t dla małych t i

µ+(A) ­ c lim inf
t→0+

Eµ|ft − 1 + 2t| ­ c lim inf
t→0+

(1− 2t)µ(At2) = µ(A).

Następny fakt pokazuje, że nierówność Cheegera jest silniejsza od nierówności Poincaré.

Fakt 5.20. Jeśli µ spełnia nierówność Cheegera ze stałą c > 0, to spełnia nierówność
Poincaré ze stałą 4c−2.

Dowód. Niech f będzie Lipschitzowską funkcją ograniczoną o medianie 0, zaś g := sgn(f)f2.
Nietrudno sprawdzić, że g jest Lipschitzowska, ograniczona, ma medianę 0. Twierdzenie
5.17 implikuje

Eµf
2 = Eµ|g| ¬

1
c
Eµ|∇g| =

2
c
Eµ(|f ||∇f |) ¬ 2

c
(Eµ|f |2)1/2(E|∇f |2)1/2.

Dzieląc stronami przez (Eµ|f |2)1/2 dostajemy

Varµ(f) ¬ Eµ|f |2 ¬
4
c2 Eµ|∇f |2.

Uwaga 5.21. Z nierówności Poincaré nie można wywnioskować nierówności Cheegera. Moż-
na pokazać, że miara z gęstością 1+α

2 |x|
αI{|x|¬1} dla α ∈ (0, 1) spełnia nierówność Poincaré,

a nie spełnia nierówności Cheegera.
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Kolejne twierdzenie, pochodzące od Talagranda, rozwiązuje zagadnienie izoperyme-
tryczne dla miary ν.

Twierdzenie 5.22. Miara ν spełnia nierówność Cheegera ze stałą 1.

Dowód. Dowód przeprowadzimy w kilku krokach, wykorzystując równoważności z Faktu
5.15.

Krok I. ν+([a, b]) ­ min{ν([a, b]), 1− ν([a, b])}.
Rozpatrzymy trzy przypadki.

i) a ­ 0. Wówczas ν+([a, b]) = e−a + e−b ­ e−a − e−b = ν([a, b]).
ii) b ¬ 0. Mamy ν+([a, b]) = ea + eb ­ eb − ea = ν([a, b]).
iii) a < 0 < b. Wtedy ν+([a, b]) = ea + e−b = 1− ν([a, b]).

Krok II. Jeśli A jest skończoną sumą przedziałów, to ν+(A) ­ min{ν(A), 1− ν(A)}.
W rozważanym przypadku ν(A) = ν(Ā) i ν+(A) = ν+(Ā), zatem bez straty ogólności

możemy zakładać, że A =
⋃n
i=1[ai, bi] oraz bi < ai+1 dla 1 ¬ i ¬ n−1. Niech pi := ν([ai, bi]).

Mamy

ν+(A) =
n∑
i=1

ν+([ai, bi]) ­
n∑
i=1

min{pi, 1−pi} ­ min{
∑
i

pi, 1−
∑
i

p} = min{ν(A), 1−ν(A)}.

Pierwsza równość powyżej wynika z Kroku I, a drugą łatwo uzyskać przez rozpatrzenie
dwu przypadków: pi ¬ 1/2 dla wszystkich i oraz pi > 1/2 dla pewnego i.

Krok III. Jeśli A jest skończoną sumą przedziałów oraz ν(A) = ν((−∞, x]), to ν(At) ­
ν((−∞, x+ t]).

Zauważamy, że zbiór At jest również skończoną sumą przedziałów, więc z Kroku II
wynika, że ν+(At) ­ min{ν(At), 1− ν(At)}. Teza Kroku III wynika z analogicznego rozu-
mowania jak w dowodzie implikacji (i)⇒(ii) Faktu 5.15.

Krok IV. JeśliA jest zbiorem otwartym oraz ν(A) = ν((−∞, x]), to ν(At) ­ ν((−∞, x+
t]).

Zbiór A jest przeliczalną sumą przedziałów, więc dla δ > 0 istnieje B ⊂ A, który jest
skończoną sumą przedziałów i ν(B) ­ ν((−∞, x−δ]). Na mocy Kroku III ν(At) ­ ν(Bt) ­
ν((−∞, x− δ + t]) i wystarczy przejść z δ od zera.

Krok V. Jeśli A jest dowolnym zbiorem borelowskim oraz ν(A) = ν((−∞, x]), to
ν(At) ­ ν((−∞, x+ t]).

Zauważmy, że At ⊃ (Aδ)t−δ, ponadto Aδ jest zbiorem otwartym i ν(Aδ) ­ ν((−∞, x]).
Korzystając z Kroku IV dostajemy ν(At) ­ ν((Aδ)t−δ) ­ ν((∞, x+ t− δ]) i przechodzimy
z δ do 0.

Na prostej można scharakteryzować miary spełniające nierówność Cheegera.

Twierdzenie 5.23. Niech µ będzie miarą probabilistyczną na R, F (x) = µ(−∞, x], zaś p
będzie gęstością części absolutnie ciągłej µ. Wówczas następujące warunki są równoważne
dla c > 0:
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i) µ spełnia nierówność Cheegera ze stałą c,
ii) µ jest 1

c -lipschitzowskim obrazem ν,
iii) essinf p(x)

min{F (x),1−F (x)} ­ c.

Szkic dowodu. Implikacja ii)⇒i) jest oczywistym wnioskiem z Twierdzenia 5.22 .
i)⇒iii). Wystarczy zauważyć, że µ+((−∞, x]) = p(x) dla p.w. x ∈ R.
iii)⇒ii). Definiujemy T : R 7→ R wzorem ν(−∞, x] = µ(−∞, Tx]. Wówczas T trans-

portuje ν na µ oraz

ν((x, y]) = µ((Tx, Ty]) ­
∫ Ty

Tx
p(z)dz ­ c

∫ Ty

Tx
min{F (z), 1− F (z)}dz.

Stąd łatwo wynika, że T jest ciągłe i lim supy→x
Tx−Ty
x−y ¬ 1/c, czyli T jest 1/c-Lipschitzowskie.

6 Logarytmiczna Nierówność Sobolewa

6.1 Entropia funkcji

Definicja 6.1. Załóżmy, że µ jest miarą probabilistyczną na X, zaś f nieujemną funkcją
mierzalną na X. Entropię f względem µ definiujemy wzorem

Entµ(f) :=

{ ∫
f log fdµ−

∫
fdµ log

∫
fdµ jeśli

∫
f log(1 + f)dµ <∞

∞ jeśli
∫
f log(1 + f)dµ =∞.

Z wypukłości funkcji x log x na [0,∞) wynika, że Entµ(f) ­ 0, łatwo też zauważyć, że
Entµ(λf) = λEntµ(f) dla λ ­ 0.

Lemat 6.2. Dla dowolnej funkcji nieujemnej na X,

Entµ(f) = sup
{∫

fgdµ :
∫
egdµ ¬ 1

}
. (6)

Dowód. Z jednorodności obu stron tożsamości (6) możemy zakładać, że
∫
fdµ = 1, wówczas

Entµ(f) =
∫
f log fdµ.

Nietrudno sprawdzić, że dla u > 0, supv∈R(uv − ev) = u log u− u, zatem

uv ¬ u log u− u+ ev dla u ­ 0, v ∈ R. (7)

Zatem biorąc g takie, że
∫
egdµ ¬ 1 dostajemy∫

fgdµ ¬
∫

(f log f − f + eg)dµ = Entµ(f)− 1 +
∫
egdµ ¬ Entµ(f).

By udowodnić nierówność w przeciwną stronę wystarczy przyjąć g = log f .
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Z powyższego lematu łatwo wykazać tensoryzowalność entropii:

Fakt 6.3. Załóżmy, że µi są miarami probabilistycznymi na Xi, X = X1 × . . . × Xn oraz
µ = µ1 ⊗ µ2 ⊗ · · · ⊗ µn. Wówczas dla dowolnej nieujemnej funkcji f na X zachodzi

Entµ(f) ¬
n∑
i=1

EµEntµi(f).

Dowód. Weźmy funkcję g na X taką, że
∫
egdµ ¬ 1 oraz przyjmijmy dla i = 1, . . . , n,

gi(x1, . . . , xn) := log
(∫ eg(x1,...,xn)dµ1(x1) · · · dµi−1(xi−1)∫

eg(x1,...,xn)dµ1(x1) · · · dµi(xi)

)
.

Wówczas g ¬
∑n
i=1 g

i oraz
∫
eg
i
dµi ¬ 1, stąd∫

fgdµ ¬
n∑
i=1

∫
fgidµ =

n∑
i=1

∫ ( ∫
fgidµi

)
dµ ¬

n∑
i=1

∫
Entµi(f)dµ.

6.2 LNS - definicja, tensoryzowalność, związek z koncentracją

Definicja 6.4. Mówimy, że miara probabilistyczna na (X, d) spełnia logarytmiczną nie-
równość Sobolewa ze stałą C, jeśli dla wszystkich ograniczonych lipschitzowskich funkcji f
na X zachodzi

Entµ(f2) ¬ 2C
∫
|∇f |2dµ. (8)

Fakt 6.5. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają logarytmiczną nie-
równość Sobolewa ze stałą Ci względem gradientu |∇i|. Wówczas miara µ = µ1 ⊗ · · · ⊗ µn
spełnia logarytmiczną nierówność Sobolewa ze stałą C = maxiCi względem gradientu ∇f
danego wzorem

|∇f |2 =
n∑
i=1

|∇if |2.

Dowód. Z Faktu 6.3 dostajemy

Entµ(f2) ¬
n∑
i=1

EµEntµi(f
2) ¬

n∑
i=1

Eµ2CiEµi |∇if |2 ¬ 2CEµ

n∑
i=1

|∇if |2.

Twierdzenie 6.6. Załóżmy, że miara µ spełnia logarytmiczną nierówność Sobolewa ze
stałą C. Wówczas dla każdej funkcji 1-lipschitzowskiej F i t > 0,

µ
({
F ­

∫
Fdµ+ t

})
¬ exp

(
− t2

2C

)
.

W szczególności αX(t) ¬ exp(−t2/8C).
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Dowód. Ustalmy ograniczoną funkcję 1-Lipschitzowską F taką, że
∫
Fdµ = 0. Wystarczy,

że pokażemy iż dla λ ­ 0

M(λ) := MF,λ =
∫
eλFdµ ¬ eCλ2/2.

Zastosujmy logarytmiczną nierówność Sobolewa do f2 := eλF . Wówczas

Entµ(f2) = λEµFe
λF −Eµe

λF log Eµe
λF = λM ′(λ)−M(λ) logM(λ)

oraz ∫
|∇f |2dµ =

λ2

4

∫
|∇F |2eλF ¬ λ2

4
M(λ).

Zatem (8) daje

λM ′(λ)−M(λ) logM(λ) ¬ Cλ
2

2
M(λ). (9)

Określmy H(λ) := 1
λ logM(λ) dla λ > 0. Wówczas

lim
λ→0

H(λ) =
M ′(0)
M(0)

=
∫
Fdµ = 0

oraz na podstawie (9)

H ′(λ) = − 1
λ2 logM(λ) +

1
λ

M ′(λ)
M(λ)

¬ C

2
.

Zatem H(λ) ¬ Cλ/2 czyli M(λ) ¬ exp(Cλ2/2).

6.3 LNS dla miary gaussowskiej

Fakt 6.7. i) Niech µ1 = 1
2δ1 + 1

2δ−1, wówczas dla dowolnego f : {−1, 1} → R,

Entµ1(f
2) ¬ 2Eµ1 |Df |2,

gdzie Df(x) = 1
2(f(x)− f(−x)).

ii) Niech µn = µ1 ⊗ · · · ⊗ µ1 będzie rozkładem jednostajnym na {−1, 1}n, wówczas dla
dowolnego f : {−1, 1}n → R,

Entµn(f2) ¬ 2Eµn |Df |2,

gdzie

|Df |2(x) =
1
4

n∑
i=1

(f(x)− f(si(x)))2,

oraz si((x1, . . . , xn)) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn) dla 1 ¬ i ¬ n.
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Dowód. i) Z uwagi na jednorodność możemy zakładać, że Eµ1f
2 = 1, wówczas istnieje

t ∈ [−1, 1] takie, że f(1) =
√

1 + t oraz f(−1) =
√

1− t i nierówność z punktu i) ma
postać α(t) ­ 0, gdzie

α(t) := 1−
√

1− t2 − 1 + t

2
log(1 + t)− 1− t

2
log(1− t).

Nietrudno sprawdzić, że α(0) = α′(0) = 0 oraz

α′′(t) =
1

1− t2
( t2√

1− t2
− t2

1 +
√

1− t2
)
­ 0,

więc istotnie α(t) ­ 0.
ii) Wynika z punktu i) i Faktu 6.3.

Twierdzenie 6.8. Miara γn spełnia logarytmiczną nierówność Sobolewa z C = 1.

Dowód. Z uwagi na Fakt 6.3 wystarczy rozważyć przypadek n = 1. Niech f ∈ C1
ogr(R).

Określmy gn : {−1, 1}n → R wzorem

gn(x) := f

(
x1 + . . .+ xn√

n

)
.

Niech µn i |Df | będą jak w Fakcie 6.7. Wówczas na mocy centralnego twierdzenia granicz-
nego

Entµn(g2
n) =

∫
g2
n log g2

ndµn −
∫
g2
ndµn log

∫
g2
ndµn → Entγ1(f

2).

Ponadto kładąc Tn(x) = n−1/2(x1 + . . .+ xn)

|Dgn|(x)2 =
1
4

n∑
i=1

(
f(Tn(x))− f

(
Tn(x)− 2

xi√
n

))2
= f ′(Tn(x))2 + rn

gdzie rn zbiega do zera jednostajnie względem |Tn(x)|. Zatem

lim
n→∞

Eµn |Dgn|(x)2 = lim
n→∞

Eµnf
′(Tn(x))2 = Eγ1f

′(x)2.

Fakt 6.9. Załóżmy, że µ jest miarą probabilistyczną na X, V jest ograniczoną funkcją bore-
lowską oraz dν = Z−1eV dµ, gdzie Z =

∫
eV dµ. Wówczas jeśli miara µ spełnia logaryticzną

nierówność Sobolewa ze stałą C to ν spełnia logarytmiczną nierówność Sobolewa ze stałą
Ce4‖V ‖∞.
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Dowód. Funkcja ϕ(u) = u log u jest wypukła na [0,∞) stąd dla dowolnych s, t, ϕ(s+ t) ­
ϕ(t) + ϕ′(t)s, więc

ϕ
( ∫

f2dν
)

= ϕ
(
t+

∫
(f2 − t)dν

)
­ ϕ(t) + ϕ′(t)

∫
(f2 − t)dν.

Zatem

Entν(f2) = inf
t∈R

∫ [
ϕ(f2)− ϕ(t)− ϕ′(t)(f2 − t)

]
dν

¬ 1
Z
e‖V ‖∞ inf

t∈R

∫ [
ϕ(f2)− ϕ(t)− ϕ′(t)(f2 − t)

]
Ze−V dν

=
1
Z
e‖V ‖∞Entµ(f2) ¬ 2C

Z
e‖V ‖∞

∫
|∇f |2dµ

¬ 2Ce2‖V ‖∞
∫
|∇f |2dν.

Kolejny fakt dowodzimy tak samo jak dla nierówności Poincaré.

Fakt 6.10. Jeśli miara ν na (Y, ρ) jest L-lipschitzowskim obrazem miary µ na (X, d)
oraz µ spełnia logarytmiczną nierówność Sobolewa ze stałą C, to ν spełnia logarytmiczną
nierówność Sobolewa ze stałą CL2.

Stosując logarytmiczną nierówność Sobolewa do funkcji f = 1 + εg dowodzimy

Fakt 6.11. Jeśli miara probabilistyczna µ spełnia logarytmiczną nierówność Sobolewa ze
stałą C, to spełnia również nierówność Poincaré ze stałą C.

Opierając się na twierdzeniu Muckenhoupta da się wyprowadzić kryterium równoważne
nierówności logarytmicznej Sobolewa dla miar na prostej.

Twierdzenie 6.12. Załóżmy, że µ jest miarą probabilistyczną na R o medianie m, zaś
p oznacza gęstość jej części absolutnie ciągłej. Wówczas miara µ spełnia logarytmiczną
nierówność Sobolewa ze skończoną stałą C wtedy i tylko wtedy gdy max{B+, B−} < ∞,
gdzie

B+ = sup
x>m

µ[x,∞) ln
( 1
µ[x,∞)

) ∫ x

m

1
p(y)

dy

B− = sup
x<m

µ(−∞, x] ln
( 1
µ(−∞, x]

) ∫ m

x

1
p(y)

dy.

Co więcej optymalna stała Copt w nierówności Poincaré spełnia

1
150

(B+ +B−) ¬ Copt ¬ 468(B+ +B−).
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6.4 Nierówność Bobkowa

Logarytmiczna nierówność Sobolewa implikuje koncentrację gaussowską, ale nie implikuje
gaussowskiej izoperymetrii. Okazuje się, że jest silniejsza nierówność, która implikuje gaus-
sowską izoperymetrię, a jednocześnie ma szereg równie dobrych własności jak nierówność
Poincaré czy logarytmiczna nierówność Sobolewa.

Przedstawione poniżej rozumowania można podobnie jak w poprzednich sekcjach pro-
wadzić w większej ogólności, jednak by uniknąć szczegółów technicznych ograniczymy się
do miar na Rn i funkcji gładkich.

W tej części przez I będziemy oznaczać gaussowską funckję izoperymetryczną, tzn
I(x) = ϕ(Φ−1(x)), gdzie ϕ = (2π)−1/2 exp(−|x|2/2). Dodatkowo określamy I(0) = I(1) =
0.

Definicja 6.13. Mówimy, że miara probabilistyczna µ na Rn spełnia nierówność Bobkowa
ze stałą C, jeśli dla wszystkich f ∈ C1

ogr(Rn) o wartościach w przedziale [0, 1] zachodzi

I
( ∫

fdµ
)
¬
∫ √

I(f)2 + C2|∇f |2dµ. (10)

Fakt 6.14. Jeśli miary µi spełniają nierówność Bobkowa ze stałymi Ci, to miara µ1⊗· · ·⊗
µn spełnia nierówność Bobkowa ze stałą maxiCi.

Twierdzenie 6.15. Jeśli miara probabilistyczna µ na Rn spełnia nierówność Bobkowa na
ze stałą C, to

µ+(A) ­ 1
C
I(µ(A)) dla A ∈ B(Rn)

oraz
µ(At) ­ Φ(Φ−1(µ(A)) + t/C) dla A ∈ B(Rn), t > 0.

Twierdzenie 6.16. Kanoniczna miara gaussowska γn spełnia nierówność Bobkowa z C =
1.

6.5 Wektory i Procesy Gaussowskie

Procesy i wektory gaussowskie odgrywają kluczową rolę w rachunku prawdopodobieństwa
i statystyce matematyczne, jak również w wielu zastosowaniach.

Zacznijmy od przypomnienia definicji.

Definicja 6.17. Proces (Gt)t∈T nazywamy procesem gaussowskim, jeśli dla dowolnych
t1, . . . , tn ∈ T wektor losowy (Gt1 , . . . , Gtn) ma rozkład gaussowski. Proces nazywamy
scentrowanym, jeśli EGt = 0 dla t ∈ T .

By uniknąć problemów związanych z mierzalnością będziemy zakładać, że zbiór T jest
przeliczalny. Alternatywnie można zakładać ośrodkowość procesu.
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Twierdzenie 6.18. Załóżmy, że (Gt)t∈T jest procesem gaussowskim, indeksowanym przez
przeliczalny zbiór T , takim, że Z := supt∈T Gt <∞ prawie na pewno. Wówczas EZ <∞,

Eeλ(Z−EZ) ¬ e−λ2σ2/2 dla λ ∈ R, (11)

P(Z−EZ ­ u) ¬ exp

(
− u2

2σ2

)
i P(Z−EZ ¬ −u) ¬ exp

(
− u2

2σ2

)
dla u > 0, (12)

gdzie
σ := sup

t∈T
(Var(Gt))1/2.

Dowód. Nierówność (12) wynika z (11), udowodnimy zatem tę pierwszą.
Krok I. T = {t1, . . . , tn} jest zbiorem skończonym. Wówczas istnieje macierz A =

(aij)1¬i¬n,1¬j¬k oraz wektor m ∈ Rn takie, że

(Gt1 , . . . , Gtn) ∼ m+AX, X ∼ γk.

Określmy F : Rk → R wzorem

F (x) = max
1¬i¬n

{
mi +

k∑
j=1

aijxj
}
,

wówczas Z ma ten sam rozkład co F (X) i

‖F‖Lip = max
i

( k∑
j=1

a2
ij

)1/2
= max

i
Var(Gti)

1/2 = σ.

Stąd
Eeλ(Z−EZ) = Eeλ(F (Z)−EF (Z)) ¬ e−λ2σ2/2,

gdzie ostatnia nierówność wynika z Twierdzeń 6.6 i 6.8.
Krok II. T = {t1, t2, . . .} jest nieskończone. Połóżmy

Zn := max
1¬i¬n

Gti oraz σn := max
1¬i¬n

Var(Gti)
1/2.

Niech M spełnia P(Z ­M) ¬ 1/4. Z Kroku I dostajemy

P
(
Zn −EZn ¬ −σn

)
¬ e−1/2,

zatem
P
(
Zn > EZn − σn

)
­ 1− e−1/2 >

1
4
­ P

(
Zn ­M

)
,
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stąd M ­ EZn − σn. Mamy więc z twierdzenia Lebesgue’a o zbieżności monotonicznej,

EZ = lim
n

EZn ¬ sup
n
{M + σn} ¬M + σ <∞.

Stosując oszacowanie z Kroku I otrzymujemy

Eeλ(Z−EZ) = lim
n

Eeλ(Zn−EZn) ¬ lim
n
eλ
2σ2n/2 = e−u

2σ2/2,

gdzie pierwsza równość wynika z tego, że EZn → EZ oraz twierdzenia Lebesgue’a o zbież-
ności monotonicznej dla λ ­ 0, bądź zmajoryzowanej dla λ < 0.

Uwaga 6.19. Łącząc nierówności (12) dostajemy

P
(∣∣∣ sup

t∈T
Gt −E sup

t∈T
Gt
∣∣∣ ­ u) ¬ 2 exp

(
− u2

2σ2

)
dla u > 0.

Zauważmy też, że |Gt| = max{Gt,−Gt}, więc w Twierdzeniu 6.18 i powyższej nierówności
można zastąpić Gt przez |Gt|.
Uwaga 6.20. Korzystając z izoperymetrii gaussowskiej (Wniosek 3.13) zamiast nierówności
logarytmicznej Sobolewa możemy udowodnić, że przy oznaczeniach Twierdzenia 6.18 dla
u > 0,

P
(

sup
t∈T

Gt −Med
(

sup
t∈T

Gt
)
­ u

)
¬ Φ

(u
σ

)
¬ 1

2
exp

(
− u2

2σ2

)
oraz

P
(∣∣∣ sup

t∈T
Gt −Med

(
sup
t∈T

Gt
)∣∣∣ ­ u) ¬ 2Φ

(u
σ

)
¬ exp

(
− u2

2σ2

)
.

Wniosek 6.21. Przy założeniach i oznaczeniach Twierdzenia 6.18,

lim
t→∞

1
u2 log P

(
sup
t∈T

Gt ­ u
)

= − 1
2σ2 .

Ponadto,
E exp

(
α sup
t∈T

G2
t

)
<∞

wtedy i tylko wtedy gdy α < 1
2σ2 .

Dowód. Z Twierdzenia 6.18

1
u2 log P

(
sup
t∈T

Gt ­ u
)
¬ − 1

2σ2 .
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Z drugiej strony,

lim inf
t→∞

1
u2 log P

(
sup
t∈T

Gt ­ u
)
­ sup

t∈T
lim inf
t→∞

1
u2 log P(Gt ­ u)

= sup
t∈T
− 1

2Var(Gt)
= − 1

2σ2 .

Druga część tezy dla α < 1
2σ2 wynika natychmiast z (12) (dla |Gt|). Ponadto, jeśli

Gt ∼ N (at, σ2
t ) ∼ at + σtg, to dla 0 ¬ α < 1/2σ2

t

EeαG
2
t ­ Eeασ

2
t g
2
1g­0 =

1
2
Eeασ

2
t g
2

=
1
2

√
1

1− 2ασ2
t

,

więc E exp(α supt∈T G
2
t ) ­ supt∈T E exp(αG2

t ) =∞ dla α ­ 1
2σ2 .

Definicja 6.22. Wektor losowy X w ośrodkowej przestrzeni Banacha F nazywamy gaus-
sowskim, jeśli dla dowolnego ϕ ∈ F ∗, ϕ(X) ma rozkład gaussowski.

Założenie o ośrodkowości F ma charakter techniczny, służy uniknięciu problemów z
mierzalnością (w nieośrodkowej przestrzeni Banacha suma dwóch wektorów losowych nie
musi być mierzalna). Alternatywnie można zakładać, że norma w F jest wybijana przez
przeliczalny ciąg funkcjonałów o normie jeden.

Twierdzenie 6.23. Załóżmy, że X jest wektorem gaussowskim w ośrodkowej przestrzeni
Banacha. Wówczas E‖X‖ <∞,

Eeλ(‖X‖−E‖X‖) ¬ eλ2σ2/2 dla λ ∈ R,

P(‖X‖ −E‖X‖ ­ u) ¬ e−
u2

2σ2 oraz P(‖X‖ −E‖X‖ ¬ −u) ¬ e−
u2

2σ2 dla u ­ 0,

gdzie
σ :=

{
Var(ϕ(X))1/2 : ϕ ∈ F ∗, ‖ϕ‖ ¬ 1

}
.

Dowód. Wystarczy zauważyć, że istnieje przeliczalny podzbiór D kuli jednostkowej w F ∗

taki, że ‖x‖ = supϕ∈D ϕ(X) i skorzystać z Twierdzenia 6.18 dla procesu gaussowskiego
(ϕ(X))ϕ∈D.

Wniosek 6.24. Przy oznaczeniach Twierdzenia 6.23 dla p ­ 1,

(E‖X‖p)1/p ¬ E‖X‖+ C
√
pσ,

gdzie C jest pewną stałą uniwersalną.
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Uwaga 6.25. Jak nietrudno zauważyć

(E‖X‖p)1/p ­ sup
‖ϕ‖¬1

(E|ϕ(X)|p)1/p ­ 1
C

√
pσ.

Stąd dla p ­ 1,

max

{
E‖X‖, sup

‖ϕ‖¬1
(E|ϕ(X)|p)1/p

}
¬ (E‖X‖p)1/p ¬ E‖X‖+ C̃ sup

‖ϕ‖¬1
(E|ϕ(X)|p)1/p.

7 Nierówności Splotu Infimum

7.1 Własność (τ) Maureya

Zacznijmy od zaproponowanej przez Maureya definicji.

Definicja 7.1. Splotem infimum dwu funkcji f i g określonych na Rn nazywamy funkcję
f�g daną wzorem

f�g(x) := inf{f(y) + g(x− y) : y ∈ Rn}.

Niech µ będzie miarą probabilistyczną na Rn oraz ϕ : Rn → [0,∞]. Mówimy, że para (µ, ϕ)
ma własność (τ) bądź, że miara µ spełnia nierówność splotu infimum z funkcją kosztu ϕ
jeśli ∫

ef�ϕdµ

∫
e−fdµ ¬ 1

dla dowolnej ograniczonej mierzalnej funkcji f na Rn.

Pierwszą użyteczną cechą własności (τ) jest jej tensoryzowalność.

Fakt 7.2. Jeśli pary (µi, ϕi) mają własność (τ), µ = µ1 ⊗ · · · ⊗ µn oraz

ϕ(x1, . . . , xn) = ϕ1(x1) + . . .+ ϕn(xn),

to również para (µ, ϕ) ma własność (τ).

Dowód. Prosty argument indukcyjny pokazuje, że wystarczy udowodnić tezę dla n = 2.
Niech f = f(x, y) będzie ograniczoną funkcją na Rn1 ×Rn2 , określmy fy(x) = f(x, y) oraz
zdefiniujmy g na Rn2 jako

g(y) := ln
( ∫

ef
y�ϕ1(x)dµ1(x)

)
.

Własność (τ) dla (µ1, ϕ1) implikuje, że g(y) ¬ − ln(
∫
e−f

y
dµ1), zatem∫

e−gdµ2 ­
∫
e−fdµ1 ⊗ µ2.
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Ponadto dla dowolnych y, ỹ∫
ef�ϕ(x,y)dµ1(x) ¬

∫
ef

ỹ�ϕ1(x)+ϕ2(y−ỹ)dµ1(x) = eg(ỹ)+ϕ2(y−ỹ),

więc g�ϕ2(y) ­ ln(
∫
ef�ϕ(x,y)dµ1(x)) i∫

eg�ϕ2dµ2 ­
∫
ef�ϕdµ1 ⊗ µ2.

Teza wynika z powyższych nierówności i własności τ dla (µ2, ϕ2).

Następny fakt pokazuje w jaki sposób można transportować (τ).

Fakt 7.3. Załóżmy, że µ jest miarą probabilistyczną na Rn, zaś ϕ funkcją kosztu na Rn

taką, że (µ, ϕ) spełnia własność (τ). Jeśli T : Rn → Rm oraz funkcja ψ na Rm spełnia
ψ(Tx− Ty) ¬ ϕ(x− y) dla wszystkich x, y, to para (µ ◦ T−1, ψ) ma własność (τ).

Dowód. Niech f będzie ograniczoną funkcją na Rm. Zauważmy, że

f ◦ T�ϕ(x) = inf
y

(f(Ty) + ϕ(x− y)) ­ inf
y

(f(Ty) + ψ(Tx− Ty)) ­ f�ψ(Tx).

Zatem ∫
ef�ψdµ ◦ T−1 =

∫
ef�ψ(Tx)dµ(x) ¬

∫
ef◦T�ϕ(x)dµ(x) ¬

( ∫
e−f◦Tdµ

)−1

=
( ∫

e−fdµ ◦ T−1
)−1

.

7.2 Splot infimum a koncentracja

By sformułować związki nierówności splotu infimum z koncentracją określmy zbiór

Bϕ(t) = {x : ϕ(x) ¬ t}.

Zacznijmy od prostego faktu

Fakt 7.4. Jeśli (µ, ϕ) ma własność (τ) to dla dowolnego zbioru borelowskiego A takiego,
że µ(A) > 0 mamy

1− µ(A+Bϕ(t)) ¬ 1
µ(A)

e−t.

Dowód. Zastosujmy własność (τ) do funkcji f = 0 na zbiorze A i f =∞ poza zbiorem A.
Zauważmy, że f�ϕ ­ t poza zbiorem A+Bϕ(t), zatem

1 ­
∫
ef�ϕdµ

∫
e−fdµ ­ et(1− µ(A+Bϕ(t))µ(A).
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Uwaga 7.5. Funkcja f w poprzednim dowodzie nie była oczywiście ograniczona, ale łatwo
ominąć ten problem stosując nierówność (τ) do fn = n1Rn\A dla n ­ t.

Poprzedni Fakt daje dobre oszacowanie tylko dla dużych wartości t. Nieco modyfikując
jego dowód da się uzyskać też nierówności koncentracyjne dla małych t.

Fakt 7.6. Załóżmy, że para (µ, ϕ) ma własność (τ). Wówczas dla dowolnego zbioru bore-
lowskiego A i t > 0,

µ(A+Bϕ(t)) ­ etµ(A)
(et − 1)µ(A) + 1

. (13)

W szczególności
µ(A+Bϕ(t)) > min{et/2µ(A), 1/2} (14)

oraz
µ(A) ­ 1

2
⇒ 1− µ(A+Bϕ(t)) < e−t/2(1− µ(A)). (15)

Ponadto
µ(A) = ν(−∞, x] ⇒ µ(A+Bϕ(t)) ­ ν(−∞, x+ t/2]. (16)

Dowód. Niech f(x) = t1Rn\A. Wówczas f jest nieujemna, więc f�ϕ też jest nieujemna
(rozpatrujemy tylko nieujemne funkcje kosztu). Dla x 6∈ A+Bϕ(t) mamy f�ϕ(x) ­ t.

Zatem własność (τ) daje

1 ­
∫
ef�ϕ(x)dµ(x)

∫
e−f(x)dµ(x)

­
[
µ
(
A+Bϕ(t)

)
+ et

(
1− µ(A+Bϕ(t))

)][
µ(A) + e−t(1− µ(A))

]
,

skąd bezpośredni rachunek prowadzi do (13).
Niech ft(p) := etp/((et − 1)p + 1), zauważmy, że ft is rosnąca względem p oraz dla

p ¬ e−t/2/2,

(et − 1)p+ 1 ¬ et/2 + 1− 1
2

(et/2 + e−t/2) < et/2,

skąd otrzymujemy (14). Ponadto dla p ­ 1/2,

1− ft(p) =
1− p

(et − 1)p+ 1
¬ 1− p

(et + 1)/2
< e−t/2(1− p)

i dostajemy (15).
Niech F (x) = ν(−∞, x] i gt(p) = F (F−1(p) + t). Poprzednie rachunki pokazują, że dla

t, p > 0, ft(p) ­ gt/2(p), jeśli F−1(p) + t/2 ¬ 0 lub F−1(p) ­ 0. Ponieważ gt+s = gt ◦ gs i
ft+s = ft ◦ fs, otrzymujemy ft(p) ­ gt/2(p) dla wszystkich t, p > 0, zatem (13) implikuje
(16).
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7.3 Dwupoziomowa koncentracja dla rozkładu wykładniczego

Niech jak do tej pory ν oznacza miarę na R z gęstością 1
2e
−|x|, zaś ν+, ν− miary z gęstościami

odpowiednio e−x1[0,∞) i ex1(−∞,0].

Fakt 7.7. Para (ν+, ϕ0) ma własność (τ), gdzie

ϕ0(x) =

{
1
18x

2 dla |x| ¬ 2
2
9(|x| − 1) dla |x| > 2.

Lemat 7.8. Dla wszystkich x ∈ R mamy 2|ϕ′0(x)| ¬ 1 oraz

(1− 4ϕ′0(x)2)eϕ0(x) ­ 1.

Dowód. Pierwszą nierówność otrzymujemy przez łatwe sprawdzenie. By udowodnić drugą,
z uwagi na symetrię ϕ0, wystarczy rozpatrywać przypadek x ­ 0. Ponadto ϕ′0(x) jest stałe
dla x ­ 2 a ϕ0 rosnące na tym przedziale, więc możemy zakładać, że 0 ¬ x ¬ 2. Wówczas
nierówność po podstawieniu y = x2/18 ma postać

e−y ¬ 1− 8
9
y, 0 ¬ y ¬ 2

9
.

Funkcja e−y jest wypukła, więc wystarczy sprawdzić tylko y = 0 i y = 2/9.

Dowód Faktu 7.7. Ustalmy funkcję ograniczoną f , przyjmijmy g := f�ϕ0 i niech

I0 :=
∫ ∞

0
e−f(x)−xdx, I1 :=

∫ ∞
0

eg(x)−xdx.

Musimy pokazać, że I0I1 ¬ 1. Dla t ∈ (0, 1) zdefiniujmy x(t) i y(t) wzorami∫ x(t)

0
e−f(x)−xdx = tI0 oraz

∫ y(t)

0
eg(x)−xdx = tI1.

Wówczas
x′(t) = I0e

f(x(t))+x(t), y′(t) = I1e
−g(y(t))+y(t).

Na mocy definicji g, g(y(t)) ¬ f(x(t)) + ϕ0(y(t)− x(t)), więc

y′(t) ­ I1e
−f(x(t))−ϕ0(y(t)−x(t))+y(t).

Niech z(t) = 1
2(x(t) + y(t))− ϕ0(x(t)− y(t)), wówczas

z′(t) =
(1

2
− ϕ′0(x(t)− y(t))

)
x′(t) +

(1
2

+ ϕ′0(x(t)− y(t))
)
y′(t).
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Pisząc dla uproszczenia x i y zamiast x(t) i y(t) stosując poprzednie oszacowanie y′(t)
oraz nierówność między średnia arytmetyczną i geometryczną dostajemy (wykorzystując
parzystość ϕ0)

z′(t) ­ 1
2

(1− 2ϕ′0(x− y))I0e
x+f(x) +

1
2

(1 + 2ϕ′0(x− y))I1e
−ϕ0(x−y)+y−f(x)

­
√

1− 4ϕ′0(x− y)2
√
I0I1e

1
2 (x+y)− 12ϕ0(x−y)

=
√
I0I1e

z(t)
√

1− 4ϕ′0(x− y)2e
1
2ϕ0(x−y).

Zatem na mocy Lematu 7.8, (−e−z(t))′ = e−z(t)z′(t) ­
√
I0I1, co po odcałkowaniu daje√

I0I1 ¬ 1.

Uwaga 7.9. Funkcja g jest ciągła, więc y jest różniczkowalna. Funkcja f nie musi być ciągła
więc x nie musi być różniczkowalna. Jednak z ograniczoności f łatwo wywnioskować lokalną
Lipschitzowskość x (stąd też z), a zatem różniczkowalność x prawie wszędzie. Funkcja e−z(t)

jest zatem lokalnie lipschitzowska, czyli jest całką swojej pochodnej, która istnieje p.w..

Wniosek 7.10. Miara ν spełnia nierówność infimum z funkcją kosztu ϕ1 postaci

ϕ1(t) = 2ϕ0(
t

2
) =

{
1
36 t

2 dla |t| ¬ 4
2
9(|t| − 2) dla |t| > 4.

Dowód. Z wypukłości funkcji ϕ0 łatwo wynika, że ϕ1 = ϕ0�ϕ0. Ponieważ miara ν− jest
symetrycznym odbiciem ν+ a funkcja ϕ0 jest symetryczna, to (ν−, ϕ0) ma własność (τ),
więc (ν+⊗ν−, ϕ0(x) +ϕ0(y)) też ma (τ). Miara ν jest splotem miar ν+ i ν−, czyli obrazem
ν+ ⊗ ν− przy przekształceniu T (x, y) = x+ y. Teza wynika z Faktu 7.3

Wiemy, że miara ν a zatem i miara produktowa νn spełniają nierówność Poincaré, więc
jeśli νn(A) ­ 1

2 , to νn(A + tBn
2 ) ­ 1 − e−t/C dla pewnej stałej absolutnej C. Okazuje się,

że można tę nierówność wzmocnić.
Zanim sformułujemy twierdzenie (które pierwszy z gorszymi stałymi udowodnił Tala-

grand) wprowadźmy następujące oznaczenie kuli jednostkowej w lnp dla 1 ¬ p <∞

Bn
p := {x ∈ Rn :

n∑
i=1

|xi|p ¬ 1}.

Twierdzenie 7.11. Dla dowolnego zbioru borelowskiego A w Rn takiego, że νn(A) > 0
mamy dla t ­ 0,

1− νn(A+ 6
√
tBn

2 + 9tBn
1 ) ¬ 1

νn(A)
e−t.

Ponadto

νn(A) = ν(−∞, x] ⇒ νn(A+ 6
√

2tBn
2 + 18tBn

1 ) ­ ν(−∞, x+ t].
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Dowód. Para (νn, ϕn) ma własność (τ), gdzie ϕn(x1, . . . , xn) = ϕ1(x1)+. . .+ϕ1(xn). Łatwo
sprawdzić, że

Bϕn(t) ⊂ 6
√
tBn

2 + 9tBn
1 .

Teza wynika zatem z Faktów 7.4 i 7.6.

7.4 Wypukła własność (τ)

Definicja 7.12. Niech µ będzie miarą probabilistyczną na Rn oraz ϕ : Rn → [0,∞] wypu-
kła. Mówimy, że para (µ, ϕ) ma wypukłą własność (τ) bądź, że miara µ spełnia nierówność
splotu infimum z funkcją kosztu ϕ jeśli∫

ef�ϕdµ

∫
e−fdµ ¬ 1

dla dowolnej wypukłej funkcji f na Rn.

Wypukła nierówność (τ) się tensoryzuje podobnie jak zwykła nierówność (τ).

Fakt 7.13. Jeśli pary (µi, ϕi) mają wypukłą własność (τ), µ = µ1 ⊗ · · · ⊗ µn oraz

ϕ(x1, . . . , xn) = ϕ1(x1) + . . .+ ϕn(xn),

to również para (µ, ϕ) ma wypukłą własność (τ).

Dowód. Dowód przebiega podobnie do dowodu Faktu 7.2. Stosując taką jak w tamtym do-
wodzie notację, wystarczy zauważyć, że funkcja y 7→ fy�ϕ1 jest wypukła (wykorzystujemy
tu zarówno wypukłość f jak i ϕ1), i wywnioskować z nierówności Höldera wypukłość g.

Tak samo jak Faktu 7.4 dowodzimy, że wypukła nierówność (τ) implikuje koncentrację
dla zbiorów wypukłych.

Fakt 7.14. Jeśli (µ, ϕ) ma wypukłą własność (τ) to dla dowolnego wypukłegp zbioru bore-
lowskiego A takiego, że µ(A) > 0 mamy

1− µ(A+Bϕ(t)) ¬ 1
µ(A)

e−t.

Lemat 7.15 (Maurey). Załóżmy, że µ jest miarą probabilistyczną na Rn skupioną na
zbiorze o średnicy nie większej niż ∆. Wówczas para (µ, |x|

2

4∆2 ) ma wypukłą własność τ .

Dowód. Załóżmy, że µ jest skupiona na zbiorze A i diam(A) ¬ ∆. Niech f będzie wypukłą
funkcją na Rn, ϕ(x) = 1

4∆2 |x|
2 oraz g := f�ϕ. Ewentualnie odejmując od f stałą możemy
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zakładać, że infA f = 0. Ustalmy ε > 0 i wybierzmy a ∈ A taki, że f(a) ¬ ε. Wówczas dla
x ∈ A i λ ∈ [0, 1] mamy

g(x) ¬ f(λa+ (1− λ)x) + ϕ(λ(x− a)) ¬ λf(a) + (1− λ)f(x) +
λ2|x− a|2

4∆2

¬ λε+ (1− λ)f(x) +
1
4
λ2.

Z dowolności ε > 0 dostajemy

g(x) ¬ inf
λ∈[0,1]

(1− λ)f(x) +
1
4
λ2 = k(f(x)) dla x ∈ A,

gdzie k(x) = u− u2 dla u ∈ [0, 1/2] i k(x) = 1/4 dla x ­ 1/2.
Pokażemy, że ek(u) ¬ 2 − e−u. Wystarczy tę nierówność oczywiście pokazać dla u ∈

[0, 1/2], ale wtedy

1
2

(ek(u) + e−u) = e−u
2/2 cosh(u− u2/2) ¬ e−u2/2 cosh(u) ¬ 1.

Mamy zatem ∫
egdµ ¬

∫
ek(f)dµ ¬ 2−

∫
e−fdµ ¬

(∫
e−fdµ

)−1
.

Twierdzenie 7.16. Jeśli µ jest rozkładem jednostajnym na {a, b}n (lub ogólniej dowolnym
rozkładem produktowym o nośniku w [a, b]n), zaś A jest wypukłym podzbiorem [a, b]n, to∫

exp
(

1
4(b− a)2 dist(x,A)2

)
dµ ¬ 1

µ(A)
.

W szczególności

1− µ(At) ¬
1

µ(A)
exp

(
− t2

4(b− a)2

)
dla t > 0.

Dowód. Na mocy Lematu 7.15 i tensoryzacji wiemy, że µ spełnia wypukłą własność splotu
infimum z funkcją kosztu ϕ(x) = 1

4(b−a)2 |x|
2. Stosujemy własność (τ) do funkcji f = 0 na

A i f =∞ poza A i dostajemy

1 ­
∫
e−fdµ

∫
ef�ϕdµ = µ(A)

∫
exp

(
1

4(b− a)2 dist(x,A)2
)
dµ.
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Uwaga 7.17. Twierdzenie powyższe jest nieprawdziwe bez założenia wypukłości A. Weźmy
bowiem za µn rozkład jednostajny na {−1, 1}n, oraz

A =

{
x ∈ {−1, 1}n :

n∑
i=1

xi ¬ 0

}
.

Wówczas µn(A) ­ 1/2 oraz korzystając z tego, że |a−b| ¬ 1
4 |a−b|

2 dla a, b = ±1 dostajemy

At ∩ {−1, 1}n ⊂
{
x ∈ {−1, 1}n :

n∑
i=1

xi ¬
t2

4

}
.

Na mocy centralnego twierdzenia granicznego lim supn µn(Atn1/4) = Φ(t2/4) < 1.

8 Nierówności transportowe

8.1 Koszt optymalnego transportu

By zdefiniować koszt transportu miar będziemy potrzebowali kilku definicji.

Definicja 8.1. Przez P(X) będziemy oznaczać rodzinę miar probabilistycznych na prze-
strzeni mierzalnej X. Dla µ, ν ∈ P(X) przez Π(µ, ν) będziemy oznaczali zbiór wszystkich
miar probabilistycznych π na X × X takich, że µ i ν są miarami brzegowymi π, czyli
π(A× X) = µ(A) i π(X×A) = ν(A) dla dowolnego zbioru mierzalnego A ⊂ X.

Uwaga 8.2. Zbiór Π(µ, ν) jest niepusty, gdyż zawiera miarę produktową µ⊗ ν. Zauważmy
też, że jeśli T transportuje µ na ν oraz X ma rozkład µ, to rozkład zmiennej (X,TX)
należy do Π(µ, ν).

Definicja 8.3. Załóżmy, że c : X × X → [0,∞] jest funkcją mierzalną. Dla µ, ν ∈ P(X)
definiujemy optymalny koszt transportu miary µ na ν z funkcją kosztu c wzorem

Tc(µ, ν) := inf
{∫

X×X
c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
.

W przypadku, gdy (X, d) jest przestrzenią metryczną, a c(x, y) = dp(x, y) będziemy pisać
Tp zamiast Tc. Określamy też odległość Wassersteina miar µ, ν ∈ P(X) jako

Wp(µ, ν) := Tp(µ, ν)1/p = inf

{(∫
X×X

dp(x, y)dπ(x, y)
)1/p

: π ∈ Π(µ, ν)

}
, 1 ¬ p <∞,

Wp(µ, ν) := Tp(µ, ν) = inf
{∫

X×X
dp(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
, p ∈ (0, 1].

Uwaga 8.4. Można udowodnić, że jeśli X jest przestrzenią polską, to Wp jest metryką na
przestrzeni miar probabilistycznych µ na X takich, że

∫
X d(x, x0)pdµ(x) <∞ dla pewnego

(równoważnie każdego) x0 ∈ X.
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Uwaga 8.5. Równoważnie możemy zdefiniować

Tc(µ, ν) = inf{Ec(X,Y ) : X ∼ µ, Y ∼ ν}.

Uwaga 8.6. Zauważmy, że

Tc(µ, ν) ¬ inf{Eµc(x, Tx) : T transportuje µ na ν}.

W wielu przypadkach można udowodnić, że w powyższej nierówności zachodzi równość, ale
nie jest tak zawsze – np. gdy µ ma atomy, a ν jest bezatomowa, to nie istnieje transport µ
na ν.

Definicja 8.7. Jeśli (X, d) jest przestrzenią metryczną, to określamy odległość Monge’a-
Kantorowicza miar µ, ν ∈ P(X) wzorem

WLip
1 (µ, ν) := sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ : f : X→ R 1-Lipschitzowska, ograniczona
}
.

Fakt 8.8. Dla dowolnej przestrzeni metrycznej (X, d) zachodzi

WLip
1 (µ, ν) ¬W1(µ, ν) dla µ, ν ∈ P(X).

Dowód. Zauważmy, że dla dowolnego π ∈ Π(x, y) i f 1-Lipschitzowskiego mamy∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ =
∣∣∣∣∫ (f(x)− f(y))dπ(x, y)

∣∣∣∣ ¬ ∫ |f(x)−f(y)|dπ(x, y) ¬
∫
d(x, y)dπ(x, y).

Biorąc supremum po f i infimum po π dostajemy tezę.

Przy dodatkowym założeniu ośrodkowości odległości WLip
1 i W1 się pokrywają.

Twierdzenie 8.9 (Dualność Monge’a-Kantorowicza-Rubinsteina). Załóżmy, że (X, d) jest
ośrodkową przestrzenią metryczną. Wówczas

W1(µ, ν) = WLip
1 (µ, ν) dla µ, ν ∈ P(X).

8.2 Względna entropia

Definicja 8.10. Niech µ, ν będą dwiema miarami probabilistycznymi na X. Określamy
entropię miary ν względem miary µ wzorem

H(ν|µ) :=

{
Entµ dνdµ = Eν log( dνdµ), jeśli ν � µ,

+∞ w przeciwnym przypadku.

Lemat 8.11 (Zasada wariacyjna Gibbsa). Dla dowolnej ograniczonej z góry funkcji mie-
rzalnej f ,

log Eµe
f = sup

ν
{Eνf −H(ν|µ)}
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Dowód. Określmy miarę µ̃ wzorem

dµ̃ =
ef

Eµef
dµ.

Wówczas dla dowolnej miary probabilistycznej ν � µ,

Eνf −H(ν|µ) = Eνf −Eν log(
dν

dµ
) = Eνf −Eν log(

dµ̃

dµ
)−Eν log(

dν

dµ̃
)

= log(Eµe
f )−H(ν|µ̃).

Wystarczy zauważyć, że H(ν|µ̃) ­ 0 i H(µ̃|µ̃) = 0.

Twierdzenie 8.12 (Bobkow-Goetze). Niech µ będzie miarą probabilistyczną na przestrzeni
metrycznej (X, d) i α > 0. Wówczas n.w.s.r.
i) WLip

1 (ν, µ) ¬
√

2αH(ν|µ) dla dowolnej miary probabilistycznej ν,
ii) dla dowolnej funkcji 1-Lipschitzowskiej ograniczonej f ,

Eµe
λ(f−Eµf) ¬ eαλ2/2 dla λ ∈ R.

Dowód. Zamieniając f na −f widzimy, że ii) wystarczy dowodzić dla λ ­ 0. Zasada wa-
riacyjna Gibbsa pokazuje, że warunek ii) jest równoważny

0 ­ sup
λ­0

sup
f

sup
ν

{
λ(Eνf −Eµf)−H(ν|µ)− αλ2

2

}

= sup
ν

sup
λ­0

sup
f

{
λ(Eνf −Eµf)−H(ν|µ)− αλ2

2

}

= sup
ν

sup
λ­0

{
λWLip

1 (µ, ν)−H(ν|µ)− αλ2

2

}
= sup

ν

{
WLip

1 (µ, ν)2

2α
−H(ν|µ)

}
,

co jest oczywiście równoważne warunkowi i).

Uwaga 8.13. Logarytmiczna nierówność Sobolewa ze stałą C implikuje zachodzenie wa-
runku ii) z α = C (zob. dowód Twierdzenia 6.6). W szczególności miara gaussowska γn
spełnia warunki twierdzenia Bobkowa-Goetzego z α = 1.

8.3 Tensoryzacja nierówności transportowych

Definicja 8.14. Powiemy, że miara probabilistyczna µ na X spełnia nierówność Tp ze
stałą α, jeśli

Tp(ν, µ) ¬ (2αH(ν|µ))p/2 dla ν ∈ P(X).

Uwaga 8.15. Dla p > q i µ, ν ∈ P(X) zachodzi Tp(µ, ν)1/p ­ Tq(µ, ν)1/q, zatem nierówność
Tp pociąga za sobą nierówność Tq dla q < p.
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Naturalne jest pytanie czy nierówności Tp się tensoryzują. Wykorzystamy do tego ogólne
twierdzenie.

Twierdzenie 8.16 (Marton). Załóżmy, że funkcja ϕ : [0,∞) → [0,∞) jest wypukła oraz
dla i = 1, . . . , n, ci są nieujemnymi mierzalnymi funkcjami na Xi × Xi, zaś µi ∈ P(Xi)
spełniają warunek

inf
π∈Π(µi,ν)

ϕ(Eπci(x, y)) ¬ H(ν|µi) dla wszystkich ν ∈ P(Xi).

Wówczas dla wszystkich miar probabilistycznych ν na X = X1 × · · · × Xn zachodzi

inf
π∈Π(µ1⊗···⊗µn,ν)

n∑
i=1

ϕ(Eπci(xi, yi)) ¬ H(ν|µ1 ⊗ · · · ⊗ µn).

Do dowodu twierdzenia 8.16 przydatny będzie lemat o dekompozycji miary. Nie podamy
jego dowodu, gdyż wykorzystamy go tylko dla miar z gęstością jak w Przykładzie 2 poniżej,
ale ogólne sformułowanie przydaje się, gdy np. chcemy dowieść, że odległość Wassersteina
jest metryką.

Twierdzenie 8.17. Załóżmy, że X i Y są przestrzeniami polskimi oraz π ∈ P(X × Y).
Niech π1 będzie rozkładem brzegowym π. Wówczas istnieje rodzina miar probabilistycznych
(π2,x)x∈X taka, że
i) dla dowolnego zbioru borelowskiego A ⊂ X × Y przekształcenie x → (δx ⊗ π2,x)(A) jest
mierzalne,
ii) π =

∫
X δx ⊗ π2,xdπ1(x).

Przykład 1. Jeśli rozkład brzegowy π1 jest miarą dyskretną
∑
i piδxi , to możemy przyjąć

π2,x(B) =

{
π({x}×B)
π1({x}) jeśli π1({x}) > 0

0 jeśli π1({x}) = 0.

Przykład 2. Jeśli π ma gęstość g względem pewnej miary produktowej µ1 ⊗ µ2, to defi-
niujemy dπ2,x = g2,xdµ2, gdzie

g2,x(y) =


g(x,y)∫

X g(x,y)dµ2(y)
jeśli

∫
X g(x, y)dµ2(y) > 0

0 jeśli
∫
X g(x, y)dµ2(y) = 0.

Dowód twierdzenia 8.16. Twierdzenie udowodnimy przez indukcję po n. Dla n = 1 teza
jest oczywista. Załóżmy zatem, że n ­ 2 i teza indukcyjna zachodzi dla n − 1, pokażemy,
że jest też prawdą dla n. Dla uproszczenia notacji przyjmijmy

X̃ = X1 × · · · × Xn−1, µ̃ = µ1 ⊗ · · · ⊗ µn−1,

ponadto dla x ∈ X będziemy pisać x = (x̃, xn), gdzie x̃ ∈ X̃.
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Ustalmy miarę probabilistyczną ν na X = X̃×Xn taką, że H(ν|µ̃⊗ µn) <∞. Wówczas
jak wiemy z lematu o dekompozycji (zob. Przykład 2 powyżej)

ν =
∫

X̃
δx̃ ⊗ νx̃dν̃(x̃),

gdzie ν̃ oznacza brzegowy rozkład ν na X̃. Łatwo sprawdzić (zob. Przykład 2), że

H(ν|µ̃⊗ µn) = H(ν̃|µ̃) +
∫

X̃
H(νx̃|µn)dν̃(x̃).

Ustalmy ε > 0. Założenie indukcyjne implikuje, że istnieje miara probabilistyczna π̃ ∈
Π(µ̃, ν̃) taka, że

n−1∑
i=1

ϕ(Eπ̃ci(xi, yi)) ¬ H(ν̃|µ̃) + ε.

Z założenia twierdzenia wynika natomiast, że dla x̃ ∈ X̃ istnieje miara πx̃ ∈ Π(µn, νx̃) dla
której

ϕ(Eπx̃cn(x, y)) ¬ H(νx̃|µn) + ε.

Określmy π jako miarę na X×X, które możemy w naturalny sposób utożsamiać z X̃× X̃×
Xn × Xn, wzorem

π :=
∫

X̃×X̃
δx̃,ỹ ⊗ πỹdπ(x̃, ỹ).

Wówczas π ∈ Π(µ1 ⊗ · · · ⊗ µn, ν),

n−1∑
i=1

ϕ(Eπci(xi, yi)) =
n−1∑
i=1

ϕ(Eπ̃ci(xi, yi)) ¬ H(ν̃|µ̃) + ε

i z wypukłości ϕ

ϕ(Eπcn(xn, yn)) = ϕ(Eπ̃Eπỹcn(xn, yn)) ¬ Eπ̃ϕ(Eπỹcn(xn, yn)) ¬ Eπ̃H(νỹ|µn) + ε

=
∫

X̃
H(νỹ|µn)dν̃(ỹ) + ε.

Zatem
n∑
i=1

ϕ(Eπci(xi, yi)) ¬ H(ν|µ) + 2ε

i z dowolności ε > 0 otrzymujemy dowód kroku indukcyjnego.

Wniosek 8.18. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają nierówność T1

ze stałymi αi, 1 ¬ i ¬ n. Na X = X1 × . . . × Xn określmy ważoną l1-metrykę dc(x, y) :=∑n
i=1 cidi(xi, yi). Wówczas miara µ1 ⊗ · · · ⊗ µn spełnia nierówność T1 na (X, dc) ze stałą

(
∑n
i=1 c

2
i )

1/2 maxi αi .
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Dowód. Niech ν i ρ będą miarami probabilistycznymi na (X, dc). Wówczas

T1(ν, ρ) = inf
π∈Π(ν,ρ)

n∑
i=1

ciEπdi(xi, yi) ¬

√√√√ n∑
i=1

c2
i inf
π∈Π(ν,ρ)

(
n∑
i=1

(Eπdi(xi, yi))2

)1/2

.

Teza wniosku wynika teraz łatwo z Twierdzenia 8.16 z ci(xi, yi) = di(xi, yi). ϕ(x) =
(x/2α)2, α := maxi αi.

Innym wnioskiem z Twierdzenia Marton jest tensoryzowalność nierówności T2 względem
metryki l2.

Wniosek 8.19. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają nierówność T2

ze stałymi αi. Na X = X1 × . . . × Xn określmy l2-metrykę d(x, y) := (
∑n
i=1 di(xi, yi)

2)1/2.
Wówczas miara µ1 ⊗ · · · ⊗ µn spełnia nierówność T2 ze stałą maxi αi na (X, d).

Dowód. Stosujemy Twierdzenie 8.16 z ϕ(x) := 1
2αx, α = maxi αi oraz ci(xi, yi) := d2

i (xi, yi).

8.4 Nierówność T2 Talagranda a bezwymiarowa koncentracja

Wniosek 8.20. Załóżmy, że miara µ spełnia nierówność T2 ze stałą α na przestrzeni
metrycznej (X, d). Wówczas dla dowolnej funkcji 1-Lipschitzowskiej na Xn z l2-metryką
dn(x, y) := (

∑n
i=1 d(xi, yi)2)1/2 zachodzi

µn({x ∈ Xn : f(x)−Eµnf ­ t}) ¬ e−t
2/2α.

W szczególności αµn(t) ¬ exp(−t2/8α).

Dowód. Z Wniosku 8.19 wynika, że µn spełnia nierówność T2 ze stałą α, zatem dla dowolnej
miary probabilistycznej ν na Xn zachodzi

WLip
1 (µn, ν) ¬W1(µn, ν) ¬W2(µn, ν) ¬

√
2αH(ν|µn)

i teza łatwo wynika z Twierdzenia 8.12.

Okazuje się, że nierówność T2 jest równoważna bezwymiarowej koncentracji.

Twierdzenie 8.21 (Gozlan). Załóżmy, że µ jest miarą probablistyczną na ośrodkowej
przestrzeni polskiej (X, d), zaś dn są l2-metrykami na Xn. Wówczas następujące warunki
są równoważne:
i) µ spełnia nierówność T2 na (X, d) ze stałą α:

W2(ν, µ) ¬
√

2αH(ν|µ) dla każdego ν ∈ (X),
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ii) dla każdego n miara µn spełnia nierówność T1 na (Xn, dn) ze stałą α:

W1(ν, µn) ¬
√

2αH(ν|µn) dla każdego ν ∈ P(Xn),

iii) istnieje stała C taka, że dla każdego n i każdej funckji 1-Lipschitzowskiej f na (Xn, dn),

µn({x ∈ Xn : f(x)−Eµnf ­ t}) ¬ Ce−t
2/2α.

Dowód i)⇒ ii)⇒ iii) dowodzimy jak we Wniosku 8.20. By udowodnić najbardziej za-
skakującą implikację iii)⇒ i) wykorzystamy twierdzenie o wielkich odchyleniach Sanowa.

Twierdzenie 8.22 (Sanow). Niech X1, X2, . . . będą niezależnymi zmiennymi losowymi o
wartościach w przestrzeni polskiej X i jednakowym rozkładzie µ. Wówczas dla dowolnego
zbioru otwartego G w przestrzeni miar probabilistycznych na X z topologią słabej zbieżności
zachodzi

lim inf
n→∞

1
n

log P

(
1
n

n∑
k=1

δXk ∈ G
)
­ − inf

ν∈G
H(ν|µ). (17)

Uwaga 8.23. Twierdzenie 8.22 to tak naprawdę tylko połowa twierdzenia Sanowa dotycząca
szacowania wielkich odchyleń dla miar empirycznych z dołu. Druga część mówi, że dla
dowolnego zbioru zwartego F w przestrzeni miar probabilistycznych na X z topologią słabej
zbieżności mamy

lim sup
n→∞

1
n

log P

(
1
n

n∑
k=1

δXk ∈ F
)
¬ − inf

ν∈F
H(ν|µ).

Dowód Twierdzenia 8.22. Ustalmy ν ∈ U takie, że H(ν|µ) < ∞ (jeśli takie ν nie istnieje,
to infimum po lewej stronie (17) jest równe +∞ i nierówność jest oczywista). Niech g = dν

dµ
oraz Y1, Y2, . . . będą niezależnymi zmiennymi o rozkładzie ν. Wówczas g(Yi) > 0 p.n. oraz
dla dowolnej funkcji mierzalnej f na Xn,

Ef(Y1, . . . , Yn) = E(f(X1, . . . , Xn)
n∏
k=1

g(Xk)).

Mamy

P

(
1
n

n∑
k=1

δXk ∈ G
)
­ P

(
1
n

n∑
k=1

δXk ∈ G,
n∏
k=1

g(Xk) > 0

)

= E

(
1{ 1

n

∑n

k=1 δYk∈G}

n∏
k=1

g(Yk)−1

)

­ e−n(Eν log g+ε)P

(
1
n

n∑
k=1

δYk ∈ G,
1
n

n∑
k=1

log g(Yk) ¬ Eν log g + ε

)
.
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Mocne prawo wielkich liczb implikuje, że z prawdopodobieństwem 1 przy n→∞ zachodzi
1
n

∑n
k=1 log g(Yk)→ Eν log g oraz 1

n

∑n
k=1 δYk → ν słabo. Stąd z otwartości G otrzymujemy,

że

lim inf
n→∞

1
n

log P

(
1
n

n∑
k=1

δXk ∈ G
)
­ −Eν log g − ε = −H(ν|µ)− ε.

Przechodząc z ε do 0 i biorąc supremum prawej strony ostatniej nierówności po ν ∈ G
dostajemy tezę.

Zanim udowodnimy twierdzenie Gozlana, wykażemy kilka faktów dotyczących metryki
Wassersteina. We wszystkich trzech faktach zakładamy, że µ jest rozkładem probabilistycz-
nym na przestrzeni polskiej X oraz 1 ¬ p <∞.

Fakt 8.24. Funkcja ν 7→Wp(ν, µ) jest półciągła z dołu na P(X), tzn. jeśli νn zbiega słabo
do µ, to

lim inf
n→∞

Wp(νn, µ) ­Wp(ν, µ).

Dowód. Niech πn ∈ Π(νn, µ) będą takie, że

Wp(νn, ν) ­ (Eπnd(x, y)p)1/p − 1
n
.

Pokażemy najpierw, że ciąg (πn) jest ciasny w P(X× X). Dla ε > 0 z ciasności ciągu (νn)
możemy znaleźć zbiór zwarty K1 ⊂ X taki, że νn(K1) ­ 1− ε/2 dla wszystkich n. Istnieje
też zbiór zwarty K2 ⊂ X taki, że µ(K2) ­ 1− ε/2. Ponieważ νn i µ to rozkłady brzegowe
πn, więc 1− πn(K1 ×K2) ¬ 1− νn(K1) + 1− µ(K2) ¬ ε.

Używając ciasności (πn) możemy wybrać podciąg ciąg nk taki, że πnk → π słabo w
P(X × X) i lim infnWp(νn, µ) = limkWp(νnk , µ). Łatwo sprawdzamy, że π ∈ Π(ν, µ) oraz
dla dowolnego a <∞,

lim inf
n

Wp(νn, µ) ­ lim inf
k

(Eπnk
d(x, y)p)1/p ­ lim inf

k
(Eπnk

min{a, dp(x, y)})1/p

= (Eπ min{a, dp(x, y)})1/p.

Z dowolności a > 0 mamy

Wp(ν, µ) ¬ (Eπd
p(x, y))1/p ¬ lim inf

n
Wp(νn, µ).

Fakt 8.25. Funkcja gn(x1, . . . , xn) := Wp( 1
n

∑n
k=1 δxk , µ) jest n−1/p-lipschitzowska na Xn

z lp-metryką dp(x, y) := (
∑n
k=1 d(xk, yk)p)1/p.
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Dowód. Zauważmy wpierw, że każde π ∈ Π( 1
n

∑n
k=1 δxk , µ) jest postaci π = 1

n

∑n
k=1 δxk⊗µk

dla µ1, . . . , µn ∈ P(X) takich, że 1
n

∑n
k=1 µk = µ. Stąd dla x, y ∈ Xn mamy

Wp

(
1
n

n∑
k=1

δxk , µ

)
−Wp

(
1
n

n∑
k=1

δyk , µ

)

= inf
1
n

∑n

k=1 µk=µ

(
1
n

n∑
k=1

∫
d(xi, z)pdµi(z)

)1/p

− inf
1
n

∑n

k=1 µk=µ

(
1
n

n∑
k=1

∫
d(yi, z)pdµi(z)

)1/p

¬ sup
1
n

∑n

k=1 µk=µ

( 1
n

n∑
k=1

∫
d(xi, z)pdµi(z)

)1/p

−
(

1
n

n∑
k=1

∫
d(yi, z)pdµi(z)

)1/p


¬ sup
1
n

∑n

k=1 µk=µ

(
1
n

n∑
k=1

∫
|d(xi, z)− d(yi, z)|pdµi(z)

)1/p

¬ n−1/p

(
n∑
k=1

d(xk, yk)p
)1/p

.

Fakt 8.26. Jeśli X1, X2, . . . są niezależne o rozkładzie µ, oraz Eµd(x, x0)p+ε < ∞ dla
pewnego x0 ∈ X i ε > 0, to EWp( 1

n

∑n
k=1 δXk , µ)p = 0.

Dowód. Ustalmy a > 0. Mamy

Wp(ν, µ)p = inf
π∈Π(ν,µ)

(
Eπd

p(x, y)1{d(x,y)¬a} + Eπd
p(x, y)1{d(x,y)>a}

)
¬ inf

π∈Π(ν,µ)

(
ap−1Eπ min{d(x, y), a}+

Eπ(d(x0, x) + d(x0, y))p+ε

aε

)
.

¬ ap−1 inf
π∈Π(ν,µ)

Eπ min{d(x, y), a}+ 2p+ε
Eνd(x0, x)p+ε + Eµd(x0, y)p+ε

aε
.

Z twierdzenia Skorochoda wynika, że jeśli νn → µ słabo, to istnieją zmienne losowe Yn ∼ νn
i Y ∼ µ takie, że Yn → Y p.n, w konsekwencji z twierdzenia Lebesgue’a o zbieżności
zmajoryzowanej dostajemy

νn → µ słabo w P(X) ⇒ inf
π∈Π(νn,µ)

Eπ min{d(x, y), a} → 0.

Ponieważ 1
n

∑n
k=1 δXk → µ słabo z prawdopodobieństwem 1 przy n → ∞, więc ponownie

używając twierdzenia Lebesgue’a o zbieżności zmajoryzowanej dostajemy

E inf
π∈Π( 1

n

∑n

k=1 δXk ,µ)
Eπ min{d(x, y), a} → 0.

Stąd dla dowolnego a > 0,

lim sup
n→∞

EWp

(
1
n

n∑
k=1

δXk , µ

)p
¬ 2p+εa−ε

(
E

1
n

n∑
k=1

d(x0, Xk)p+ε + Eµd(x0, y)p+ε
)

¬ 2p+ε+1a−εEµd(x0, y)p+ε
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i biorąc a→∞ dostajemy tezę.

Dowód Twierdzenia 8.21. i)⇒ii). Stosujemy Wniosek 8.19 i to, że W1 ¬W2.
ii)⇒iii). Wystarczy wykorzystać to, że WLip

1 ¬W1 i Twierdzenie 8.12.
iii)⇒i). Określmy

gn(x1, . . . , xn) := W2

(
1
n

n∑
k=1

δxk , µ

)
.

Fakt 8.24 implikuje, że zbiór

Gt := {ν ∈ P(X) : W2(ν, µ) > t}

jest otwarty. Zatem z twierdzenia Sanowa

− inf
ν∈Gt

H(ν|µ) ¬ lim inf
n→∞

1
n

log P (gn(X1, . . . , Xn) > t) .

Z założenia iii) i n−1/2-lipschitzowskości gn (Fakt 8.25) dostajemy

P (gn(X1, . . . , Xn) > t) ¬ C exp
(
− n

2α
(t−Egn(X1, . . . , Xn))+2

)
.

Stąd

− inf
ν∈Gt

H(ν|µ) ¬ − lim sup
n→∞

(t−Egn(X1, . . . , Xn))2
+

2α
= − t

2

2α
,

gdzie ostatnia nierówność wynika z Faktu 8.26 (warunek iii) z n = 1 i 1-Lipschitzowskość
metryki implikują, że Eµd(x0, x)p <∞ dla dowolnego p <∞). Otrzymana nierówność jest
równoważna √

2αH(ν|µ) ­ t, jeśli W2(µ, ν) > t,

skąd łatwo wynika nierówność T2.

9 Aproksymacja przez otoczkę wypukłą

9.1 Definicje

W tej części będziemy zakładać, że przestrzeń X ma strukturę produktową, tzn. X =
X1 × · · · × Xn. Określmy metrykę na X wzorem

da(x, y) =
n∑
i=1

ai1{xi 6=yi}.
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Z Wniosku 4.5 wynika, że dla |a| = 1, αµ,X,da(t) ¬ exp(−|t|2/8), jednak poszerzenie
zbioru w każdej z metryk da wygląda nieco inaczej. Celem tego rozdziału jest uzyskanie
jednostajnej wersji tego wyniku.

Dla A ⊂ X i x ∈ X określmy

DcA(x) := sup
|a|=1

da(x,A).

Okazuje się, że DcA(x) można zdefiniować w równoważny, nieco bardziej abstrakcyjny
sposób.

Dla A ⊂ X i x ∈ X określmy

UA(x) := {(1{xi 6=yi})1¬i¬n : y ∈ A} ⊂ {0, 1}n

oraz
VA(x) := conv{UA(x)} ⊂ [0, 1]n.

Łatwo zauważyć, że VA(x) jest domkniętym wielościanem wypukłym. Ponadto 0 ∈ VA(x)
wtedy i tylko wtedy gdy 0 ∈ A.

Kolejny fakt łączy VA(x) i DcA(x).

Fakt 9.1. Dla dowolnego A ⊂ X i x ∈ X,

dist(0, VA(x)) = inf
y∈VA(x)

|y| = DcA(x).

Dowód. i) DcA(x) ¬ dist(0, VA(x)). Niech z ∈ VA(x) takie, że |z| = dist(0, VA(x)). Ustalmy
a ∈ Sn−1, wtedy

inf
s∈UA(x)

〈a, s〉 = inf
y∈VA(x)

〈a, y〉 ¬ 〈a, z〉 ¬ |z|.

Zatem istnieje y ∈ A takie, że s = (1{xi 6=yi})i ∈ UA(x) spełnia 〈a, s〉 ¬ |z|. Stąd

da(x,A) ¬ da(x, y) =
n∑
i=1

ai1{xi 6=yi} = 〈a, s〉 ¬ |z|,

czyli DcA(x) ¬ |z| = dist(0, VA(x)).
ii) DcA(x) ­ dist(0, VA(x)). Ustalmy z ∈ VA(x) taki, że |z| = dist(0, VA(x)). Jeśli z = 0,

to nierówność jest oczywista, w przeciwnym przypadku niech a := z/|z|. Zauważmy, że dla
dowolnego s ∈ VA(x) i θ ∈ [0, 1], θs+ (1− θ)z ∈ VA(x), zatem

|z|2 ¬ |θs+ (1− θ)z|2 = |z + θ(s− z)|2 = |z|2 + 2θ〈z, s− z〉+ θ2|s|2.

Biorąc θ → 0+ dostajemy 〈z, s− z〉 ­ 0, czyli

〈a, s〉 =
1
|z|
〈z, s〉 ­ 1

|z|
〈z, z〉 = |z|.

Stąd
DcA(x) ­ da(x,A) = inf

s∈UA(x)
〈a, s〉 ­ |z| = dist(0, VA(x)).
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9.2 Twierdzenie Talagranda

Twierdzenie 9.2. Załóżmy, że µ = µ1 ⊗ · · · ⊗ µn jest produktową miarą probabilistyczną
na X = X1 × · · · × Xn. Wówczas dla dowolnego niepustego, mierzalnego zbioru A w X,∫

exp
((DcA)2

4

)
dµ ¬ 1

µ(A)
.

W szczególności dla t > 0,

µ({DcA ­ t}) ¬
1

µ(A)
e−t

2/4.

Dowód. Przeprowadzimy indukcję po n. Dla n = 1, mamy DcA(x) = 1X\A(x), więc

∫
exp

((DcA)2

4

)
dµ = e1/4(1− µ(A)) + µ(A) ¬ 2(1− µ(A)) + µ(A) ¬ 1

µ(A)
.

Załóżmy, że n ­ 2 i teza zachodzi dla n− 1. Dla uproszczenia notacji przyjmiemy

X̃ = X1 × · · · × Xn−1, µ̃ = µ1 ⊗ · · · ⊗ µn−1

oraz dla x ∈ X będziemy pisać x = (x̃, xn), gdzie x̃ ∈ X̃. Ustalmy A ⊂ X = X̃ × Xn i
przyjmijmy

B = {x̃ : ∃y ∈ Xn x = (x̃, y) ∈ A} oraz A(y) = {x̃ : x = (x̃, y) ∈ A} dla y ∈ Xn.

Zauważmy, że jeśli s ∈ UA(xn)(x), to (s, 0) ∈ UA(x), a jeśli t ∈ UB(x), to (t, 1) lub (t, 0)
należą do UA(x). Zatem jeśli wybierzemy s ∈ VA(xn)(x) oraz t ∈ VB(x), to (s, 0) ∈ UA(x)
oraz (t, b) ∈ VA(x) dla pewnego b ∈ [0, 1], czyli z wypukłości zbioru VA(x), (θs + (1 −
θ)t, (1− θ)b) ∈ VA(x). Stąd z wypukłości funkcji |x|2,

DcA(x)2 ¬ |θs+ (1− θ)t|2 + |(1− θ)b|2 ¬ θ|s|2 + (1− θ)|t|2 + (1− θ)2,

czyli z dowolności wyboru t i s,

DcA(x)2 ¬ θDcA(xn)(x̃)2 + (1− θ)DcB(x̃)2 + (1− θ)2.

Odcałkowywując i korzystając z nierówności Höldera dostajemy∫
X̃

exp
(DcA(x̃, xn)2

4

)
dµ̃(x̃)

¬e(1−θ)2/4
( ∫

X̃
exp

(DcA(xn)(x̃)2

4

)
dµ̃(x̃)

)θ( ∫
X̃

exp
(DcB(x̃)2

4

)
dµ̃(x̃)

)1−θ
.
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Zatem na mocy założenia indukcyjnego (zastosowanego do zbiorów A(xn) i B w X̃) dosta-
jemy dla dowolnego θ ∈ [0, 1],∫

X̃
exp

(DcA(x̃, xn)2

4

)
dµ̃(x̃) ¬ e(1−θ)2/4

( 1
µ̃(A(xn))

)θ( 1
µ̃(B)

)1−θ
. (18)

Zauważmy teraz, że

inf
θ∈[0,1]

e(1−θ)2/4u−θ ¬ 2− u dla u ∈ [0, 1]. (19)

Istotnie dla u ­ e−1/2 możemy przyjąć θ = 1 + 2 log u i po zlogarytmowaniu pozostaje
sprawdzić, że f(u) := log(2− u) + log(u) + log2(u) ­ 0. Prosty rachunek pokazuje, że dla
u ∈ [0, 1], (uf ′)′ = −2(u−2)−2 +2u−1 ­ 0, czyli uf ′(u) ¬ f ′(1) = 0, więc f(u) ­ f(1) = 0.

Dla u ¬ e−1/2 kładziemy θ = 0 i sprawdzamy (numerycznie lub korzystając z poprzed-
niego rozumowania dla u = e−1/2), że e1/4 ¬ 2− e−1/2 ¬ 2− u.

Nierówności (18) oraz (19) z u = µ̃(A(xn))/µ̃(B) implikują∫
X̃

exp
(DcA(x̃, xn)2

4

)
dµ̃(x̃) ¬ 1

µ̃(B)

(
2− µ̃(A(xn))

µ̃(B)

)
.

Zatem ∫
X

exp
(DcA(x̃, xn)2

4

)
dµ(x) ¬

∫
Xn

1
µ̃(B)

(
2− µ̃(A(xn))

µ̃(B)

)
dµn(xn)

=
1

µ̃(B)

(
2− µ(A)

µ̃(B)

)
¬ 1
µ(A)

,

gdyż v(2− v) ¬ 1 dla v ∈ [0, 1].

9.3 Wybrane zastosowania

Przykład. Niech X = {0, 1}n oraz µ = µnp , gdzie µp = pδ1 + (1 − p)δ0. Załóżmy, że zbiór
A ⊂ {0, 1}n jest monotonicznie dziedziczny, w sensie

x ∈ A, y ∈ {0, 1}n, y ¬ x ⇒ y ∈ A.

Niech dla x ∈ X
N(x) := #{1 ¬ i ¬ n : xi = 1},

wówczas
dH(x,A) ¬ DcA(x)

√
N(x),

gdzie dH oznacza metrykę Hamminga. Istotnie, przyjmijmy a = N(x)−1/2(1{xi=1})i i weź-
my y ∈ A takie, że

da(x, y) =
1√
N(x)

∑
xi=1

1{yi 6=xi} ¬ D
c
A(x).
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Z uwagi na monotoniczną dziedziczność A możemy przyjąć, że yi = 0 dla xi = 0, zatem

dH(x, y) =
n∑
i=1

1{xi 6=yi} =
∑
xi=1

1{yi 6=xi} ¬
√
N(x)DcA(x).

Stąd dla s > 0,

µnp ({dH(x,A) ­ r}) ¬ µnp ({DcA(x) ­ rs−1/2}) + µnp ({N(x) > s})

¬ 1
µnp (A)

e−
r2

4s + µnp ({N(x) > s}).

Można sprawdzić, że drugi czynnik jest mały dla s = nα z α > p.

Twierdzenie 9.2 prowadzi do koncentracji pewnej klasy funkcji lipschitzowskich w od-
powiednim sensie . Mianowicie zachodzi

Wniosek 9.3. Załóżmy, że funkcja F : X→ R spełnia warunek

∀x∈X∃a=a(x)∀y∈X F (x) ¬ F (y) + da(x, y) = F (y) +
n∑
i=1

ai(x)1{xi 6=yi}. (20)

Wówczas dla dowolnej probabilistycznej miary produktowej µ na X,

µ({|F −Medµ(F )| ­ t}) ¬ 4 exp

(
− t2

4σ2

)
dla t > 0,

gdzie

σ2 := sup
x∈X

n∑
i=1

ai(x)2.

Dowód. Dla m ∈ R połóżmy A = {F ¬ m}, zauważmy, że warunek (20) implikuje, że dla
dowolnego x ∈ X,

F (x) ¬ m+ da(x)(x,A) ¬ m+ σDcA(x),

stąd

µ({F ­ m+ t}) ¬ µ({DcA(x) ­ t/σ}) ¬ 1
µ(A)

e−t
2/(4σ2).

Zatem dla dowolnego m,

µ({F ¬ m})µ({F ­ m+ t}) ¬ e−t2/(4σ2).

Biorąc m = Medµ(F ) i m = Medµ(F )− t dostajemy tezę.
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10 Porównywanie supremów procesów stochastycznych

W kolejnych wykładach zajmiemy się badaniem supremów procesów stochastycznych, czyli
zmiennych losowych postaci supt∈T Xt. Zbiór T nie musi być podzbiorem prostej rzeczywi-
stej, by uniknąć problemów z mierzalnością będziemy zakładać, że zbiór jest przeliczalny,
alternatywnie można zakładać ośrodkowość procesu (Xt)t∈T .

Przykłady.
i) Norma wektora losowego w ośrodkowej przestrzeni Banacha ‖X‖ = supϕ ϕ(X), gdzie
supremum jest brane po przeliczalnym podzbiorze kuli jednostkowej wybijającym normę
wektora.
ii) Norma operatorowa macierzy losowej ‖X‖ = supt,s

∑
ij Xijtisj , gdzie supremum bierze-

my po przeliczalnym gęstym podzbiorze Bn
2 .

iii) Supremum procesu empirycznego supf∈F
∑n
i=1 f(Xi) - tutaj X1, X2, . . . , Xn są nieza-

leżnymi zmiennymi losowymi o wartościach w pewnej przestrzeni X, a F przeliczalną klasą
funkcji mierzalnych na X.

10.1 Nierówności symetryzacyjne

Od tej pory ε, ε1, ε2, . . . oznaczają niezależne zmienne losowe takie, że P(εi = ±1) =
1/2 (ciąg Bernoulliego), a g, g1, g2, . . . ciąg niezależnych zmiennych losowych o rozkładzie
N (0, 1). Będziemy też zakładać, że ciągi (εk) i (gk) są od siebie niezależne i niezależne od
pozostałych zmiennych losowych.

Fakt 10.1. Załóżmy, że X1, X2, . . . , Xn są niezależnymi zmiennymi losowymi o warto-
ściach w przestrzeni X, F jest przeliczalną klasą funkcji mierzalnych na X oraz Ef(Xk) = 0
dla wszystkich k i f ∈ F . Wówczas dla dowolnej niemalejącej funkcji wypukłej G na R,

EG

(
sup
f∈F

n∑
k=1

f(Xk)

)
¬ EG

(
2 sup
f∈F

n∑
k=1

εkf(Xk)

)
¬ EG

(
√

2π sup
f∈F

n∑
k=1

gkf(Xk)

)
. (21)

oraz

EG

(
1
2

sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
)
¬ EG

(
sup
f∈F

∣∣∣∣∣
n∑
k=1

f(Xk)

∣∣∣∣∣
)
¬ EG

(
2 sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
)

¬ EG

(
√

2π sup
f∈F

∣∣∣∣∣
n∑
k=1

gkf(Xk)

∣∣∣∣∣
)
. (22)

Dowód. Niech (Y1, . . . , Yn) będzie niezależną kopią ciągu (X1, . . . , Xn), niezależną od zmien-

62



nych εk. Wówczas na mocy nierówności Jensena,

EG

(
sup
f∈F

n∑
k=1

f(Xk)

)
= EXG

(
1
2

sup
f∈F

n∑
k=1

(f(Xk)−EY f(Yk))

)

¬ EXG

(
1
2
EY sup

f∈F

n∑
k=1

(f(Xk)− f(Yk))

)

¬ EG

(
1
2

sup
f∈F

n∑
k=1

(f(Xk)− f(Yk))

)

= EG

(
1
2

sup
f∈F

n∑
k=1

εk(f(Xk)− f(Yk))

)

¬ 1
2
EG

(
2 sup
f∈F

n∑
k=1

εkf(Xk)

)
+

1
2
EG

(
2 sup
f∈F

n∑
k=1

(−εk)f(Yk)

)

= EG

(
2 sup
f∈F

n∑
k=1

εkf(Xk)

)
.

Wykorzystaliśmy powyżej też fakt, że zmienne (Xk, Yk) są niezależne i mają ten sam roz-
kład co (Yk, Xk), zatem dla dowolnego ciągu znaków ηk = ±1, proces (

∑n
k=1 ηk(f(Xk) −

f(Yk)))f∈F ma ten sam rozkład co proces (
∑n
k=1(f(Xk)− f(Yk)))f∈F .

By udowodnić drugą nierówność w (21) zauważamy, że (gk) ma ten sam rozkład co
(εk|gk|) i

√
2πE|gk| = 2. Zatem z nierówności Jensena

EG

(
2 sup
f∈F

n∑
k=1

εkf(Xk)

)
= EG

(
√

2π sup
f∈F

n∑
k=1

εkEg|gk|f(Xk)

)

¬ EG

(
√

2π sup
f∈F

n∑
k=1

εk|gk|f(Xk)

)

= EG

(
√

2π sup
f∈F

n∑
k=1

gkf(Xk)

)

Druga i trzecia nierówność w (21) wynika z (22) zastosowanego do −F ∪ −F . W do-

63



wodzie pierwszej nierówności ponownie wykorzystujemy nierówność Jensena:

EG

(
1
2

sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
)

= EX,εG

(
1
2

sup
f∈F

∣∣∣∣∣
n∑
k=1

εk(f(Xk)−EY f(Yk))

∣∣∣∣∣
)

¬ EX,εG

(
1
2
EY sup

f∈F

∣∣∣∣∣
n∑
k=1

εk(f(Xk)− f(Yk))

∣∣∣∣∣
)

¬ EG

(
1
2

sup
f∈F

∣∣∣∣∣
n∑
k=1

εk(f(Xk)− f(Yk))

∣∣∣∣∣
)

= EG

(
1
2

sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− f(Yk))

∣∣∣∣∣
)

¬ 1
2
EG

(
sup
f∈F

∣∣∣∣∣
n∑
k=1

f(Xk)

∣∣∣∣∣
)

+
1
2
EG

(
sup
f∈F

∣∣∣∣∣
n∑
k=1

−f(Xk)

∣∣∣∣∣
)

= EG

(
sup
f∈F

∣∣∣∣∣
n∑
k=1

f(Xk)

∣∣∣∣∣
)
.

W szczególnym przypadku, gdy X = F, a F to klasa funkcjonałów liniowych na F
otrzymujemy.

Wniosek 10.2. Załóżmy, że X1, . . . , Xn są niezależnymi scentrowanymi wektorami losowy-
mi o wartościach w ośrodkowej przestrzeni Banacha F. Wówczas dla dowolnej niemalejącej
funkcji wypukłej G na R+,

EG

(
1
2

∥∥∥∥∥
n∑
k=1

εkXk

∥∥∥∥∥
)
¬ EG

(∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥
)
¬ EG

(
2

∥∥∥∥∥
n∑
k=1

εkXk

∥∥∥∥∥
)
¬ EG

(
√

2π

∥∥∥∥∥
n∑
k=1

gkXk

∥∥∥∥∥
)
.

10.2 Zasada kontrakcji dla procesów Bernoulliego

Zacznijmy od łatwego faktu zwanego zasadą kontrakcji.

Fakt 10.3. Załóżmy, że |λk| ¬ 1 dla 1 ¬ k ¬ n, zaś T jest ograniczonym podzbiorem Rn.
Wówczas dowolnej wypukłej niemalejącej funckji G na R,

EG

(
sup
t∈T

n∑
k=1

λktkεk

)
¬ EG

(
sup
t∈T

n∑
k=1

tkεk

)
.

Dowód. Funkcja (λ1, . . . , λn) 7→ EG(supt∈T
∑n
k=1 λktkεk) jest wypukła na [−1, 1]n, więc

przyjmuje swoje maksimum w którymś z wierzchołków.
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Kolejna nierówność między procesami Bernoulliego, uogólniająca znacząco poprzedni
fakt, została sformułowana i udowodniona przez Talagranda.

Twierdzenie 10.4. Załóżmy, że dla k = 1, . . . , n, ϕk : R → R są 1-lipschitzowskie oraz
ϕk(0) = 0, zaś G : R → R jest funkcją wypukłą i niemalejącą. Wówczas dla dowolnego
zbioru ograniczonego T ⊂ Rn,

EG

(
sup
t∈T

n∑
k=1

ϕk(tk)εk

)
¬ EG

(
sup
t∈T

n∑
k=1

tkεk

)
.

Dowód. Łatwy argument indukcyjny pokazuje, że wystarczy wykazać, że dla ograniczonego
podzbioru T ⊂ R2 i funkcji 1-lipschitzowskiej ϕ na R takiej, że ϕ(0) = 0 zachodzi

EG

(
sup
t∈T

(t1 + ϕ(t2)ε)

)
¬ EG

(
sup
t∈T

(t1 + t2ε)

)
.

Wystarczy zatem pokazać, że dla dowolnego s, t ∈ T prawa strona powyższej nieówności
jest większa równa

I :=
1
2

(G(t1 + ϕ(t2)) +G(s1 − ϕ(s2))).

Bez straty ogólności możemy też zakładać, że

t1 + ϕ(t2) ­ s1 + ϕ(s2) oraz s1 − ϕ(s2) ­ t1 − ϕ(t2). (23)

Rozpatrzymy 4 przypadki.

Przypadek 1. t2 ­ 0 i s2 ­ 0. Załóżmy wpierw dodatkowo, że s2 ¬ t2. Wykażemy, że

2I ¬ G(t1 + t2) +G(s1 − s2), czyli G(a)−G(b) ¬ G(c)−G(d)

dla a := s1−ϕ(s2), b := s1− s2, c := t1 + t2, d := t1 +ϕ(t2). Z 1-lipschitzowskości ϕ mamy
|ϕ(s2)| ¬ s2, skąd wynika, że a ­ b oraz, biorąc pod uwagę pierwszą nierówność w (23),
d ­ b. Mamy też (wobec tego, że ϕ jest 1-lipschitzowska oraz s2 ¬ t2)

a− b = s2 − ϕ(s2) ¬ t2 − ϕ(t2) = c− d.

Funkcja x 7→ G(x+ y)−G(y) jest rosnąca dla y ­ 0, zatem

G(a)−G(b) ¬ G(d+ (a− b))−G(d) ¬ G(c)−G(d).

Jeśli s2 ­ t2 to pokażemy, że

2I ¬ G(t1 − t2) +G(s1 + s2), czyli G(a)−G(b) ¬ G(c)−G(d)

65



dla a := t1 + ϕ(t2), b := t1 − t2, c := s1 + s2, d := s1 − ϕ(s2). Mamy |ϕ(t2)| ¬ t2, skąd
wynika, że a ­ b oraz, biorąc pod uwagę drugą nierówność w (23), d ­ b. Mamy też (wobec
tego, że ϕ jest 1-lipschitzowska oraz s2 ­ t2)

a− b = t2 + ϕ(t2) ¬ s2 + ϕ(s2) = c− d.

i dalej argumentujemy jak poprzednio.

Przypadek 2. t2 ¬ 0 i s2 ¬ 0. Rozumujemy analogicznie jak w przypadku 1.

Przypadek 3. t2 ­ 0 i s2 ¬ 0. Wówczas ϕ(t2) ¬ t2 i −ϕ(s2) ¬ −s2, stąd

2I ¬ G(t1 + t2) +G(s1 − s2).

Przypadek 4. t2 ¬ 0 i s2 ­ 0. Wówczas ϕ(t2) ¬ −t2 i −ϕ(s2) ¬ s2, stąd

2I ¬ G(t1 − t2) +G(s1 + s2).

10.3 Lemat Slepiana

Celem tej części jest udowodnienie następującego twierdzenia, będącego jednym z warian-
tów tzw. lematu Slepiana.

Twierdzenie 10.5 (Slepian-Fernique). Załóżmy, że X i Y są n-wymiarowymi wektorami
gaussowskimi o średniej zero oraz

E|Xi −Xj |2 ­ E|Yi − Yj |2 dla 1 ¬ i, j ¬ n.

Wówczas
E max

i¬n
Xi ­ E max

i¬n
Yi.

Idea dowodu polega na rozważeniu procesu

Z(t) =
√
tX +

√
1− tY, t ∈ [0, 1]. (24)

interpolującego między X i Y . By obliczyć d
dtEf(Z(t)) dla gładkich funkcji f będziemy

potrzebować dwóch lematów dotyczących gaussowskiego całkowania przez części.

Lemat 10.6 (Jednowymiarowe gaussowskie całkowanie przez części). Załóżmy, że f ∈
C1(Rn) oraz |f(x)|+ |f ′(x)| ¬ Cet|x|2 dla pewnego t < 1/2. Wówczas

Egf(g) = Ef ′(g) dla g ∼ N (0, 1).
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Dowód. Całkując przez części dostajemy:

Egf(g) =
1√
2π

∫ ∞
−∞
−f(x)

d

dx
e−x

2/2dx = −f(x)e−x
2/2|∞−∞ +

∫ ∞
−∞

f ′(x)e−x
2/2dx = Ef ′(g).

Lemat 10.7 (Wielowymiarowe gaussowskie całkowanie przez części). Załóżmy, że f ∈
C1(Rn) oraz dla ε > 0 istnieje Cε < ∞ taki, że |f(x)| + |∇f(x)| ¬ Cεe

ε|x|2. Wówczas dla
dowolnego n-wymiarowego wektora gaussowskiego X o średniej 0,

E(Xif(X)) =
n∑
j=1

Cov(Xi, Xj)E
∂f

∂xj
(X) dla 1 ¬ i ¬ n.

Dowód. Wiemy, że X ma ten sam rozkład co AY dla Y ∼ N(0, In) i pewnego A ∈ Mn,n.
Stąd

E(Xif(X)) =
n∑
k=1

aikE(Ykf(AY )) =
n∑
k=1

aikE(Ykg(Y )),

gdzie g(x) = f(Ax). Stosując warunkowo Lemat 10.7 dostajemy

E(Ykg(Y )) = E
∂g

∂xk
(Y ) =

n∑
j=1

ajkE
∂f

∂xj
(AY ).

By dokończyć dowód wystarczy zauważyć, że

E(Xif(X)) =
n∑

j,k=1

aikajkE
∂f

∂xj
(X) =

∑
j

(AAT )ijE
∂f

∂xj
(X).

Wniosek 10.8. Załóżmy, że X i Y są niezależnymi n-wymiarowymi wektorami gaussow-
skimi o średniej zero oraz proces Z(t) jest zadany przez (24). Wówczas dla f ∈ C2(Rn)
takiej, że dla ε > 0 istnieje Cε <∞, f(x) + |∇f(x)|+ |Hessf(x)| ¬ Cεeε|x|

2
zachodzi

d

dt
Ef(Z(t)) =

1
2

n∑
i,j=1

(Cov(Xi, Xj)− Cov(Yi, Yj))E
∂2f

∂xi∂xj
(Z(t)) dla t ∈ (0, 1).

Dowód. Mamy

d

dt
Ef(Z(t)) =

n∑
i=1

E
(
∂f

∂xi
(Z(t))

dZi(t)
dt

)
=

1
2

n∑
i=1

E
(
∂f

∂xi
(Z(t))

(
Xi√
t
− Yi√

1− t

))
.
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Stosując Lemat 10.7 do 2n-wymiarowego wektora (X,Y ) i funkcji ∂f
∂xi

(
√
tx +

√
1− ty)

dostajemy

E
(
∂f

∂xi
(Z(t))

Xi√
t

)
=

n∑
j=1

Cov(Xi, Xj)E
∂2f

∂xi∂xj
(Z(t))

oraz

E
(
∂f

∂xi
(Z(t))

Yi√
1− t

)
=

n∑
j=1

Cov(Yi, Yj)E
∂2f

∂xi∂xj
(Z(t)).

Dowód Twierdzenia 10.5. Funkcja f(x) = maxi xi nie jest gładka, będziemy zatem ją od-
powiednio aproksymować, by móc stosować wyprowadzone powyżej wzory. Określmy dla
β > 0

fβ(x) :=
1
β

log
∑
i=1

eβxi .

Wówczas

max
i
xi ¬ fβ(x) ¬ max

i
xi +

log n
β

,

zatem wystarczy wykazać, że Efβ(X) ­ Efβ(Y ) dla dowolnego β > 0.
Bez straty ogólności możemy zakładać, że wektory X i Y są niezależne. Zdefiniujmy

Z(t) wzorem (24), zauważmy, że Z(1) = X, Z(0) = Y , wystarczy zatem iż pokażemy
d
dtEfβ(Z(t)) ­ 0 dla t ∈ (0, 1).

Prosty rachunek pokazuje, że dla 1 ¬ i, j ¬ n,

∂fβ(x)
∂xi

=
eβxi∑
k e

βxk
=: pi(x),

∂2fβ(x)
∂xi∂xj

= β(δijpi(x)− pi(x)pj(x)).

Stosując Wniosek 10.8 dostajemy

d

dt
Efβ(Z(t)) =

β

2

n∑
i=1

(Var(Xi)−Var(Yi))E(pi(Z(t))(1− pi(Z(t)))

− β

2

∑
i 6=j

(Cov(Xi, Xj)− Cov(Yi, Yj))E(pi(Z(t))pj(Z(t))).

Zauważmy jednak, że 1− pi(x) =
∑
j 6=i pj(x), stąd dla dowolnych liczb ai

n∑
i=1

aipi(x)(1− pi(x)) =
∑
i 6=j

aipi(x)pj(x) =
∑
i 6=j

ajpi(x)pj(x).

Wykorzystując powyższą tożsamość otrzymujemy

d

dt
Efβ(Z(t)) =

β

4

∑
i 6=j

(E|Xi −Xj |2 −E|Yi − Yj |2)E(pi(Z(t))pj(Z(t))) ­ 0.
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11 Metoda łańcuchowa I - szacowania supremów procesów
przy pomocy entropii metrycznej

11.1 Entropia metryczna

Zacznijmy od ważnej definicji liczb pokryciowych.

Definicja 11.1. Niech (T, d) będzie przestrzenią metryczną. Dla ε > 0 przez N(T, d, ε)
oznaczamy najmniejszą liczbę kul otwartych o promieniu ε, które pokrywają T , tzn.

N(T, d, ε) := inf
{
N : T ⊂

N⋃
i=1

B(xi, ε) dla pewnych x1, . . . , xN ∈ T
}
.

Uwaga 11.2. Możemy zdefiniować

S(T, d, ε) := sup
{
N : istnieją x1, . . . , xN ∈ T, d(xi, xj) ­ ε dla i 6= j

}
,

wtedy N(T, d, ε) ¬ S(T, d, ε) ¬ N(T, d, ε/2).

Uwaga 11.3. Często rozważa się liczby entropijne zdefiniowane jako

en(T, d) := inf{ε > 0: N(T, d, ε) ¬ 2n}.

11.2 Górne oszacowania entropijne

Załóżmy, że ϕ jest funkcją Younga na [0,∞), tzn. ϕ jest wypukłe, ściśle rosnące oraz
ϕ(0) = 0. Przyjmijmy też, że na T jest określona metryka d taka, że

Eϕ
( |Xt −Xs|

d(t, s)

)
¬ 1 dla t, s ∈ T, t 6= s. (25)

Przez ∆(T ) = ∆(T, d) będziemy oznaczali średnicę przestrzeni metrycznej (T, d).
Kolejne twierdzenie pokazuje jak szacować suprema procesów przy pomocy entropii

metrycznej. Udowodnili je niezależnie, uogólniając wcześniejszy wynik Dudleya z 1967 roku
(Wniosek 11.7) Kôno i Pisier w 1980 roku.

Twierdzenie 11.4 (Kôno-Pisier). Jeśli proces (Xt)t∈T spełnia warunek (25), to dla do-
wolnego t0 ∈ T ,

E sup
s,t∈T

(Xs −Xt) ¬ 2E sup
t∈T
|Xt −Xt0 | ¬ 8

∫ ∆(T )

0
ϕ−1(N(t, d, ε))dε.
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Dowód. Oczywiście możemy założyć, że prawa strona postulowanego oszacowania jest skoń-
czona. Niech εk = 2−k∆(T ) dla k = 0, 1, . . . i niech T0 = {t0} a dla k ­ 1, Tk będzie pod-
zbiorem T mocy N(t, d, εk) takim, że T ⊂

⋃
t∈Tk B(t, εk). Możemy zatem znaleźć funkcję

uk : T → Tk taką, że d(t, uk(t)) ¬ εk.
Ustalmy zbiór skończony S ⊂ T , niech δ := inft,s∈S,t6=s d(t, s) i wybierzmy k0 takie, że

εk0 ¬ δ/2. Wtedy każda kulka B(t, εk0) zawiera conajwyżej jeden punkt z S więc |S| ¬
N(T, d, εk0). Zdefinujmy przekształcenia πk na S wzorami

πk0(t) = t oraz πk(t) := uk ◦ uk+1 ◦ . . . ◦ uk0−1 dla 0 ¬ k ¬ k0 − 1.

Zauważmy, że πk0(S) = S i πk(S) ⊂ Tk, zatem |πk(S)| ¬ N(T, d, εk) dla 0 ¬ k ¬ k0.
Mamy π0(t) = t0, zatem

sup
t∈S
|Xt −Xt0 | = sup

t∈S

∣∣∣∣∣∣
k0∑
k=1

(Xπk(t) −Xπk−1(t))

∣∣∣∣∣∣ ¬
k0∑
k=1

sup
t∈S
|Xπk(t) −Xπk−1(t)|

=
k0∑
k=1

sup
t∈πk(S)

|Xt −Xuk−1(t)| ¬
k0∑
k=1

εk−1 sup
t∈πk(S)

|Xt −Xuk−1(t)|
d(t, uk−1(t))

.

Mamy

E sup
t∈πk(S)

|Xt −Xuk−1(t)|
d(t, uk−1(t))

¬ Eϕ−1

 ∑
k∈πk(S)

ϕ

(
|Xt −Xuk−1(t)|
d(t, uk−1(t))

)
¬ ϕ−1

E
∑

k∈πk(S)

ϕ

(
|Xt −Xuk−1(t)|
d(t, uk−1(t))

) ¬ ϕ−1(|πk(S)|)

¬ ϕ−1(N(T, d, εk)).

gdzie druga nierówność wynika z wklęsłości funkcji ϕ−1, a trzecia z założenia (25). Otrzy-
mujemy zatem

E sup
t∈S
|Xt −Xt0 | ¬

k0∑
k=1

εk−1ϕ
−1(N(T, d, εk)) = 2

k0∑
k=1

εkϕ
−1(N(T, d, εk)).

By zakończyć dowód wystarczy zauważyć, że∫ ∆(T )

0
ϕ−1(N(t, d, ε))dε ­

k0+1∑
k=1

∫ εk−1

εk

ϕ−1(N(T, d, εk−1)) =
1
2

k0+1∑
k=1

εk−1ϕ
−1(N(T, d, εk−1))

oraz

E sup
t∈T
|Xt −Xt0 | = sup

{
E sup
t∈T
|Xt −Xt0 | : S ⊂ T, |S| <∞

}
.
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Uwaga 11.5. Oszacowanie z Twierdzenia 11.3 można rozszerzyć na procesy nieośrodkowe
pod warunkiem, że zdefiniujemy

E sup
s,t∈T

(Xs −Xt) := sup

{
E sup
s,t∈S

(Xt −Xs) : S ⊂ T, |S| <∞
}
.

Uwaga 11.6. Jeśli proces Xt jest symetryczny (tzn. ma ten sam rozkład co (−Xt)t∈T ), to

E sup
t,s∈T

(Xt −Xs) = E sup
t∈T

Xt + E sup
s∈T

(−Xs) = 2E sup
t∈T

Xt.

Kolejny wynik to wniosek z Twierdzenia 11.4, który był udowodniony pierwotnie (w
nieco innym sformułowaniu) przez Dudleya.

Wniosek 11.7 (Dudley). Załóżmy, że (Xt)t∈T jest scentrowanym procesem gaussowskim
oraz d(t, s) = (E|Xt −Xs|2)1/2. Wówczas

E sup
t∈T

Xt =
1
2
E sup
s,t∈T

(Xs −Xt) ¬ C
∫ ∆(T )

0

√
lnN(T, d, ε)dε = C

∫ ∞
0

√
lnN(T, d, ε)dε,

gdzie C jest stałą numeryczną (można przyjąć C = 4
√

8/3(1 +
√

ln 3/ ln 2) ¬ 15).

Dowód. Ostatnia równość wynika stąd, że N(T, d, ε) = 1 dla ε > ∆(T ). Niech d̃(s, t) =√
8/3d(s, t) oraz ψ2(x) = exp(x2) − 1. Wykorzystując fakt, że E exp(λg2) = (1 − 2λ)−1/2

dla g ∼ N(0, 1) i λ < 1/2 nietrudno udowodnić, że dla s 6= t,

Eψ2

(
|Xt −Xs|
d̃(t, s)

)
= 1.

Stąd z Twierdzenia 11.4 otrzymujemy

E sup
s,t∈T

(Xs −Xt) ¬ 8
∫ √8/3∆(T )

0
ψ−1

2

(
N
(
T, d̃, ε

))
dε

= 8

√
8
3

∫ ∆(T )

0

√
log(N(T, d, ε) + 1).

Zauważmy, że log(n + 1)/ log n ¬ log 3/ log 2 dla n ­ 2, ponadto N(T, d, ε) ­ 2 dla d <
∆(T )/2, zatem

∫ ∆(T )

0

√
log(N(T, d, ε) + 1)dε ¬

(√
log 3
log 2

+ 1

)∫ ∞
0

√
logN(T, d, ε)dε.
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11.3 Minoryzacja Sudakowa dla procesów gaussowskich

W tej części będziemy zakładać, że Xt jest scentrowanym procesem gaussowskim oraz

d(t, s) = (E|Xt −Xs|2)1/2 dla t, s ∈ T.

Oszacowania Dudleya nie można w ogólnej sytuacji odwrócić. Prawdziwe jest słabsze osza-
cowanie udowodnione przez Sudakowa.

Twierdzenie 11.8 (Minoryzacja Sudakowa). Załóżmy, że (Xt)t∈T jest scentrowanym pro-
cesem gaussowskim. Wówczas

1
4

sup
ε>0

ε
√

logN(T, d, ε) ¬ E sup
t∈T

Xt.

Dowód. Załóżmy, że N(T, d, ε) ­ N , wówczas istnieje S ⊂ T takie, że |S| = N oraz
‖Xt − Xs‖2 ­ ε dla t, s ∈ S, t 6= s. Położmy Yt = εgt/

√
2, gdzie (gt)t∈S są niezależnymi

zmiennymi N (0, 1). Twierdzenie Slepiana-Fernique’a implikuje, że

E sup
t∈T

Xt ­ E max
t∈S

Xt ­ E max
t∈S

Yt =
ε√
2
E max

t∈S
gt ­

1
4
ε
√

log n,

gdzie ostatnia nierówność wynika z poniższego Lematu 11.10.

Lemat 11.9. Jeśli g ∼ N (0, 1), to

t√
2π(t2 + 1)

e−t
2/2 ¬ P(g ­ t) ¬ 1√

2πt
e−t

2/2.

Dowód. Górna nierówność wynika z szacowania∫ ∞
t

e−x
2/2dx ¬

∫ ∞
t

x

t
e−x

2/2dx =
1
t
e−t

2/2.

By udowodnić dolną definiujemy funkcję

f(t) := (t2 + 1)
∫ ∞
t

e−x
2/2dx− te−t2/2

i pokazujemy, że limt→∞ f(t) = 0 oraz na podstawie udowodnionego już górnego oszaco-
wania

f ′(t) = 2t
∫ ∞
t

e−x
2/2 − 2e−t

2/2 ¬ 0.

Lemat 11.10. Załóżmy, że g1, g2, . . . , gn są niezależnymi zmiennymi N (0, 1). Wówczas

E max
k¬n

gk ­
1

2
√

2

√
log n.
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Dowód. Dla n = 1 nierówność jest oczywista. Dla 2 ¬ n ¬ 12 mamy log n ¬ 8/π i

E max
k¬n

gk ­ E max{g1, g2} = Eg1 + E(g2 − g1)+ =
1
2
E|g2 − g1| =

1√
π
­ 1

2
√

2

√
log n.

Dla n ­ 13 pokazujemy, że

P
(

max
i¬n

gi ¬
√

log n
)
¬ P(g ¬

√
log n)n ¬

(
1−

√
log n√

2π(1 + log n)
e−(logn)/2

)n

¬ exp

(
−

√
n log n√

2π(1 + log n)

)
¬ e−1,

przy czym ostatnie szacowanie wynika stąd, że wobec monotoniczności x/ log x na [e,∞),√
n/ log n ­

√
13/ log 13 ­ 5 ­

√
2π(1 + π/8) ­

√
2π(1 + 1/ log n).

Zatem

E max
i¬n

gi ­ E(
√

log n1{maxi gi­
√

logn} + g11{maxi gi¬0})

­
√

log nP(max
i
gi ­

√
log n)− (Eg2

1)1/2P(max
i
gi ¬ 0)1/2

­ (1− e−1)
√

log n− 2−n/2 ­ 1

2
√

2

√
log n.

Poniższy lemat pokazuje, że oszacowanie z Lematu 11.10 jest optymalne z dokładnością
do stałej.

Lemat 11.11. Załóżmy, że zmienne X1, . . . , Xn spełniają warunek subgaussowskości

E exp(λXi) ¬ exp(aλ2) dla 1 ¬ i ¬ n, λ > 0.

Wówczas
E max

1¬i¬n
Xi ¬ 2

√
a log n.

Zauważmy, że w lemacie nie ma założenia niezależności oraz, że zmienne N (0, 1) speł-
niają zalożenia z a = 1/2.

Dowód. Dla λ > 0,

E max
i¬n

Xi ¬
1
λ

log Eeλmaxi¬nXi ¬ 1
λ

log
∑
i¬n

EeλXi ¬ log n
λ

+ aλ.

Optymalizując powyższą nierówność po λ > 0 dostajemy tezę.
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Do szacowania supremów procesów gaussowskich z dołu będziemy potrzebowali wzmoc-
nionego oszacowania Sudakowa.

Twierdzenie 11.12. Załóżmy, że (Xt)t∈T jest scentrowanym procesem gaussowskim oraz
t1, . . . , tN ∈ T , ε > 0 spełniają warunek d(ti, tj) ­ ε dla i 6= j. Wówczas

E sup
t∈T

Xt ­
1
8
ε
√

logN + min
i¬N

E sup
d(t,ti)¬αε

Xt,

gdzie α > 0 jest pewną stałą uniwersalną (można przyjąć α = 1/(8
√

2)).

Dowód. Określmy zmienne losowe

Yi := sup
d(t,ti)¬αε

(Xt −Xti)−E sup
d(t,ti)¬αε

(Xt −Xti) = sup
d(t,ti)¬αε

(Xt −Xti)−E sup
d(t,ti)¬αε

Xt.

Koncentracja procesów gaussowskich implikuje, że E exp(λYi) ¬ exp(λ2α2ε2) dla λ ∈ R.
Stąd Lemat 11.11 (zastosowany do zmiennych Xi = −Yi) implikuje

E max
i¬N

(−Yi) ¬ αε
√

2 logN.

Ponieważ
max
i

(ai + bi + ci) ­ max
i
ai −max

i
(−bi) + min

i
ci,

więc

E sup
t∈T

Xt ­ E max
i¬N

sup
d(t,ti)¬αε

Xt = E max
i¬N

(
Xti + Yi + E sup

d(t,ti)¬αε
Xt

)
­ E max

i¬N
Xti −E max

i
(−Yti) + min

i¬N
E sup
d(t,ti)¬αε

Xt

­ ε

4

√
logN − αε

√
2 logN + min

i¬N
E sup
d(t,ti)¬αε

Xt ­
ε

8

√
logN + min

i¬N
E sup
d(t,ti)¬αε

Xt,

o ile np. α = 1/(8
√

2).

11.4 Stacjonarne procesy gaussowskie

Definicja 11.13. Proces (Xt)t∈T nazywamy stacjonarnym, jeśli istnieje grupaG działająca
na T taka, że
i) działanie G jest tranzytywne, tzn. dla t, s ∈ T istnieje g ∈ G takie, że g(t) = s
ii) dla dowolnego g ∈ G proces (Xt)t∈T ma ten sam rozkład co (Xg(t))t∈T .

Uwaga 11.14. W przypadku, gdy (Xt) jest scentrowanym procesem gaussowskim bby do-
wieść warunku ii) definicji wystarczy sprawdzić, że Cov(Xt, Xs) = Cov(Xg(t), Xg(s)) dla
s, t ∈ T , g ∈ G.
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Przykład. Niech ck będzie ciągiem sumowalnym z kwadratem i określmy

Xt :=
∑
k

ck(gk sin(kt) + g′k cos(kt))

gdzie g1, g
′
1, g2, . . . są niezależnymi zmiennymi N (0, 1), a t ∈ T := R/2πZ. Tu T działa na

siebie poprzez dodawanie i wystarczy zauważyć, że

Cov(Xt, Xs) =
∑
k

c2
k cos(k(t− s)) = Cov(Xt+u, Xs+u).

Twierdzenie 11.15 (Fernique). Załóżmy, że (Xt)t∈T jest stacjonarnym procesem gaus-
sowskim. Wówczas

c

∫ ∞
0

√
logN(T, d, ε)dε ¬ E sup

t∈T
Xt ¬ C

∫ ∞
0

√
logN(T, d, ε)dε,

gdzie 0 < c < C < ∞ są stałymi uniwersalnymi (można np. przyjąć c = (192
√

2)−1,
C = 15)

Dowód. Twierdzenie da się wywnioskować ze znacznie ogólniejszego twierdzenia Talagran-
da o mierze majoryzującej, ale pokażemy bardziej bezpośredni dowód.

Dla uproszczenia notacji ustalmy t0 ∈ T i określmy B(ε) = B(t0, ε) - kula jednostkowa
o środku w t0 i promieniu ε. Zauważmy, że stacjonarność implikuje w szczególności, że

E sup
s∈B(t,ε)

Xs = E sup
s∈B(ε)

Xs dla t ∈ T.

Niech α ¬ 1/2 będzie stałą z Twierdzenia 11.12. Zauważmy, że jeśli t ∈ B(αn+1) to
B(t, αn+3) ⊂ B(αn) stąd Twierdzenie 11.12 implikuje

E sup
t∈B(αn)

Xt ­
1
8
αn+2

√
logN(B(αn+1), d, αn+2) + E sup

t∈B(αn+3)
Xt.

Iterując poprzednią nierówność dostajemy dla dowolnego n

E sup
t∈T
­ 1

8

∑
j­0

αn+3j+2
√

logN(B(αn+3j+1), d, αn+3j+2)

stąd stosując tę nierówność dla n, n+1, n+2 mamy i dobierając n ∈ Z tak by αn+2 ­ ∆(T )
dostajemy

E sup
t∈T
­ 1

24

∑
k­n+1

αk+1
√

logN(B(αk), d, αk+1) =
1
24

∑
k∈Z

αk+1
√

logN(B(αk), d, αk+1).
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Zbiór T da się pokryć kulami B(ti, αk), i = 1, . . . , N(T, d, αk) a każdą z tych kul da się
pokryć N(B(ti, αk), d, αk+1) = N(B(αk), d, αk+1) kulami o promieniu αk+1, więc

N(T, d, αk+1) ¬ N(T, d, αk)N(B(αk), d, αk+1).

Stąd

E sup
t∈T

Xt ­
1
24

∑
k∈Z

αk+1
√

logN(T, d, αk+1)− 1
24

∑
k∈Z

αk+1
√

logN(T, d, αk)

=
1
24

(1− α)
∑
k∈Z

αk+1
√

logN(T, d, αk+1).

Z drugiej strony ∫ ∞
0

√
logN(T, d, ε) ¬

∑
k∈Z

∫ αk

αk+1

√
logN(T, d, αk+1)dε

=
1− α
α

∑
k∈Z

αk+1
√

logN(T, d, αk+1).

12 Miary majoryzujące

Oszacowania entropijne omawiane w poprzednim rozdziale są bardzo użyteczne w zastoso-
waniach, ponieważ istnieje szereg narzędzi do szacowania z góry liczb pokryciowych (szcze-
gólnie w przypadku, gdy metryka jest euklidesowa). Jednak, chociaż w wielu przykładach,
Twierdzenie 11.4 prowadzi do dobrych oszacowań, to w ogólności nie można go odwrócić.
Trudność ta jest związana z tym, że entropia metryczna traktuje równomiernie całą prze-
strzeń metryczną, nie rozróżniając miejsc w których jest ona bardziej lub mniej zagęszczo-
na. Fernique zaproponował nowy sposób szacowania, za pomocą tzw. miar majoryzujących
(czyli odpowiednio dobranych miar probabilistycznych na T ), a Talagrand wykazał, że w
przypadku gaussowskim oszacowanie Fernique’a daje się odwrócić. Obecnie, częściej niż
miar majoryzujących, używa się bardziej kombinatorycznego podejścia za pomocą ciągów
podziałów przestrzeni, ale zaczniemy od klasycznego podejścia.

12.1 Oszacowania z góry

W przypadku procesów subgaussowskich (tzn. takich, które spełniają warunek (25) z func-
kją Younga ϕ = ψ2) oszacowanie górne z użyciem miar majoryzujących udowodnił Ferni-
que. Oszacowanie to było potem uogólniane, między innymi przez Talagranda. Ostateczne
sformułowanie, bez dodatkowych warunków wzrostu nakładanych na funkcje Younga, wy-
kazał w 2006 roku Bednorz.
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Twierdzenie 12.1 (Bednorz). Załóżmy, że ϕ jest funkcją Younga, (T, d) jest przestrzenią
metryczną, a proces (Xt)t∈T spełnia warunek (25). Wówczas dla dowolnej miary probabi-
listycznej µ na (T, d), której nośnik jest gęsty w T oraz przeliczalnego podzbioru T0 ⊂ T ,

E sup
s,t∈T0

(Xs −Xt) ¬ 32 sup
t∈T

∫ ∆(T )

0
ϕ−1

(
1

µ(B(t, ε))

)
dε.

Uwaga 12.2. Talagrand wykazał, że dla dowolnej przestrzeni metrycznej (T, d) i dowolnej
funkcji Orlicza ϕ istnieje miara probabilistyczna µ na (T, d) taka, że

sup
t∈T

∫ ∆(T )

0
ϕ−1

(
1

µ(B(t, ε))

)
dε ¬ 4

∫ ∆(T )

0
ϕ−1(N(t, d, ε))dε,

zatem (z dokładnością do stałych) Twierdzenie 12.1 jest silniejsze niż Twierdzenie 11.4.

By skrócić notację zdefiniujmy

σµ(t) :=
∫ ∆(T )

0
ϕ−1

(
1

µ(B(t, ε))

)
dε oraz S(T, µ) = S(T, µ, ϕ) := sup

t∈T
σµ(t).

Kluczem do dowodu Twierdzenia 12.1 jest następujące deterministyczne szacowanie.

Twierdzenie 12.3. Dla dowolnej funkcji Younga ϕ i miary probabilistycznej µ na (T, d)
istnieje miara probabilistyczna ν na T × T taka, że

sup
t∈T

∣∣∣∣f(t)−
∫
fdµ

∣∣∣∣ ¬ 16S(T, µ)
(

2
3

+
1
3

∫
T×T

ϕ

( |f(u)− f(w)|
d(u,w)

)
dν(u,w)

)
.

Dowód twierdzenia 12.1. . Ustalmy t0 ∈ T i połóżmy Yt := Xt −Xt0 . Wówczas Ys − Yt =
Xs − Xt oraz E|Yt| ¬ d(t, t0) + Eϕ(|Yt|/d(t, t0))/ϕ(1) < ∞. Możemy zatem zakładać, że
proces (Xt)t∈T jest całkowalny.

Załóżmy najpierw, że σ-ciało F jest skończone. Sklejając wszystkie elementy wchodzą-
ce w skład jednego atomu (i wyrzucając atomy o mierze zerowej) możemy zakładać, że
przestrzeń zdarzeń elementarnych Ω jest skończona i P({ω}) > 0 dla ω ∈ Ω. Zauważmy, że
dla s, t ∈ T ,

|Xs(ω)−Xt(ω)| ¬ d(s, t)ϕ−1(1/P({ω})),

w szczególności Xt ma ciągłe trajektorie. Stąd stosując Twierdzenie 12.3 do każdej trajek-
torii z osobna dostajemy po odcałkowaniu

E sup
s,t∈T0

|Xs −Xt| ¬ 2E sup
t∈T

∣∣∣∣Xt −
∫
Xudµ(u)

∣∣∣∣
¬ 32S(T, µ)

(
2
3

+
1
3

∫
T×T

Eϕ
( |Xu −Xw|

d(u,w)

)
dν(u,w)

)
¬ 32S(T, µ).
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Jeśli T0 jest skończonym podzbiorem T , to istnieje rosnący ciąg skończonych σ-ciał
(Fn)n­1 taki, że σ((Xt)t∈T0) = σ(

⋃
nFn). Określmy Xn

t := E(Xt|Fn), wówczas Xn
t zbiega

do Xt p.n. i w L1, ponadto na mocy nierówności Jensena

Eϕ
( |Xn(t)−Xn(s)|

d(s, t)

)
¬ Eϕ

( |X(t)−X(s)|
d(s, t)

)
¬ 1.

Stąd
E sup
s,t∈T0

|Xs −Xt| = lim
n

E sup
s,t∈T0

|Xn
s −Xn

t | ¬ 32S(T, µ).

Jeśli T0 jest przeliczalne, to jest wstępującą sumą zbiorów skończonych i proste przejście
graniczne pokazuję tezę w tym przypadku.

By udowodnić Twierdzenie 12.3 możemy zakładać, że S(T, µ) <∞, co w szczególności
implikuje, że ∆(T ) <∞ (bo S(T, µ) ­ ∆(T )ϕ(1)). Niech k0 ∈ Z spełnia

4k0 ¬ ϕ−1(1) < 4k0+1.

Określmy dla t ∈ T ,

rk0(t) := ∆(T ) oraz rk(t) := min
{
ε ­ 0: ϕ−1

(
1

µ(B(t, ε))

)
¬ 4k

}
dla k > k0.

Lemat 12.4. i) Funkcje rk są 1-Lipschitzowskie na (T, d).
ii) Dla t ∈ T zachodzi ∑

k­k0
rk(t)4k ¬

4
3
σµ(t).

iii) Dla m ­ k0 i t ∈ T ,
m−1∑
k=k0

4k
m∑
i=k

2i−kri(t) ¬
8
3
σµ(t).

Dowód. i) Funkcja rk0 jest stała, a dla k > k0 mamy B(s, ε+ d(s, t)) ⊃ B(t, ε), skąd łatwo
wynika, że rk(s) ¬ rk(t) + d(s, t).

ii) Mamy

3
4

∑
k­k0

rk(t)4k =
∑
k­k0

rk(t)(4k − 4k−1) ¬
∑
k­k0

(rk(t)− rk+1(t))4k + lim sup
k→∞

rk(t)4k

¬
∑
k­k0

∫ rk(t)

rk+1(t)
ϕ−1

(
1

µ(B(t, ε))

)
dε+ lim sup

k→∞

∫ rk(t)

0
ϕ−1

(
1

µ(B(t, ε))

)
dε

¬
∫ ∆(T )

0
ϕ−1

(
1

µ(B(t, ε))

)
dε.
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iii) Liczymy

m−1∑
k=k0

4k
m∑
i=k

2i−kri =
m−1∑
k=k0

m∑
i=k

2k−i4iri ¬
∞∑
j=0

2−j
∑
i­k0

4iri = 2
∑
i­k0

4iri.

i korzystamy z ii).

Określmy dla k ­ k0 operatory liniowe Sk, działające na ograniczonych funkcjach bo-
relowskich na T , wzorem

Skf(t) :=
∫
Bk(t)

f(u)dµ(u) =
1

µ(Bk(t)

∫
Bk(t)

f(u)dµ(u), gdzie Bk(t) := B(t, rk(t)).

Kolejny lemat podsumowuje proste własności Sk, które przydadzą nam się później.

Lemat 12.5. Dla k ­ k0,
i) Sk1 = 1,
ii) Skf ¬ Skg dla f ¬ g, w szczególności |Skf | ¬ Sk|f |,
iii) SkSk0f = Sk0f =

∫
T fdµ,

iv) limk→∞ Skf(t) = f(t) dla funkcji ciągłych f i t ∈ T ,

Dowód. Warunki i)-iii) są oczywiste, a iv) wynika stąd, że limk→∞ rk(t) = 0.

Zanim przejdziemy do dowodu Twierdzenia 12.1 wykażemy jeszcze jeden fakt.

Lemat 12.6. Zachodzą następujące oszacowania:
i) Sirj ¬ ri + rj dla i, j ­ k0,
ii) SmSm−1 · · ·Sk+1rk ¬

∑m
i=k 2i−kri dla m > k ­ k0.

Dowód. i) Lipschitzowskości rj implikuje rj(u) ¬ ri(t) + rj(t) dla u ∈ Bj(t).
ii) Udowodnimy oszacowanie przez indukcję po m. Dla m = k+ 1 z i) mamy Sk+1rk ¬

rk+1+rk ¬ rk+2rk+1. By wykazać krok indukcyjny załóżmy, że ii) zachodzi dlam > k ­ k0.
Założenie indukcyjne, liniowość Sm+1 i część i) implikują

Sm+1Sm · · ·Sk+1rk ¬ Sm+1

m∑
i=k

2i−kri =
m∑
i=k

2i−kSm+1ri ¬
m∑
i=k

2i−k(ri + rm+1) ¬
m+1∑
i=k

2i−kri.
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Dowód Twierdzenia 12.3. Mamy∣∣∣∣f(t)−
∫
T
fdµ

∣∣∣∣ = lim
m→∞

|Smf − SmSm−1 · · ·Sk0f | (t)

= lim
m→∞

∣∣∣∣∣∣
m−1∑
k=k0

SmSm−1 · · ·Sk+1(I − Sk)f

∣∣∣∣∣∣ (t)
¬ lim

m→∞

m−1∑
k=k0

SmSm−1 · · ·Sk+2 |Sk+1(I − Sk)f | (t). (26)

Dla k ­ k0 zachodzi

|Sk+1(I − Sk)f | (t) =

∣∣∣∣∣
∫
Bk+1(t)

∫
Bk(u)

(f(u)− f(w))dµ(u)dµ(w)

∣∣∣∣∣
¬
∫
Bk+1(t)

∫
Bk(u)

|f(u)− f(w)|dµ(u)dµ(w).

Mamy ϕ(xy) ­ xϕ(y) dla x ­ 1, y ­ 0, zatem

x ¬ 1 +
ϕ(xy)
ϕ(y)

dla x ­ 0, y > 0. (27)

Stąd dla u 6= w
|f(u)− f(w)|
4k+1d(u,w)

¬ 1 +
1

ϕ(4k+1)
ϕ

( |f(u)− f(w)|
d(u,w)

)
.

Zauważmy, że dla w ∈ Bk(u) zachodzi d(u,w) ¬ rk(u), ponadto, z definicji rk+1 wynika,
że µ(Bk+1(t)) ­ 1/ϕ(4k+1). Zatem

|f(u)− f(w)| ¬ rk(u)4k+1 + µ(Bk+1(t))rk(u)4k+1ϕ

( |f(u)− f(w)|
d(u,w)

)
dla w ∈ Bk(u)

i

|Sk+1(I − Sk)f | (t) ¬ 4k+1Sk+1rk(t) +
∫
T
rk(u)4k+1

∫
Bk(u)

ϕ

( |f(u)− f(w)|
d(u,w)

)
dµ(w)dµ(u).

Stąd, wobec Lematu 12.6,

SmSm−1 · · ·Sk+2 |Sk+1(I − Sk)f | (t)

¬ 4k+1
m∑
i=k

2i−kri(t) + 4
∫
T
rk(u)4k

∫
Bk(u)

ϕ

( |f(u)− f(w)|
d(u,w)

)
dµ(w)dµ(u).
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Powyższe oszacowanie, (26) oraz Lemat 12.4 implikują∣∣∣∣f(t)−
∫
T
fdµ

∣∣∣∣ ¬ 32
3
σµ(t) + 4

∞∑
k=k0

∫
T
rk(u)4k

∫
Bk(u)

ϕ

( |f(u)− f(w)|
d(u,w)

)
dµ(w)dµ(u).

Niech ν będzie miarą probabilistyczną na T × T daną wzorem

ν(A) :=
1
M

∞∑
k=k0

∫
T
rk(u)4k

∫
Bk(u)

1A(u,w)dµ(w)dµ(u),

gdzie

M :=
∞∑

k=k0

∫
T
rk(u)4kdµ(u) ¬ 4

3

∫
T
σµ(u)dµ(u) ¬ 4

3
S(µ, T ).

Wówczas∣∣∣∣f(t)−
∫
T
fdµ

∣∣∣∣ ¬ 32
3
σµ(t) + 4M

∫
T×T

ϕ

( |f(u)− f(w)|
d(u,w)

)
dν(u,w)

¬ 16S(T, µ)
(

2
3

+
1
3

∫
T×T

ϕ

( |f(u)− f(w)|
d(u,w)

)
dν(u,w)

)
.

Twierdzenie 12.1 implikuje w szczególności oszacowanie supremów procesów gaussow-
skich, udowodnione pierwotnie przez Fernique’a.

Wniosek 12.7 (Fernique). Załóżmy, że (Xt)t∈T jest scentrowanym procesem gaussowskim
oraz d(t, s) = (E|Xt −Xs|2)1/2. Wówczas

E sup
t∈T

Xt ¬ C sup
t∈T

∫ ∆(T )

0

√
ln
(

1
µ(B(t, ε))

)
dε = C sup

t∈T

∫ ∞
0

√
ln
(

1
µ(B(t, ε))

)
dε,

gdzie C jest stałą numeryczną (można przyjąć C = 48
√

8/3
√

ln 3/ ln 2 ¬ 100).

Dowód. Postępujemy jak w dowodzie Wniosku 11.7. Stosując Twierdzenie 12.1 do ϕ = ψ2

i metryki
√

8/3d dostajemy

E sup
t∈T

Xt =
1
2
E sup
s,t∈T

(Xs −Xt) ¬ 16

√
8
3

sup
t∈T

∫ ∆(T )

0

√
ln
(

1 +
1

µ(B(t, ε))

)
dε.

Zauważmy, że∫ ∆(T )

0

√
ln
(

1 +
1

µ(B(t, ε))

)
dε ¬

√
ln 3∆(T ) +

√
ln 3
ln 2

∫ ∆(T )

0

√
ln
(

1
µ(B(t, ε))

)
dε.

Ponadto dla ε < ∆(T )/2 istnieje t ∈ T taki, że µ(B(t, ε)) ¬ 1/2, więc

sup
t∈T

∫ ∆(T )

0

√
ln
(

1
µ(B(t, ε))

)
dε ­ 1

2

√
ln 2∆(T ).
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12.2 Dwustronne szacowania supremów procesów gaussowskich

W tej sekcji będziemy rozważać scentrowane procesy gaussowskie (Xt)t∈T . Twierdzenie
Fernique’a (Wniosek 12.7) mówi, że dla takich procesów i metryki d(t, s) = ‖Xt − Xs‖2
zachodzi

E sup
t∈T

Xt ¬ Cγ̃2(T, d),

gdzie

γ̃2(T, d) := inf

{
sup
t∈T

∫ ∞
0

√
ln
(

1
µ(B(t, ε))

)
dε : µ miara probabilistyczna na T

}
.

Często, wygodniej niż z miarę probabilistyczną na T konstruować ciąg rozbić T .

Definicja 12.8. Mówimy, że (An)n­0 jest dopuszczalnym ciągiem rozbić T , jeśli jest to
ciąg rosnący (tzn. An+1 jest podrozbiciem An), A0 = {T} oraz |An| ¬ Nn := 22n dla
n ­ 1.

Dla przestrzeni metrycznej (T, d) określamy γ2(T, d) wzorem

γ2(T, d) := inf

{
sup
t∈T

∞∑
n=0

2n/2∆(An(t)) : (An)n­0 dopuszczalny ciąg rozbić T

}
,

gdzie An(t) oznacza taki zbiór z rozbicia An dla którego t ∈ An(t).

Fakt 12.9. Dla dowolnej przestrzeni metrycznej (T, d), γ̃2(T, d) ¬
√

2γ2(T, d).

Dowód. Ustalmy dopuszczalny ciąg podziałów (An)n­0 przestrzeni T . By wykazać tezę
wystarczy skonstruować miarę probabilistyczną µ na T taką, że

sup
t∈T

∫ ∆(T )

0

√
ln
(

1
µ(B(t, ε))

)
dε ¬

√
2 sup
t∈T

∞∑
n=0

2n/2∆(An(t)).

Wybierzmy Tn ⊂ T dla n = 1, 2 . . . takie, że |Tn| ¬ Nn i Tn zawiera po jednym punkcie z
każdego ze zbiórów należących do rozbicia An. Wówczas∑

n­1

|Tn|e−2n ¬ 4e−2 + 16e−4 +
∑
k­8

2ke−k ¬ 1,

więc istnieje miara probabilistyczna taka, że µ({t}) ­ exp(−2n) dla t ∈ Tn. Stąd dla n ­ 1,
µ(B(t,∆(An(t)))) ­ exp(−2n) zatem

∫ ∆(T )

0

√
ln
(

1
µ(B(t, ε))

)
dε =

∞∑
n=0

∫ ∆(An(T ))

∆(An+1(T ))

√
ln
(

1
µ(B(t,∆(An+1(t))))

)
dε

¬
∞∑
n=1

2(n+1)/2∆(An(t)) ¬
√

2
∞∑
n=0

2n/2∆(An(t)).
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Twierdzenie 12.10 (Talagrand). Niech (Xt)t∈T będzie scentrowanym, ośrodkowym pro-
cesem gaussowskim oraz d(t, s) := ‖Xt −Xs‖2. Wówczas γ2(T, d) ¬ CE supt∈T Xt.

Dowód, który pokażemy poniżej pochodzi od van Handela. Zanim przedstawimy klu-
czowy fakt na którym on się opiera, będziemy potrzebowali kilku definicji.

Definicja 12.11. Dla n ­ 0 i przestrzeni metrycznej (T, d) definiujemy

en(T ) = en(T, d) := inf{r > 0: N(T, d, r) < Nn = 22n}.

Nietrudno zauważyć, że 1
2∆(T ) ¬ e0(T ) ¬ ∆(T ), N(T, d, r) < Nn dla r > en(T ), zaś

dla r < en(T ), N(T, d, r) ­ Nn. W szczególności istnieją punkty x1, . . . , xNn ∈ T takie, że
d(xi, xj) ­ 1

2en(T ) dla 1 ¬ i < j ¬ Nn.

Fakt 12.12 (van Handel). Załóżmy, że funkcje rn : T → [0,∞), n = 0, 1, . . . spełniają
warunek

∀n­0∀A⊂T en(A) ¬ 1
6

∆(A) + sup
t∈A

rn(t). (28)

Wówczas

γ2(T ) ¬ 70 sup
t∈T

∞∑
n=0

2n/2rn(t).

Dowód. Dla dopuszczalnego ciągu podziałów A = (An)n­0 przestrzeni T określmy

γ2(A) := sup
t∈T

∞∑
n=0

2n/2∆(An(t)).

Zauważmy, że funkcje r̃n := min{rn,∆(T )} spełniają (28), więc możemy bez straty
ogólności zakładać, że rn ¬ ∆(T ).

Określimy w sposób indukcyjny dopuszczalny ciąg podziałów (An)n­0. KładziemyA0 =
A1 := {T}. Załóżmy, że mamy określony podział An dla n ­ 1 taki, że |An| ¬ Nn,
skonstruujemy jego podpodział An+1. Ustalmy w tym celu zbiór A ∈ An i podzielmy go
najpierw na zbiory A1, . . . , An+1 dane wzorami:

Ai := {t ∈ A : 2−i∆(T ) < rn−1(t) ¬ 21−i∆(T )} dla 1 ¬ i ¬ n,
An+1 := {t ∈ A : rn−1(t) ¬ 2−n∆(T )}.

Wówczas jak łatwo zauważyć

rn−1(s) ¬ 2rn−1(t) + 2−n∆(T ) dla s, t ∈ Ai, 1 ¬ i ¬ n+ 1,

zatem z założenia (28)

en−1(Ai) ¬ 1
6

∆(A) + 2rn−1(t) + 2−n∆(T ) dla t ∈ Ai, 1 ¬ i ¬ n+ 1,
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w szczególności każdy Ai da się podzielić na mniej niż Nn−1 zbiorów Aij takich, że

∆(Aij) ¬ 1
3

∆(A) + 4rn−1(t) + 21−n∆(T ).

Określmy
An+1 :=

{
Aij : A ∈ An, i ¬ n+ 1, j < Nn

}
.

Wówczas
|An+1| ¬ Nn(n+ 1)Nn−1 ¬ Nn+1.

Zauważmy, że na mocy indukcyjnej konstrukcji

∆(An+1(t)) ¬ 1
3

∆(An(t)) + 4rn−1(t) + 21−n∆(T ) dla t ∈ T, n ­ 1.

Stąd

∞∑
n=0

2n/2∆(An(t)) ¬ (1 +
√

2)∆(T ) +
∞∑
n=2

2n/2
(

1
3

∆(An−1(t)) + 4rn−2(t) + 22−n∆(T )
)

¬
√

2
3

∞∑
n=1

2n/2∆(An(t)) + 8
∞∑
n=0

2n/2rn(t) + (5 + 3
√

2)∆(T ).

Zauważmy, że (28) implikuje

∆(T ) ¬ 2e0(T ) ¬ 1
3

∆(T ) + 2 sup
t∈T

r0(t),

stąd
∆(T ) ¬ 3 sup

t∈T
r0(t)

Zatem
∞∑
n=0

2n/2∆(An(t)) ¬
√

2
3

∞∑
n=0

2n/2∆(An(t)) + (23 + 9
√

2) sup
t∈T

∞∑
n=0

2n/2rn(t).

Zatem biorąc supremum obu stron po t otrzymujemy

γ2(A) ¬
√

2
3
γ2(A) + (23 + 9

√
2) sup

t∈T

∞∑
n=0

2n/2rn(t).

Stąd

γ2(T ) ¬ γ2(A) ¬ 3

3−
√

2
(23 + 9

√
2) sup

t∈T

∞∑
n=0

2n/2rn(t) ¬ 70 sup
t∈T

∞∑
n=0

2n/2rn(t).
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Załóżmy, że (Xt)t∈T jest scentrowanym procesem gaussowskim takim, że E supt∈T Xt <
∞. Określmy

g(A) := E sup
t∈A

Xt, A ⊂ T

oraz
K(a, t) := inf

r­0
{ar + g(T )− g(B(t, r))} a > 0, t ∈ T.

Ponadto dla δ > 0 niech rδ(a, t) ∈ [0, ,∞) spełnia nierówność

arδ(a, t) + g(T )− g(B(t, rδ(a, t))) ¬ K(a, t).

Lemat 12.13. Dla ε > 0 i ciągu δn zachodzi

sup
t∈T

∞∑
n=0

2n/2rδn(ε2n/2, t) ¬ 2 +
√

2
ε

(
g(T ) +

∞∑
n=0

δn

)
.

Dowód. Mamy K(b, t) ¬ brδ(a, t) + g(T )− g(B(t, rδ(a, t))), zatem

δ +K(a, t)−K(b, t) ­ (a− b)r(a, t) + δ a, b, δ > 0, t ∈ T,

stąd

m∑
n=0

ε2n/2(1− 2−1/2)rδn(ε2n/2, t) ¬
m∑
n=0

(
K(ε2n/2, t)−K(ε2(n−1)/2, t) + δn

)
= K(ε2m/2, t)−K(ε2−1/2, t) +

∑
n­0

δn ¬ g(T ) +
∑
n­0

δn,

gdzie ostatnia nierówność wynika z szacowania 0 ¬ K(a, t) ¬ g(T ).

Dowód Twierdzenia 12.10. Wykażemy wpierw, że dla ε, δ > 0 i n ­ 0,

en(A) ¬ Cε∆(A) +
(

2
α

+ Cε

)
sup
t∈A

rδ(ε2n/2, t) + C2−n/2δ, (29)

gdzie C jest stałą uniwersalną, zaś α stałą z Twierdzenia 11.12.
Określmy

σ := sup
t∈A

rδ(ε2n/2, t), r := σ + ∆(A).

By udowodnić (29) wystarczy rozpatrzeć przypadek, gdy σ < α
2 en(T ). Na mocy definicji

en(T ), istnieją ti ∈ T , 1 ¬ i ¬ Nn takie, że d(ti, tj) > en(T )/2 dla i 6= j. Twierdzenie 11.12
implikuje, że

g

(
Nn⋃
i=1

B(ti, σ)

)
­ 1

16
en(T )

√
logNn + min

i¬Nn
g(B(ti, σ)).
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Stąd istnieje k ¬ Nn takie, że

g(T )− g
(
Nn⋃
i=1

B(ti, σ)

)
¬ g(T )− g(B(tk, σ))−

√
log 2
16

2n/2en(T ).

Mamy

g(T )− g(B(tk, σ)) ¬ g(T )− g(B(tk, rδ(ε2n/2, tk))) ¬ K(ε2n/2, tk) + δ

¬ ε2n/2r + g(T )− g(B(tk, r)) + δ ¬ ε2n/2r + g(T )− g
(
Nn⋃
i=1

B(ti, σ)

)
+ δ,

gdzie ostatnia nierówność wynika stąd, że
⋃
i¬Nn B(ti, σ) ⊂ B(tk, r). Porównując ostatnie

dwa oszacowania dostajemy

en(A) ¬ 16√
log 2

(
εr + 2−n/2δ

)
i nierówność (29) zachodzi z C = 16/

√
log 2.

By zakończyć dowód wystarczy wybrać

ε :=
1

6C
, δn :=

1
C

2−ng(T ), rn :=
(

2
α

+
1
6

)
rδn(ε2n/2, t) + C2−n/2δn

i zastosować Fakt 12.12 i Lemat 12.13.

Wniosek 12.14 (Fernique-Talagrand). Niech (Xt)t∈T będzie scentrowanym, ośrodkowym
procesem gaussowskim oraz d(t, s) := ‖Xt −Xs‖2. Wówczas

E sup
t∈T

Xt ∼ γ2(T, d) ∼ γ̃2(T, d).

12.3 Zmienne i procesy subgaussowskie

Fakt 12.15. Niech Z będzie zmienną losową. Następujace własności zmiennej Z są rów-
noważne:
i) Ogony zmiennej Z spełniają

P(|Z| ­ t) ¬ 2 exp(−t2/K2
1 ) dla t ­ 0.

ii) Momenty zmiennej Z spełniają

‖Z‖p = (E|Z|p)1/p ¬ K2
√
p dla p ­ 1.

iii) Transformata Laplace’a Z2 spełnia

E exp(λ2Z2) ¬ exp(K2
3λ

2) dla |λ| ¬ 1
K3

.
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iv) Zmienna Z ma skończoną normę ψ2-Orlicza , tzn.

E exp(Z2/K2
4 ) ¬ 2.

Jeśli dodatkowo EZ = 0 to warunki i)-iv) są równoważne
v) Transformata Laplace’a X2 spełnia

E exp(λZ) ¬ exp(K2
5λ

2) dla λ ∈ R.

Ponadto optymalne stałe dla których zachodzą powyższe nierówności są porównywalne ze
sobą z dokładnością do stałej uniwersalnej, tzn. Ki ¬ CKj dla i, j = 1, . . . , 5.

Dowód. i)⇒ii) Stosujemy całkowanie przez części:

E|Z|p = p

∫ ∞
0

tp−1P(|Z| ­ t)dt ¬ 2p
∫ ∞

0
tp−1 exp(−t2/K2

1 )dt

= pKp
1

∫ ∞
0

s(p−2)/2 exp(−s)ds = 2Kp
1Γ(p/2 + 1).

Funkcja Γ jest logarytmicznie wypukła, stąd dla x ∈ [1, 2], Γ(x) ¬ max{Γ(1),Γ(2)} = 1,
oraz dla x ∈ [k, k + 1], k = 1, 2, . . . mamy

Γ(x+ 1) = x(x− 1) · · · (x− k + 1)Γ(x− k + 1) ¬ xk ¬ xx.

Zatem ‖Z‖p ¬ 2K1
√
p/2 i ii) zachodzi z K2 =

√
2K1.

ii)⇒iii) Mamy dla 2eλ2K2
2 ¬ 1,

E exp(λ2Z2) = 1 +
∞∑
k=1

λ2k

k!
E|Z|2k ¬ 1 +

∞∑
k=1

λ2k

k!
K2k

2 kk ¬ 1 +
∞∑
k=1

(eλ2K2
2 )k

= 1 +
eλ2K2

2

1− eλ2K2
2
¬ 1 + 2eλ2K2

2 ¬ exp(2eK2
2λ

2).

Stąd dostajemy iii) z K3 =
√

2eK2.
iii)⇒iv) Oczywiste z K4 = K3/

√
ln 2.

iv)⇒i) Natychmiastowy wniosek z nierówności Czebyszewa z K4 = K1.
iii)⇒v) Mamy ex ¬ x + ex

2
dla x ∈ R (funkcja f(x) = x + ex

2 − ex spełnia f(0) =
f ′(0) = 0 i f ′′ ­ 0), zatem dla |λ| ¬ K−1

3 mamy

E exp(λZ) ¬ E(λZ + exp(λ2Z2)) ¬ exp(K2
3λ

2).

Dla λ > K−1
3 korzystamy z nierówności 2λx ¬ λ2K2

3 + x2K−2
3 i dostajemy

E exp(λZ) ¬ exp
(

1
2
K2

3λ
2
)

E exp

((
Z√
2K3

)2
)
¬ exp

(
1
2

(K2
3λ

2 + 1)
)
¬ exp(K2

3λ
2),

czyli v) zachodzi z K5 = K3.
v)⇒i) Wynika z Faktu 4.2 z K1 = 2K5.
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Definicja 12.16. Jeśli Z spełnia równoważne własności wymienione w Fakcie 12.15, to
mówimy, że Z jest subgaussowka.

Uwaga 12.17. Używa się różnych definicji stałej subgaussowskości zmiennej Z. Najczęściej
się definiuje tę stałą albo poprzez transformatę Laplace’a jako:

inf
{
σ > 0: E exp(λ(Z −EZ)) ¬ exp(λ2σ2/2) dla λ ∈ R

}
,

albo poprzez normę Orlicza ψ2:

‖Z‖ψ2 := inf{t > 0: E exp((Z/t)2) ¬ 2}.

Dla procesu subgaussowskiego najwygodniej jest przyjąć definicję opartą o normę Or-
licza.

Definicja 12.18. Mówimy, że proces (Xt)t∈T jest subgaussowski względem metryki d, jeśli

Eψ2

(
Xt −Xs

d(t, s)

)
¬ 1 dla t, s ∈ T.

Tweirdzenia 12.1 (dla ϕ = ψ2, zob. też Fakt 12.9) i 12.10 implikują następujące ważne
twierdzenie dotyczące porównywania procesów subgaussowskich i gaussowskich.

Twierdzenie 12.19. Załóżmy, że Xt jest ośrodkowym procesem gaussowskim o średniej
zero. Wówczas dla dowolnego osrodkowego procesu (Yt)t∈T , który jest subgaussowski wzglę-
dem metryki d(t, s) = ‖Xt −Xs‖2 zachodzi

E sup
t,s∈T

(Yt − Ys) ¬ CE sup
t,s∈T

(Xt −Xs).

Jednym z możliwych przykładów procesów subgaussowskich są procesy kanoniczne po-
staci Xt = 〈X, t〉 =

∑n
i=1 tiXi dla t ∈ Rn. Proces taki jest subgaussowski względem (wie-

lokrotności) metryki euklidesowej, jeśli ‖〈X, t〉‖ψ2 ¬ K|t|. Mówimy wtedy o wektorach
subgaussowskich.

Definicja 12.20. Mówimy, że n-wymiarowy wektor losowy X = (X1, . . . , Xn) jest sub-
gaussowski, jeśli

‖X‖ψ2 := sup
|t|=1
‖〈t,X〉‖ψ2 <∞.

Normę ‖X‖ψ2 nazywamy stałą subgaussowskości wektora X.

Przykład 1. Jeśli X1, X2, . . . , Xn są niezależnymi subgaussowskimi zmiennymi loso-
wymi o sredniej zero to X = (X1, . . . , Xn) jest subgaussowski oraz

‖X‖Ψ2 ∼ max
i
‖X‖ψ2 .

Przykład 2. Jeśli wektor X jest jednostajnie rozłożony na Sn−1, to X jest Cn−1/2

subgaussowski.
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12.4 Oszacowania przez ciąg metryk Lp

Nie wszystkie procesy stochastyczne mają przyrosty kontrolowane tylko przez jedną metry-
kę. Jednym ze sposobów radzenia sobie z tym problemem jest uogólnienie kombinatorycznej
definicji funkcjonału γ2 na przypadek, gdy na n-tej partycji rozpatrujemy odległość Lp z
p = 2n. Przypomijmy, że dla zmiennej losowej Z i p ­ 1 kładziemy ‖Z‖p := (E|Z|p)1/p.

Definicja 12.21. Niech (Xt)t∈T będzie ośrodkowym procesem stochastycznym, którego
przyrosty mają wszystkie momenty skończone. Określmy

∆n(A) := sup{‖Xt −Xs‖2n : t, s ∈ A}, A ⊂ T, n = 0, 1, . . . .

Definiujemy

γX(T ) := inf
A

sup
t∈T

∞∑
n=0

∆n(An(t)),

gdzie infimum jest brane po wszystkich dopuszczalnych ciągach podziałów A = (An)n­0

zbioru T .

Fakt 12.22. i) Jeśli (Xt) jest scentrowanym procesem gaussowskim, to cγ2(T ) ¬ γX(T ) ¬
γ2(T ).
ii) Jeśli (Xt) jest procesem subgaussowskim względem metryki d, to γX(T ) ¬

√
2γ2(T, d).

Dowód. Dla procesu gaussowkiego o średniej zero mamy c
√
p‖Xt −Xs‖ ¬ ‖Xt −Xs‖p ¬√

p‖Xt − Xs‖2 dla p ­ 1, a dla procesu subgaussowskiego ‖Xt − Xs‖p ¬
√

2pd(t, s) dla
p ­ 1 (zobacz Fakt 12.15 i jego dowód by dostać stałą

√
2).

Twierdzenie 12.23. Niech (Xt)t∈T będzie ośrodkowym procesem stochastycznym, którego
przyrosty mają wszystkie momenty skończone. Wówczas dla dowolnego p ­ 1,∥∥∥∥∥ sup

t,s∈T
|Xs −Xt|

∥∥∥∥∥
p

¬ 48γX(T ) + 256 sup
t,s∈T

‖Xs −Xt‖p.

Dowód. Wystarczy udowodnić oszacowanie dla zbiorów skończonych. Niech 2k0−1 ¬ 2p ¬
2k0 dla pewnego k0 = 2, 3, . . . oraz wybierzmy k1 ­ k0 takie, że Nk1 = 22k1 ­ |T |.

Ustalmy ε > 0 i wybierzmy dopuszczalny ciąg podziałów An zbioru T taki, że

sup
t∈T

∞∑
n=0

∆n(An(t)) ¬ (1 + ε)γX(T ).

Możemy przyjąć, że Ak1(t) = {t}. Wybierzmy zbiory Tk ⊂ T takie, że T0 = {t0} oraz
|Tk| ¬ Nk i Tk zawiera po jednym punkcie z każdego ze zbiorów k-tej partycji Ak dla
k = 0, . . . , k1. Niech dla 0 ¬ k ¬ k1, πk(t) ∈ Tk ∩ Ak(t), w szczególności π0(t) = t0 oraz
πk1(t) = t.
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Z nierówności trójkąta w Lp dostajemy∥∥∥∥∥ sup
t,s∈T

|Xs −Xt|
∥∥∥∥∥
p

¬ 2

∥∥∥∥∥sup
t∈T
|Xt −Xπk0 (t)|

∥∥∥∥∥
p

+

∥∥∥∥∥ sup
s,t∈T

|Xπk0 (s) −Xπk0 (t)|
∥∥∥∥∥
p

.

Zauważmy, że πk+1(t) ∈ Ak+1(t) ⊂ Ak(t), więc

M := sup
t∈T

k1−1∑
k=k0

‖Xπk+1(t) −Xπk(t)‖2k ¬ sup
t∈T

k1−1∑
k=k0

∆k(Ak(t)) ¬ (1 + ε)γX(T ).

Dla u ­ 16 szacujemy

P
(

sup
t∈T
|Xt −Xπk0 (t)| ­ uM

)
¬ P

(
sup
t∈T

k1−1∑
k=k0

|Xπk+1(t) −Xπk(t)| ­ uM
)

¬ P
(
∃k0¬k¬k1−1∃t∈T |Xπk+1(t) −Xπk(t)| ­ u‖Xπk+1(t) −Xπk(t)‖2k

)
¬

k1−1∑
k=k0

∑
s∈Tk+1

∑
s′∈Tk

P(|Xs −Xs′ | ­ u‖Xs −Xs′‖2k)

¬
k1−1∑
k=k0

|Tk+1||Tk|u−2k ¬
k1−1∑
k=k0

(8
u

)2k

¬ 2
(8
u

)2k0
¬ 2

(8
u

)2p
.

Całkując przez części dostajemy

E sup
t∈T
|Xt −Xπk0 (t)|p ¬ (8M)p

(
2p + p

∫ ∞
2

up−12u−2pdu
)

= (8M)p(2p + 21−2p) ¬ (24M)p ¬ (24(1 + ε)γX(T ))p.

Ponadto

E sup
t,s∈T

|Xπk0 (t) −Xπk0 (s)|p ¬
∑

t′,s′∈Tk0

E|Xt′ −Xs′ |p ¬ |Tk0 |2 sup
t,s∈T

E|Xt −Xs|p

¬ 28p sup
s,t∈T

‖Xt −Xs‖pp.

Powyższe szacowania implikują∥∥∥∥∥ sup
t,s∈T

|Xs −Xt|
∥∥∥∥∥
p

¬ 48(1 + ε)γX(T ) + 28 sup
s,t∈T

‖Xt −Xs‖p

i teza wynika z dowolności ε > 0.
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Uwaga 12.24. Ponieważ sups,t∈T ‖Xt −Xs‖1 ¬ γX(T ), więc Twierdzenie 12.23 implikuje,
że

E sup
t,s∈T

|Xs −Xt| ¬ 304γX(T ).

Wniosek 12.25. Załóżmy, że (Xt)t∈T jest ośrodkowym procesem subgaussowskim wzglę-
dem metryki d. Wówczas

P

(
sup
s,t∈T

|Xt −Xs| ­ C(γ2(T, d) + udiam(T, d))

)
¬ exp(−u2) dla u > 0.

Dowód. Dal u < 1 teza łatwo wynika z uwagi i nierówności Czebyszewa (bierzemy C =
304e). Dla u ­ 1 teza wynika z nierówności Czebyszewa i Twierdzenia 12.23 dla u =

√
p

(na mocy Faktu 12.15 ‖Xt −Xs‖p ¬ C
√
pd(t, s)).

13 Macierze losowe o subgaussowskich rzędach

W tym rozdziale poznamy kilka silnych szacowań dla pewnej klasy macierzy losowych. Bę-
dziemy potrzebowali jej pewnego unormowania. Typowym normowaniem wektora losowego
jest założenie jego izotropowości.

Definicja 13.1. Mówimy, że n-wymiarowy wektor losowy X jest izotropowy, jeśli ma
średnią zero i identycznościową macierz kowariancji, tzn. EXi = 0 oraz EXiXj = δij dla
i, j ¬ n.

Fakt 13.2. Jeśli wektor X jest izotropowy, to

E〈X, t〉〈X, s〉 = 〈t, s〉 dla t, s ∈ Rn.

Dowód. Liczymy

E〈X, t〉〈X, s〉 =
∑
ij

tisjEXiXj =
∑
i

tisi = 〈t, s〉.

Sprecyzujemy teraz klasę macierzy, które będziemy badać podczas dalszych rozważań.

Definicja 13.3. Powiemy, że macierz losowa m× n spełnia założenie o subgaussowskości
z parametrem K, jeśli jej wiersze A1, . . . , Am są niezależnymi, izotropowymi, subgaussow-
skimi n-wymiarowymi wektorami losowymi oraz

max
i
‖Ai‖ψ2 = max

i
max
|t|=1
‖〈Ai, t〉‖ψ2 ¬ K.
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Uwaga 13.4. Zauważmy, że ex
2−1 ­ x2, zatem ‖X‖Ψ2 ­ ‖X‖2 i izotropowość Ai implikuje,

że K ­ 1.

Podamy teraz kilka przykładów klas macierzy spełniających założenia Definicji 13.3.
Literami C, c oznaczamy dodatnie stałe skończone, których wartości mogą się zmieniać
przy każdym wystąpieniu (jeśli będziemy chcieli ustalić wartość jakiejś stałej będziemy
pisać c1, C1, c2, C2, . . .).

Przykład 1. Macierz A = (Aij), której współczynniki są niezależnymi subgaussowskimi
zmiennymi losowymi o średniej zero i wariancji 1 spełnia założenia Definicji 13.3 z pa-
rametrem K ¬ C maxi ‖Aij‖ψ2 . W szczególności macierz, której wyrazy są niezależnymi
zmiennymi N (0, 1) spełnia to założenie z K =

√
8/3.

Przykład 2. Macierz, której wiersze Ai są niezależne i mają rozkład jednostajny na√
nSn−1 spełnia założenia Definicji 13.3 z parametrem K ¬ C.

Przykład 3. Macierz, której wiersze Ai są niezależne, izotropowe i mają rozkłady spełnia-
jące logarytmiczną nierówność Sobolewa z parametrem α spełnia założenia Definicji 13.3
z parametrem K ¬ Cα.

Będziemy też używać następujących wielkości dla T ⊂ Rn,

g(T ) := E sup
t∈T

n∑
i=1

tigi, γ(T ) := g(T ∪ −T ) = E sup
t∈T

∣∣∣∣∣
n∑
i=1

tigi

∣∣∣∣∣ , R(T ) := sup
t∈T
|t|,

gdzie jak zwykle g1, . . . , gn oznacza niezależne zmienne losowe N (0, 1).

13.1 Odchylenia dla subgaussowskich macierzy losowych

Twierdzenie 13.5. Załóżmy, że A jest macierzą m × n, która spełnia założenia Defini-
cji 13.3 z parametrem K. Wówczas dla dowonego niepustego ograniczone zbioru T ⊂ Rn

zachodzi
E sup
t∈T

∣∣|At| − √m|t|∣∣ ¬ CK2γ(T ).

Ponadto

P

(
sup
t∈T

∣∣|At| − √m|t|∣∣ ­ CK2(γ(T ) + uR(T ))

)
¬ exp(−u2) dla u > 0.

Określmy proces (Xt) wzorem

Xt := |At| −
√
m|t|, t ∈ Rn. (30)

Kluczowym elementem dowodu Twierdzenia 13.5 jest wykazanie subgaussowskości tego
procesu.
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Twierdzenie 13.6. Załóżmy, że macierz losowa A spełnia założenia spełnia założenia
Definicji 13.3 z parametrem K oraz proces Xt jest zadany wzorem (30). Wówczas

‖Xt −Xs‖ψ2 ¬ CK2|t− s| dla t, s ∈ Rn. (31)

Dowód Twierdzenia 13.5. Niech T̃ = T ∪ {0}.

sup
t∈T
|Xt| = sup

t∈T

∣∣|At| − √m|t|∣∣ ¬ sup
t,s∈T̃

(Xt −Xs)

oraz
g(T̃ ) ¬ 2γ(T ) i sup

t,s∈T̃
|t− s| ¬ 2R(T ).

Szacowanie wartości oczekiwanej wynika natychmiast z Twierdzenia 13.6 i Twierdzenia
12.19 (zastosowanego do zbioru T̃ ). Szacowanie prawdopodobieństwa jest konsekwencją
Twierdzenia 13.6 oraz Wniosku 12.25 i Twierdzenia 12.10 (również zastosowanych do zbióru
T̃ ).

By wykazać Twierdzenie 13.6 będziemy potrzebowali kilku lematów.

Lemat 13.7. Dla dowolnych subgaussowskich zmiennych losowych X,Y zachodzi ‖XY ‖ψ1 ¬
‖X‖ψ2‖Y ‖ψ2.

Dowód. Załóżmy, że a > ‖X‖ψ2 i b > ‖Y ‖ψ2 . Wówczas

E exp
( |XY |

ab

)
¬ E exp

(
X2

2a2 +
Y 2

2b2

)
¬
(

E exp

(
X2

a2

))1/2(
E exp

(
Y 2

b2

))1/2

¬ 2,

czyli ‖XY ‖ψ1 ¬ ab.

Lemat 13.8. Oszacowanie (31) zachodzi dla s = 0, tzn.

‖|At| −
√
m|t|‖ψ2 ¬ CK2|t| dla t ∈ Rn.

Dowód. Z uwagi na jednorodność będziemy zakładać, że |t| = 1. Na mocy Faktu 12.15
wystarczy udowodnić, że P(||At| −

√
m| ­ K2u) ¬ 2 exp(−cu2) dla u > 0. Rozpatrzymy

dwa przypadki.
Przypadek I. K2u ¬

√
m. Mamy

P(||At| −
√
m| ­ K2u) = P(||At|2 −m| ­ K2u||At|+

√
m|) ¬ P(||At|2 −m| ­ K2u

√
m).

Zauważmy, że

|At|2 −m =
m∑
i=1

(|〈Ai, t〉|2 − 1),
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zmienne |〈Ai, t〉|2 − 1 są niezależne, mają średnią zero oraz

‖|〈Ai, t〉|2 − 1‖ψ1 ¬ ‖|〈Ai, t〉|2‖ψ1 + ‖1‖ψ1 ¬ ‖〈Ai, t〉‖2ψ2 + ‖1‖ψ1 ¬ 2K2,

gdzie wykorzystaliśmy to, że dla u > K,

2 ­ E exp(〈Ai, t〉2/u2) ­ exp(E〈Ai, t〉2/u2) = exp(1/u2).

Stąd nierówność Bernsteina dla zmiennych subwykładniczych (Twierdzenie 4.16) implikuje

P(||At| −
√
m| ­ K2u) ¬ P(||At|2 −m| ­ K2u

√
m) ¬ 2 exp

(
− K4u2m

16mK4 + 8K4u
√
m

)

¬ 2 exp

(
−u

2

24

)
,

w ostatniej nierówności skorzystaliśmy z tego, że u ¬ K2u ¬
√
m.

Przypadek II. K2u >
√
m. Wówczas

P(||At| −
√
m| ­ K2u) = P(|At| ­ K2u+

√
m) ¬ P(|At|2 −m ­ K4u2)

Ponownie stosując nierówność Bernsteina i to, że K ­ 1 oraz m ¬ K4u2 dostajemy

P(||At| −
√
m| ­ K2u) ¬ 2 exp

(
− K8u4

16mK4 + 8K6u2

)
¬ 2 exp

(
−u

2

24

)
.

Lemat 13.9. Oszacowanie (31) zachodzi dla |t| = |s| = 1, tzn.

‖|At| − |As|‖ψ2 ¬ CK2|t− s| dla t, s ∈ Sn−1.

Dowód. Na mocy Faktu 12.15 i tego, że min{1, 4u} ¬ 2
√
u wystarczy udowodnić, że

P(||At| − |As|| ­ uK2|t − s|) ¬ 4 exp(−cu2) dla u > 0. W tym celu rozpatrzymy dwa
przypadki.

Przypadek I. uK2 ¬ 2
√
m. Mamy

P(||At| − |As|| ­ uK2|t− s|) = P(||At|2 − |As|2| ­ uK2|t− s|(|At|+ |As|))
= P(|〈A(t+ s), A(t− s)〉| ­ uK2|t− s|(|At|+ |As|))

¬ P
(
|At| ¬ 1

2

√
m

)
+ P

(
|〈A(t+ s), A(t− s)〉| ­ 1

2

√
muK2|t− s|

)
.

Na mocy Lematu 13.8,

P
(
|At| ¬ 1

2

√
m

)
¬ P

(
||At| −

√
m| ­ 1

2

√
m

)
¬ 2 exp(−cm/K4) ¬ 2 exp(−cu2/4).
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Zauważmy, że

〈A(t+ s), A(t− s)〉 =
m∑
i=1

〈Ai, t+ s〉〈Ai, t− s〉.

Zmienne 〈Ai, t+s〉〈Ai, t−s〉 mają (na mocy Faktu 13.2) średnią 〈t+s, t−s〉 = |t|2−|s|2 = 0
oraz

‖〈Ai, t+ s〉〈Ai, t− s〉‖ψ1 ¬ ‖〈Ai, t+ s〉‖ψ2‖〈Ai, t− s〉‖ψ2 ¬ K2|t+ s||t− s| ¬ 2K2|t− s|.

Stosując nierówność Bernsteina dla zmiennych subwykładniczych (Twierdzenie 4.16) do-
stajemy

P
(
|〈A(t+ s), A(t− s)〉| ­ 1

2

√
muK2|t− s|

)
¬ 2 exp

(
− mu2K4|t− s|2/4

16mK4|t− s|2 + 4
√
muK4|t− s|2

)
¬ 2 exp(−u2/96),

gdzie w ostatniej nierówności użylismy tego, że u ¬ uK2 ¬ 2
√
m.

Przypadek II. uK2 > 2
√
m. Wówczas

P(||At| − |As|| ­ uK2|t− s|) ¬ P(|A(t− s)| ­ uK2|t− s|)

¬ P
(∣∣|A(t− s)| −

√
m|t− s|

∣∣ ­ 1
2
uK2|t− s|

)
¬ 2 exp(−cu2)

na mocy Lematu 13.8.

Dowód Twierdzenia 13.6. Z uwagi na jednorodność, wystarczy wykazać (31) dla |t| = 1 ¬
|s|. Niech s̃ = s/|s|, wówczas

‖Xt −Xs‖ψ2 ¬ ‖Xt −Xs̃‖ψ2 + ‖Xs̃ −Xs‖ψ2 = ‖Xt −Xs̃‖ψ2 + |s̃− s|‖Xs̃‖ψ2 .

Stosując Lematy 13.8 i 13.9 dostajemy

‖Xt −Xs‖ψ2 ¬ CK2(|t− s̃|+ |s̃− s|).

By zakończyć dowód wystarczy zauważyć, że trójkąt 4(t, s̃, s) jest rozwartokątny, zatem

|t− s̃|+ |s̃− s| ¬
√

2(|t− s̃|2 + |s̃− s|2)1/2 ¬
√

2|t− s|.

Wniosek 13.10. Niech A będzie macierzą losową m × n spełniającą założenia założenia
Definicji 13.3. Wówczas dla u ­ 1 z prawdopodobieństwem nie mniejszym niż 1−exp(−u2)
zachodzi

√
m− CK2(

√
n+ u) ¬ inf

|t|=1
|At| ¬ sup

|t|=1
|At| ¬

√
m+ CK2(

√
n+ u).

Dowód. Stosujemy Twierdzenie 13.5 do T = Sn−1 i zauważamy, że γ(T ) =
√
n oraz R(T ) =

1.
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13.2 Lemat Johnsona-Lindenstraussa

Wniosek 13.11. (Addytywny lemat Johnsona-Lindenstraussa) Niech T ⊂ Rn, zaś A będzie
macierzą losową m × n spełniającą założenia Definicji 13.3. Wówczas z prawdopodobień-
stwem 0.99 zachodzi zdarzenie

|t− s| − δ ¬
∣∣∣∣ 1√
m
At− 1√

m
As

∣∣∣∣ ¬ |t− s|+ δ dla wszystkich s, t ∈ T,

gdzie δ ¬ C√
m
K2g(T ).

Dowód. Wystarczy zastosować Twierdzenie 13.5 do T − T otrzymując

E sup
s,t∈T

∣∣∣∣∣∣∣∣ 1√
m
At− 1√

m
As

∣∣∣∣− |t− s|∣∣∣∣ ¬ C√
m
K2γ(T − T ),

zauważyć, że γ(T − T ) = 2g(T ) i skorzystać z nierówności Czebyszewa.

Wniosek 13.12 (Multyplikatywny Lemat Johnsona-Lindenstraussa). Załóżmy, że T jest
zbiorem skończonym w Rn, a A jest macierzą losową m×n spełniającą założenia Definicji
13.3. Wówczas z prawdopodobieństwem 0.99 zachodzi

(1− ε)|t− s| ¬
∣∣∣∣ 1√
m
At− 1√

m
As

∣∣∣∣ ¬ (1 + ε)|t− s|,

gdzie ε ¬ CK2
√

log |T |
m .

Dowód. Niech
S :=

{
t− s
|t− s|

: t, s ∈ T, t 6= s

}
Zauważmy, że na mocy Lematu 11.11,

γ(S) = g(S) ¬
√

2 log |S| ¬ 2
√

log |T |,

zatem Twierdzenie 13.5 zastosowane do zbioru S implikuje

E sup
t,s∈T,t6=s

∣∣∣∣ |At−As|√
m|t− s|

− 1
∣∣∣∣ =

1√
m

E sup
t′∈S
||At′| −

√
m|t′|| ¬ CK2

√
log |T |
m

.

Uwaga 13.13. Klasyczny Lemat Johnsona Lindenstraussa miał postać jak we Wniosku
13.12, ale dotyczył przypadku, gdy zamiast 1√

m
A bada się przekształcenia

√
n
mP , gdzie

P jest rzutem ortogonalnym na losowo wybraną podprzestrzeń E ∈ Gn,m. To jakie się
rozpatruje losowe przekształcenie jest mało istotne, kluczowe jest to, że z dużym prawdo-
podobieństwem jest ono (po obcięciu do zbioru skończonego) bliskie izometrii i ma wartości
w przestrzeni nie za wysokiego wymiaru m, który (przy ustalonym ε) jest proporcjonalny
do log |T |.
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13.3 Losowe przekroje

W tej częsci będziemy badać srednicę losowego przekroju podzbioru Rn. Nasza losowość
będzie wyznaczona poprzez branie podprzestrzeni E := KerA, gdzie A jest macierzą m×n
o niezależnych subgaussowskich rzędach. Zauważmy, że dim(E) ­ n−m oraz jeśli Ai mają
ciągłe rozkłady, to dim(E) = n−m p.n. Co więcej, jeśli współczynniki A są niezależnymi
zmiennymi losowymiu N (0, 1), to z niezmienniczości rozkładu gaussowskiego na obroty
wynika, że E ma rozkład jednostajny na przestrzeni Grassmana Gn,n−m.

Twierdzenie 13.14. Niech T ⊂ Rn, zaś A będzie macierzą losową m × n spełniającą
założenia Definicji 13.3. Wówczas

Ediam(T ∩KerA) ¬ C√
m
K2g(T ).

Dowód. Wystarczy zauważyć, że na mocy Twierdzenia 13.5,

E
√
mdiam(T ∩KerA) = E sup

t,s∈T∩KerA

∣∣|At−As| − √m|t− s|∣∣ ¬ E sup
t∈T−T

∣∣|At′| − √m|t′|∣∣
¬ CK2γ(T − T ) = 2CK2g(T ).

Przykład. Zauważmy, że diam(Bn
1 ) = 2, ale g(Bn

1 ) = E maxi |gi| ¬
√

2 log(2n), stąd

Ediam(Bn
1 ∩ E) ¬ C

√
log n
m

,

gdzie średnia jest brana po losowej podprzestrzeni E ∈ Gn,n−m. Np dla m = n/10 otrzy-
mujemy, że losowy przekrój Bn

1 wymiaru 0, 9n ma średnicę rzędu
√

log n/n.

Twierdzenie 13.15. Załóżmy, że T ⊂ Sn−1 oraz A jest macierzą losową m×n spełniającą
założenia Definicji 13.3. Wówczas dla m ­ CK4γ(T )2

P(T ∩ ker(A) = ∅) ­ 1− exp(−cm/K4).

Dowód. Oczywiście R(T ) = 1, więc Twierdzenie 13.5 mówi, że z prawdopodobieństwem
przynajmniej 1− exp(−u2) mamy

sup
t∈T

∣∣|At| − √m|t|∣∣ ¬ C1K
2(γ(T ) + u)

Załóżmy, że zachodzi powyższe zadarzenie i istnieje t ∈ T ∩ ker(A). Wówczas
√
m ¬ C1K

2(γ(T ) + u).

Jeśli u =
√
m/(2C1K

2), to dostajemy
√
m ¬ C1K

2(γ(T ) +
1
2

√
m

czyli m ¬ 4C2
1K

4γ2(T ).
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14 Oszczędne próbkowanie

Ten wykład jest poświęcony zastosowaniom macierzy losowych w teorii oszczędnego prób-
kowania (ang. compressed sensing). Z konieczności omówimy skrótowo jedynie kilka wy-
branych zagadnień w możliwie prostych sformułowaniach. Czytelnika szukającego obszer-
niejszego wprowadzenia w tematykę odsyłamy do notatek z kursu w Marne-la-Vallée [2].

Będziemy zajmować się rozwiązywaniem równania postaci

y = Ax x ∈ T,

gdzie A jest macierzą m×n (z m typowo dużo mniejszym niż n), a T jest podzbiorem Rn.
Równanie możemy zapisać jako

yi = 〈Ai, x〉, i = 1, . . . ,m,

gdzie Ai ∈ Rn to wiersze macierzy A.
Wielkość 〈Ai, x〉można interpretować jako i-ty pomiar nieznanego wektora x. Przyjmuje

się, że znamy zbiór T , dobieramy odpowiednią macierz A tak by odtworzyć na podstawie
y wektor x.

Gdy m < n równanie Ax = y ma typowo nieskończenie wiele rozwiązań, będziemy więc
zakładać, że zbiór T jest mały. Podobnie jak w poprzednim wykładzie będziemy rozważać
macierze losowe A o niezależnych subgaussowskich rzędach.

W dalszej części będziemy używać następującej notacji. Dla I ⊂ [n] := {1, . . . , n} i
x ∈ Rn określamy

xI :=
(
xi1{i∈I}

)n
i=1

, Ic := [n] \ I.

Normę `q wektora x oznaczamy przez ‖x‖q, piszemy |x| zamiast ‖x‖2. Dla q ­ 1, Bn
q

oznacza kulę jednostkową w `nq , czyli

Bn
q =

{
x ∈ Rn :

n∑
i=1

|xi|q ¬ 1

}
.

Zacznijmy od przypadku, gdy w = 0. Najprostszy algorytm prowadzący do rozwiązania
naszego równania, to

znaleźć x̂ ∈ T takie, że Ax̂ = y. (32)

Twierdzenie 14.1. Niech A będzie macierzą losową n×m spełniającą założenia Definicji
13.3. Załóżmy, że x jest ustalonym wektorem z T , y = Ax zaś x̂ jest rozwiązaniem (32).
Wówczas

E|x̂− x| ¬ C√
m
K2g(T ).
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Dowód. Zauważmy, że x̂− x ∈ (T − x) ∩Ker(A), stąd na mocy Twierdzenia 13.14 mamy

E|x̂− x| ¬ Ediam((T − x) ∩Ker(A)) ¬ C√
m
K2g(T − x) =

C√
m
K2g(T ).

Uwaga 14.2. i) Inaczej można przeformułować Twierdzenie 14.1 jako

E|x̂− x| ¬ εdiam(T ),

o ile

m ­ CK4ε−2d(T ), gdzie d(T ) :=
g(T )2

diam(T )2 .

ii) Zagadnienie (32) jest złożone obliczeniowo, jeśli T nie jest wypukły. Zauważmy jednak, że
g(conv(T )) = g(T ), zatem możemy zawsze zastąpić zbiór T jego uwypukleniem i otrzymać
zagadnienie rozsądne obliczeniowo i mające podobne oszacowanie błędu |x̂− x|.

14.1 Wektory o małym nośniku

Typowe założenie (bardzo użyteczne w zastosowaniach) mówi, że x ma mały nośnik.

Definicja 14.3. Nośnikiem wektora x ∈ Rn nazywamy zbiór

supp(x) := {1 ¬ i ¬ n : xi 6= 0}.

Normę `0 wektora x definiujemy jako ‖x‖0 := |supp(x)|. Kładziemy też dla 1 ¬ p ¬ n,

Σp := {x ∈ Rn : ‖x‖0 ¬ p} .

Wiedząc, że x ma mały nośnik rozwiązania równania chciałoby się poszukiwać rozwią-
zując zagadnienie

x̂ = argmin{‖x′‖0 : Ax′ = y}.

Jednak, z uwagi na to, że `0-norma nie jest normą zagadnienie to jest złożone obliczeniowo.
Dlatego wygodniej rozważać normę `1 i rozwiązywać problem

x̂ = argmin{‖x′‖1 : Ax′ = y}. (33)

Fakt 14.4. Dla 1 ¬ p ¬ n zachodzi

1
2

(
√
pBn

1 ∩Bn
2 ) ⊂ conv(Σp ∩Bn

2 ) ⊂ √pBn
1 ∩Bn

2 .
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Dowód. Zauważmy, że

‖x‖1 =
∑

i∈supp(x)

|xi| ¬ |supp(x)|1/2
(

n∑
i=1

x2
i

)1/2

= ‖x‖1/20 |x|,

stąd Σp ∩Bn
2 ⊂
√
pBn

1 i łatwo otrzymujemy górne zawieranie.
By udowodnić dolne zawieranie ustalmy x ∈ √pBn

1 ∩ Bn
2 . Niech I1 oznacza podzbiór

[n] = {1, 2, . . . , n} zawierający indeksy p największych modułów współrzędnych x, I2 zbiór
indeksów kolejnych p co do wielkości modułów współrzędnych itd. Zauważmy, że dla k ­ 2,

max
i∈Ik
|xi| ¬ min

i∈Ik−1
|xi| ¬

1
p
‖xIk−1‖1,

stąd

|xIk | ¬
1
√
p
‖xIk−1‖1.

Oczywiście |xI1 | ¬ |x| ¬ 1, zatem

∑
k

|xIk | ¬ 1 +
∑
k­2

1
√
p
‖xIk−1‖1 ¬ 1 +

1
√
p
‖x‖1 ¬ 2.

Ponadto, xIk ∈ Σp, zatem

x =
∑
k­1

xIk ∈
∑
k

|xIk |conv(Σp ∩Bn
2 ) ⊂ 2conv(Σp ∩Bn

2 ).

Fakt 14.5. Dla 1 ¬ p ¬ n mamy

g(
√
pBn

1 ∩Bn
2 ) ¬ 2g(Σp ∩Bn

2 ) ¬ 4

√
p log

2n
p

Dowód. Pierwsza nierówność wynika z dolnego zawierania w Fakcie 14.4. By udowodnić
drugą zauważamy wpierw, że

g(Σp ∩Bn
2 ) = E max

|I|=p

√∑
i∈I

g2
i = E

√√√√ p∑
i=1

(g∗i )2,

gdzie g∗1 ­ g∗2 ­ . . . ­ g∗n oznacza monotoniczne uporządkowanie wektora (|g1|, . . . , |gn|),
czyli g∗k = k- maxi |gi|.
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Wypukłość funkcji exp(αx2) oraz exp(x) implikuje dla 0 < α < 1/2,

exp

α
E

√√√√1
p

p∑
i=1

(g∗i )2

2
 ¬ E exp

(
α

1
p

p∑
i=1

(g∗i )
2

)
¬ 1
p
E

p∑
i=1

exp(α(g∗i )
2)

¬ 1
p
E

n∑
i=1

exp(αg2
i ) =

n

p
√

1− 2α
.

Biorąc α = 1/4 dostajemy g(Σp ∩Bn
2 ) ¬ 2

√
p log(2n/p).

Uwaga 14.6. Można udowodnić, że

g(
√
pBn

1 ∩Bn
2 ) ­ g(Σp ∩Bn

2 ) ­ c
√
p log

2n
p
.

Twierdzenie 14.1 (zastosowane do x/|x| i T = Σp∩Bn
2 i Fakt 14.5 implikują następujący

wniosek.

Wniosek 14.7. Niech A będzie macierzą losową m × n spełniającą założenia założenia
Definicji 13.3. Niech x ∈ Σp, Ax = y, zaś x̂ będzie rozwiązaniem (33). Wówczas

E|x̂− x| ¬ CK2

√
p log(2n/p)

m
|x|.

14.2 Dokładna rekonstrukcja wektorów o małym nośniku

Dla macierzy A ∈Mm×n i 1 ¬ p ¬ n określmy

αp(A) := inf
x∈Σp∩Bn2

|Ax|, βp(A) := sup
x∈Σp∩Bn2

|Ax|, γp(A) :=
βp(A)
αp(A)

.

Innymi słowy αp(A) i βp(A) to optymalne stałe takie, że

αp(A)|x| ¬ |Ax| ¬ βp(A)|x| dla x ∈ Σp.

Definicja 14.8. Powiemy, że macierz A ma własność dokładnej `1-rekonstrukcji rzędu p,
jeśli dla dowolnego wektora x ∈ Σp rozwiązaniem zagadnienia (33) z y = Ax jest wektor
x̂ = x.

Twierdzenie 14.9. Załóżmy, że r > p(1 + γ2
r (A)). Wówczas A ma własność dokładnej

`1-rekonstrukcji rzędu p.
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Dowód. Niech s := r − p > γ2
r (A)p. Dla uproszczenia notacji położymy α = αr(A), β =

βr(A). Ustalmy x ∈ Σp, niech y = Ax, x̂ będzie rozwiązaniem (33) oraz h = x̂−x. Musimy
pokazać, że h = 0.

Niech π będzie permutacją [n] taką, że

|hπ(1)| ­ |hπ(2)| ­ . . . ­ |hπ(n)|.

Innymi słowy |hπ(l)| = l- maxi |hi|. Niech

I0 := π({1, . . . , p}), Il := π({p+ (l− 1)s+ 1, p+ (l− 1)s+ 2, . . . , p+ ls} ∩ [n]) dla l ­ 1,

tzn. I0 zawiera indeksy p największych modułów współrzędnych wektora h, I1 indeksy
kolejnych s co do wielkości modułów współrzędnych itd.

Niech S := supp(x), wówczas

‖x‖1 ­ ‖x̂‖1 = ‖x+ h‖1 = ‖xS + hS‖1 + ‖hSc‖1 ­ ‖x‖1 − ‖hS‖1 + ‖hSc‖1
­ ‖x‖1 − ‖hI0‖1 + ‖hIc0‖1,

gdzie ostatnia nierówność wynika z tego, że |S| ¬ p = |I0| oraz ze sposobu wyboru I0.
Zatem

‖hIc0‖1 ¬ ‖hI0‖1 ¬
√
p|hI0 |.

Następnie zauważmy, że

0 = |Ax̂−Ax| = |Ah| =

∣∣∣∣∣∣A(hI0 + hI1) +
∑
l­2

AhIl

∣∣∣∣∣∣ ,
zatem wykorzystując definicje α = αr(A) i β = βr(A) i to, że |I0 ∪ I1| = r oraz |Il| ¬ s ¬ r
dostajemy

α |hI0 + hI1 | ¬ |A(hI0 + hI1)| ¬
∑
l­2

∣∣∣AhIl ∣∣∣ ¬∑
l­2

β |hIl | .

Zauważmy, że dla l ­ 2,

|hIl | ¬
√
smax
i∈Il
|hi| ¬

√
s min
i∈Il−1

|hi| ¬
1√
s
‖hIl−1‖1.

Stąd

α |hI0 + hI1 | ¬
∑
l­2

β√
s
‖hIl−1‖1 =

β√
s
‖hIc0‖1 ¬

β
√
p

√
s
|hI0 | ¬

β
√
p

√
s
|hI0 + hI1 | .

Ale z naszych założeń wynika, że β
√
p/s < α, zatem hI0+hI1 = 0, stąd łatwo otrzymujemy,

że h = 0.
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Niestety nie są znane deterministyczne macierze losowe takie, że γp jest ograniczone
oraz m jest porównywalne z p z dokładnością do logarytmów. Okazuje się jednak, że sub-
gaussowska macierz losowa z dużym prawdopodobieństwem spełnia takie warunki.

Twierdzenie 14.10. Niech A będzie macierzą losową m×n spełniającą założenia założenia
Definicji 13.3 oraz m ­ CK4p log(en/p). Wówczas

P
(

9
10

√
m ¬ αp(A) ¬ βp(A) ¬ 11

10

√
m

)
­ 1− exp

(
−c m

K4

)
.

Dowód. Niech I będzie podzbiorem [n] = {1, . . . , n} mocy p zaś AI oznacza macierz m× p
powstałą z A przez wybranie kolumn o indeksach z I. Łatwo sprawdzić, że macierz AI
spełnia założenia Definicji 13.3 (z p zamiast n). Wniosek 13.10 implikuje, że z prawdopo-
dobieństwem większym niż 1− exp(−u2) zachodzi

√
m− C1K

2(
√
p+ u) ¬ inf

|x|=1
|AIx| ¬ sup

|x|=1
|AIx| ¬

√
m+ C1K

2(
√
p+ u).

Zauważmy, że jeśli supp(x) ⊂ I, to x możemy traktować jako wektor z RI ∼= Rp i przy tym
utożsamieniu AIx = Ax. Zatem z prawdopodobieństwem większym niż 1 −

(n
p

)
exp(−u2)

mamy
√
m− C1K

2(
√
p+ u) ¬ inf

x∈Σp∩Bn2
|AIx| ¬ sup

x∈Σp∩Bn2
|AIx| ¬

√
m+ C1K

2(
√
p+ u).

Wystarczy teraz zauważyć, że jeślim ­ 400C2
1K

4p i u =
√
m/(20C1K

2) to C1K
2(
√
p+u) ¬√

m/10, ponadto wtedy(
n

p

)
exp(−u2) ¬ exp

(
p log(en/p)− m

400C2
1K

4

)
¬ exp

(
− m

800C2
1K

4

)
,

o ile m ­ 800C2
1K

4p log(en/p).

Wniosek 14.11. Niech A będzie macierzą losową m × n spełniającą założenia założenia
Definicji 13.3 oraz m ­ CK4p log(en/p). Wówczas z prawdopodobieństwem przynajmniej
1− exp(−cm/K4) macierz A ma własność dokładnej `1-rekonstrukcji rzędu p.

Dowód. Stosujemy Twierdzenie 14.10 z 3p zamiast p, a następnie Twierdzenie 14.9 z r =
3p > (1 + (11/9)2)p.

14.3 Algorytm Lasso

W praktyce każdy wykonywany pomiar jest obarczony pewnym błędem. Dlatego naturalnie
jest rozpatrywać ogólniejsze równanie postaci

y = Ax+ w x ∈ T,
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bądź równoważnie
yi = 〈Ai, x〉+ wi, i = 1, . . . ,m,

gdzie wi ∈ R można interpretować jako błąd i-tego pomiaru.
Tutaj musimy zmodyfikować algorytm (33). Jedną z możliwości jest tzw. algorytm Lasso

postaci
x̂ = argmin{|Ax′ − y| : ‖x′‖1 ¬ R}. (34)

Twierdzenie 14.12. Niech A będzie macierzą losową m×n spełniającą założenia założenia
Definicji 13.3, x ∈ Σp dla 1 ¬ p ¬ n oraz m ­ CK4p log(en/p). Wówczas rozwiązanie (34)
z R = ‖x‖1 spełnia

P

(
|x̂− x| ¬ CK |w|

√
p log(en/p)
m

)
­ 1− 2 exp(−p log(en/p)).

Niech h = x̂− x. Dowód twierdzenia rozbijemy na kilka lematów.

Lemat 14.13. Zachodzi
‖h‖1 ¬ 2

√
p|h|

oraz
|Ah|2 ¬ 2〈Ah,w〉.

Dowód. Niech S = supp(x). Mamy

‖x‖1 ­ ‖x̂‖1 = ‖x+ h‖1 = ‖xS + hS‖1 + ‖hSc‖1 ­ ‖x‖1 − ‖hS‖1 + ‖hSc‖1,

zatem
‖h‖1 = ‖hS‖1 + ‖hSc‖1 ¬ 2‖hS‖1 ¬ 2|S|1/2|hS | ¬ 2

√
p|h|.

By udowodnić drugie oszacowanie zauważamy, że

|w −Ah| = |w +Ax−Ax̂| = |y −Ax̂| ¬ |y −Ax| = |w|.

Wystarczy teraz podnieść obie strony do kwadratu i zredukować czynnik |w|2.

Lemat 14.14. Przy założeniach Twierdzenia 14.12,

P
(
|Ah|2 ­ m

4
|h|2

)
­ 1− exp(−p log(en/p)).

Dowód. Na mocy pierwszego oszacowania z Lematu 14.13,

h

|h|
∈ Tp := 2

√
pBn

1 ∩ Sn−1.
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Fakt 14.5 implikuje

R(Tp) = 1, γ(Tp) ¬ 2g(
√
pBn

1 ∩Bn
2 ) ¬ 4

√
p log(2n/p).

Stosujemy drugą część Twierdzenia 13.5 z u =
√
p log(en/p) i dostajemy, że z prawdopo-

dobieństwem przynajmniej 1− exp(−p log(en/p)) zachodzi

sup
t∈Tp

∣∣|At| − √m∣∣ ¬ C1K
2
√
p log(en/p) ¬ 1

2

√
m,

gdzie ostatnia nierówność zachodzi o ile m ­ 4C2
1K

4p log(en/p). Zatem

P
(
|Ah|2 ­ m

4
|h|2

)
­ P

(
|At| ­ 1

2

√
m dla t ∈ Tp

)
­ 1− exp(−p log(en/p)).

Lemat 14.15. Przy założeniach Definicji 13.3,

‖〈At,w〉 − 〈As,w〉‖ψ2 ¬ CK|w||t− s| dla t, s ∈ Rn.

Dowód. Korzystając z Faktu 12.15 mamy dla λ ∈ R

E exp(λ(〈At,w〉 − 〈As,w〉)) = E exp

(
m∑
i=1

λwi〈Ai, t− s〉
)

=
m∏
i=1

E exp(λwi〈Ai, t− s〉)

¬
∏
i=1

m exp
(
Cλ2w2

i ‖〈Ai, t− s〉‖2ψ2
)
¬ exp

(
Cλ2K2|w|2|t− s|2

)
i teza wynika z ponownego użycia Faktu 12.15.

Lemat 14.16. Przy założeniach Twierdzenia 14.12,

P
(
〈Ah,w〉 ¬ CK|h||w|

√
p log(en/p)

)
­ 1− exp(−4p log(en/p)).

Dowód. Niech Xt := 〈At,w〉 oraz Tp będzie jak w dowodzie poprzedniego Lematu. Wówczas

1
|h|
〈Ah,w〉 ¬ sup

t∈Tp
Xt.

Na mocy Lematu 14.15 mamy

‖Xt −Xs‖ψ2 ¬ d(t, s) := C1K|w||t− s| = ‖Gt −Gs‖2,

gdzie

Gt := C1K|w|
n∑
i=1

tigi
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Zauważmy, że
diam(Tp, d) ¬ 2C1K|w|

oraz na podstawie Twierdzenia 12.10 i Faktu 14.5,

γ2(Tp, d) ¬ CE sup
t∈T

Gt = CK|w|g(Tp) ¬ CK|w|
√
p log(en/p).

Stąd Wniosek 12.25 implikuje dla u > 0,

P
(
〈Ah,w〉 ­ CK|h||w|

(√
p log(en/p) + u

))
¬ P

(
sup
t∈Tp

Xt ­ C(γ2(T, d) + udiam(T, d))

)
¬ exp(−u2)

i wystarczy wziąć u =
√
p log(en/p).

Dowód Twierdzenia 14.12. Na podstawie Lematów 14.13, 14.14 i 14.16 z prawdopodobień-
stwem 1− 2 exp(−p log(en/p)) zachodzi zdarzenie

m

4
|h|2 ¬ |Ah|2 ¬ 2〈Ah,w〉 ¬ CK|h||w|

√
p log(en/p),

które implikuje

|h| ¬ CK |w|
√
p log(en/p)
m

.
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