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1 Wstep

W wielu problemach rachunku prawdopodobienstwa i jego zastosowan pojawiaja sie wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wyktadu bedzie przedstawienie wybranych narzedzi pozwalajacych
badaé takie obiekty. Wyklad bedzie dotyczyl tak zwanej teorii nieasymptotycznej, tzn. na-
cisk bedzie polozony na rézne szacowania, a nie na twierdzenia graniczne.

W pierwszej czesci wykltadu oméwimy pewne zagadnienia zwigzane z teoria koncen-
tracji miary, ktére pozwalaja szacowaé¢ odchylenia funkcji zaleznej od wielu zmiennych
losowych od jej wartosci oczekiwanej. W drugiej pokazemy kilka metod pozwalajacych sza-
cowad suprema proceséw stochastycznych. Oméwimy tez pewna liczbe bardziej konkretnych
przyktadéw zastosowan.

Oczywiscie podczas semestralnego wyktadu monograficznego mozna oméwié tylko nie-
wielka czed¢ bogatej i ciagle rozwijajacej si¢ teorii. Duzo szerszy wybér zagadnien zostat
przedstawiony w notatkach Ramona van Handela [6] i monografii Romana Vershynina [7],
zainteresowany Czytelnik znajdzie tam tez szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przyktady.

Wiele waznych miar probabilistycznych spetnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorac polega on na tym, ze wiekszo$¢ punktéw z przestrzeni lezy w poblizu
zbioru wypelniajacego przynajmniej potowe przestrzeni. By pojecie to sformalizowaé po-
trzebujemy dwoch waznych definicji.

Definicja 2.1. Niech (X, d) bedzie przestrzenia metryczna, za$ A dowolnym podzbiorem
X. Dla t > 0 okreslamy t-otoczenie zbioru A wzorem

Ay ={r e X:d(z,A) <t} = U B(y,t),
yeEA

gdzie B(y,t) oznacza kule otwarta w X o §rodku w y i promieniu ¢.

Definicja 2.2. Niech u bedzie borelowska miara probabilistyczna na (X, d). Funkcje kon-
centracji miary p definiujemy jako

au(t) = ax,au(t) == sup {1 — 1(Ay): p(A) > %}

Na poczatek wyktadu podamy kilka przyktadéw, dla ktorych mozna dobrze oszacowaé
funkcje koncentracji. Dowody podanych oszacowan przedstawimy pozniej.

Przyklad 1. Niech d oznacza odlegto$é geodezyjna na n-wymiarowej sferze S™ =
{x € R": || = 1}, za$ 0, oznacza unormowang miare powierzcniows na S”. Wéwczas



okazuje sie, ze jesli chcemy zminimalizowaé o, (A;) po wszystkich zbiorach ustalonej miary,
ekstremalne sa kule (zwane tez czapeczkami), to znaczy

on(A) = on(B(z0,7)) = 0on(As) = on(B(z0,7)t) = on(B(zo, 7 +1)).

W szczegdlnosci jesli o, (A4) > 1/2, to

on(Ap) > O‘n(B<ZL'(), g +t>) >1—exp ( — (n—21)t2)

Zatem a,,, (t) < exp(—251t2).

Uwaga 2.3. Zauwazmy, ze funkcja koncentracji o, szybko zbiega do 0 przy n — oo. Jedna
z przyczyn tego zjawiska jest to, ze miara ta nie jest dobrze unormowana. Jesli przez
on,r okredlimy rozklad jednostajny na sferze RS™, to poniewaz jest on obrazem o, przy
jednoktadnosci o skali R, to

Qg (L) = ag, (%) < exp ( - T;;;tz).

Zauwazmy tez, ze

R2
T;x:do )= —0; ;.
/RSn (g mR( ) n+1 1,J

Zatem miara jednostajna na v/n 4+ 15™ ma dobra normalizacje, to znaczy taka, ze macierz
kowariancji jest identycznoscia. Dla tej miary dla n > 2,

<_ 2(n + 1)t2)

1
Ao, ey (1) < exp < exp ( - 6t2>.

Przyktad 2. Niech 7; oznacza kanoniczny rozklad gaussowski na RF, tzn. rozklad
z gestoscia (2m) %/ exp(—|z|?/2). Wéwezas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazuja sie péiprzestrzenie, tzn. jesli

M(A) = e ((—00,7] x R¥) = a(r),

to
Yi(Ay) > *yk(((—oo,r] X Rk_l)t> = yk((—oo, r 4 t] X ]Rk_1> =®o(r +t).
W szczegdlnosei

1
ay, (1) =1—®(t) < 56_t2/2.

Zauwazmy, ze poOwyzsze oszacowania nie zalezg od wymiaru przestrzeni.

Przyktad 3. Niech v bedzie symetrycznym rozkladem wyktadniczym, tzn. rozktadem
na R z gestoécia § exp(—|z|). Przez v* bedziemy oznaczaé rozklad produktowy v®...®v na



R*. Wyznaczenie ekstremalnych zbioréw dla problemu izoperymetrycznego zwigzanego z ta
miara jest trudne i nieznane dla k # 1. Choé¢ wiadomo, ze ekstremalne nie sg pétprzestrzenie
postaci (—oo, 7] X R*~1 to sa one optymalne z doktadnoscia do stalej, tzn.

VH(A) = v((—o0,7]) = VF(A) > w((—oor+ 2\1@4)

W szczegdlnosci

1 1 1
ak(t) <1 —y((—oo, 27\/61&}) = Eexp(— %—@t)

Zauwazmy, ze znowu uzyskane oszacowanie nie zalezy od wymiaru przestrzeni.

Przyktad 4. Niech p bedzie unormowana miara liczaca na kostce dyskretnej {0, 1}
z metryka d(z,y) = %#{i: x; # y;}. Tu problem izoperymetryczny daje si¢ rozwiazaé
(optymalne sa kule, ewentualnie z dodanymi niektérymi punktami na brzegu). W tym
przypadku mozna pokazaé, ze
a,(t) < e

Krétki przeglad wynikéw pokazuje, ze w wielu waznych zastosowaniach mozna wykazac,
ze ay(t) < Crexp(—t?/Cs) — méwimy wtedy, ze funkcja koncentracji jest typu gaussow-
skiego. Widzielismy tez przyklad, w ktérym a,(t) < Cjexp(—t/Cs) — méwimy wtedy o
koncentracji wyktadniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia si¢ miara otoczenia zbioru, a raczej
jak szybko maleja ogony funkcji okreslonych na przestrzeni. W tej czesci powiazemy ze
soba te zjawiska. Zacznijmy od definicji mediany i modutu ciagtosci.

Definicja 2.4. Niech p bedzie miara probabilistyczng na (X, d) oraz f bedzie mierzalna
funkcja z X w R.
Mediang funkcji f wzgledem miary p nazywamy taka liczbe M = Med,,

—

f) dla ktérej

N |

p{e: f@) > MY) > 5 oran p({e: f(x) < M}) >
Modutem cigglosci f nazywamy funkcje
wy(t) := sup{|f(z) = f(y)|: d(z,y) <t}
Fakt 2.5. Dla dowolnej funkcji mierzalnej F: X — R,
u({: Fx) > Med, (F) + wp(t)}) < au(t)

p({a: [F(z) — Med,,(F)| > wr(t)}) < 204(1).



Dowdd. Niech A := {x: F(xz) < Med,(F)} wéwczas u(A) > 1/2 zatem p(A;) > 1 —
ay,(t). Ponadto, jesli x € Ay, to istnieje y € A takie, ze d(z,y) < t i1 wowczas F(x) <
F(y) +wp(t) < Med,(F)+wp(t), stad pierwsza nieréwnos¢ w fakcie. Stosujac ja do —F i
zauwazajac, ze Med,(—F) = —Med,(F') oraz w_p = wr dostajemy

p({z: F(r) < Med,(F) —wr(t)}) < au(t).
Dodajac powyzsza nieréwno$é¢ do poprzedniej otrzymamy ostatnig czesé faktu. O
Przypomnijmy definicje funkcji lipschitzowskiej
Definicja 2.6. Funkcje F': (X,d) — R nazywamy lipschitzowskq, jesli

|F(z) = F(y)|
Fllrip :=sup —F———— < .
e =2 ™ a )

Moéwimy, ze funkcja jest L-lipschitzowska jesli ||F'||rip < L, tzn. |F(z) — F(y)| < Ld(z,y)
dla wszystkich z,y € X.

Analogicznie mozna zdefiniowaé funkcje lipschitzowskie miedzy przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jesli F jest lipschitzowska ze stalq L, to dla t > 0,
p({z: F(xz) > Med,(F) +t}) < a,(t/L)

u({e: |F(z) — Med, (F)| > t}) < 2a,(t/L).

it) Na odwrdt, jesli dla kazdej funkcji 1-lipschitzowskiej F' i ustalonego t > 0,
p({x: F(z) > Med,(F) +t}) < o
to a,(t) < a.

Dowdd. i) Wynika z Faktu 2.5 i oczywistego szacowania wy(t) < tL.
ii) Ustalmy zbiér A taki, ze pu(A) > 1/2 i okreSlmy F'(z) := d(z, A). Wéwczas F jest
1-lipschitzowska oraz Med, (F') = 0, zatem

az p({F > t}) = p({z: d(z, A) > t}) = 1 — p(Ay). O

Czesto tatwiej i naturalniej jest wykazywaé koncentracje funkcji lipschitzowskich wokot
Sredniej a nie mediany. Kolejny fakt pokazuje jak odzyskaé funkcje koncentracji w takim
przypadku.



Fakt 2.8. Zaldzmy, ze p jest miarg probabilistyczng na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F it > 0 zachodzi

u({x: F(z) > /qu+t}) < aft). (1)
Wéwczas dla dowolnego zbioru borelowskiego A takiego, zZe pu(A) > 0 zachodzi
1 1A < ou(A))
W szczegolnosci
a,(t) < a(%).

Ponadto, jeslilim;_,o a(t) = 0, to dowolna funkcja 1-lipschitzowska jest calkowalna wzgle-
dem p 1 jesli dodatkowo « jest ciggla, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowdd. Ustalmy zbiér borelowski A taki, ze u(A) > 0 oraz liczbe ¢ > 0. Zdefiniujmy
F(z) := min{d(x, A),t}, wowczas funkcja F' jest ograniczona, 1-lipschitzowska i [ Fdu <
t(1 — u(A)). Stad na mocy (1),

L= p(A) = p({F > 1)) < p({F > /qu + p(A)E}) < alp(A)).

W szczegdlnoscei, jesli p(A) > 1/2, to 1 — p(Ar) < a(t/2).
By udowodnié¢ druga czes¢ faktu, ustalmy funkcje 1-lipschitzowska F' i niech F, :=
min{|F|,n}. Z (1) zastosowanej do —F,, dostajemy

u({o: Fule) < /Fndu ~1}) <alt).

Wybierzmy ¢ takie, ze a(tg) < 1/2 oraz m := Med,|F|. Wowczas u({F, < m}) > 1/2, czyli
zbiory {F,, < m} oraz {F,, > [ F,du—to} maja niepuste przecigcie. Zatem [ F,,dp < m—+to
i z twierdzenia Lebesgue’a o zbieznosci monotonicznej dostajemy [ |F|du < m + ty < oo.
Ostatnia czes$¢ tezy dostajemy stosujac (1) do min{max{F,—n},n} i przechodzac z n —
0. 0

3 Nieréwnosci izoperymetryczne

W tej czedci oméwimy kilka nieréwnosci izoperymetrycznych, pokazujac rézne sposoby ich
dowodzenia - poprzez powigzane nierownosci funkcyjne, symetryzacje czy transport miary.



3.1 Klasyczna izoperymetria

Chociaz w tym wyktadzie bedziemy sie zajmowaé miarami probabilistycznymi, to przeglad
nieréwnosci izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a A,,.

Twierdzenie 3.1. Jesli A jest podzbiorem borelowskim R™ takim, ze A, (A) = A\ (B(xo, 7)),
to dla dowolnego t > 0,

M (Ar) = An(B(z0,7)e) = A\ (B(xo, 7+ t)).

Twierdzenie 3.2 (Nieréwnosé¢ Prékopy-Leindlera). Jesli s € [0,1] oraz f,g,h: R" —
[0,00) spelniajq warunek

h(sz+ (1—s)y) > f(z)°g(y)' ™ dlaz,y € R", (2)

to
/n h(z)dz > ( - f(x)dx)s(/Rn g(x)dx)l_s.

Dowdd. Najpierw wykazemy, ze dla niepustych zbioréw A, B € B(R™) zachodzi
M(A+ B) = M(A) + M(B).

Poniewaz A\ (A) = sup{\i(K): K C A, K zwarty}, to mozemy przyjaé, ze zbiory A i B sa
zwarte. Ponadto odpowiednio je przesuwajac mozemy tez zakladaé, ze sup A = inf B = 0.
Woéwczas AN B = {0} oraz

)\1(A+B) > )\1(AU B) = )\1(14) + )\1(3)

Nierownosé Prékopy-Leindlera udowodnimy przez indukcje po n. Najpierw rozwaz-
my n = 1. Mozemy zakladaé¢, ze f,g i h sa ograniczone, a z uwagi na jednorodnos¢, ze
sup f(z) = supg(x) = suph(z) = 1. Zauwazmy, ze dla 0 < r < 1, {h > r} D s{f >
r} 4+ (1 —s){g > r}, wiec calkujac przez czesci dostajemy

/h(x)d:c _ /01 M{h > rDdr > /01 M(s{f > 1Y+ (1= s){g > r}dr

1
> [ Mals{f 2 D) + A1 = 5){g > e
0

:s/fda;+(1—s)/gdx> (/fdx)s(/gdﬂ?)l_sv

gdzie ostatnia nieréwnos$¢ wynika z poréwnywania wazonych Srednich arytmetycznych i
geometrycznych.



Zalézmy teraz, ze n > 2 oraz teza twierdzenia zachodzi dla n— 1. Niech f, g, h spelniaja
(2) i okre$lmy dla z € R

F(z)= /Rn—1 f(z,2)dz, G(z)= /Rn—l g(x,z)dz oraz H(z)= /Rn_l h(z,z)dz.
Zauwazmy, ze dla ustalonego z,y € R
h(sz + (1 — s)y,s21 + (1 — 8)z0) > flx, 21)%g(y, ) ™ dla 21,20 € R"L.
Zatem na mocy zalozenia indukcyjnego
H(sz + (1 —s)y) > F(x)*G(y)' .

Stosujac nieréwnos$¢ Prékopy-Leindlera w udowodnionym wczedniej przypadku n = 1 do-

stajemy
/Rn h(z)dz = /]RH(x)da? > (/RF(x)dw)s(/RG(x)dx)l_s

- (/nf(:c)da:)s(/w g(x)da:)l_ ) O

Whiosek 3.3 (Nieréwno$é Brunna-Minkowskiego). Dla dowolnych niepustych zbioréw bo-
relowskich A, B C R",

M(sA+ (1= 35)B) > M\ (A)°* M (B)™% dla s €[0,1]

oraz
An(A+ B)Y™ = M\, (A" 4+ N, (B)V/™

Dowdd. Pierwsza nierownos$¢ natychmiast wynika z nieréwnosci Prékopy-Leindlera zasto-
sowanej do funkcji f = 14,9 =1p oraz h = 1,44 (1—4)B-

By udowodnié¢ drugg wystarczy rozwazy¢ przypadek, gdy A i B sa zbiorami skonczonej
i niezerowej miary. Przyjmijmy wtedy

- A - B B An(A)H/m
A= ;, B = E oraz s = )\n(A)l/n+)\n(B)1/n

Wéwezas Ap(A) = M(B) = (A (A" 4+ A\ (B)Y™)", wiec na podstawie wykazanej po-
przednio nieréwnosci

M(A+ B) = (sA+ (1= 5)B) = M(A)*A(B) 7 = M (A" + X, (B, O

Uwaga 3.4. Suma Minkowskiego dwu zbioréw borelowskich nie musi by¢ zbiorem borelow-
skim, ale mozna wykazaé, ze jest zbiorem mierzalnym w sensie Lebesgue’a.
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Dowdd Twierdzenia 3.1. Niech ¢, = A\, (B(0,1)), woéwczas A\p(A) = ¢,7™ 1 na podstawie
Whniosku 3.3,

An(Ag) = M(A + B(0,1) = (Aa(A)Y™ + A (B(0, £)) /)"
=cp(r+1)" = A\ (B(zo, 7+ 1)).
0

Definicja 3.5. Dla miary p na przestrzeni probabilistycznej (X, d) okreslamy zewnetzng
miare brzegowq pt wzorem

As) — (A
pt(A) == liminf M
t—0+ t
Uwaga 3.6. Jesli miara p na R™ ma ciagla gestosé g(x) oraz zbiér A ma gladki brzeg, to
pH(A) = | gla)dHp1(z),
0A
gdzie H,_1 oznacza n — 1 wymiarowa miare Haussdorffa.

Réwnowazna rézniczkowa forma klasycznej nieréwnoéci izoperymetrycznej méwi, ze
spoérod zbioréw ustalonej objetosci najmniejsza powierzchnie brzegu ma kula. Dokladniej:

Twierdzenie 3.7. Jesli A jest podzbiorem borelowskim R™ takim, Ze A, (A) = A (B(xo, 1)),

to
AY(A) = N (B(@o, 1)) = ney/™(An(A)) = D/m,
gdzie
A (B(0,1 /2
cn = A (B(0, ))—m~

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jesli A jest podzbiorem borelowskim S™ takim, Ze 0,,(A) = 0, (B(x0,7)),
to dla dowolnego t > 0,

on(At) 2 0n(B(x0,7)t) = on(B(xo, 7+ 1)).

o, (t) < \/Zexp ( — (ngl)tQ).

Dowdéd. Dla n =1 nie ma co dowodzi¢ (bo zawsze a,(t) < 1/2). Bedziemy wiec zakladad,
ze n > 2. Zauwazmy, ze

Whniosek 3.9.

.
on(B(zg, 1)) = sgl/ sin™ ! ¢dt,
0
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gdzie s, = [; sin" ! tdt. Zatem

™ w/2
g, (t) =1 — 0p(B(zo,t +7/2)) = s, / sin" tudu = s, ! /t cos" L udu.

t+7/2

Stosujac oszacowanie cosu < exp(—u?/2) dla t € [0, 7/2], dostajemy

/2 /2 S)
/ cos" M udu < / e~ (=12, < 1 / e /2ds
t ¢ n—1Jw/n-1

_ Ve - VT ey
_mu d(tv/n — 1)) < e D2,

Ponadto tatwe catkowanie przez czesci daje, ze dlan > 3, s, = Z—jsn_g, stad

-2

vn —1s, = ;ﬁSn—Q > Vn — 35,2,

zatem

inf v/n — 1s, = min{ss, \/553} = min{2,7r/\f2} = 2. O

n=2

3.3 Izoperymetria gaussowska

Przypomnijmy, ze przez 7j oznaczamy kanoniczny rozklad gaussowski na RF, tzn. rozklad
z gestoscia (21) %2 exp(—|z|?/2).

Gléwnym wynikiem, ktéry wykazemy jest to, ze dla rozktadow gaussowskich optymalne
dla problemu izoperymetrycznego sa pdlprzestrzenie afiniczne, to znaczy zbiory postaci

H = {z eRF: (z,u) < r} dla pewnych u € ¥~ i r € [—00, ). (3)

Twierdzenie 3.10. Niech H bedzie polprzestrzeniq afiniczng, a A zbiorem borelowskim w
R¥ takim, ze yp(H) = v.(A). Wéwezas dla dowolnego t > 0, vi(Hy) < ve(Ar)

Zanim przystapimy do dowodu twierdzenia pokazemy, ze v jest granica rzutowan roz-
ktadéw jednostajnych na /nS"~ 1.

Niech P = Py, oznacza kanoniczny rzut R" na RF dla k < n, za$ 6,1 oznacza
unormowana miare powierzchniows na /nS"~'. Oznaczmy przez Hk,n Obraz &,_1 przy
tym rzutowaniu tzn.

Hin(A) = 601 (P A(A))  dla A € BRY).
Fakt 3.11 (Lemat Poincaré). Miara iy, 2biega stabo przy n — oo do miary i, co wiecej

nlingo tien(A) = 6(A) dla dowolnego zbioru borelowskiego A.

12



Dowdd. Proste rozumowanie pokazuje, ze miara py, ,, ma gestosé gy, (z) = c,;ﬂllgkm(x), gdzie

~ _— 2 — ~ ./ . . ~
Gm = (%)(n k 2)/2ﬂ{\x|<\/ﬁ} oraz Cpn = [gk Gnk(x)dx. Oczywiscie limy, oo Jin(x)

exp(—|z[?/2), ponadto |Gyn(2)| < exp(—(n —k = 2)[z[*/(2n)) < exp(—|z[*/(2n)) dla n >
k + 2. 7 twierdzenia Lebesgue’a o zbieznoSci zmajoryzowanej otrzymujemy lim, .o ¢, 1 =
Jrr exp(—|z[?/2)dz, czyli gestos¢ miary iy, zbiega punktowo do gestosci miary ~x. Teza
faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [2]).

O

Dowod Twierdzenia 3.10. Ze wzgledu na rotacyjng niezmienniczo$é miary 7y, mozemy dla
uproszczenia notacji zalozyé, ze H = {x: z1 < r}. Ustalmy dowolne ry < 7 i niech
Hy = {x: 1 < ro}. Zauwazmy, ze v(Hp) < Y (A), zatem na podstawie Lematu Poin-
caré,  (Ho) < pgn(A) dla duzych n. Poniewaz Pk,_i(Ho) N/nS™ 1 jest kula w /nS" 1,
wiec na mocy izoperymetrii sferycznej ’

On—1 ((PI;}L(A))t) > 0n 1 ((Plgé(Ho))t)

Zauwazmy, ze przeksztalcenie Py ,, jest oczywicie 1-lipschitzowskie, wiec Ay D Py ((Pr(A)))
i
P (Ae) >t (P (P (A))e) > i (Pen (P (Ho))e))-

Nietrudno zauwazyc¢, ze
Pk,n((P]g_,yll(HO))t) ={z: 2 <1y}

oraz T, — 1o +t przy n — oo. Stad
WA =l (A1) > i o (o 1 < 1)) = l{o: 1 < ro 1)),

z dowolnosci g < r wynika teza. O

Twierdzenie 3.12. Jesli vx(A) = ®(z) to w(Ar) > ®(z +t) oraz v; (A) > I,((A)),
_ /

gdzie I(z) := o(®71(z)) oraz p(z) = ¥'(z) = \/% exp(—22/2).
Dowdd. Wystarczy zauwazy¢, ze jesli v, (H) = ®(r) i H jest postaci (3), to Hy = {z €
RF: (z,u) <r+t}iy(H) = ®(r+1t). O

Zauwazajac, ze ®(0) = 1/2 otrzymujemy:
Whiosek 3.13. o, (t) <1 — ®(t) < L exp(—t?/2).

Jak widzieliSmy juz w dowodzie Twierdzenia 3.10 bardzo uzyteczne jest pojecie tzw.
transportu miary.

Definicja 3.14. Niech p i v beda miarami na przestrzeniach mierzalnych X i Y. Powiemy,
ze funkcja mierzalna T': X — Y transportuje miare u na miare v (ew. miara v jest obrazem
miary p przy przeksztatceniu T) jedli v(A) = u(T~1(A)) dla wszystkich mierzalnych A C Y.
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Szczegdlnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jesli T: X — Y jest L-lipschitzowska oraz T transportuje miare b na v, to
a,(t) < au(t/L).

Dowdd. Wystarczy zauwazy¢, ze (T1(A))y, C T~H(Ay). O

Transportujac w sposoéb lipschitzowski miare gaussowska mozna uzyskaé¢ oszacowania
funkcji koncentracji dla innych miar. Pokazemy dwa przyktady.

Whiosek 3.16. Niech pjg1j» 0znacza rozklad jednostajny na kostce [0, 1]". Wowczas jujo 1n

jest (2m) "V 2-lipschitzowskim obrazem ~,. W szczegdlnosci Qg qpn S 3 exp(—t?).

Dowdd. Okredlmy f: R — (0,1) wzorem

f(@) = ppo,) (10, F(@)]) = (=00, 2]) = @(x).

Wowczas funkcja f transportuje miarg gaussowska 1 na pg 1], to znaczy pjg1; =710 f -1
Ponadto f'(z) = (2m)~ Y2 exp(—22/2) < (27)~'/2, czyli f jest (2m)~/2-lipschitzowska. Jesli
teraz okrelimy F': R™ — (0,1)" wzorem F(z) = (f(z1),..., f(zn)), to F transportuje
Yo na p oraz F jest (2m)~Y/2-lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencja Faktu 3.15 i Wniosku 3.13. O

Whniosek 3.17. Niech B,, = {z € R": |z| < 1} oznacza kule jednostkowg w R", za$ up,
bedzie rozktadem jednostajnym na By,. Wowczas istnieje stata C taka, Ze up, jest Cn~Y/2.
lipschitzowskim obrazem ~y,. W szczegdlnosci ay,;, < 1 exp(—nt?/(20)).

Poniewaz obie miary =, i pp, sa rotacyjnie niezmiennicze, bedziemy szukaé funkcji
T:R"™ — B, transportujacej v, na up, postaci Tz = ﬁcp(]a:\) Dalsze szczegdly pozosta-
wiamy Cazytelnikowi jako ¢wiczenie.

Otwarty problem. Rozwiazaé zagadnienie izoperymetryczne dla zbioréw symetrycz-
nych, to znaczy znalezé dla ustalonego t > 0, ¢ € [0, 1],

inf {v,(Ar): w(A) =c, A= —A}

oraz

inf {7 (A): 1(A) =c,A=—A}.

Dos$é naturalna hipoteza moéwi, ze dla ¢ > 1/2 rozwiazaniem obu probleméw sa zbiory
postaci [—a, a] x R¥~1 zaé dla ¢ < 1/2 drugi problem si¢ optymalizuje dla (R\[—a, a]) x RF~L.
Podobny problem mozna postawi¢ dla miary o,, ale tam analogiczna hipoteza okazuje sie
by¢ niestety falszywa.
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4 Metoda Martyngalowa

4.1 Transformata Laplace’a

Wiele dalszych szacowan bedzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatg Laplace’a zmiennej losowej Z nazywamy funkcje
Lz(\) :=Ee* XeR.

Podobnie jesli ¢ jest miara probabilistyczna na pewnej przestrzeni X oraz F': X — R, to
transformate Laplace’a F wzgledem p okredlamy

L) = /Xe)‘F(x)dp,(:r).

Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z>1) < inf e MLy(\) dlat > 0.

W szczegolnosci, jesli dla pewnego a > 0,
Lz()\) <exp(ad?) XeR,

to dlat>0
t2 t2
P(Z > 1) éexp(—@) oraz  P(|Z| > t) QQexp(—@).

Dowdd. Pierwsza czes¢ wynika z nieréwnosci Czebyszewa, a druga z pierwszej i prostego
rachunku. O

Zatem by udowodnié, ze funkcja koncentracji miary p jest gaussowska wystarczy wy-
kazaé, ze Lr,()\) < exp(ar?) dla pewnego a > 0 i wszystkich funkeji 1-lipschitzowskich F
takich, ze [ Fdp = 0.

4.2 Nieré6wnos¢ Azumy

Ponizsza nier6wno$¢ to udowodnione przez Azume uogélnienie nieréwnosci Hoeffdinga (zob.
Fakt 4.9 ponizej) na przypadek martyngatowy.

Twierdzenie 4.3 (Nieréwnoé¢ Hoeffdinga-Azumy). Niech (My, Fi)i_, bedzie martynga-
lem o ograniczonych przyrostach takim, zZe | My — Mg_1||0o < ar. Wowczas

t2
P(M, — My >1t) < R
( n (1 )\eXp< 22?1(%2)
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Dowdd. Okreslmy dla 1 < k < n, d := My — My_1, woéwcezas E(dg|Fr—1) = 0. Mamy
I_Tu(—w) + H_Tul‘ = uzx, wiec z wypuklodci exp(z),
1—u 1+u ,

e’ < Te*z + 5 ¢ = usinh(x) 4 cosh(z) dla |u| < 1.

Stosujac te nieréwnosé dla u = di/ar 1 * = Aay dostajemy
d
E(e*M | F_y) < E(—k‘fk,l) sinh(Aag) + cosh(Aax) = cosh(Aay).
ak

Liczymy
Ee)\(Mn—Mo) — EeA(Mnfl_MO'i‘dn) — E(eA(Mnfl—Mo)E(ekdn ‘fnfl))

< cosh(Aay, ) EeNMn-1=Mo)

Zatem iterujac powyzsza nieréwnos¢ i stosujac oszacowanie (wynikajace np. z rozwiniecia
w szereg Taylora) cosh(z) < exp(2?/2) dostajemy

n 1 n
L, —ay(A) = BEeMMn=Mo) H cosh(Aag) < exp(i Z az\?).
k=1 k=1
Teza twierdzenia wynika z Faktu 4.2. O

Uwaga 4.4. Najczesciej bedziemy mieli Fy = {0, Q}, woéwczas My jest stale, a poniewaz
martyngal ma stalta wartoéé¢ oczekiwana, to My = EM,,.

W ponizszych zastosowaniach bedziemy przyjmowaé My = E,(F|F;) dla catkowalnej
funkeji F': X — R i odpowiednio dobranego (F) ciagu o-cial podzbioréw X.
4.3 Zastosowania nieréwnosci Azumy

Whniosek 4.5. Niech (X;,d;) bedg przetrzeniami metrycznymi, X = X3 x --- x X, z od-
leglosciq 11, to znaczy d(x,y) = Y iy di(zi,y;) dla z,y € X oraz niech p = 1 ® ... &
tn bedzie produktem miar probabilistycznych p; na X;. Wowczas dla dowolnej funkcji 1-
lipschitzowskiej F' na X

,u({x: F(z) > /qu—i—t}) < exp(—;l;),

gdzie D = (X1, Diam(X;)2)Y/2. W szczegdlnosci

a,(t) < exp ( - i)
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Dowdd. Na mocy Faktu 2.8 wystarczy wykazaé pierwsza nieréwnosé tezy. Niech Fi bedzie
o cialem generowanym przez pierwsze k-wspéirzednych oraz My, := E,(F|Fy). Wowczas
oczywiscie

M) = My, o) = [ F(@)dpir (i01) - din(n),
Xp+1X... xXp

stad
|Mk(aj‘) — Mk_1($)| = |Mk(x1, ey xk) — . Mk(l‘l, ey xk)d,uk(xkﬂ
k
< osup  [M(xr, .. mp—1, yk) — Mi(21, .00 -1, 21)|
Yk 2k EXg
g sup |F(x17"'7xk717yk7yk+17"'7yn)_F(xla"'7xk7172k7yk+17"'7yn)|
yeX,zp €Xg
< sup  dp(yk, zx) < Diam(Xp)
Yk 2k €EXg
i teza wynika z Twierdzenia 4.3. O

Przyktad 1. Niech X = {0,1}" z odlegloscia d(z,y) = %#{i: x; # y;} 1 unormowana
miara liczaca p. Kladac X; = {0, 1} z odlegloscia d;(z,y) = %I{z?gy} widzimy, ze mozemy
stosowaé poprzedni wniosek i D = (32, Diam(X;)?)Y/2 = n=1/2. Zatem

nt?
o1} dp) S exp(— ?)

Definicja 4.6. Méwimy, ze skoficzona przestrzen metryczna (X, d) ma dlugosé co najwyzej
[, jedli istnieje rosnacy ciag podzialéw X, {X} = Ag, Ay,..., A, = {{z}: 2z € X} (A4
jest podpodziatem A;_;) oraz liczby ai,...,a, spelniajace (> 1, a?)l/2 < [ takie, ze dla
dowolnego A € A;_1 oraz B,C € A;, B,C C A istnieje bijekcja ®: B — C dla ktorej
d(z,®(z)) < a; dla z € B.

Uwaga 4.7. Biorac Ay = {X} i A1 = {{z}: z € X} widzimy, ze kazda skofczona przestrzen
metryczna ma diugos$é nie wigksza niz Diam(X).

Twierdzenie 4.8. Jesli (X,d) jest skoriczong przestrzeniq metryczng o dlugosci co naj-
wyzej 1, za$ p unormowang miarg liczgeg na X, to dla funkcji 1-lipschitzowskich F na

X

2

t2

,u({:r:: F(z) > /qu+t}> < exp(—2—l2),

w szczegolnosci
2
a,(t) < exp ( - @)
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Dowdd. Ustalmy funkcje 1-lipschitzowska F'. Niech F; bedzie o-cialem generowanym przez
A; oraz M; := E,(F|F;) dlai=0,...,n. Wéwczas
1

Zatem, jeSli A € A;_1, B,C € A;,B,C C A oraz ®: B — C jest bijekcja jak w Definicji
4.6,todlaz € B,y € C,

Mila) = M)l = | 5 X (F(2) = F(@(2)] < sup [F(2) = F(@(:)
z€B z€

<supd(z,®(2)) < a;.
2€B
Poniewaz M; 1 na A € A;_1 jest uérednieniem M; po B C A, B € A;, to mamy |M;(z) —
M;_1(x)| < ai, czyli ||M; — M;_1]|oo < ai—1. Teza wynika z Twierdzenia 4.3 oraz Faktu
2.8. O

Przyktad 2. Niech II" bedzie grupa permutacji zbioru {1,...,n} z metryka d(o, 7) =
%#{2‘: o; # m}, a p unormowana miara liczaca na II". Niech A; sklada sie ze zbioréw
postaci

Aj1,~~~,ji = {O’ e I1": 0‘(1) = J1,... ,O‘(’i) = ]1}

Woéweczas jedli B,C' € A; sa podzbiorami pewnego A € A;_1 to B = Aj,_ i ,p, C =
Aj o jio1.q 1 mozemy zdefiniowaé bijekcje ® miedzy B i C jako ®(o) = 7,4 0 0, gdzie
Tpq jest transpozycja zamieniajaca p z ¢. Latwo sprawdzié, ze d(o, ®(0)) < 2/n, zatem
I=2/\ni

nt?

)

4.4 Nieréwnosci wykladnicze dla sum niezaleznych zmiennych losowych

W tej czesci omoéwimy kilka nieréwnosci wykladniczych dla sum niezaleznych zmiennych
losowych, ktore bazuja na szacowaniu transformaty Laplace’a. Dla uproszczenia notacji
zdefiniujemy dla zmiennej losowej Z i A € R,

Az(N\) :=InLz(\) = InEeM.

Fakt 4.9 (Hoeffding). Jesli X; sq niezaleznymi zmiennymi losowymi takimi, zZe a; < X; <
b; oraz S =311 X;, to

t2
P(S > ES+1t) <exp <_2Zn 0 a.)2>'
i=1\0i — @4
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Dowdd. Wystarczy zauwazy¢, ze My, = S8 (X; —EX;) jest martyngatem, | M, — Mj,_;| =
| X — EX| < by — ag i skorzystaé z Twierdzenia 4.3. O

Lemat 4.10. Zaléimy, ze X jest zmienng losowq o Sredniej zero takq, Ze istniejq 0%, M <
oo spetniajgee warunek

k!
E|X|* < E02MH dlak=2,3,....
Wowczas
i dla MA| < 1
Ax( )< ——— .
Dowadd. Liczymy
N AP k = ‘ ‘ 20 rk—2 Mo? & k—2
LX(A)—ZMEX <1+ ), ME2 =1+ > (MM
k=0 k=2 k=2
o2 )\? o2 )\2
14+ < L AN—
o S (2(1 . M\A]))

O]

Twierdzenie 4.11 (Nieréwnosé¢ Bernsteina). Zaldézmy, ze X; sq niezaleznymi zmiennymi
losowymi o $redniej zero, zas 0'Z-2, M < oo sqg takie, ze

k!
ElXi| < SofM*? dlai>1, k2 (4)

Wowczas

" A5 g2
E AN X ) < A dla M|\ < 1
exp( Z:ZI > exp<2(1_M|/\|)> a M|\ <

oraz dla t > 0,

n t2
P X, >t] < —
<; iz >\eXp< 22§L103+2Mt>’
n t2
P X;| >t <2 — .
(il = )\ exp< 22?_101-2—|—2Mt>

Dowéd. Niech S := Y"1, X;, 02 := 3" | 02, wéwczas Ag = 3, Ax, i pierwsze oszacowanie
wynika z Lematu 4.10. Dalej szacujemy

A2g?
P(S >t) <exp (— sup (At — AS()\))> < exp (— sup <)\t — 2())

A>0 0<t<M—1 1—M2)
t2
< 53 o7 |
TP\ 20212001
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gdzie ostatnia nieréwnosé dostajemy przyjmujac A = t(o?+ Mt)~!. Poniewaz zmienne —X;
spelniaja te same zalozenia co X;, wiec dostajemy dla ¢t < 0,

2
<t)=P(=8 > —t) < _—
P(S<t)=P(-S t) < exp ( 557 & 2Mt>

i z tozsamosci P(|S| > t) = P(S > t) + P(S < —t) wynika ostatnia czes¢ tezy. O

Uwaga 4.12. Na mocy centralnego twierdzenia granicznego oraz szacowania dystrybuanty
gaussowskiej nie mozemy sie spodziewaé lepszego oszacowania niz exp(—t2/(202)). Ponadto
zmienne X; o rozkladzie symetrycznym wykladniczym z parametrem 1 (tzn. zmienne z
gestoscig exp(—|z|)/2) spetniaja E| X;|* = k!, czyli dla takich zmiennych zachodza zalozenia
Twierdzenia 4.11 z 02 = 2, M = 1. Pokazuje to, ze nie mozemy uzyskaé szacowania lepszego
niz exp(—t/M) przy t — oo.

Whniosek 4.13. Zaloimy, Ze X; sq ograniczonymi, niezaleznymi zmiennymi losowymi o
Sredniej zero, wowczas dla t > 0,

n t2
P X;>t)] < _—,
(g ; ) eXP< 202 + 2at /3

gdzie 02 = Var(XI", X;) = 30 | EX? oraz a = max; | X oo-

Dowdd. Mamy dla k > 2,

P 1 A2 Y
BlX;|* < o' 2EX? < T (3) EX2,
zatem warunek (4) jest spelniony z M = a/3 oraz o; = EX?. O

W wielu zastosowaniach wygodniej zamiast bezposrednio oszacowania (4) uzywaé sza-
cowania stalej subwykladniczej zmiennych losowych X;.

Definicja 4.14. Méwimy, ze zmienna losowa X; jest subwykladnicza, jesli E exp(A|X|) <
oo dla pewnego A > 0. Dla zmiennej subwykladniczej X okredlamy jej stalqg subwykladniczq
wzorem

X ||y, == inf{A >0: BelXI/* <2}

Wielko$¢ || X ||, to nic innego jak norma Orlicza X dla funkcji Younga 1 (x) = e* — 1.
Lemat 4.15. Jesli X jest zmienng subwykladniczq, to || X ||y, < co. Ponadto,

EIX|* <KX|E, dlak=1,2,....
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Dowdd. Pierwsza cze$é wynika stad, ze funkcja A — (Eexp(A|X]))/* jest niemalejaca na
(0,00). Biorac t > || X[, dostajemy

Lo 1X RS
O
Twierdzenie 4.16 (Nier6éwnosé¢ Bernsteina dla zmiennych subwyktadniczych). Zalézmy,

ze X; sq niezaleznymi subwykladniczymi zmiennymi losowymi o Sredniej zero. Wowczas
dla t > 0,

P E Xizt]) <exp|-—
<i:1 Z > ( A0 1 XllG, + 4t max; || X,

t2
P >t <2exp|— .
( ) P ( AT 1XG[13, + 4t max; rXinml)

Dowdd. Lemat 4.15 implikuje, ze oszacowanie (4) zachodzi z 02 = 2HX,~||12111 i M = max; || X||y, -
Wystarczy zatem zastosowa¢ Twierdzenie 4.11. ]

oraz
n

>x

i=1

Szacowanie podane we Wniosku 4.13 jest, z uwagi na centralne twierdzenie granicz-
ne, bliskie optymalnego dla ¢ matych. Jednak dla ¢t duzych mozna je poprawi¢ o czynnik
logarytmiczy.

Lemat 4.17. Zaléimy, ze X jest zmienng losowq o $redniej zero, wariancji o oraz

| Xilloo < a. Wowezas

2
g A
AX()\)<$(€ “—Xa—1) dlaX>0.

Dowdd. Liczymy

0 )\kEXk o0 )\k k—2 2

EM =14+ AEX + <1+ 02 R Ay L VA )
k! k! a?

k=2 k=2

i teza wynika natychmiast z nieréwnosci In(1 + z) < x. O

Twierdzenie 4.18 (nieréwnos¢ Bennetta). Zalozmy, ze X; sq ograniczonymi niezalez-
nymi zmiennymi losowymi o $redniej zero, o = Var(37 1 X;) = SrEX? oraz a >
max; || Xi|loo. Wowezas dla X > 0,

n 2
Eexp </\ E Xi> < exp <02(e’\a —Aa — 1))
a

i=1
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oraz dla t > 0,
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gdzie
h(z) =1+z)In(l+z)—=z.

Dowdd. Pierwsza czes¢ wynika natychmiast z Lematu 4.17. By pokazaé druga zauwazamy;,
zedla S =31 X;,

2
P(S>1t) <exp (— sup (At — AS()\))) < exp (— sup ()\t — 0—2(6)‘“ —Aa — 1))) .
A>0 A>0 a

Prosty rachunek pokazuje, ze powyzsze supremum jest osiggane w punkcie

A:%ln(ua—z)

o
i wynosi
2 2
o ta ta ta o ta t ta
z - ) = R ) s -
a? {(1+02)1n(1+0’2> 0'2} a2h(o'2) = 2(],1n(1_'_0'2)7
gdzie ostatnie oszacowanie wynika z ponizszego lematu. ]

Lemat 4.19. Dla dowolnego x > 0,
(I4+2)n(l+z)—2> gln(l—i-a:).

Dowdd. Niech f(z) = (14+z)In(1+2) —x — (2/2)In(1 +2) = (1 +2/2)In(1l + z) — =.
Liczymy f'(z) = (In(1 + ) —z(1+2)™H/2, f/(z) = z(1 + 2) 72, zatem f(0) = f'(0) =0
oraz f"(z) > 0 dla z > 0. O
Uwaga 4.20. Jesi P(Y,,; =1) =1 —-P(Y,,; =0) = 1/n oraz Y, ; sa niezalezne, to rozklad
>ie1 Yin zbiega do rozkladu Poissona z parametrem 1. Biorac X,,; = Y;,; — 1/n mamy
Yo EXEn < 1 oraz max; || Xipnllo < 1. To pokazuje, ze przy zalozeniach Twierdzenia
4.18 nie mozna uzyska¢ przy t — oo oszacowania lepszego rzedu niz tInt.

Uwaga 4.21. Nieré6wno$¢ Bennetta ma swoja wersje martyngalowa. Mianowicie, dla mar-
tyngatu (Mj, Fi)i_, spelniajacego warunki

max My — Mi_1]|oo < a

STIE((My — My—1)?|Fi—1) |0 < 02,

k=1
t ta
exp (_Qa In <1 + 02)> .

zachodzi nieréwnosé

2
P(M, — My >t) < exp (—Uh (ta))

a? \o?

VA
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5 Nierownosé Poincaré

5.1 Definicja i podstawowe wtasnosci

Definicja 5.1. Méwimy, ze miara probabilistyczna p na (X, d) spelnia nieréwnosé Poincaré
ze stala C jedli dla wszystkich ograniczonych lipschitzowskich funkcji f na X zachodzi

Var(f) <€ [ 1V d )

e |f(x) = F(Y)l
L f(z) — fly
IV fl(x) ~—11f;1j;1P W7

jesli = jest punktem skupienia X i |V f|(xz) = 0, jesli = jest punktem izolowanym X.

Uwaga 5.2. W przypadku, gdy X = R" ze standardowa metryka euklidesowa mozemy uzy¢
twierdzenia Rademachera, ktére méwi, ze kazda funkcja Lipchitzowska jest rozniczkowalna
prawie wszedzie i wtedy |V f|(x) jest dla prawie wszystkich « réwny dlugosci zwyklego gra-
dientu f. Ponadto argument aproksymacyjny pokazuje, ze by wykazac¢ nieréwnos¢ Poincaré
dla miar probabilistycznych na R™ wystarczy sprawdzi¢ (5) dla ograniczonych funkcji klasy
C1(R™) o ograniczonych pochodnych rzedu jeden.

Uwaga 5.3. Bedziemy wykorzystywali tylko dwie wlasnosci |V f|. Mianowicie, ze dla funk-
cji 1-lipschitzowskich |V f| < 1 oraz, ze dla dowolnej funkcji klasy C(R), |Vg(F)| <
lg'(F)||[VF| (w szczegdlnosci |[V(f + ¢)| = [V f]).

Uwaga 5.4. Zalézmy, ze miara p ma gestosé postaci e~V na R”. Wéwczas proste catkowanie
przez czesci pokazuje, ze

[ 19 = [(-af+ 9V, V1) fdp

Definiujac operator Lf := —Af + (VV,Vf) widzimy, ze L1 = 0. Nieréwnos¢ Poincaré
méwi, ze dla funkcji f o éredniej 0, czyli prostopadtych do 1, [ fLfdu > C~! [ f2du. Biorac
pod uwage samosprzezonosé¢ L nieréwnosé (5) jest réwnowazna temu, ze kolejna warto$é
wlasna L to conajmniej 1/C. Dlatego nieréwnosé Poincaré sie nazywa nieréwnoscia ,luki
spektralnej” (spectral gap inequality).

Czasem wygodniej w nieréwnosci Poincaré zastapi¢ wariancje funkcji przez catke kwa-
dratu odchylenia od mediany, okazuje sie, ze prowadzi to do réwnowaznej nieréwnosci.

Fakt 5.5. Nierownosé Poincaré jest rownowazna nieréwnoscs
2 _ A 2
Vretipn Eulf = Meduf? < € [ V£ dp.
Co wigcej optymalne stale w obu nieréwnosciach spetniajq Copy < éopt < 3Copt -
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Dowdd. Poniewaz
Var,(f) = igﬂgEu(f —¢)> <E,|f — Med, f|?,

wiec oczywiscie Copt < Cop.-
By udowodnié przeciwne oszacowanie zauwazmy, ze

Var,(f) > [Med,.f — E fPu({|f — Euf] > [Med,f — Euf|})
> %|Meduf —~E,.f|%

Stad
E,|f — Med, f|* < Var,(f) + |Med,.f — E,f|> < 3Var,(f)

i otrzymujemy C'Opt < 3Copt- ]

Fakt 5.6. Symetryczny rozkiad wykladniczy v na R z gestoscig %e“‘”' spetnia nierownosé
Poincaré ze stalg 4.

Dowadd. Proste catkowanie przez czesci pokazuje, ze dla funkcji h € ngr(R),

/ h(z)dv(z) = h(0) + / sgn(z)l (z)dv (x).
Niech f € CL,(R) i g(x) = f(x) — f(0) wowczas

/g2d1/ = 2/sgn(:n)g’(:v)g(x)dv($) < 2(/9'2d1/>1/2(/92dv)1/2,

stad
Var, (f) < /dez/ < 4/g’2d1/:4/f'2d1/.

5.2 Nier6éwnos¢ Poincaré a koncentracja wykladnicza

Twierdzenie 5.7. Zaldimy, zZe miara p spetnia nieréwnosé Poincaré ze stalg C. Wowczas
dla kazdej funkcji 1-lipschitzowskiej F' it > 0

u({F = /quth}) <Qexp(—\/t5).

W szczegdlnosci ax (t) < 2exp(—t/2v/C).
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Dowdd. Rozpatrujac F' — [ Fdu mozemy zalozyé, ze F' ma $rednia zero. Zauwazmy, ze dla
dowolnej funkcji rézniczkowalnej g mamy |Vg(F)| < |¢(F)||VF| < |¢/(F)|. Niech

M(A) = M, p(\) = / A .

Stosujac nieréwnosé Poincaré do e*M/2 dostajemy
A\ 2 C\?
M) = M(5) = Var, (M/2) < c/ VM < ZEM(N).

Zatem dla \ < 2/+/C dostajemy

1 A2
M) < mM(§) .

Iterujac te nieréwnosé n razy dostajemy

n—1 k n
M(\) <,€HO<1—0Al?/4k+1)2 M(%)Q .

Poniewaz M(0) = 1i M'(0) = [ Fdu =0, to M(\/2")?" — 1 przy n — oo i

M) < 1T (=g

Zauwazmy, ze

o

2k o0 C
[T(1-cxa 1) >1-0on Yy 2faht =1 2%
2
k=0 k=0
W szczegdlnosci M (1/+/C) < 2 1 teza wynika z nieréwnosci Czebyszewa. O

Uwaga 5.8. Nierownos¢ Poincaré nie implikuje lepszej koncentracji niz wyktadnicza. Istot-
nie symetryczny rozklad wyktadniczy na prostej v spetnia nieréwno$é Poincaré ze stata 4,
a biorac f(z) = x widzimy, ze dla t > 0,

v <{x eR: f(z) > /fdu+t}) =v([t,00)) = %e_t.

5.3 Tensoryzacja

Fakt 5.9. Zalozimy, ze p; sq miarami probabilistycznymi na X;, X = X1 X ... X X, oraz
p=p1 @ s ® - @ . Wowezas dla dowolnej funkcji f € L*(X, )

Var#(f) < Z E,uvarui (f)
=1
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Dowdd. Prosta indukcja pokazuje, ze wystarczy rozpatrzeé¢ przypadek n = 2. Wowczas

Varu(f) = Equm(f - E,uf)2 =E,, [Varm (f) + (Eulf - Euf)Q}
= E,Vary,, (f) + Eyu,[Ey, (f — Euzf)]2
< E,Vary, (f) + EREL [(f — Euzf)Q] = E, Vary, (f) + E,Var,, (f),

gdzie ostatnia nieréwnos¢ wynika np. z nieréwnosci Jensena. O

Whniosek 5.10. Zaldzmy, ze miary probabilistyczne p; na (X;,d;) spelniajq nieréwno$é
Poincaré ze stalg C; wzgledem gradientu |V;|. Wowczas miara p = gy ® -+ @ uyp, spelnia
nierownos¢ Poincaré ze stalg C = max; C; wzgledem gradientu V f danego wzorem

n
VA=) IVafl.
i=1
Dowdd. 7 Faktu 5.9 dostajemy
n n n
Var,(f) <Y _E,Var,, (f) <Y _E.CEL|Vif|*? <CE, Y |Vif]*.
i=1 i=1 i=1
O
Whniosek 5.11. Produktowy rozklad wykladniczy v™ spelnia nieréwnosé Poincaré na R™

ze stalg 4. W szezegolnosci aun (t) < 2exp(—t/4).

5.4 Dodatkowe wlasnosci. Charakteryzacja na prostej.

Kolejna przyjemna wlasnoscia nieréwnosci Poincaré jest jej stabilnosé ze wzgledu na zabu-
rzenia miary p.

Fakt 5.12. Zalozmy, Ze p jest miarg probabilistyczng na X, V jest ograniczonqg funkcjg bo-
relowskq oraz dv = Z='eVdu, gdzie Z = [ €V du. Wéwczas jesli miara pu spetnia nieréwnosé
Poincaré ze stalg C to v spelnia nieréwnosé Poincaré ze stalg Ce2lVlle

Dowéd. Wezmy funkcje lipschitzowska f, odejmujac stala mozemy zalozy¢, ze E, f = 0.
Wéwezas

Var, (f) <E,f* = %/erVd,u < %e”vﬂoo /deM
1
< EBHV‘|°°C/|Vf|2d'u = Ce”V”OO/|Vf‘2€_Vd]j

< Ce2||v”°°/|Vf\2du.
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Fakt 5.13. Jesli miara v na (Y, p) jest L-lipschitzowskim obrazem miary p na (X,d) oraz

@ spelnia nieréwnosé Poincaré ze stalg C, to v spelnia nieréwno$é Poincaré ze stalg CL?.
Dowdd. Niech v = o ga_l

na Y otrzymujemy

, gdzie ¢: X — Y i |¢||Lip < L. Dla funkeji lipschitzowskich f

Var, (f) = Var,(f o.9) < C [ V1 0 glPdu < CL? [ 197 (o(w))dn(a)
=CL? / IV f|2dv,

gdzie przedostatnia nieréwno$é¢ wynika z oszacowania |V f o o|(x) < LIV f|(p(x)). O

Kolejne twierdzenie (ktére podamy bez dowodu) charakteryzuje miary na prostej, ktore
spelniaja nieréwnos$¢ Poincaré.

Twierdzenie 5.14 (Muckenhaupt). Zalozmy, zZe p jest miarg probabilistyczng na R o
medianie m, za$ p oznacza gestosé jej czesci absolutnie cigglej. Wowczas miara p spetnia
nierdwnosé Poincaré ze skoriczong stalqg C wtedy i tylko wtedy gdy max{By,B_} < oo,
gdzie

|
By = sup plr, 00)/ ——dy

x>m m P y)
mo1
B_ = sup ,u(—oo,:n]/ —dy.
T<m z p(Yy)
Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia

1
m max{B.,., B_} < Copt < 4maX{B+,B_}.

5.5 Nier6éwnosé¢ Cheegera

W tej sekcji v oznacza symetryczny rozktad wykladniczy na prostej z gestoscia %e"x'.
Zanim sformulujemy definicje zaczniemy od prostego faktu.

Fakt 5.15. Niech p bedzie miarg probabilistyczng na (X, d). Nastepujgce warunki sq¢ réw-
nowazne dla ustalonego ¢ > 0:
(i) pt(A) > cmin{u(A),1 — u(A)} dla dowolnego zbioru borelowskiego A,
(ii) dla dowolnego zbioru borelowskiego A i = spelniajacych pu(A) = v(—oo,x] zachodzi
w(Ag) = v(—oo,z + ct].
Dowdd. (ii)=(i). Niech p(A) = v(—o0, z], wéwczas

(Ar) — n(A) v((=o0,z +ct) —v(—oo,2] 1

+(A) = liminf > lim inf -
P =mnt T s : 2°

= min{v(—o0,z],v(x,00)} = min{p(A4),1 — u(A)}.

el
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(i)=(ii). Ustalmy najpierw § < 1 i niech
to =to(6) =inf{t > 0: u(A:) < v(—o0,z + dct].

Zal6zmy najpierw, ze tg < co. Woéwczas z monotonicznosci p(A;) tatwo wynika, ze u(Az,) =
v(—o0,x + dctg), czyli
. c _
wH(Agy) > emin{p(Ag), 1= p(Ar)} = Ze froctol

1 .. v(—oo,z+dc(tyo + h)] — v(—o0,z + dcto)
d h—0+ h

Definicja dolnej i zwyklej granicy implikuja, ze istnieje hg > 0 takie, ze dla 0 < h < hg,

:U(Ato-&-hf)L — u(4) > M((Ato)h}z — w(4) > \/Sge—|z+6cto|
v(—o0,z + dc(tg + h)] — v(—o0, x + dcto)
h

>

Stad p(As) > v(—oo,z + det] dla tg < t < to+ h, co przeczy definicji tg.
Otrzymana sprzecznos$¢ pokazuje, ze to(d) = oo, czyli pu(A¢) > v(—oo,z+dct] dlat > 0.
Przechodzac z 6 do 1 otrzymujemy (ii). O

Definicja 5.16. Méwimy, ze miara probabilistyczna u na (X,d) spelnia nieréwnosé Che-
egera ze statg ¢ > 0, jesli zachodzi jeden z warunkéw rownowaznych Faktu 5.15.

Okazuje sig, ze nieréwno$¢ Cheegera ma tez forme funkcyjna przypominajaca nierow-
noé¢ Poincaré.

Twierdzenie 5.17. Miara p speinia nieréwnosé Cheegera ze stalg ¢ > 0 wtedy i tylko
wtedy, gdy dla dowolnej funkcji lipschitzowskiej ograniczonej f zachodzi

1
Blf —Med, (/)] < 5 [ 19/1d

Do dowodu bedziemy potrzebowali jednej z wersji tzw. ,co-area formula”.

Lemat 5.18 (Nieréwnosé co-area). Dla dowolnej funkcji Lipschitzowskiej f na X,

oo
[19fldn= [~ ut (s > tpa
X —00
Dowod. Wystarczy udowodni¢ nieréwnosé dla funkcji ograniczonych. Istotnie, przyjmujac

fv = max{—M, min{f, M }}, zauwazamy, ze |V | < |Vf|i{fm >t} = {f > t} dla

|t| < M i przechodzimy z M do nieskonczonoSci.
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Rozpatrujac zamiast f funkcje f + ¢, mozemy zakladaé, ze f jest nieujemna. Okredlmy
dla t > 0 funkcje f; na X wzorem

fi(x) :=sup{f(y): d(z,y) <t}.

Lipschitzowskos$¢ f implikuje, ze (f; — f)/t < M. Latwo sprawdzié¢, ze {f; > r} = {f > r}4,
stad catkowanie przez czedci daje

[ (= $rdn = / u({f > r}) — p{f > r})dr

Mamy zatem

L1 stan = [imonp L <t [ 17
X X t—0+ ¢ t—0+
e (4 5 ) > r})dr
t—0+ Jo 13
> /O lggéﬂf p({f >1}) — : p({f > T})dr _ /_Oo M+({f > r})dr

gdzie pierwsza i trzecia nier6wno$¢ wynikaja z Lematu Fatou (w pierwszej zastosowanego
do funkcji nieujemnych M — (f; — f)/t). O

Uwaga 5.19. Dla miar p na R™ absolutnie cigglych wzgledem miary Lebesgue’a mozna
udowodnié, ze w nieréwnosci co-area zachodzi réwnosc.

Dowéd Twierdzenia 5.17. ,=". Bez straty ogdlno$ci mozemy zalozy¢, ze Med,(f) = 0,
wowezas p{f >t} < 1/2dlat > 01 u{f >t} > 1/2 dla t > 0. Nieréwnos¢ co-area
implikuje

[z "> mars e [T udts > e [ -ty > o

= cE, max{f,0} + cE, max{—f,0} = cE,|f].

»<" Udowodnimy szacowanie (i) z Faktu 5.15. Idea polega na aproksymacji 14 przez
funkcje lipschitzowskie. Jesli ju(A) > u(A), to u*(A) = co i nie ma co dowodzié, bedziemy
zatem zakladaé, ze p(A) = u(A), co jest rtéwnowazne temu, ze pu(A;) — p(A) przy t — 0.
Dla 0 < t < 1/2 okreslmy

fi(z) = %min{dist(:n, Ap),t —2t%},

Woéwezas fy jest 1/t-lipschitzowska, f; = 0 na Ap i fy =1 — 2t poza A;_s2, zatem |V fy| <
%IAt\A- Mamy zatem

pw(Ar) — p(A)

S > [19 fildu > Bl — Med, (1)
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Jesli u(A) > 1/2 to Med,,(f;) = 0 dla wszystkich ¢ i

p(A) > climinf Byl fil > eliminf(1 - 20)(1 - p(Ay_2)) = 1 = pu(4).

Jesli u(A) < 1/2 to u(Ay) < 1/2 dla malych t czyli Med,(f;) = 1 — 2t dla malych ¢ i
pt(A) > Chtméile“’ft — 142t > clitméﬂf(l —2t)u(Ap) = u(A).

O
Nastepny fakt pokazuje, ze nier6wnosé Cheegera jest silniejsza od nieréwnosci Poincaré.

Fakt 5.20. Jesli p spetnia nierdwnosé Cheegera ze stalg ¢ > 0, to spelnia nierownos$é
Poincaré ze stalg 4c=2.

Dowéd. Niech f bedzie Lipschitzowska funkcja ograniczona o medianie 0, za$ g := sgn(f) f2.
Nietrudno sprawdzi¢, ze g jest Lipschitzowska, ograniczona, ma mediane 0. Twierdzenie
5.17 implikuje

(EulfP) 2 (BIV )2,

1 2 2
E,f2=E,|g| < EEM|Vg| = EEH(\fIIVfD <2

Dzielac stronami przez (E,|f|?)'/? dostajemy

4
Var,(f) < Bulf? < B,V

O]

Uwaga 5.21. 7 nieréwnosci Poincaré nie mozna wywnioskowaé nieréwnosci Cheegera. Moz-
na pokazaé, ze miara z gestoscia HTO‘MU]O‘I {jz|<1} dla a € (0, 1) spelnia nieré6wnos¢ Poincaré,
a nie spelnia nierownosci Cheegera.

Kolejne twierdzenie, pochodzace od Talagranda, rozwiazuje zagadnienie izoperyme-
tryczne dla miary v.

Twierdzenie 5.22. Miara v spelnia nierowno$é Cheegera ze stalg 1.

Dowdéd. Dowdd przeprowadzimy w kilku krokach, wykorzystujac réwnowaznosci z Faktu
5.15.
Krok I. v*([a,b]) > min{v([a,b]),1 — v([a,b])}.
Rozpatrzymy trzy przypadki.
i) a > 0. Wowezas vF([a,b]) =e @ +e > e @ —e " = v(la,b)).
ii) b < 0. Mamy v ([a,b]) = e + €® > €® — e = v([a, b]).
iii) a < 0 < b. Wtedy v ([a,b]) = e +e7? =1 —v([a,b]).
Krok II. Jedli A jest skoficzona suma przedzialéw, to v (A) > min{v(A),1 — v(A)}.
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W rozwazanym przypadku v(A) = v(A) i v (A) = v (A), zatem bez straty ogélnosci
mozemy zakladaé, ze A = Ui [a;, b;] oraz b; < a;41 dla1l <1i < n—1. Niech p; := v([a;, bi]).
Mamy

V+(A):ZI/+ a;, bl Zmln{pl,l i} mln{sz,l Zp} min{v(A),1-v(A)}.

Pierwsza rownos¢é powyzej wynika z Kroku I, a druga latwo uzyskaé¢ przez rozpatrzenie
dwu przypadkéw: p; < 1/2 dla wszystkich i oraz p; > 1/2 dla pewnego .

Krok III. Jesli A jest skoficzona suma przedzialéw oraz v(A) = v((—oo, z]), to v(As) >
v((—o0,z +t]).

ZauwaZamy, ze zbiér A; jest rOowniez skonczona suma przedzialéw, wiec z Kroku II
wynika, ze v (A;) > min{v(As), 1 — v(A¢)}. Teza Kroku III wynika z analogicznego rozu-
mowania jak w dowodzie implikacji (i)=-(ii) Faktu 5.15.

Krok IV. Jesli A jest zbiorem otwartym oraz v(A) = v((—oo, z]), to v(Az) > v((—oo, z+
t]).

Zbiér A jest przeliczalng sumg przedzialéw, wiec dla 6 > 0 istnieje B C A, ktéry jest
skonczona suma przedziatéw i v(B) > v((—oo,x —9d]). Na mocy Kroku ITI v(A;) > v(By) >
v((—oo,x — § + t]) 1 wystarczy przejsé z ¢ od zera.

Krok V. Jedli A jest dowolnym zbiorem borelowskim oraz v(A) = v((—oo,z]), to
v(Ag) > v((—o0,x +t]).

Zauwazmy, ze Ay O (As)i—s, ponadto As jest zbiorem otwartym i v(As) > v((—o0,z]).
Korzystajac z Kroku IV dostajemy v(A;) > v((As)i—s) > v((o0, z +t — §]) i przechodzimy
z 0 do 0. O

Na prostej mozna scharakteryzowaé¢ miary spelniajace nierownosé Cheegera.

Twierdzenie 5.23. Niech p bedzie miarg probabilistyczng na R, F(x) = u(—oo, x], zas p
bedzie gestoscig czeSci absolutnie cigglej p. Wowczas nastepujgce warunki s¢ rownowazne
dla ¢ > 0:
i) p spelnia nieréwno$é Cheegera ze stalg c,
i1) p jest %—lz’pschitzowskim obrazem v,
iii) essinf m >c
Szkic dowodu. Implikacja ii)=1) jest oczywistym wnioskiem z Twierdzenia 5.22 .

i)=-iii). Wystarczy zauwazy¢, ze u* ((—oo, z]) = p(z) dla p.w. x € R.

iii)=-ii). Definiujemy 7: R +— R wzorem v(—oo,z] = u(—oo,T'z]. Wéwczas T trans-
portuje v na pu oraz

v((z,y)) = u(Tz, Ty)) > /

Tx

Ty Ty

p(z)dz > c/ min{ F(z),1 — F(z)}dz.

Tx

Tx—Ty
T=Y

< 1/e¢, czyli T jest 1/c-Lipschitzowskie.
O

Stad tatwo wynika, ze T' jest ciagle i limsup,,_,,
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6 Logarytmiczna Nieré6wnos$¢ Sobolewa

6.1 Entropia funkcji

Definicja 6.1. Zalézmy, ze u jest miara probabilistyczng na X, zas f nieujemna funkcja
mierzalna na X. Entropie f wzgledem p definiujemy wzorem

Ent,,(f) := { J flog fdu— [ fdplog [ fdu jesli [ flog(1+ f)dp < oo
e jesli | log(1+ f)dp = oo.

Z wypuktosci funkcji xlogz na [0, 00) wynika, ze Ent,(f) > 0, tatwo tez zauwazy¢, ze
Ent,(Af) = AEnt,,(f) dla A > 0.

Lemat 6.2. Dla dowolnej funkcji nieujemnej na X,
Ent,(f) = Sup{/fgdu: /egdu < 1}. (6)

Dowdd. 7Z jednorodnosci obu stron tozsamosci (6) mozemy zakladaé, ze [ fdu = 1, woéwczas

Ent,(f) = [ flog fdp.
Nietrudno sprawdzié¢, ze dla v > 0, sup,cgr(uv — €”) = ulog u — u, zatem

uww <ulogu —u+e” dlau>0,veR. (7)
Zatem biorac g takie, ze [e9du < 1 dostajemy
/fgd,u < /(flogf — f+ef)dp=Ent,(f) -1+ /egdu < Ent,(f).
By udowodnié nieréwnoéé¢ w przeciwnag strone wystarczy przyjaé¢ g = log f. O

7 powyzszego lematu latwo wykazaé tensoryzowalno$é entropii:

Fakt 6.3. Zaloimy, ze p; sqg miarami probabilistycznymi na X;, X = X1 X ... x X, oraz
=1 @ o ® -+ ® . Wowczas dla dowolnej nieujemnej funkcji f na X zachodzi

Ent,(f) <Y EuEnt,,(f).
i=1

Dowdd. Wezmy funkcje g na X taka, ze [e9du < 1 oraz przyjmijmy dla i =1,...,n,

J et dpy () - - 'dui—l(xi*1)>

g (1131) e ,-’En) = 10g ( f eg($1,..~,1l7n)dlul(.’1}1) tet d,ul(xl)

Wowezas g < Yo7, ¢ oraz fegidui < 1, stad
/ fodp <> / foldu=">Y" / ( / fgidui)du <> / Ent,, (f)dpu.
i=1 i=1 i=1
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6.2 LNS - definicja, tensoryzowalnos¢, zwigzek z koncentracja

Definicja 6.4. Mowimy, ze miara probabilistyczna na (X,d) spelnia logarytmiczng nie-
rowno$é Sobolewa ze stata C, jesli dla wszystkich ograniczonych lipschitzowskich funkeji f
na X zachodzi

Ent,(f?) < 2C/|Vf|2du. (8)

Fakt 6.5. Zalézmy, ze miary probabilistyczne p; na (X;,d;) spelniajg logarytmiczng nie-
rownosé Sobolewa ze stalq C; wzgledem gradientu |V;|. Wowczas miara p = pg ® -+ ® pip,
spetnia logarytmiczng nieréwnosé Sobolewa ze statg C = max; C; wzgledem gradientu V f
danego wzorem

VAP =D IVif .
i=1
Dowdd. 7 Faktu 6.3 dostajemy

Ent,(f*) <Y E.Ent,, (%) <> E2CE,|V:f[> <2CE, > |V,f*.
=1 =1 i=1

O

Twierdzenie 6.6. Zaldzmy, Ze miara p spelnia logarytmiczng nieréwno$é Sobolewa ze
statg C. Wowczas dla kazdej funkcji 1-lipschitzowskiej F' it > 0,

n({F= /qu+t}) <exp (- Qté)

W szczegdlnosci ax (t) < exp(—t?/80C).

Dowdd. Ustalmy ograniczona funkcje 1-Lipschitzowska F' taka, ze [ Fdu = 0. Wystarczy,
ze pokazemy iz dla A > 0

M(X) = Mgy = /e)‘qu < eO¥/2,

Zastosujmy logarytmiczng nieréwnosé Sobolewa do f2 := eM'. Wéwczas
Ent,(f?) = AE, Fe* — E e logE, e = AM'(\) — M(\) log M()\)
oraz
A2 A2
/|Vf|2du = Z/|VF|26AF < TMO.
Zatem (8) daje

)\2

AM'(X) = M(N)log M(A) < O M(A). (9)
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Okreslmy H()) := tlog M(X) dla A > 0. Woéwczas

. M(0)
lim HON = 3r0) :/quzo

oraz na podstawie (9)

, 1 LM'(\) _C
= —— — < —.
H'()\) v log M(\) + NI <3
Zatem H(\) < CA\/2 czyli M(\) < exp(CA?/2). O

6.3 LNS dla miary gaussowskiej
Fakt 6.7. i) Niech = £61 + £6_1, wowczas dla dowolnego f: {—1,1} — R,

Enty, (/%) < 2B, |D I,

gdzie Df(x) = 5(f(x) — f(=x)).
ii) Niech p, = 1 ® -+ @ py bedzie rozkladem jednostajnym na {—1,1}", wéwczas dla
dowolnego f: {—1,1}" — R,

Enty,, (f?) < 2By, |DfI,

gdzie
1 n
IDfP(x) = 1 > (f(@) = f(si@))?,
i=1
oraz si((z1,...,xn)) = (T1,. .., Tie1, —Ti, Titl,- .., Tp) dla 1 <i< n.

Dowdd. i) Z uwagi na jednorodnos¢ mozemy zakladaé, ze E,, f? = 1, woéwczas istnieje
t € [-1,1] takie, ze f(1) = v/1+1t oraz f(—1) = /1 —t i nieréwno$¢ z punktu i) ma
postaé a(t) > 0, gdzie

1+1¢ 1-1¢
alt)=1—-V1—-1t2— _2'_ log(1+1t) — 5 log(1 —t).

Nietrudno sprawdzi¢, ze «(0) = /(0) = 0 oraz

o’ (t) 1 ( 1t2_ 2 . ) >0,

Tl C1+V1-2

wiec istotnie a(t) > 0.
ii) Wynika z punktu i) i Faktu 6.3. O

Twierdzenie 6.8. Miara v, spetnia logarytmiczng nieréwnosé Sobolewa z C' = 1.
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Dowdd. 7 uwagi na Fakt 6.3 wystarczy rozwazy¢ przypadek n = 1. Niech f € ngr(]Ra).
Okreslmy g, : {—1,1}" — R wzorem

gnl2) = f (++) |

NG

Niech uy, i |Df| beda jak w Fakcie 6.7. Wéwczas na mocy centralnego twierdzenia granicz-
nego

Ent,, (g7) = / 92 log godyu, — / 92dyun log / 92dyi, — Ent., (f?).

Ponadto kladac T),(z) = n*1/2(x1 +... 4z

[Dgnl(z)? = i; (1) 1 (1) 252 ) = S @ 470

gdzie r,, zbiega do zera jednostajnie wzgledem |7, (x)|. Zatem
lim By, [Dga|(2) = lim B, J'(Tu(2))? = By, f/(2)”
O

Fakt 6.9. Zaldzimy, Ze u jest miarg probabilistyczng na X, V' jest ograniczong funkcjg bore-
lowskq oraz dv = Z'eVdu, gdzie Z = [ eVdu. Wowczas jesli miara pu spetnia logaryticzng
nierownosé¢ Sobolewa ze stalqg C to v spelnia logarytmiczng nieréwno$é Sobolewa ze stalg
Ce2lVloo

Dowdd. Funkcja p(u) = ulogu jest wypukla na [0, 00) stad dla dowolnych s, ¢, o(s+t) >
p(t) + ¢'(t)s, wige

o [ Fav)=e(t+ [(#2=0d) > o)+ 0 [ (12 - ).
Zatem

Ent, (f?) = inf [o(f%) = o(t) — ' ()(f* — t)]dv

1

< eVl inf [ [o(f%) = o(t) = ¢ () (f* — )] Ze ™V dv
1 2C

— E€”V||°°Ent'u(f2> < 76”‘/”00 / |Vf|2d,u

< 2062HVH°°/Nf|2dV.

Kolejny fakt dowodzimy tak samo jak dla nieréwnoéci Poincaré.
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Fakt 6.10. Jesli miara v na (Y,p) jest L-lipschitzowskim obrazem miary u na (X,d)
oraz | spetnia logarytmiczng nieréuno$é Sobolewa ze stalg C, to v spelnia logarytmiczng
nieréwno$é Sobolewa ze statq CL2.

Stosujac logarytmiczna nieréwno$é Sobolewa do funkcji f = 1 + £g dowodzimy

Fakt 6.11. Jesli miara probabilistyczna p spetnia logarytmiczng nieréwnosé Sobolewa ze
statg C, to spelnia rowniez nieréowno$é Poincaré ze stalg C.

Opierajac si¢ na twierdzeniu Muckenhoupta da si¢ wyprowadzié¢ kryterium réwnowazne
nierownosci logarytmicznej Sobolewa dla miar na prostej.

Twierdzenie 6.12. Zalozmy, Ze p jest miarg probabilistyczng na R o medianie m, za$
p oznacza gestoS¢ jej czesci absolutnie cigglej. Wowczas miara p speinia logarytmiczng
nieréwno$é Sobolewa ze skonczong stalg C wtedy i tylko wtedy gdy max{By,B_} < oo,
gdzie

1 r 1
B = sl (i 5) |,

1 mo1
B- = sputomal () [,

Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia

1
ﬁ<B+ + Bf) < Copt < 468(B+ + Bf)

6.4 Nieré6wnosé Bobkowa

Logarytmiczna nieréwno$¢ Sobolewa implikuje koncentracje gaussowska, ale nie implikuje
gaussowskiej izoperymetrii. Okazuje si¢, ze jest silniejsza nieréwnosé, ktéra implikuje gaus-
sowska izoperymetrie, a jednocze$nie ma szereg réwnie dobrych wilasnosci jak nieréwnosé
Poincaré czy logarytmiczna nieréwnos$¢ Sobolewa.

Przedstawione ponizej rozumowania mozna podobnie jak w poprzednich sekcjach pro-
wadzi¢ w wiekszej ogdlnosci, jednak by uniknaé szczegdléw technicznych ograniczymy sie
do miar na R" i funkcji gtadkich.

W tej czeSci przez I bedziemy oznaczaé gaussowska funckje izoperymetryczna, tzn
I(z) = (@ (z)), gdzie p = (27)~ 2 exp(—|z|?/2). Dodatkowo okreslamy I(0) = I(1) =
0.

Definicja 6.13. Méwimy, ze miara probabilistyczna u na R™ spetnia nieréwnosé Bobkowa

ze stata C, jesli dla wszystkich f € ngr(R”) o wartosciach w przedziale [0, 1] zachodzi

I(/fdu) < /\/I(f)2+02wf|2du. (10)
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Fakt 6.14. Jesli miary p; spelniajqg nieréwno$é Bobkowa ze stalymi Cj, to miara 1 ®---®
Wn spelnia nierownos$é Bobkowa ze stalg max; Cj.

Twierdzenie 6.15. Jesli miara probabilistyczna p na R™ spetnia nierownos$é Bobkowa na
ze statlg C, to
1

W) > Z1(u(4)  dla A€ BR")

oraz

(A > ®(@ 1 (u(A) +t/C)  dla A e BR"Y), t> 0.

Twierdzenie 6.16. Kanoniczna miara gaussowska v, spetnia nierownosé Bobkowa z C' =
1.

6.5 Wektory i Procesy Gaussowskie

Procesy i wektory gaussowskie odgrywaja kluczowa role w rachunku prawdopodobienistwa
i statystyce matematyczne, jak réwniez w wielu zastosowaniach.
Zacznijmy od przypomnienia definicji.

Definicja 6.17. Proces (Gy)ier nazywamy procesem gaussowskim, jesli dla dowolnych
t1,...,tn, € T wektor losowy (Gy,,...,Gy,) ma rozklad gaussowski. Proces nazywamy
scentrowanym, jesli EGy =0dlat e T.

By uniknaé¢ probleméw zwiazanych z mierzalnoscia bedziemy zaktadaé, ze zbior T jest
przeliczalny. Alternatywnie mozna zakladaé osrodkowosé procesu.

Twierdzenie 6.18. Zaldimy, ze (Gy)ier jest procesem gaussowskim, indeksowanym przez
przeliczalny zbior T', takim, ze Z := sup,cr Gy < 00 prawie na pewno. Wowczas EZ < oo,

EMNZ-BZ) < N2 g1 )\ € R, (11)

u2

202

2

) i P(Z—EZ< —u)<exp (-“) dlau >0, (12)

P(Z—EZ}u)<exp<— 57
o

gdzie

o := sup(Var(Gy))"/2.
teT

Dowdd. Nieréwnos$é (12) wynika z (11), udowodnimy zatem te pierwsza.
Krok I. T = {t1,...,t,} jest zbiorem skonczonym. Woéwczas istnieje macierz A =
(aij)i<i<n1<j<k oraz wektor m € R™ takie, ze

(th,...,th)Nm-i-AX, XN"}/k
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Okreélmy F: R¥ — R wzorem
k

F(z) = max {mZ + Zaz‘jl'j},

1<i<n :
Jj=1

woéwcezas Z ma ten sam rozklad co FI(X) i
k 1/2
| Plluip = max (- a%) " = max Var(Gy,)/? = 0.
g %

j=1

Stad
EMNZ-EZ) _ g MF(2)-EF(2)) < e—A%?/z7

gdzie ostatnia nieréwnosé¢ wynika z Twierdzen 6.6 i 6.8.
Krok II. T = {t1,ta, ...} jest nieskonczone. Pol6zmy

Zy = max Gy, oraz o, := max Var(Gti)lﬂ.
1<isn 1<isn

Niech M spelnia P(Z > M) < 1/4. Z Kroku I dostajemy
P(Zn _EZ, < —0n> <e V2

zatem
P(Zn > EZ, —an) >1—e V2> % > P(Zn > M),

stad M > EZ,, — 0,. Mamy wiec z twierdzenia Lebesgue’a o zbieznosci monotonicznej,

EZ =limEZ, < sup{M +op} < M + 0 < 0.
n

Stosujac oszacowanie z Kroku I otrzymujemy
Ee)\(Z—EZ) — h}Ln EeA(Zn—EZn) < hrILn e>\20—727’/2 — €_U2U2/2,

gdzie pierwsza réwno$é¢ wynika z tego, ze EZ, — EZ oraz twierdzenia Lebesgue’a o zbiez-
noéci monotonicznej dla A > 0, badZ zmajoryzowanej dla A < 0. O

Uwaga 6.19. Laczac nieréwnosci (12) dostajemy

2

P(‘squt—Esqut‘>u)<2exp(— u dla u > 0.

teT teT 20 2)

Zauwazmy tez, ze |G| = max{Gy, —G;}, wigc w Twierdzeniu 6.18 i powyzszej nieréwnosci
mozna zastapi¢ Gy przez |Gy|.
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Uwaga 6.20. Korzystajac z izoperymetrii gaussowskiej (Wniosek 3.13) zamiast nieréwnosci
logarytmicznej Sobolewa mozemy udowodnié, ze przy oznaczeniach Twierdzenia 6.18 dla
u > 0,
U 1 u?
P(supG; —Med(supGy) > u) < P(—) < —exp | — —
(sup (supGi) > ) <@(Z) < gexp (= 55)

oraz
2

P(‘i&QGt —Med(ilelngt)‘ > u) < 2@(%) < exp(— ;7)

Whniosek 6.21. Przy zaloZeniach i oznaczeniach Twierdzenia 6.18,

1 1
__— Su) = -1
Jim 108 P (sup G > ) =~
Ponadto,
Eexp (a sup Gf) < 00
teT
wtedy 1 tylko wtedy gdy o < ﬁ
Dowdéd. 7 Twierdzenia 6.18
1 1
— Zu) < —7.
" log P ( iél%) Gy u) 552

7 drugiej strony,

1 1
liminf — logP(sup G > u) > sup liminf — log P(G; > u)
t—oo u? teT teT t—oo u?

11

- igIT)_2Var(Gt) 202

Druga czeéé tezy dla o < 55 wynika natychmiast z (12) (dla |Gy|). Ponadto, jedli

202

Gy ~ N(ag,02) ~ a; + 019, to dla 0 < a < 1/2072

1 2.2 1 1
E aG% >E aang]l — “REe%i9" —
© o 920 = 5He 2\ 1-2ac?’

wiec Eexp(asup,ep G7) > super Eexp(aG?) = oo dla o > O

1
202"
Definicja 6.22. Wektor losowy X w osrodkowej przestrzeni Banacha F' nazywamy gaus-
sowskim, jesli dla dowolnego ¢ € F*, ¢(X) ma rozklad gaussowski.

Zalozenie o osrodkowoséci F' ma charakter techniczny, stuzy uniknieciu probleméw z
mierzalno$cia (w nieo$rodkowej przestrzeni Banacha suma dwoch wektoréw losowych nie
musi by¢ mierzalna). Alternatywnie mozna zakladaé, ze norma w F jest wybijana przez
przeliczalny cigg funkcjonatéw o normie jeden.
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Twierdzenie 6.23. Zaldimy, ze X jest wektorem gaussowskim w osrodkowej przestrzeni
Banacha. Wowczas E| X || < oo,

EAMIXI-EIXD)  oX0?/2 15 ) € R,

_ u?

712
P(|X|| —E|X||>u) <e 2?7 oraz P(X|-E|X|<-u)<e 27 dau>0,

gdzie
0 = {Var(p(X))'/?: ¢ € F*, [|o| < 1}.

Dowdd. Wystarczy zauwazy¢, ze istnieje przeliczalny podzbiér D kuli jednostkowej w F™*
taki, Ze [|x|| = sup,ep ¢(X) i skorzysta¢ z Twierdzenia 6.18 dla procesu gaussowskiego

((X))pep- O
Whniosek 6.24. Przy oznaczeniach Twierdzenia 6.28 dla p > 1,

(E[X[")/? < E|X[| + Cy/po,
gdzie C' jest pewng stalg uniwersalng.

Uwaga 6.25. Jak nietrudno zauwazy¢

1
(E[X[P)P > sup (E|p(X)P)? > = /po.
lel<1 ¢

Stad dla p > 1,

maX{E!XH, sup (E\SO(X)V”)””} < (EIX|MYP <E|X]+C sup (Elp(X)P)"/?.
lell<1 lell<1

7 Nier6éwnosci Splotu Infimum

7.1 Wtlasno$¢ (1) Maureya
Zacznijmy od zaproponowanej przez Maureya definicji.

Definicja 7.1. Splotem infimum dwu funkcji f i g okreslonych na R™ nazywamy funkcje
fOg dana wzorem

fOg(z) :=nf{f(y) + g(z —y): y € R"}.

Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, oo]. Méwimy, ze para (u, )
ma wlasno$¢ (7) badz, ze miara p spelnia nieréwnos¢ splotu infimum z funkcja kosztu ¢

/efD“’d,u/effd,u <1

dla dowolnej ograniczonej mierzalnej funkcji f na R™.

jesli
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Pierwsza uzyteczna cecha wlasnosci (7) jest jej tensoryzowalnosé.
Fakt 7.2. Jesli pary (u;, vi) majq wlasnos$é (1), p=p1 @ -+ @ puy, oraz
(@1, x0) = e1(21) + .. + on(20),
to réwniez para (u, ) ma wlasnosé (7).

Dowadd. Prosty argument indukcyjny pokazuje, ze wystarczy udowodni¢ teze dla n = 2.
Niech f = f(x,y) bedzie ograniczona funkcja na R™ x R"2, okresSlmy f¥(x) = f(x,y) oraz
zdefiniujmy ¢ na R™2 jako

g(y) :==In (/efm“’l(””)dul(x)).

Wtasnoéé (1) dla (u1,¢1) implikuje, ze g(y) < —In([ e/ duy), zatem
/e_gdﬂz > /e_fdm ® pa.
Ponadto dla dowolnych ¥,y
/efD“"(x’y)dul(a:) < /engw(w)Jrsoz(yfﬁ)dul(x) — @) +e2(y-1)
wige g0pa(y) > In([ /W) dpy () i

/GgDmduz > /efwdm ® pig.

Teza wynika z powyzszych nieréwnosci i wlasnosei 7 dla (uz, p2). O
Nastepny fakt pokazuje w jaki spos6b mozna transportowaé (7).

Fakt 7.3. Zalozmy, ze u jest miarg probabilistyczng na R™, za$ ¢ funkcjg kosztu na R™
takq, ze (u,) spetnia wtasnosé (t). Jesli T: R™ — R™ oraz funkcja ¢ na R™ spelnia
(Tx —Ty) < ¢z —y) dla wszystkich x,y, to para (po Tt 1) ma wlasnosé (7).

Dowdd. Niech f bedzie ograniczong funkcja na R™. Zauwazmy, ze
foTOp(z) = nt(f(Ty) + ¢(z —y)) > wf(f(Ty) + ¥(Tz — Ty)) > fOU(Tz).
Zatem

/efmwduoT_1 = /ewa(Tz)du(x) < /efOTD“"(””)du(x) < (/e‘fOTdu)_

_ (/e_fd,uoT_l)l.

1
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7.2 Splot infimum a koncentracja

By sformutowaé zwiazki nieréwnosci splotu infimum z koncentracjg okreslmy zbior

By(t) = {z: p(x) < t}.
Zacznijmy od prostego faktu

Fakt 7.4. Jesli (p, p) ma wlasnosé (1) to dla dowolnego zbioru borelowskiego A takiego,

ze p(A) > 0 mamy X
1= pu(A+ By(t) < —e*

Dowdd. Zastosujmy wtlasno$é (7) do funkcji f = 0 na zbiorze A i f = co poza zbiorem A.
Zauwazmy, ze fOy >t poza zbiorem A+ B,(t), zatem

1> /efD‘pdu/e_fdu > e (1 — (A + Bo(#))u(A).
0

Uwaga 7.5. Funkcja f w poprzednim dowodzie nie byla oczywiScie ograniczona, ale tatwo
omina¢ ten problem stosujac nieréwnosé (1) do f, = nlgm 4 dlan >t.

Poprzedni Fakt daje dobre oszacowanie tylko dla duzych wartosci t. Nieco modyfikujac
jego dowod da sie uzyskaé tez nieréwnosci koncentracyjne dla matych ¢.

Fakt 7.6. Zaloimy, Ze para (u, ) ma wlasnosé (7). Wowczas dla dowolnego zbioru bore-
lowskiego A it > 0,

WA+ B(1) > —— A (13

W szczegolnosci

WA + Bo(t) > min{e"/u(A),1/2) (14)
WA > 5 = 1 (At By(t) < e /(1 - u(A)) (15)

Ponadto
p(A) = v(—oo,x] = pu(A+ By(t)) > v(—oo,x +1/2]. (16)

Dowdd. Niech f(z) = t1gn\ 4. Wowcezas [ jest nieujemna, wigc fUp tez jest nieujemna
(rozpatrujemy tylko nieujemne funkcje kosztu). Dla x € A + B, (t) mamy fOo(x) > t.
Zatem wlasnoéé (1) daje

1> /esto(x)du(JU)/e—f(w)du(x)

> (A + Bo() + e (1 - p(A+ Bo(1))] [1(A) + e~ (1 = u(A))],
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skad bezposredni rachunek prowadzi do (13).
Niech fi(p) := e'p/((e! — 1)p + 1), zauwazmy, Ze f; is rosnaca wzgledem p oraz dla
p<e 22

1
(et_ 1)p+1 < et/2+1 _ §(€t/2+e—t/2) < et/2’

skad otrzymujemy (14). Ponadto dla p > 1/2,

1- 1- B
1—ft(p):(et_1)§+1 < (et+11;/2<€ t2(1 — p)

i dostajemy (15).

Niech F(z) = v(—o00,] i g:(p) = F(F~!(p) + t). Poprzednie rachunki pokazuja, ze dla
t,p >0, fi(p) > gi2(p), jesli F~1(p) +t/2 < 0 lub F~'(p) > 0. Poniewaz g s = g; © gs i
fres = fr o fs, otrzymujemy fi(p) > g¢/2(p) dla wszystkich t,p > 0, zatem (13) implikuje
(16).

O

7.3 Dwupoziomowa koncentracja dla rozktadu wyktadniczego

Niech jak do tej pory v oznacza miare na R z gestosciag %e"z‘, zad vy, v_ miary z gestodciami
odpowiednio e™*1(g o) 1 €1 (o 0)-

Fakt 7.7. Para (v4,po) ma wlasno$é (1), gdzie

L2 dla |z| < 2
=J 187 S
#o(@) { Mel—-1) dialal > 2.

Lemat 7.8. Dia wszystkich x € R mamy 2|¢)(z)| < 1 oraz
(1~ dgh(a))en@ > 1.

Dowdéd. Pierwszg nieréwnosé otrzymujemy przez latwe sprawdzenie. By udowodnié¢ drugg,
z uwagi na symetrie g, wystarczy rozpatrywaé przypadek x > 0. Ponadto ¢f(x) jest stale
dla x > 2 a g rosnace na tym przedziale, wiec mozemy zakltadaé, ze 0 < x < 2. Wowczas
nieré6wnoéé po podstawieniu y = x?/18 ma postaé

8 2
e?V<1l—--y, 0<y<_.
o/ TSYSg
Funkcja e™¥ jest wypukla, wiec wystarczy sprawdzié¢ tylko y =01y = 2/9. O

Dowdd Faktu 7.7. Ustalmy funkcje ograniczona f, przyjmijmy g := fUyg i niech
Iy := /oo e T@=2qy I = /OO 9@ =T g
0 0
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Musimy pokazaé, ze IpJ; < 1. Dla t € (0,1) zdefiniujmy «(t) i y(¢) wzorami

x(t) y(t)
/ e T @24z = t1, oraz / IOy = t1).
0 0

Woéwezas

SCI(ZL/) — Ioef(w(t))er(t) y,(t) _ Ilefg(y(t))+y(t).

Na mocy definicji g, g(y(t)) < f(2(t) + wo(y(t) — 2(t)), wiee

y'(t) > Le fEO)—woy®—2®)+u®)

Niech z(t) = 3(2(t) + y(t)) — po(z(t) — y(t)), wowczas

1 1

2(t) = (5 = eb(@(t) = y(1))2'(t) + (5 + ¢olz(®) — y(®) )y (1).
2 2

Piszac dla uproszczenia z i y zamiast z(t) i y(t) stosujac poprzednie oszacowanie y'(t)

oraz nier6wno$¢ miedzy Srednia arytmetyczna i geometryczng dostajemy (wykorzystujac

parzystosé ¢q)

Zatem na mocy Lematu 7.8, (—e *(1)) = e=*)3/(t) > /IyI;, co po odcalkowaniu daje

Vil < 1. O

Uwaga 7.9. Funkcja g jest ciagla, wiec y jest rozniczkowalna. Funkcja f nie musi by¢ ciggla
wiec x nie musi by¢ rézniczkowalna. Jednak z ograniczonosci f tatwo wywnioskowaé lokalng
Lipschitzowsko$¢ z (stad tez z), a zatem rézniczkowalnosé x prawie wszedzie. Funkcja e
jest zatem lokalnie lipschitzowska, czyli jest calka swojej pochodnej, ktéra istnieje p.w..

Whniosek 7.10. Miara v spelnia nieréwno$é infimum z funkcjg kosztu @1 postaci

—_ _— = 6
o1 (1) = 20( ) { N—2) dialt] > 4.

2
Dowadd. 7 wypuktosci funkeji g tatwo wynika, ze 1 = poldpg. Poniewaz miara v_ jest
symetrycznym odbiciem v4 a funkcja ¢p jest symetryczna, to (v_, o) ma wlasnosé (1),
wiec (v ®@v_, po(x)+ o(y)) tez ma (7). Miara v jest splotem miar v i v_, czyli obrazem
vy @ v_ przy przeksztalceniu T'(z,y) = x + y. Teza wynika z Faktu 7.3 O
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Wiemy, ze miara v a zatem i miara produktowa v" spelniaja nieréwnos$¢ Poincaré, wiec
jesli v™(A) > %, tov"(A+tBy) > 1— e Y/C dla pewnej stalej absolutnej C. Okazuje sie,
ze mozna te nieréwno$¢ wzmocnic.

Zanim sformulujemy twierdzenie (ktére pierwszy z gorszymi stalymi udowodnil Tala-
grand) wprowadzmy nastepujace oznaczenie kuli jednostkowej w [ydlal<p<oo

n
By :={zeR": > |u|’ <1}
i=1
Twierdzenie 7.11. Dla dowolnego zbioru borelowskiego A w R™ takiego, ze v"™"(A) > 0

mamy dlat > 0,
1 —v"(A+6VtBY + 9tB}) <

Ponadto
V(A) = v(—o0, 2] = v"(A+ 6V2tBY + 18tB}) > v(—o0,z + t].

Dowdd. Para (v™, p,) ma wlasnosé (1), gdzie ¢, (1, ..., x,) = p1(x1)+...+¢1(zy). Latwo
sprawdzié, ze
By, (t) C 6VtBy + 9tBY.

Teza wynika zatem z Faktéow 7.4 1 7.6. O

7.4 Wypukla wlasno$é (1)

Definicja 7.12. Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, co] wypu-
kta. Mowimy, ze para (u, ) ma wypukiq wlasnosé (1) badz, ze miara p spelnia nieréwno$é
splotu infimum z funkcjqg kosztu ¢ jesli

/eﬂj“@du/e_fdu <1

dla dowolnej wypuktej funkcji f na R™.
Wypukta nieréwnosé (7) sie tensoryzuje podobnie jak zwykla nieréwnosé (7).
Fakt 7.13. Jesli pary (pi, ¢i) maja wypukle wlasnosé (1), p=p1 @ -+ - @ puy, oraz
(@1, xn) = e1(z1) + ... + on(20),
to réwniez para (u, ) ma wypukle wlasnosé (7).

Dowdd. Dowdd przebiega podobnie do dowodu Faktu 7.2. Stosujac taka jak w tamtym do-
wodzie notacje, wystarczy zauwazy¢, ze funkcja y — fYOep; jest wypukla (wykorzystujemy
tu zaréwno wypuklosé f jak i ¢q), 1 wywnioskowaé z nieréwnosci Holdera wypuktosé g. [
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Tak samo jak Faktu 7.4 dowodzimy, ze wypukla nier6wnos¢ (7) implikuje koncentracje
dla zbioréw wypuktych.

Fakt 7.14. Jesli (u, ) ma wypukle wlasnosé (1) to dla dowolnego wypuklegp zbioru bore-
lowskiego A takiego, ze p(A) > 0 mamy

1
1= p(A+ By(t) < ——e'
P u(A)
Lemat 7.15 (Maurey). Zalozmy, Ze p jest miarg probabilistyczng na R™ skupiong na
2
zbiorze o Srednicy nie wiekszej niz A. Wowcezas para (ju, %) ma wypukieg wlasnosé T.

Dowdéd. Zalézmy, ze p jest skupiona na zbiorze A i diam(A) < A. Niech f bedzie wypukta
funkcja na R™, p(z) = ﬁm2 oraz g := fOy. Ewentualnie odejmujac od f stalag mozemy
zakladaé, ze inf4 f = 0. Ustalmy € > 0 i wybierzmy a € A taki, ze f(a) < e. Wowczas dla
z e Aie|0,1] mamy

Nz — al?
+ -

g9(x) < fa+ (1 =Az) + oMz = a)) <Af(a) + (1 = A) f(z) e

<A+ (1 =N f(z)+ %AQ.

7 dowolnosci € > 0 dostajemy

N

inf (11— \)f(x) + iv ~k(f(z)) dlaze A,

g(:r) A€[0,1]

gdzie k(z) =u —u? dlauw € [0,1/2] i k(z) =1/4 dlaz > 1/2.
Pokazemy, ze e < 2 — e Wystarczy te nieréwnoéé oczywiscie pokazaé¢ dla u €

[0,1/2], ale wtedy

~(e® 4 e7%) = e/ cosh(u — u?/2) < e /% cosh(u) < 1.

-1
/egdu</ek(f)d,u<2—/e_fd,u< (/e_fd,u> .

Twierdzenie 7.16. Jesli p jest rozkladem jednostajnym na {a,b}™ (lub ogdlniej dowolnym
rozkladem produktowym o nosniku w [a,b]™), zas A jest wypuklym podzbiorem [a,b]", to

/exp (Mdist(:r, A)Q) du < M(l)

O

W szczegolnosci

1 t?
— < — _— .
1— u(4y) A exp ( o= a)2> dlat>0
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Dowdd. Na mocy Lematu 7.15 i tensoryzacji wiemy, ze p spelnia wypukla wiasnosé splotu
infimum z funkcja kosztu p(x) = WMQ. Stosujemy wlasno$¢ (1) do funkeji f = 0 na
Ai f =o00poza Aidostajemy

1
—f fO _ . 2
O

Uwaga 7.17. Twierdzenie powyzsze jest nieprawdziwe bez zatozenia wypuktoéci A. WeZmy
bowiem za p, rozklad jednostajny na {—1,1}", oraz

A= {:c e{-L1}": ) =z < o}.
=1

Woéwczas i, (A) > 1/2 oraz korzystajac z tego, ze |a—b| < ;|la—b|? dla a,b = +1 dostajemy
n 2
An{-1,1}" C {x e {-1,1}": ;xz < 4}.

Na mocy centralnego twierdzenia granicznego lim sup,, pin(A,,1/4) = ®(t?/4) < 1.

8 Nieréwnosci transportowe

8.1 Koszt optymalnego transportu

By zdefiniowaé koszt transportu miar bedziemy potrzebowali kilku definicji.

Definicja 8.1. Przez P(X) bedziemy oznaczaé¢ rodzine miar probabilistycznych na prze-
strzeni mierzalnej X. Dla u,v € P(X) przez II(u,rv) bedziemy oznaczali zbiér wszystkich
miar probabilistycznych m na X x X takich, ze p i v sa miarami brzegowymi 7w, czyli
(A X X)=p(Ad)in(Xx A) =v(A) dla dowolnego zbioru mierzalnego A C X.

Uwaga 8.2. Zbiér II(u, v) jest niepusty, gdyz zawiera miare produktowa p ® v. Zauwazmy
tez, ze jesli T transportuje p na v oraz X ma rozklad p, to rozklad zmiennej (X, TX)
nalezy do II(p, v).

Definicja 8.3. Zalézmy, ze c: X x X — [0, 00] jest funkcja mierzalna. Dla u,v € P(X)
definiujemy optymalny koszt transportu miary p na v z funkcjq kosztu ¢ wzorem

Te(p,v) = inf {/XXX c(x,y)dr(x,y): m € Uk, y)} )
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W przypadku, gdy (X, d) jest przestrzenia metryczna, a c(z,y) = dP(x,y) bedziemy pisaé
T, zamiast T,. Okredlamy tez odleglo$é Wassersteina miar pu,v € P(X) jako

1/p
Wp(M,I/) = TP(Mv V)l/p = inf { (/ dp(x,y)dW(IE,y)) NS H(M? V)} ) 1 < p < 00,
XxX

Wy, v) = Tp(p,v) = inf {/X dP(z,y)dm(z,y): m € I(u, 1/)} , pe€(0,1].

xX

Uwaga 8.4. Mozna udowodni¢, ze jesli X jest przestrzenia polska, to W), jest metryka na
przestrzeni miar probabilistycznych p na X takich, ze [y d(z,zo)Pdp(x) < oo dla pewnego
(réwnowaznie kazdego) xg € X.

Uwaga 8.5. Réwnowaznie mozemy zdefiniowaé
Te(p,v) =inf{Ec(X,Y): X ~pu,Y ~v}.
Uwaga 8.6. Zauwazmy, ze
Te(p,v) < inf{E,c(z,Tz): T transportuje x na v}.

W wielu przypadkach mozna udowodnié, ze w powyzszej nieréwnosci zachodzi réwnosé, ale
nie jest tak zawsze — np. gdy p ma atomy, a v jest bezatomowa, to nie istnieje transport p
na v.

Definicja 8.7. Jesli (X, d) jest przestrzenia metryczna, to okreslamy odleglo$é Monge’a-
Kantorowicza miar p, v € P(X) wzorem

Wi ) =sup {| [ fau [ sa]

Fakt 8.8. Dia dowolnej przestrzeni metrycznej (X, d) zachodzi

f: X' — R 1-Lipschitzowska, ogramczona}

WP (p,v) < Wa(p,v)  dla p,v € P(X).

Dowdd. Zauwazmy, ze dla dowolnego 7 € II(z,y) i f 1-Lipschitzowskiego mamy

Jro [

Biorac supremum po f i infimum po 7 dostajemy teze. O

—|[U@ - st < [ 1@ rwlintey) < [ dewine)

Przy dodatkowym zatozeniu osrodkowosci odlegtosci WIL Py W sie pokrywaja.

Twierdzenie 8.9 (Dualno$é Monge’a-Kantorowicza-Rubinsteina). Zaldzmy, zZe (X, d) jest
o$rodkowq przestrzenig metryczng. Wowczas

Wi, v) = Wi™P(u,v)  dia p,v € P(X).
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8.2 Wzgledna entropia

Definicja 8.10. Niech u, v beda dwiema miarami probabilistycznymi na X. Okreslamy
entropie miary v wzgledem miary | wzorem

H(vlp) = {

d d c e
Entuﬁ =E, log(ﬁ), jesli v < p,
400 w przeciwnym przypadku.

Lemat 8.11 (Zasada wariacyjna Gibbsa). Dla dowolnej ograniczonej z gory funkcji mie-
rzalnej f,

log Euef = sup{E, f — H(v|n)}

Dowdd. Okre$lmy miare ji wzorem

Y
din = md,u.
Wéwczas dla dowolnej miary probabilistycznej v < u,
E.f ~ H(vl) = B.f — By log(5)) = BuJ ~ B, log(3)) — B, log(§)
= log(Epe’) — H(v|1).
Wystarczy zauwazy¢, ze H(v|fi) > 01 H(i|@) = 0. O

Twierdzenie 8.12 (Bobkow-Goetze). Niech u bedzie miarg probabilistyczng na przestrzeni
metrycznej (X, d) i a > 0. Wéwczas n.w.s.r.

i) WlLip(V, 1) < 2aH (v|p) dla dowolnej miary probabilistycznej v,

i1) dla dowolnej funkcji 1-Lipschitzowskiej ograniczonej f,
E#e’\(f_E“f) <e™/2 dla X e R.

Dowdd. Zamieniajac f na —f widzimy, ze ii) wystarczy dowodzi¢ dla A > 0. Zasada wa-
riacyjna Gibbsa pokazuje, ze warunek ii) jest réwnowazny

)\2
0 > sup sup sup {/\(Euf —Euf) —H(v|p) - a}
AS0 f v

= supsupsup{)\(E,,f —E,f)— H(v|p) — O‘AQ}

VoS0 f 2
Lip 2
Li a)? WP (u,v)
= supsup { AW;"P(u,v) — H(v|p) — —— » = sup W) — H(v|p) ¢,
VA0 2 v 2a
co jest oczywiscie réwnowazne warunkowi i). O

Uwaga 8.13. Logarytmiczna nieréwnosé¢ Sobolewa ze stata C implikuje zachodzenie wa-
runku ii) z @« = C (zob. dowdd Twierdzenia 6.6). W szczegélnodci miara gaussowska 7,
spelnia warunki twierdzenia Bobkowa-Goetzego z o = 1.
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8.3 Tensoryzacja nier6wnosci transportowych

Definicja 8.14. Powiemy, ze miara probabilistyczna p na X spefnia nieréwnosé T, ze
stalg «, jesli
Ty(v, 1) < (20H (v|p))P?  dla v € P(X).

Uwaga 8.15. Dla p > q i p,v € P(X) zachodzi T (11, v)'/P > T, (p,v)"/9, zatem nieréwnosé
T, pociagga za soba nieréwnos¢ T; dla g < p.

Naturalne jest pytanie czy nieréwnosci T}, si¢ tensoryzuja. Wykorzystamy do tego ogélne
twierdzenie.

Twierdzenie 8.16 (Marton). Zalézmy, Ze funkcja ¢: [0,00) — [0,00) jest wypukia oraz
dla i = 1,...,n, ¢; sg niewjemnymi mierzalnymi funkcjami na X; x X;, zas p; € P(X;)
spetniajg warunek

lilr(lf )cp(EWci(:r, y)) < H(v|u;) dla wszystkich v € P(X;).
mell(p;,v

Wowczas dla wszystkich miar probabilistycznych v na X = X1 X -+ X X, zachodzi

inf ci(wi, Vi Q- ® .
T (i1 5 pin 1) ZSO Ci(Ti, ¥i)) < H(v[m fin)

Do dowodu twierdzenia 8.16 przydatny bedzie lemat o dekompozycji miary. Nie podamy
jego dowodu, gdyz wykorzystamy go tylko dla miar z gestoscia jak w Przyktadzie 2 ponizej,

ale ogdlne sformulowanie przydaje sie, gdy np. chcemy dowies¢, ze odlegtoéé Wassersteina
jest metryka.

Twierdzenie 8.17. Zalézmy, Ze X i Y sq przestrzeniami polskimi oraz m € P(X x Y).
Niech w1 bedzie rozkladem brzegowym w. Wowczas istnieje rodzina miar probabilistycznych
(2,2 )zex taka, Ze

i) dla dowolnego zbioru borelowskiego A C X x Y przeksztalcenie v — (dy @ ma4)(A) jest
mierzalne,

i) ™= [x 0z @ T pdmi(x).
Przyklad 1. Jedli rozklad brzegowy m jest miara dyskretna ), pid.,, to mozemy przyjac
s B c e
72 (B) = 77&{19(6%:})) jesli m({z}) >0
’ 0 jesli m({z}) = 0.

Przyktad 2. Jesli 7 ma gesto$é¢ g wzgledem pewnej miary produktowej p; ® o, to defi-
niujemy dmo ; = g2 dpa, gdzie

\
o o

daly) = 7&9(1(;3?@(;;) jesli i gz, y)duz(y)
’ 0 jesli [y g(x,y)dpa(y) =
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Dowdd twierdzenia 8.16. Twierdzenie udowodnimy przez indukcje po n. Dla n = 1 teza
jest oczywista. Zalézmy zatem, ze n > 2 i teza indukcyjna zachodzi dla n — 1, pokazemy,
ze jest tez prawda dla n. Dla uproszczenia notacji przyjmijmy

X:Xlxn-xxn_l, /jl,:/l1®"'®,un—1a

ponadto dla z € X bedziemy pisa¢ x = (%, z,), gdzie T € X.
Ustalmy miare probabilistyczna v na X = X x X, taka, ze H(v|i ® p,) < co. Wowezas
jak wiemy z lematu o dekompozycji (zob. Przyktad 2 powyzej)

Y= / 53 ® vadin(E),
X
gdzie ¥ oznacza brzegowy rozklad v na X. Latwo sprawdzi¢ (zob. Przyklad 2), ze

(7 o) = HEAR) + [ H(vslna)di(@).

Ustalmy ¢ > 0. Zalozenie indukcyjne implikuje, ze istnieje miara probabilistyczna 7 €
II(a, v) taka, ze

n—1

> o(Brci(mi, yi) < H(|R) + &
i=1

7 zalozenia twierdzenia wynika natomiast, ze dla # € X istnieje miara 7z € II(up, vz) dla
ktorej
P(Ergen(z,y)) < H(vz|pn) + ¢

Okre$lmy 7 jako miare na X x X, ktére mozemy w naturalny sposéb utozsamiaé z X x X x
X, x X, wzorem

= _/~ 035 ® mydm(Z, 7).
XxX

Wéwezas m € (g @ -+ @ pp, v),

n—1 n—1
> o(Brci(wi,yi) = Y w(Baci(zi, yi) < HD|i) + ¢
i=1 i=1

i z wypuktosci ¢
P(Ercn(@n, yn)) = ¢(EzEr;cn(n, yn)) < Ezp(Er cn(zn, yn)) <EzH(vglpn) +¢
= [ H ) d5(5) +=.

Zatem .
> o(Erci(wi,yi)) < H(v|p) + 2¢
i=1
i z dowolnosci € > 0 otrzymujemy dowdd kroku indukcyjnego. O
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Whniosek 8.18. Zalozmy, Ze miary probabilistyczne u; na (X;,d;) spelniajg nieréwnosé Ty
ze stalymi a;, 1 < i < n. Na X =Xy x ... x X, okreslmy wazong li-metryke d.(z,y) =

Yo cidi(xi, ;). Wowezas miara py ® -+ - @ py, spelnia nieréwnosé Th na (X,d.) ze stalg

( ?:1 03)1/2 max; o .

Dowdéd. Niech v i p beda miarami probabilistycznymi na (X, d.). Wéwczas

Ti(v,p) = inf ZCiEﬂdi(xi,yi)< Zcf inf (Z(Eﬂdz(gg“yl)f) )

mell(v,p) i o mEllwe) i

Teza wniosku wynika teraz latwo z Twierdzenia 8.16 z c;(x;,vy;) = di(zi,yi). e(x) =
(r/2)?, a := max; ;. O

Innym wnioskiem z Twierdzenia Marton jest tensoryzowalnosé nieréwnosci 7o wzgledem
metryki ls.

Whniosek 8.19. Zalozimy, ze miary probabilistyczne p; na (X;,d;) spelniajg nieréwnosé Ts
ze statymi oy, Na X = X1 x ... x X,, okreslmy ly-metryke d(z,y) == (0, di(as, y:)?) 2.
Wowczas miara g @ -+ - ® g, spelnia nieréwnosé Ty ze stalg max; a; na (X, d).

Dowdd. Stosujemy Twierdzenie 8.16 z p(z) := il‘, o = max; o; oraz ¢;(x;, y;) = d7 (zi,Yi).

O

8.4 Nier6éwno$¢ T, Talagranda a bezwymiarowa koncentracja

Whniosek 8.20. Zaldéimy, Ze miara p spelnia nieréwnosé Th ze stalg a na przestrzeni
metrycznej (X,d). Wowczas dla dowolnej funkcji 1-Lipschitzowskiej na X" z la-metrykq
dn(z,y) == (X0 d(xi, y:)?)'/? zachodzi

W € X0 () — B f > 1)) < e/,
W szczegdlnosci oyn (t) < exp(—t2/8a).

Dowaod. Z Wniosku 8.19 wynika, ze u™ spelnia nier6wnosé 15 ze stata a, zatem dla dowolnej
miary probabilistycznej v na X™ zachodzi

WP, v) < Wh(u",v) < Wa(pu",v) < \/20H (v]pm)
i teza tatwo wynika z T'wierdzenia 8.12. O

Okazuje sie, ze nieréwnosé Ty jest rownowazna bezwymiarowej koncentracji.
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Twierdzenie 8.21 (Gozlan). Zaldzmy, zZe p jest miarg probablistyczng na osrodkowej
przestrzeni polskiej (X,d), za$ d,, sq lo-metrykami na X". Wowczas nastepujgce warunki
sq rownowazne:

i) p spelnia nieréwno$é Ty na (X, d) ze stalg «:

Wa(v, 1) < y/2aH (v|p)  dla kaZdego v € (X),

i1) dla kazdego n miara p" spetnia nieréwnosé Ty na (X", d,) ze stalg a:
Wi(v, p") < y/2aH (v|p™)  dla kazdego v € P(X™),
i11) istnieje stata C taka, Ze dla kazdego n i kazdej funckji 1-Lipschitzowskiej f na (X", d,,),
Pz e XM flz) — B f >t}) < Ce V)2

Dowdd i) = ii) = iii) dowodzimy jak we Wniosku 8.20. By udowodnié¢ najbardziej za-
skakujaca implikacje #ii) = i) wykorzystamy twierdzenie o wielkich odchyleniach Sanowa.

Twierdzenie 8.22 (Sanow). Niech X1, Xo, ... bedg niezaleznymi zmiennymi losowymi o
warto$ciach w przestrzeni polskiej X 1 jednakowym rozkiadzie . Wowczas dla dowolnego
zbioru otwartego G w przestrzeni miar probabilistycznych na X z topologig stabej zbieznosci
zachodzi

1 1 &
liminf — logP [ — 1) G|>—-inf H . 17
im inf —log (n; x, € ) inf H(v|p) (17)
Uwaga 8.23. Twierdzenie 8.22 to tak naprawde tylko potowa twierdzenia Sanowa dotyczaca
szacowania wielkich odchylenn dla miar empirycznych z dolu. Druga czes¢ mowi, ze dla
dowolnego zbioru zwartego F' w przestrzeni miar probabilistycznych na X z topologia stabej
zbieznosci mamy

n—oo N

1 1 n
. 1 1 < '
lim sup — log P <n ]; 1:5& e F) < Vlgf H(v|w)

Dowdd Twierdzenia 8.22. Ustalmy v € U takie, ze H(v|u) < oo (jesli takie v nie istnieje,

to infimum po lewej stronie (17) jest réwne +o0o i nieréwnosé jest oczywista). Niech g = d—z
oraz Y1,Ys, ... beda niezaleznymi zmiennymi o rozkladzie v. Wowczas ¢(Y;) > 0 p.n. oraz

dla dowolnej funkcji mierzalnej f na X",

n

Ef(Y1,...,Y,) = E(f(X1, ..., Xn) [T 9(Xi).
k=1
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Mamy
1 n
P(Zéxk eG) >P<
"=

—F (“{; s aeeay 11 g(Y’“)_l>
k=1

> bx, €@, [ 9(Xk) > 0)
k=1

k=1

S

1< 1
> e BrlosgtIp (N 5y € G, =~ ) logg(Yy) < Eyl ~
Z € n &= Yy 7nk:1 Ogg( k)\ 0gg+e

Mocne prawo wielkich liczb implikuje, ze z prawdopodobienstwem 1 przy n — oo zachodzi
% > p—q1logg(Yy) — E,log g oraz % > h—1 0y, — v stabo. Stad z otwartoéci G otrzymujemy,
ze

NP 1

hnrr_lgéfﬁlogP gkz_:léxk eG|>-E,logg—e=—H(v|u) —e.
Przechodzac z € do 0 i biorac supremum prawej strony ostatniej nieréwnosci po v € G
dostajemy teze. O

Zanim udowodnimy twierdzenie Gozlana, wykazemy kilka faktéw dotyczacych metryki
Wassersteina. We wszystkich trzech faktach zaktadamy, ze p jest rozktadem probabilistycz-
nym na przestrzeni polskiej X oraz 1 < p < oc.

Fakt 8.24. Funkcja v — W)y(v, 1) jest polcigglta z dotu na P(X), tzn. jesli vy, zbiega stabo
do p, to
lim inf Wp(vn, 1) = Wy(v, p).

Dowdd. Niech 7, € II(v,, u) beda takie, ze

Wo(vi ) > (B, dlar, ) /P~
Pokazemy najpierw, ze ciag (m,) jest ciasny w P(X x X). Dla € > 0 z ciasnosci ciagu (vy,)
mozemy znalezé zbiér zwarty K1 C X taki, ze v,(K7) > 1 — /2 dla wszystkich n. Istnieje
tez zbior zwarty Ko C X taki, ze u(Kz) > 1 — /2. Poniewaz v, i u to rozklady brzegowe
T, wiec 1 — my (K7 X K9) <1 — v (K7) + 1 — p(K2) <e.
Uzywajac ciasnosci (m,) mozemy wybra¢ podciag ciag ny taki, ze m,, — m slabo w
P(X x X) i liminf,, Wy (vp, p) = limg Wy (v, , 1). Latwo sprawdzamy, ze m € II(v, u) oraz
dla dowolnego a < oo,

lirr%inf Wy (Un, 1) > limkinf(Eﬁnk d(z,y)P)H/P > limkinf(Eﬁnk min{a, d?(z,y)})"/?

= (E min{a, d”(z,y)}) /.
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7 dowolnosci @ > 0 mamy
W, (v, 1) < (ErdP(z,y))/P < lim inf W, AZNOE

O

Fakt 8.25. Funkcja gn(z1,...,%n) = Wp(L S0, 6, 1) jest n~ VP lipschitzowska na X"
2 lp-metrykq dy(,y) = (o d(@g, ye)”) /7.

Dowdd. Zauwazmy wpierw, ze kazde 7 € TI(1 S3_, 65, 1) jest postaci m = L 370 6, @
dla 1, ..., pu, € P(X) takich, ze %Zzzl i = p. Stad dla x,y € X™ mamy

1 « 1 «
W ( E 6xk,u> - W, < E 5yk,,u>
ni= n =

1/p 1/p
= inf /d X, 2)Pdp; )) — inf ( /d Ui, 2)Pdpi( ))
1Zk 1 He= “(nz 7Zk 1 HE=H nz

1/p n 1/p
< _sw (1 > [ Z)pdui(z)> - (1 > [dw. z)pdui(Z)>
IS me=n |\ =1 "4
n 1/p n 1/p
1
S sup (Z/Id i, 2) — d(yi, 2)[Pdpi(2 )) <nMP (Z Tk, Yk) ) .
T Dy ML " k=1 k=1

O

Fakt 8.26. Jesli X1, Xo,... sq niezalezne o rozkladzie u, oraz Eud(x,mo)pﬁ < oo dla
pewnego xg € X 1 >0, to EWP(% Y oh—10x,, )P =0.

Dowdd. Ustalmy a > 0. Mamy
Wylvs P = inf (Exd?(@,9)Laey)<a) + End” (@, 9) Laayy>a))

well(v,u)
Eqr(d(zo, ) + d(wo, y))p+€>

CLE

< inf [P E;min{d(z,y),a} +
mell(v,p)

. . E,d(zo, z)PT¢ + E,d(zo,y)Pte
1 + v ) o )
<aP Wehll(f;,u) E; min{d(z,y),a} + 2P7° e .

Z twierdzenia Skorochoda wynika, ze jesli v, — p stabo, to istnieja zmienne losowe Y;, ~ vy,
iY ~ u takie, ze Y, — Y p.n, w konsekwencji z twierdzenia Lebesgue’a o zbieznosci
zmajoryzowanej dostajemy

vp — pstabo w P(X) = ﬁ?f )ETr min{d(z,y),a} — 0.
mell(vn,u
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Poniewaz %22:1 dx, — p stabo z prawdopodobienstwem 1 przy n — oo, wiec ponownie
uzywajac twierdzenia Lebesgue’a o zbieznoéci zmajoryzowanej dostajemy

E inf E; min{d(z,y),a} — 0.
mEM(5 Do, 0xp )

Stad dla dowolnego a > 0,

1 n p 1 n
lim sup EW,, ( Z 5Xk,,u> < oPTeg—¢ ( - Z 0, X1)P 5 + BE,d(x, )p+a>
n = n

n—oo
k=1

L optetly— EEud(ﬂfo, y)p+s

i biorac a — oo dostajemy teze.

Dowdd Twierdzenia 8.21. 1)=>ii). Stosujemy Wnhniosek 8.19 i to, ze W < Wa.
ii)=iii). Wystarczy wykorzystac to, ze Wi'® < W, i Twierdzenie 8.12.
iii)=-1). Okreslmy

1 n
gn(T1, ..., xy) = Wo 72(5mk,u .
"=

Fakt 8.24 implikuje, ze zbior
G :={v e P(X): Wa(v,u) >t}

jest otwarty. Zatem z twierdzenia Sanowa

1
— inf H liminf = log P (g (X1, ..., Xn) > t).
Jnf H(v|p) < liminf —log P (gn (X ) >t)

7 zalozenia iii) i n~1/2-lipschitzowskosci g, (Fakt 8.25) dostajemy

P (gn(Xi.- . X0) > 8) < Cexp (5ot = Bgal(Xa... X))+ )

Stad

. (t —Egn(X1,...,Xn))2 t2
— inf H -1 - _v
Jnf, H(vlp) < —limsup 2 %

gdzie ostatnia nieréwno$¢ wynika z Faktu 8.26 (warunek iii) z n = 1 i 1-Lipschitzowsko$¢
metryki implikuja, ze E,d(zo,z)? < oo dla dowolnego p < 00). Otrzymana nier6wnos¢ jest
rownowazna

20H (v|p) > t,  jesli Wa(u,v) > t,

skad tatwo wynika nieréwnosé 1. O
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9 Aproksymacja przez otoczke wypuktag

9.1 Definicje

W tej czesci bedziemy zakladaé, ze przestrzen X ma strukture produktowa, tzn. X =
Xy x -+ x X,. Okreslmy metryke na X wzorem

da(l', y) = Z azﬂ{xﬁéyz}
i=1

Z Wniosku 4.5 wynika, ze dla |a| = 1, o, x.4,(t) < exp(—|t|?/8), jednak poszerzenie
zbioru w kazdej z metryk d, wyglada nieco inaczej. Celem tego rozdziatu jest uzyskanie
jednostajnej wersji tego wyniku.

Dla A C Xi z € X okreslmy

D4 (z) := sup dg(z, A).

la]=1

Okazuje sie, ze D () mozna zdefiniowaé¢ w réwnowazny, nieco bardziej abstrakcyjny
sposob.
Dla A C X iz € X okredlmy

Ua(x) = {(Lgz, 9 1<i<n: y € A} C {0,1}"
Va(z) := conv{Ux(z)} C [0,1]".

Latwo zauwazy¢, ze Vy(x) jest domknietym wielo$cianem wypuklym. Ponadto 0 € Vy(z)
wtedy i tylko wtedy gdy 0 € A.
Kolejny fakt taczy Va(z) i DY(x).

Fakt 9.1. Dla dowolnego A C X iz € X,

dist(0,Va(x)) = inf |y| = DG(x).
yEVA(J:)

Dowad. i) D4 (x) < dist(0, Va(x)). Niech z € Va(x) takie, ze |z| = dist(0, Va(z)). Ustalmy
a€ 8", wtedy
inf (a,s) = inf {(a,y) < {(a,z) < |z|.
it fas) = il {0y) < (a2) < |2

Zatem istnieje y € A takie, ze s = (1y4,2,,))i € Ua(z) spemia (a,s) < |z|. Stad

da(IL‘,A) < da(may) = Zalﬂ{xﬁéyz} = <CL, S> < |Z|7
=1

czyli DG (z) < |z| = dist(0, Va(x)).

57



ii) D (x) > dist(0, Va(x)). Ustalmy z € Vy(z) taki, ze |z| = dist(0, Va(x)). Jesli z = 0,
to nieréwnosé jest oczywista, w przeciwnym przypadku niech a := z/|z|. Zauwazmy, ze dla
dowolnego s € Va(z) i 0 € [0,1], 0s + (1 — 0)z € V4(z), zatem

|22 <|0s+ (1 —0)z> = |2+ 0(s — 2)|* = |2|> + 20(z, s — z) + 62|5]°.

Biorac 6 — 0+ dostajemy (z,s — z) > 0, czyli

<CL, 5> =

Stad

Di(x) = do(x, A) = seiUrif(z)(a, s) = |z| = dist(0, Va(x)).

9.2 Twierdzenie Talagranda

Twierdzenie 9.2. Zaloimy, Ze p = 1 ® - -+ @ py jest produktowq miarg probabilistyczng
na X =X; x - x X,. Wowczas dla dowolnego niepustego, mierzalnego zbioru A w X,

(D5)? 1
—=—)dp < ——.
Jew (55 )< o
W szczegolnosci dla t > 0,
1 2
p({DG > t}) < ——e 1/,
(Ph> 1) < o

Dowéd. Przeprowadzimy indukcje po n. Dla n = 1, mamy D4 (r) = 1 x\ a(x), wiec

[ oo (Al = 41— ) + ) < 200 - () 4 (a) <
4 1(A)
Zatézmy, ze n > 2 i teza zachodzi dla n — 1. Dla uproszczenia notacji przyjmiemy

X=Xy x - xXpo1, A= ® @ o1

oraz dla z € X bedziemy pisa¢ © = (z,x,), gdzie T € X. Ustalmy 4 ¢ X = X x X,, i
przyjmijmy

B={z:3yeX,z=(z,y) € A} oraz A(y)={2:2=(Z,y) € A} dlay € X,.

Zauwazmy, ze jesli s € Uy, (), to (5,0) € Ua(z), a jesli t € Up(z), to (t,1) lub (¢,0)
naleza do Ua(x). Zatem jesli wybierzemy s € Vy(,,)(z) oraz t € Vg(z), to (s,0) € Ua(x)
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oraz (t,b) € Va(x) dla pewnego b € [0,1], czyli z wypuktosci zbioru Va(z), (0s + (1 —
0)t, (1 — 0)b) € Va(x). Stad z wypuklosci funkcji |z|?,

DG (x)2 < |0s+ (1 —0)t) + (1 —0)b]2 < 0]s]> + (1 —O)|t]* + (1 — )2,
czyli z dowolnosci wyboru t i s,
D(2)? < 0Dy, (#)? + (1 - 0)DR(Z)* + (1 - 0)*.
Odcaltkowywujac i korzystajac z nieréwnoéci Holdera dostajemy

Dﬁ,(j,xn)Q

/Xexp (?)dla(i‘)
c 7 2 c (5 _
<t =074 exp (P2 e ([, s (PR i)

Zatem na mocy zalozenia indukcyjnego (zastosowanego do zbioréw A(z,) i B w X) dosta-
jemy dla dowolnego 6 € [0, 1],

D (F, 0)%N - e 1 0, 1 \1-6
Jresw (AR tata) < 0 (it ) () - 09

Zauwazmy teraz, ze

eir[%)f” =040 <oy dlaue [0, 1]. (19)
€10,

Istotnie dla u > e~'/2 mozemy przyjaé¢ § = 1+ 2logu i po zlogarytmowaniu pozostaje
sprawdzié, ze f(u) := log(2 — u) + log(u) + log?(u) > 0. Prosty rachunek pokazuje, ze dla
u € [0,1], (uf’) = —2(u—2)"2+2u"! > 0, czyli uf’(u) < f/(1) = 0, wiec f(u) > f(1) = 0.

Dla u < e~ /2 kladziemy 6 = 0 i sprawdzamy (numerycznie lub korzystajac z poprzed-
niego rozumowania dla u = e~ 1/2), ze e!/* <2 —e /2 <2 — .

Nieréwnosci (18) oraz (19) z u = fi(A(xy,))/a(B) implikuja

[ e (BT g0y < L (o - HAGD)

1 AB)\" T i(B)
Zatem
(F,20)? 1 iAG)
J oo (PR @) < = (2 FEE Y (e)
1 _ pu(4) 1
= am 2 wE) <
gdyz v(2 —v) < 1dlawve|0,1]. O
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9.3 Wybrane zastosowania
Przyktad. Niech X = {0,1}" oraz yu = puy, gdzie p, = pd1 + (1 — p)do. Zatézmy, ze zbior
A C {0,1}" jest monotonicznie dziedziczny, w sensie
zreAye{0,1}"y<z = ye A
Niech dla z € X
N(z) =#{1<i<n:z; =1},
wowczas
dp(z,A) < Dj(x)y/N(z),
gdzie dp oznacza metryke Hamminga. Istotnie, przyjmijmy a = N(m)’l/Q(ﬂ{xizl})i i wez-

my y € A takie, ze

da(2,) = J% S Liypa < Dy(@):

CE,L:l

7 uwagi na monotoniczng dziedziczno$é¢ A mozemy przyjaé, ze y; = 0 dla z; = 0, zatem

=1

xizl

Stad dla s > 0,
pup({du (e, A) > r}) < pp({Di(z) > rs™}) + py ({N(2) > s})

1 2
e NG > )

<

Mozna sprawdzi¢, ze drugi czynnik jest maty dla s = na z a > p.
Twierdzenie 9.2 prowadzi do koncentracji pewnej klasy funkcji lipschitzowskich w od-
powiednim sensie . Mianowicie zachodzi

Whniosek 9.3. Zaldozimy, ze funkcja F: X — R spelnia warunek

n

vaXHa:a(x)vyEX F($) < F(y) + da(l'a y) = F(y) + Z ai(x)ﬂ{xi;éyi}' (20)
=1

Wowczas dla dowolnej probabilistycznej miary produktowej p na X,
2
p({|F' —Med,(F)| > t}) < 4exp (—42> dlat >0,
o

gdzie
n

o? ;= sup Z ai(z)?.

zeX i=1
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Dowdd. Dla m € R potézmy A = {F < m}, zauwazmy, ze warunek (20) implikuje, ze dla
dowolnego z € X,
F(z) <m+dy(z, A) < m+ oD§(z),

stad

MGF>WH¢D<uqumw>Wﬂ><M;f4W%%

Zatem dla dowolnego m,
p{F <mPp({F > m+t}) < e H/07),

Biorac m = Med,,(F') i m = Med,,(F) —t dostajemy teze. O
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10 Poréwnywanie supremoéw proceséw stochastycznych

W kolejnych wyktadach zajmiemy sie badaniem supreméw proceséw stochastycznych, czyli
zmiennych losowych postaci sup,c X;. Zbiér T' nie musi by¢ podzbiorem prostej rzeczywi-
stej, by unikna¢ probleméw z mierzalnoécia bedziemy zaktadaé, ze zbior jest przeliczalny,
alternatywnie mozna zakltadaé¢ osrodkowosé procesu (Xi)ier.

Przyktady.

i) Norma wektora losowego w osrodkowej przestrzeni Banacha [|X|| = sup, ¢(X), gdzie
supremum jest brane po przeliczalnym podzbiorze kuli jednostkowej wybijajacym norme
wektora.

ii) Norma operatorowa macierzy losowej || X || = sup, ; >=;; Xijtis;, gdzie supremum bierze-
my po przeliczalnym gestym podzbiorze BY.

iii) Supremum procesu empirycznego sup ez > iy f(X;) - tutaj X1, Xo, ..., X, sa nieza-
leznymi zmiennymi losowymi o wartosciach w pewnej przestrzeni X, a F przeliczalna klasa
funkcji mierzalnych na X.

10.1 Nier6wnosci symetryzacyjne

Od tej pory ¢,e1,€9,... oznaczaja niezalezne zmienne losowe takie, ze P(g; = +1) =
1/2 (ciag Bernoulliego), a ¢, g1, g2, . . . ciag niezaleznych zmiennych losowych o rozkladzie
N(0,1). Bedziemy tez zakladaé, ze ciagi (¢x) i (gx) sa od siebie niezalezne i niezalezne od
pozostalych zmiennych losowych.

Fakt 10.1. Zalozmy, ze X1, Xo,..., X, sq¢ niezaleznymi zmiennymi losowymi o warto-
Sciach w przestrzeni X, F jest przeliczalng klasq funkcji mierzalnych na X oraz Ef(Xy) =0
dla wszystkich k i f € F. Wowczas dla dowolnej niemalejgcej funkcji wypuklej G na R,

EG (sup Zf Xy > EG <2 sup Zakf Xk)> EG( T sup ngf Xy ) (21)

FeF k=1 FEF k=1 FEF k=1
oraz
EG | = sup exf(Xk) ) < (sup f(Xg) ) EG <2 sup exf Xk)>
(2 feF |t Z fer kz:l fer kz:l
EG( meup > ngf Xk) ) (22)

Dowdd. Niech (Y1, ...,Y,) bedzie niezalezna kopia ciagu (X1, ..., X,,), niezalezna od zmien-
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nych e;. Wéwczas na mocy nierownosci Jensena,

EG (sup zn: f(Xk)> =ExG (; sup Xn:(f(Xk) - EYf(Yk))>

JeF =1 feF =1

< ExG (;Ey sup zn:(f(Xk) - f(Yk))>

f€.7: k=1

< EG (; sup zn:(f(Xk) - f(Yk))>

fef k=1

= EG (; sup En: er(f(Xg) — f(Yk))>

feF k=1

< %EG <2 ?ggggkﬂ){k)) + %EG <2 ?gg;(—sk)f(ifk)>
= EG X, .
(2 Jsclelgl; enf( k))

Wykorzystaliémy powyzej tez fakt, ze zmienne (Xj, Yy) sa niezalezne i maja ten sam roz-
ktad co (Y, Xj), zatem dla dowolnego ciagu znakéw n, = £1, proces (37— ni(f(Xk) —
f(Y%))) fer ma ten sam rozklad co proces (3 p_;(f(Xk) — fF(Yi))) rer-

By udowodnié¢ druga nieréwnos$¢ w (21) zauwazamy, ze (gr) ma ten sam rozklad co
(eklgr|) i V27E|gk| = 2. Zatem z nieréwnosci Jensena

EG <2 sup i skf(Xk)> = EG <\/ﬂ sup i EkEg|gk’f(Xk)>

fEF 1 FeF =1

< EG <\/ﬂ sup znj 5k9k|f(Xk‘)>

feF k=1

— EG (\/ﬂ sup zn: gkf(Xk)>

f€.7'— k=1

Druga i trzecia nieréwnos¢ w (21) wynika z (22) zastosowanego do —F U —F. W do-
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wodzie pierwszej nierownosci ponownie wykorzystujemy nieréwnos¢ Jensena:

( sup Zekf Xp) ) —Ex.G (2 up > ZEk —Ev/ (YWD

<Ex.G ( Ey sup )

n

> en(f(Xk) — f(YR))

fEF |11

<EG| = sup
feF

Za‘k Xi) — f(Yk))D
k=1

> (f(Xg) — f(Yk))D

k=1
+ EG sup
fer

Z f(Xk)
Z f(Xk)

W szczegdlnym przypadku, gdy X = F, a F to klasa funkcjonatéw liniowych na FF

otrzymujemy.

=EG| = sup
fer

—_

Zka

k=1

\]

< zEG | sup
fer

)

= EG | sup
feF

k=1

O]

Whniosek 10.2. Zaiéimy, ze X1, ..., X, sq niezaleznymi scentrowanymi wektoramsi losowy-
mi o wartoSciach w osrodkowej przestrzeni Banacha F. Wowczas dla dowolnej niemalejgcej

funkcji wypuktej G na Ry,
1 n n
Z < < < .
G (2 kzzjlekxk ) EG( kz::lxk ) EG <2 > EG (\/QW )

10.2 Zasada kontrakcji dla proceséw Bernoulliego

n

> 9k Xk

n
Z Eka
k=1

Zacznijmy od tatwego faktu zwanego zasada kontrakcji.

Fakt 10.3. Zalozmy, ze |\g| <1 dla1 <k <n, za§ T jest ograniczonym podzbiorem R™.
Wowczas dowolnej wypuklej niemalejgcej funckji G na R,

EG <5up Z )\ktkek> EG (sup Z tk5k>

teT |- teT 1.

Dowdd. Funkcja (Ai,...,An) — EG(sup;cr > ji—q Aitker) jest wypukla na [—1,1]", wiec
przyjmuje swoje maksimum w ktoryms$ z wierzchotkdw. O
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Kolejna nieréwnoéé¢ miedzy procesami Bernoulliego, uogélniajaca znaczaco poprzedni
fakt, zostata sformutowana i udowodniona przez Talagranda.

Twierdzenie 10.4. Zalozmy, Ze dla k =1,...,n, pr: R — R sq 1-lipschitzowskie oraz
0r(0) = 0, zas§ G: R — R jest funkcja wypuklq i niemalejgcg. Wowczas dla dowolnego
zbioru ograniczonego T C R™,

EG <sup Z cpk(tk)sk> < EG <sup Z tk€k> .

teT =1 teT 11

Dowdd. Yatwy argument indukcyjny pokazuje, ze wystarczy wykazaé, ze dla ograniczonego
podzbioru T' C R? i funkcji 1-lipschitzowskiej ¢ na R takiej, ze ¢(0) = 0 zachodzi

teT teT

EG (sup(tl + <p(t2)£)> < EG (sup(tl + t2€)> .

Wystarczy zatem pokazac, ze dla dowolnego s,t € T prawa strona powyzszej niedwnosci
jest wieksza rowna

I:= %(G(tl + ¢(t2)) + G(s1 — ¢(s2)))-

Bez straty ogdélnosci mozemy tez zakladacé, ze

t1+ o(t2) > 51+ @(s2) oraz  s1 — @(s2) > t1 — p(t2). (23)

Rozpatrzymy 4 przypadki.
Przypadek 1. ta > 01 sg > 0. Zalézmy wpierw dodatkowo, ze so < to. Wykazemy, ze

2] < G(t1 +t2) + G(s1 — s2), czyli G(a) — G(b) < G(c) — G(d)
dla a := s1 — @(s2), b:= 81 — 89, c:=t1 + ta, d := t1 + p(t2). Z 1-lipschitzowskosci ¢ mamy
lo(s2)] < s2, skad wynika, ze a > b oraz, biorac pod uwage pierwsza nieréwnosé¢ w (23),
d > b. Mamy tez (wobec tego, ze ¢ jest 1-lipschitzowska oraz so < t2)
a—b=sy—p(s2) <ta—(ta) =c—d.
Funkcja = — G(z + y) — G(y) jest rosnaca dla y > 0, zatem
G(a) — G(b) < G(d+ (a — b)) — G(d) < G(c) — G(d).
Jesli so > to to pokazemy, ze

21 < G(t1 —t2) + G(s1 + s2), czyli G(a) — G(b) < G(c) — G(d)
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dla a := t1 + @(t2), b :=t] — to, ¢ := s1 + 52, d := 51 — @(s2). Mamy |p(t2)| < t2, skad
wynika, ze a > b oraz, biorac pod uwage druga nier6wnos$¢ w (23), d > b. Mamy tez (wobec
tego, ze ¢ jest 1-lipschitzowska oraz sg > t2)

a—b=1ts+ p(t2) < s2+ @(s2) =c—d.

i dalej argumentujemy jak poprzednio.
Przypadek 2. t3 < 01 so < 0. Rozumujemy analogicznie jak w przypadku 1.
Przypadek 3. ta > 01 s9 < 0. Wowcezas p(t2) < ta i —p(s2) < —s2, stad

21 < G(tl + tg) + G(Sl — 82).

Przypadek 4. ta < 01 sy > 0. Wowcezas p(ta) < —t2 1 —p(s2) < s, stad

21 < G(tl — tg) + G(81 + 82).

10.3 Lemat Slepiana

Celem tej czesci jest udowodnienie nastepujacego twierdzenia, bedacego jednym z warian-
téw tzw. lematu Slepiana.

Twierdzenie 10.5 (Slepian-Fernique). Zalézmy, ze X i Y sq n-wymiarowymi wektorami
gaussowskimi o $redniej zero oraz

E|X; - X;? > E|Y; - Y;|* dla1<i,j<n.
Wowczas

Emax X; > Emax Y.

i<n i<n

Idea dowodu polega na rozwazeniu procesu
Z(t) = VX +V1—tY, telo,1]. (24)

interpolujacego miedzy X i Y. By obliczy¢ %Ef(Z(t)) dla gladkich funkcji f bedziemy
potrzebowa¢ dwbch lematow dotyczacych gaussowskiego catkowania przez czesci.

Lemat 10.6 (Jednowymiarowe gaussowskie catkowanie przez czesci). Zaldézimy, zZe f €
CHR"™) oraz |f(z)| + | f'(x)| < Cell”l” dla pewnego t < 1/2. Wéwczas

Egf(9) =Ef'(g9) dlag~N(0,1).
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Dowdd. Calkujac przez czesci dostajemy:

d

Egf(g \ﬁ dx

e 2y = — f(z)e ™2+ / f(z)e ™ *de = Bf'(g).

O

Lemat 10.7 (Wielowymiarowe gaussowskie calkowanie przez czesci). Zaloimy, ze f €
CH(R") oraz dla € > 0 istnieje C. < oo taki, ze |f(x)| + |V f(z)] < Cee®l**. Wowezas dla
dowolnego n-wymiarowego wektora gaussowskiego X o $redniej 0,

of

Ly

E(X;f(X Zcov (X, X;,)E

7=1

LX) dla1<i<n.

Dowdd. Wiemy, ze X ma ten sam rozklad co AY dla Y ~ N(0, I,,) i pewnego A € My, ,,.
Stad
E(X;f(X Z aB(Yif(AY)) =) awE(Yig(Y)),
k=1 k=1
gdzie g(z) = f(Ax). Stosujac warunkowo Lemat 10.7 dostajemy

n

=2

=1 J

B(Vig(Y)) = By (¥

By dokoniczyé dowdd wystarczy zauwazyc, ze
0
Z ainajiBo of X) =) (AA"),E a;kf (X).
Jk=1 J J

O]

Whniosek 10.8. Zalozmy, e X 1Y sq niezaleznymi n-wymiarowymi wektorami gaussow-
skimi o Sredniej zero oraz proces Z(t) jest zadany przez (24). Wowczas dla f € C%(R™)
takiej, ze dla € > 0 istnieje Ce < 0o, f(z) + |V f(x)| + [Hessf(x)] < Ceefl™ zachodzi

o
al'ial‘j

LB(2(1) = 1 3 (Cov(X,, X,) ~ Cov(Vi,¥;) B
,j=1

(Z(t)) dlat e (0,1).

Dowéd. Mamy

Seiz) - B (3L Z) - 15 e (L (- 1))
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Stosujac Lemat 10.7 do 2n-wymiarowego wektora (X,Y) i funkCJl (\/x + V1 —ty)
dostajemy

of 0’ f
E E X, X:)E Z
(8%2( (t))\/%) COV 19 ) 8.73%8(17]( (t))

7j=1

oraz

of Y\ - S covr v B2t
E (axi(z(t))\/ﬁ) jZICoV(Yz,Y])Eamiaxj(Z(t))_
O

Dowéd Twierdzenia 10.5. Funkcja f(z) = max; x; nie jest gladka, bedziemy zatem ja od-
powiednio aproksymowaé, by moéc stosowaé wyprowadzone powyzej wzory. Okreslmy dla
B>0

fa(x) := ; log Z P,
i=1

Wéwcezas
logn

/B )
zatem wystarczy wykazacé, ze Ef3(X) > Efg(Y) dla dowolnego 5 > 0.

Bez straty ogélnosci mozemy zaktadaé, ze wektory X i Y sa niezalezne. Zdefiniujmy
Z(t) wzorem (24), zauwazmy, ze Z(1) = X, Z(0) = Y, wystarczy zatem iz pokazemy
LEf3(Z(t) >0dlate (0,1).

Prosty rachunek pokazuje, ze dla 1 < 4,5 < n,

o eﬁfi 82
J(;ﬂaf - S B pi(z), ax{%(a:; = B(8ipi(x) — pi()p;(x)).

max z; < fa(x) < max i +
(2

Stosujac Wniosek 10.8 dostajemy

n

SEf(2(0) :§ > (Var(X;) — Var(Y)E((Z(0)(1 - pi(Z(1))

1= 1

3 (Cov(X;, X;) — Cov(¥i, V) B(wi(Z(0)ns (Z(1)).
Z#J

Zauwazmy jednak, ze 1 — p;(x) = 37, pj(z), stad dla dowolnych liczb a;

n
Z aip; (1’ 1 - pz Z CLsz Z ajpz
=1

i#] i#]
Wykorzystujac powyzsza tozsamosé otrzymujemy
d B
T Bfa(2(1) = 7 2 (BIX; - Xj1? = ElY: - V;)E@i(Z(1)p;(Z(t))) > 0.
i#]
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11 Metoda tancuchowa I - szacowania supremow procesow
przy pomocy entropii metrycznej

11.1 Entropia metryczna
Zacznijmy od waznej definicji liczb pokryciowych.

Definicja 11.1. Niech (T, d) bedzie przestrzenia metryczna. Dla € > 0 przez N(T,d,¢)
oznaczamy najmniejsza liczbe kul otwartych o promieniu €, ktore pokrywaja 7', tzn.

N
N(T,d,e) := inf{N: T C U B(x;,¢e) dla pewnych z1,...,zn € T}.

=1

Uwaga 11.2. Mozemy zdefiniowaé
S(T,d,e) := sup {N: istniejg z1,...,an € T, d(zj,z;) > e dlai # j},

wtedy N(T,d,e) < S(T,d,e) < N(T,d,e/2).

Uwaga 11.3. Czesto rozwaza si¢ liczby entropijne zdefiniowane jako

en(T,d) :=inf{e > 0: N(T,d,e) <2"}.

11.2 Goérne oszacowania entropijne

Zalézmy, ze ¢ jest funkcja Younga na [0,00), tzn. ¢ jest wypukle, Scile rosnace oraz
©(0) = 0. Przyjmijmy tez, ze na T jest okre$lona metryka d taka, ze

’Xt — XS|)
Ep( 2t —281) <1 dlat,seT, t#s. 25
o (B # (25)
Przez A(T) = A(T,d) bedziemy oznaczali $rednice przestrzeni metrycznej (T, d).

Kolejne twierdzenie pokazuje jak szacowaé suprema procesOw przy pomocy entropii

metrycznej. Udowodnili je niezaleznie, uogélniajac wezesniejszy wynik Dudleya z 1967 roku
(Wniosek 11.7) Kono i Pisier w 1980 roku.

Twierdzenie 11.4 (Kono-Pisier). Jesli proces (Xi)ier spetnia warunek (25), to dla do-
wolnego tg € T,

A(T)
E sup (X — X;) < 2Esup|X; — Xy| < 8/ @ 1 (N(t,d,e))de.
steT teT 0

Dowdd. Oczywiscie mozemy zalozy¢, ze prawa strona postulowanego oszacowania jest skon-
czona. Niech ¢, = 27¥A(T) dla k = 0,1,... i niech Ty = {to} a dla k > 1, T}, bedzie pod-
zbiorem T mocy N(t,d, ) takim, ze T' C Uer, B(t, ex). Mozemy zatem znalezé funkcje
up: T — Ty taka, ze d(t,ux(t)) < .
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Ustalmy zbiér skonczony S C T', niech 0 := inf; seg 25 d(t, s) 1 wybierzmy ko takie, ze
€k < 0/2. Wtedy kazda kulka B(t,¢ey,) zawiera conajwyzej jeden punkt z S wiec |S| <
N(T,d,er,). Zdefinujmy przeksztalcenia 7, na S wzorami

T (t) =t oraz  m(t) :==ugougyio...oup—; dla0 <k <kp—1.

Zauwazmy, ze 7y, (S) = S 1 m(S) C Tk, zatem |m(5)| < N(T,d,er) dla 0 < k < ko.
Mamy 7o (t) = to, zatem

ko ko
sup | Xy — Xi,| = sup Z(Xﬂk(t) - X 1) Z sup |Xﬂk(t 7rk_1(t)|
tes tes k=1 —1 te
& ’Xt Xu ’
()
= sSup |Xt - | €k_1 Sup - W1
;tems) A Z temu(s) d(t,up—1(t))

Mamy

| X — Xuk 1(t)‘ 1 | X — uk 1(t)|
E sup —————— < Eyp~ I T\
tem(S) d(t, ur—1(t)) ; d(t,ur_1(t))

Xt — Xyt B
(Eke%:s*)@ <|d(t)uk—l(t)())|>) < ¢~ (Ime(9)))

<@ H(N(T, d, )

gdzie druga nieréwnoéé wynika z wklestogci funkeji ¢!, a trzecia z zatozenia (25). Otrzy-

mujemy zatem

ko
Esup | X; — Xy | < Zek 1 H(N(T,dep)) =2 exp " (N(T, d,er)).
tes k=1
By zakonczy¢ dowdd wystarczy zauwazyé, ze
ko+1 k0+1

A(T)
/ ¢ Y(N(t,d,e))d
0

oraz

Z/ N(T,d,er—1) Z ek-19 (N(T,d, e5-1))

Esup | X; — Xy | = sup{Esup|Xt —Xi|: SCT, |5 < oo}.
teT teT

O]

Uwaga 11.5. Oszacowanie z Twierdzenia 11.3 mozna rozszerzy¢ na procesy nieosrodkowe
pod warunkiem, ze zdefiniujemy

E sup (X; — X3) := sup{E sup (Xy — X5): SCT, |S|< oo} )
s,teT s,tesS
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Uwaga 11.6. Jesli proces X jest symetryczny (tzn. ma ten sam rozktad co (—Xi¢)er), to

E sup (X; — X5) = Esup X; + Esup(—X;) = 2Esup Xj.
t,s€T teT seT teT

Kolejny wynik to wniosek z Twierdzenia 11.4, ktéry byl udowodniony pierwotnie (w
nieco innym sformulowaniu) przez Dudleya.

Whniosek 11.7 (Dudley). Zalézmy, Ze (X;)ier jest scentrowanym procesem gaussowskim
oraz d(t,s) = (E|X; — X,|*)'/2. Wéwczas

A(T)
Esup X; = fE sup (Xs — X3) < C/ VInN(T,d,e ds—C’/ VInN(T,d,e)d

teT s,teT

gdzie C jest stalg numeryczng (mozna przyjeé C = 4,/8/3(1 + 1/In3/1In2) < 15).

Dowdd. Ostatnia réwnoéé¢ wynika stad, ze N(T,d,e) = 1 dla ¢ > A(T). Niech d(s,t) =
V/8/3d(s,t) oraz is(x) = exp(z?) — 1. Wykorzystujac fakt, ze Eexp(Ag?) = (1 — 2X)~1/2
dla g ~ N(0,1) i A < 1/2 nietrudno udowodnié, ze dla s # t,

| X — X B
Ew(‘%ﬁ)>_L

Stad z Twierdzenia 11.4 otrzymujemy
8/3A(T) ~
E sup (X, — X;) < 8/ vy (N (T.d,e)) de
0

s,teT
] [A(T)
= = log(N(T 1).
a3 [ VsV T a9 + )

Zauwazmy, ze log(n + 1)/logn < log3/log2 dla n > 2, ponadto N(7T,d,e) > 2 dla d <
A(T)/2, zatem

A(T) log 3 oo
log(N(T, d 1)de < 1 log N (T, d, )d
| Ve d o)+ 1y (1%2+)A Vo N(T, d, =)z

11.3 Minoryzacja Sudakowa dla proceséw gaussowskich

W tej czesci bedziemy zakladaé, ze Xy jest scentrowanym procesem gaussowskim oraz
d(t,s) = (B|X, — X,|>)Y? dlat,s € T.

Oszacowania Dudleya nie mozna w ogdélnej sytuacji odwrécié. Prawdziwe jest stabsze osza-
cowanie udowodnione przez Sudakowa.
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Twierdzenie 11.8 (Minoryzacja Sudakowa). Zalézmy, Ze (Xi)ier jest scentrowanym pro-
cesem gaussowskim. Wowczas

1
—supey/log N(T,d,e) < Esup X;.
4 e>0 teT

Dowdd. Zatézmy, ze N(T,d,e) > N, wéwczas istnieje S C T takie, ze |S| = N oraz
| X; — Xsllo > edlatseS, t#s Polozmy Y; = eg;/V/?2, gdzie (gi)ies sa niezaleznymi
zmiennymi N (0, 1). Twierdzenie Slepiana-Fernique’a implikuje, ze

3
\ﬁ

gdzie ostatnia nieréwnos¢ wynika z ponizszego Lematu 11.10. O

1
Esup X; > Emax X; > EmaxY; = Emaxg; > —-e+/logn,
tes tes tes 4

teT

Lemat 11.9. Jesli g ~ N(0,1), to

t
V27 (t2 + 1)

Dowdd. Gérna nieréwnosé wynika z szacowania

/OO e—zﬂ/zdx < /OO ge_gﬂ/zd:ﬁ _ 16_t2/2.
t t t t

1
767"‘2/2.

V2t

e <P 1) <

By udowodnié¢ dolng definiujemy funkcje

F) =+ 1)/t e "2y — te /2

i pokazujemy, ze limy_,», f(t) = 0 oraz na podstawie udowodnionego juz gérnego oszaco-
wania

Ft) = 2t/ e~ /2 _2e71/2 L .
t
O

Lemat 11.10. Zaldzmy, Ze g1,92,-- -, gn $q niezaleznymi zmiennymi N (0,1). Wowczas

1
E > ——=+/logn.
o > 5 5 VioRn

Dowdéd. Dla n = 1 nieréwnos¢ jest oczywista. Dla 2 < n < 12 mamy logn < 8/7 i

1 1 1
Emax g > Emax{g1,92} = Eg1 + E(g2 — 1)+ = E|g2 — 91| = —= > —=/logn.
kgi(gk aX{gl 92} g1 (92 91)+ 9 ’92 91’ ﬁ 2\@ logn

X
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Dla n > 13 pokazujemy, ze
Viogn —a "
P (maxg; < 0ogn) <P(g < logn)" < [1— —Y—2" ¢~ (logn)/2
<z< 9 & ) (9 Bn) < V27 (1 + log n)

< vnlogn < o1
<exp| ———=————-| <e 7,
V2m(1+ logn)

przy czym ostatnie szacowanie wynika stad, ze wobec monotonicznosci z/ log x na [e, 00),

\/n/logn > \/13/log13 >52>V2r(l+7/8) > V2r(1+1/logn).

Zatem

Emaxg; > E(V10g 01 (6,5 viogny T 911 {max, g,<0})

> /log nP(max g; > /logn) — (Eg?)'/*P(max g; < 0)'/2
(2 (2
1

>(1—eNylogn—2""2> ﬁ\/logn.

O

Ponizszy lemat pokazuje, ze oszacowanie z Lematu 11.10 jest optymalne z doktadnoscia
do stalej.

Lemat 11.11. Zaldzmy, Ze zmienne X1, ..., X, spelniajg warunek subgaussowskosci
Eexp(AX;) <exp(aX?) dlal1<i<n, A>0.

Wowczas
E max X; < 2v/alogn.

1<i<n

Zauwazmy, ze w lemacie nie ma zalozenia niezaleznosci oraz, ze zmienne N (0, 1) spel-
niaja zalozenia z a = 1/2.

Dowdd. Dla X > 0,

1 A ) X, 1 X, logn
< — max;gn 44 < - P —=— .
E rzngagc X; 3 log Ee \ log E Ee \ + a\

i<n
Optymalizujac powyzszg nierownos¢ po A > 0 dostajemy teze. O

Do szacowania supreméw proceséw gaussowskich z dotu bedziemy potrzebowali wzmoc-
nionego oszacowania Sudakowa.
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Twierdzenie 11.12. Zalozimy, Ze (Xy)ier jest scentrowanym procesem gaussowskim oraz
ti,...,ty €T, € > 0 spelniajq warunek d(t;, t;) > e dla i # j. Wowczas

1
Esup X; > —evlog N +minE  sup Xy,
teT 8 SN d(tt)<oe

gdzie o > 0 jest pewng stalg uniwersalng (moina przyjeé a = 1/(8v/2)).

Dowdd. Okreslmy zmienne losowe

Yii= sup (Xi—Xy,)—E sup (Xy—Xy)= sup (Xy—Xy,)—E sup X
d(t,t;)<ae d(t,t;)<ae d(t,t;)<ae d(t,t;)<ae

Koncentracja proceséw gaussowskich implikuje, ze Eexp(\Y;) < exp(A\2a?e?) dla A € R.
Stad Lemat 11.11 (zastosowany do zmiennych X; = —Y;) implikuje

Emax(-Y;) < aey/2log N.

i<N
Poniewaz
max(a; + b; + ¢;) > maxa; — max(—b;) + min ¢;,
(] (] (2 (]
wiec
EsupX; > Emax sup X;= Em%( (Xti +Y;,+E sup Xt>

teT SN d(t i) <as s d(t.ti)Soe

> Emax Xy, — Emax(—Y;,) + minE sup X;
S i SN d(tt)<as

> E\/log]\f —aey/2logN +minE sup X; > E\/logN—i—minE sup Xy,
4 SN d(tt)<oe 8 SN g(tt)<oe
oile np. a = 1/(8v/2). O

11.4 Stacjonarne procesy gaussowskie

Definicja 11.13. Proces (X});er nazywamy stacjonarnym, jesli istnieje grupa G dzialajaca
na T taka, ze

i) dzialanie G jest tranzytywne, tzn. dla t,s € T istnieje g € G takie, ze g(t) = s

ii) dla dowolnego g € G proces (X¢)ier ma ten sam rozktad co (Xyq))ier-

Uwaga 11.14. W przypadku, gdy (X;) jest scentrowanym procesem gaussowskim bby do-
wies¢ warunku ii) definicji wystarczy sprawdzi¢, ze Cov(Xy, Xs) = Cov(Xyp), Xy()) dla
s, t €T, ged.
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Przyktad. Niech ¢ bedzie ciggiem sumowalnym z kwadratem i okreslmy

Xy = Z cr(gr sin(kt) + gf, cos(kt))
k

gdzie g1, 4}, 92, - . . sa niezaleznymi zmiennymi N (0,1), a t € T := R/2xZ. Tu T dziala na
siebie poprzez dodawanie i wystarczy zauwazyc¢, ze

Cov(Xy, X ch cos(k(t — s)) = Cov(Xitu, Xstu)-

Twierdzenie 11.15 (Fernique). Zalézimy, Ze (Xi)ier jest stacjonarnym procesem gaus-
sowskim. Wowczas

c/ \/logN(T,d,s)ds<EsupXt<C/ \/1og N(T,d,e)de
0 0

teT

gdzie 0 < ¢ < C < oo sq statymi uniwersalnymi (moina np. przyjeé ¢ = (192y/2)7"
C=15)

Dowdd. Twierdzenie da sie wywnioskowaé ze znacznie ogdlniejszego twierdzenia Talagran-
da o mierze majoryzujacej, ale pokazemy bardziej bezposredni dowdd.

Dla uproszczenia notacji ustalmy to € T' i okre$lmy B(e) = B(to, ¢) - kula jednostkowa
o $rodku w ¢y i promieniu . Zauwazmy, ze stacjonarno$¢ implikuje w szczegdlnodci, ze

E sup X;=E sup X; dlateT.
s€B(t,e) s€B(g)

Niech a < 1/2 bedzie stala z Twierdzenia 11.12. Zauwazmy, ze jeéli t € B(a™!) to
B(t,a""3) C B(a") stad Twierdzenie 11.12 implikuje

E sup X;> oz”+2\/logN B(antl),d,a™2)+ E  sup X;.
teB(an) 8 teB(ant3)

Iterujac poprzednia nieréwnoéé dostajemy dla dowolnego n

Esup > Z o H3I+2 \/k)g N(B(ant3i+1), d, an+3i+2)

stad stosujac te nieréwnoéé dla n, n+1,n-+2 mamy i dobierajac n € Z tak by a2 > A(T)
dostajemy

1
Esup > > ozkﬂ\/logN( B(ak),d, ak+1) Zak+1\/logN ), d, akt1),
rer 24 s
n+1 kEZ
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Zbiér T da si¢ pokryé kulami B(t;,a¥), i = 1,...,N(T,d,o*) a kazda z tych kul da si¢
pokryé N(B(t;, o), d, o) = N(B(a¥),d,a**!) kularm o promieniu o1 wiec
N(T,d,o*™) < N(T,d,a*)N(B(a*),d, ™).

Stad

Esup X; > 2 Zak+1\/logN T,d,aktl) — Zak+1\/logN(T d, k)

teT keZ kEZ
1

24

(1-a) Zak+1\/logN T,d,ak+1).
keZ

7 drugiej strony

oo Oék
/0 \/01og N(T,d,e) < Z /k+1 \/log N(T,d, ok +1)de
kEZ

1 —
a Z ak+1\/logN T,d,ak+1).
keZ

12 Miary majoryzujace

Oszacowania entropijne omawiane w poprzednim rozdziale sg bardzo uzyteczne w zastoso-
waniach, poniewaz istnieje szereg narzedzi do szacowania z gory liczb pokryciowych (szcze-
gélnie w przypadku, gdy metryka jest euklidesowa). Jednak, chociaz w wielu przykladach,
Twierdzenie 11.4 prowadzi do dobrych oszacowan, to w ogélnosci nie mozna go odwroécié.
Trudnosé ta jest zwiazana z tym, ze entropia metryczna traktuje réwnomiernie cata prze-
strzen metryczna, nie rozrézniajac miejsc w ktérych jest ona bardziej lub mniej zageszczo-
na. Fernique zaproponowal nowy sposéb szacowania, za pomoca tzw. miar majoryzujacych
(czyli odpowiednio dobranych miar probabilistycznych na T'), a Talagrand wykazal, ze w
przypadku gaussowskim oszacowanie Fernique’a daje si¢ odwroécié. Obecnie, czeéciej niz
miar majoryzujacych, uzywa sie bardziej kombinatorycznego podejscia za pomoca ciggdw
podzialéw przestrzeni, ale zaczniemy od klasycznego podejécia.

12.1 Oszacowania z goéry

W przypadku proceséw subgaussowskich (tzn. takich, ktére spelniaja warunek (25) z func-
kja Younga ¢ = 19) oszacowanie gérne z uzyciem miar majoryzujacych udowodnit Ferni-
que. Oszacowanie to byto potem uogdlniane, miedzy innymi przez Talagranda. Ostateczne
sformutowanie, bez dodatkowych warunkéw wzrostu naktadanych na funkcje Younga, wy-
kazal w 2006 roku Bednorz.
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Twierdzenie 12.1 (Bednorz). Zalézmy, Ze ¢ jest funkcjg Younga, (T,d) jest przestrzeniq
metryczng, a proces (Xi)ier spelnia warunek (25). Wéwczas dla dowolnej miary probabi-
listycznej p na (T,d), ktorej nosnik jest gesty w T oraz przeliczalnego podzbioru Ty C T,

E (Xs — X¢) <32 /A(T) —1< ! >d
su s — < su —— | de.
ety ! erdo 7 \u(Bte)

Uwaga 12.2. Talagrand wykazal, ze dla dowolnej przestrzeni metrycznej (T, d) i dowolnej
funkeji Orlicza ¢ istnieje miara probabilistyczna p na (7', d) taka, ze

/A(T) —1( ! )d <4/A(T) N (t,d, e))d
Su RS 6\ b ’8 57
werdo ¥ \uBE9) 0o 7

zatem (z dokladnoscia do stalych) Twierdzenie 12.1 jest silniejsze niz Twierdzenie 11.4.
By skroécié notacje zdefiniujmy
W= [0 (g e oras ST = S(Tpe) = supo, 1)
o = ————— | de oraz L) = , by ) :=sup o,(t).
B P B e) 8 R

Kluczem do dowodu Twierdzenia 12.1 jest nastepujace deterministyczne szacowanie.

Twierdzenie 12.3. Dla dowolnej funkcji Younga ¢ i miary probabilistycznej p na (T, d)
istnieje miara probabilistyczna v na T X T taka, ze

£lt) - /fdu’ < 165(T, ) @ + % [ v (W) du(u,w)) .

sup
teT

Dowdd twierdzenia 12.1. . Ustalmy to € T' i potézmy Y; := X; — X;,. Wowezas Yy — Y, =
X — X oraz E|Y;| < d(t, to) + Eo(|Y:|/d(t,t0))/e(1) < co. Mozemy zatem zakladaé, ze
proces (Xy)ier jest calkowalny.

Zalézmy najpierw, ze o-ciatlo F jest skonczone. Sklejajac wszystkie elementy wchodza-
ce w sklad jednego atomu (i wyrzucajac atomy o mierze zerowej) mozemy zakladaé, ze
przestrzen zdarzen elementarnych € jest skonczona i P({w}) > 0 dla w € Q. Zauwazmy, ze
dla s,t €T,

| Xs(w) = Xy(w)| < d(s, )¢ (1/P({w})),
w szczegdlnoéei X; ma ciagte trajektorie. Stad stosujac Twierdzenie 12.3 do kazdej trajek-

torii z osobna dostajemy po odcatkowaniu

E sup |X; — X¢| < 2Esup
s,teTyp teT

X~ [ Xuduw)

2 1 | X — Xl
<329(T. ) (2 + = Eop (12e 2wl “w)) < 328(T, ).
325(T, ) (3 + 3/TXT tp( d(uw) )du(u w)) 325(T, i)
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Jedli Ty jest skonczonym podzbiorem T, to istnieje rosnacy ciag skonczonych o-ciat
(Fn)n>1 taki, ze o((Xp)ter,) = 0(U,, Fr). OkreSlmy X[ := E(X|F,), wowczas X' zbiega
do X; p.n. i w L', ponadto na mocy nieréwnosci Jensena

e (S ) <o (M) <

Stad

E sup |X; — Xy =limE sup | X3 — X' < 325(T, ).
s,teTp s,t€Tp

Jedli Ty jest przeliczalne, to jest wstepujaca sumg zbioréw skonczonych i proste przejécie
graniczne pokazuje teze w tym przypadku. O

By udowodnié¢ Twierdzenie 12.3 mozemy zakladaé, ze S(T', 1) < 0o, co w szczegdlnosei
implikuje, ze A(T) < oo (bo S(T, 1) > A(T)¢(1)). Niech kg € Z spelnia

gko < 71 (1) < gho L,
Okredlmy dla t € T,
1
t) = A(T t) := mi > 0: 1(><4k} dla k > kg.
Tko (1) (T) oraz ri(t) := min {5 0 (B9 a 0

Lemat 12.4. i) Funkcje v sq 1-Lipschitzowskie na (T, d).
it) Dla t € T zachodzi

4
Z ()47 < Sou(t).
k>ko 3
i11) Diam > kg it €T,
8
k k

Z 4 221 i(1) < gau(t).
k=ko i=k

Dowdd. i) Funkcja 7, jest stala, a dla k > ko mamy B(s,e+d(s,t)) D B(t,¢), skad tatwo
wynika, ze 74 (s) < ri(t) +d(s,t).
ii) Mamy

- Z ri(t)4” = Z re(t)(4F — 4F—1) < Z (1 (t) — Tigr (8))4F + lim sup ry (£)4F

k>ko k>ko k>ko k—o0

<3 [0 Gaay) v [ (g )

. /OA(T) @_1 (W) de.
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iii) Liczymy

m—1 mo m—1 m o 00 ) ] ]
ST ARy o e = SN TRl <N 27 Y Al =2 Al
k=ko  i=k k=ko i=k j=0  ixko i>ko
i korzystamy z ii). O

Okredlmy dla k > kg operatory liniowe Sy, dzialajace na ograniczonych funkcjach bo-
relowskich na T', wzorem

1 3 R
Sef(0) = f, o ) = s /. o ), sdvie Bu(t) = Bt ().

Kolejny lemat podsumowuje proste wtasnosci Sy, ktore przydadza nam sie pozniej.

Lemat 12.5. Dla k > ko,

i) Spl =1,

i1) Spf < Skg dla f < g, w szczegdlnosci | Sk f| < Sk|f],
iii) SkSkof = Skof = [ fi,

i) limg 00 Sk f(t) = f(t) dla funkcji cigglych f it e T,

Dowdd. Warunki 1)-iii) sa oczywiste, a iv) wynika stad, ze limg_,o 75 (t) = 0. O
Zanim przejdziemy do dowodu Twierdzenia 12.1 wykazemy jeszcze jeden fakt.

Lemat 12.6. Zachodzg nastepujgce oszacowania:
Z) Sﬂ“j < T’l’—|—’l“j dla i,j > ]{30,
’ii) SinSm—1""" Sk+1rk < Zﬁk 2i7k7“i dla m >k > k.
Dowdd. i) Lipschitzowskosdci r; implikuje r;(u) < r3(t) + r;j(t) dla u € Bj(t).
ii) Udowodnimy oszacowanie przez indukcje po m. Dla m = k+ 1 z i) mamy Sk117% <

Tra1+7E < rp+2rpe1. By wykazaé krok indukeyjny zalézmy, ze ii) zachodzi dlam > k > k.
Zalozenie indukeyjne, liniowos¢ Sp,4+1 1 cze$¢ i) implikuja
mo mo mo m+1 )
Sm41Sm ++ Se1Th < Smg1 D27y =3 27K G ey KT 27 () <Y 20 Py
i=k i=k i=k i=k

O]
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Dowdd Twierdzenia 12.3. Mamy

50~ [ fdu] = i [Sinf ~ SnSno- - Sia ()

m—1

= n%gnoo Z SmSm—l T Sk+1(I - Sk)f (t)
k=ko
m—1

< lm Y 0SSt Spra S (L = Sp)f| (1) (26)
k=ko

Dla k > kg zachodzi
Skl =Sl =|f, £ w))dp(u)du(w)

Bpy1(t) J Bi(u

ﬁw ﬁ% w)dps(u)dpu(w).

Mamy p(zy) > z¢(y) dlaz > 1, y > 0, zatem

Stad dla u # w

|f(w) = f(w)] [f (u) = f(w)]
w0 ¢(4’“+1>‘p< d(u, w) ) '

Zauwazmy, ze dla w € By (u) zachodzi d(u,w) < ri(u), ponadto, z definicji ri41 wynika,
ze u(Bry1(t)) > 1/@(41). Zatem

rﬂw—fmw<mwm“++maﬁw»mWM“w(”w”‘§”0 dla w € By(u)

Ska(T =SS (1) < 44 Seane®) + [ @ £
T Bk(u)

Stad, wobec Lematu 12.6,

SmSm—1- - Sky2 [Ses1(I = Sk) f] ()
<4’f+122z Fr +4/ ri(u 4'“]{9 (u)so('f(?(;igw”)du(w)du(U)

i=k
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Powyzsze oszacowanie, (26) oraz Lemat 12.4 implikuja

10 [ i < oo a3 [t f o (FGT) dnerint

Niech v bedzie miarg probabilistyczng na T x T' dang wzorem

>=;§Aﬁwﬂﬁmumwmwmm
k=ko k(U

gdzie

(OUN IS

S, T).

M= Z/W‘Wﬂ A@www<

k=kq
Wéwczas

‘f(t) - /deu‘ < 3—32%(1&) vau [ g <W) dv(u, w)

2 !f(U)—f(w)!> )
< 16S5(7T, -+ - ———— ) dv(u, .
@ (5+3 ) e (™) dvtuw)
O
Twierdzenie 12.1 implikuje w szczegdlnosci oszacowanie supremow procesow gaussow-

skich, udowodnione pierwotnie przez Fernique’a.

Whiosek 12.7 (Fernique). Zalézmy, ze (Xi)ier jest scentrowanym procesem gaussowskim
oraz d(t,s) = (E|X; — X,|?)'/2. Wéwczas

A(T) 1 o0 1
Esup X; < C / ] ()d =C / ] ()d,
apars Leb ¢“mmm»€ erdo VM \uBte) )"

gdzie C jest stalg numeryczng (mozna przyjeé C = 48,/8/3/In3/1n2 < 100).
Dowadd. Postepujemy jak w dowodzie Wniosku 11.7. Stosujac Twierdzenie 12.1 do ¢ = 19
i metryki 1/8/3d dostajemy

Esup X, — B (X X)<16\/g /A(T) 1 (1+ ! >d
su = = su s — B —Su n —_— £.
wer 't 2 ar t 3t Jo u(B(t,))

Zauwazmy, ze

/ \/ln 1+ tg)))de\FA \/E/ \/ln ds.

Ponadto dla ¢ < A(T )/2 istnieje t € T taki, ze u(B( < 1/2, wiec
/ o ( ! )d > 1\/1 SA(T)
su n(———J)de>-vln .
et Jo uBEe)) 72
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12.2 Dwustronne szacowania supreméw procesow gaussowskich

W tej sekcji bedziemy rozwazaé scentrowane procesy gaussowskie (Xi)ier. Twierdzenie
Fernique’a (Wniosek 12.7) méwi, ze dla takich proceséw i metryki d(t,s) = || Xt — Xs||2
zachodzi

Esup X; < C32(T, d),
teT

gdzie

2(T,d) := inf {sup / \/ In )dz—:: 4 miara probabilistyczna na T} .
teT

Czesto, wygodniej niz z miare probablhstycznz% na T konstruowaé ciag rozbi¢ T'.
Definicja 12.8. Méwimy, ze (Ap)n>0 jest dopuszczalnym ciggiem rozbi¢ T, jesli jest to
ciag rosnacy (tzn. A,11 jest podrozbiciem A,), Ay = {T'} oraz |A,| < N, := 22" dla
n > 1.

Dla przestrzeni metrycznej (7', d) okreslamy ~2(T, d) wzorem

o0

v2(T, d) := inf {sup > 22A(A,(t)): (An)nso dopuszczalny ciag rozbié T} ,
teT n=0

gdzie A, (t) oznacza taki zbiér z rozbicia A,, dla ktérego t € A, (t).
Fakt 12.9. Dla dowolnej przestrzeni metrycznej (T, d), 32(T,d) < v/2v(T, d).

Dowdd. Ustalmy dopuszczalny ciag podzialéw (A, )n>o0 przestrzeni 7. By wykazaé teze
wystarczy skonstruowaé miare probabilistyczng p na T taka, ze

A(T) 0
SUP/ \/ln (,u(B(lt,e))>dE <V2sup ) 2N (An(t)).

teT Jo teT =0

Wybierzmy T,, C T dlan = 1,2... takie, ze |T,,| < N,, i T,, zawiera po jednym punkcie z
kazdego ze zbiéréw nalezacych do rozbicia A,,. Wowczas

ST Tnle ™ <de™? + 164 + Y 2FeF < 1,
n=1 k=8

wiec istnieje miara probabilistyczna taka, ze u({t}) > exp(—2") dlat € T,,. Stad dlan > 1
u(B(t, A(An(t)))) > exp(—2") zatem

/ \/h“ Bi,e) )d—i/f;(z % (i3 (B, A(ZW()))))‘“

<2 DA(A,L (1) < V2 Z 22 A(Ap(t)).
n=1 n=0

8
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Twierdzenie 12.10 (Talagrand). Niech (X;)ier bedzie scentrowanym, osrodkowym pro-
cesem gaussowskim oraz d(t,s) = || X — Xs||2. Wowczas v2(T,d) < CEsup,cp X;.

Dowdd, ktory pokazemy ponizej pochodzi od van Handela. Zanim przedstawimy klu-
czowy fakt na ktérym on sie opiera, bedziemy potrzebowali kilku definicji.

Definicja 12.11. Dla n > 0 i przestrzeni metrycznej (7', d) definiujemy
en(T) = en(T,d) := inf{r >0: N(T,d,r) < N, =2%"}.

Nietrudno zauwazy¢, ze SA(T) < eo(T) < A(T), N(T,d,r) < Ny, dla r > e,(T), za$
dla r < e,(T), N(T,d,r) > N,. W szczegblnosci istnieja punkty z1,...,zn, € T takie, ze
d(zi,zj) > 1en(T) dla 1 <i < j < N,

Fakt 12.12 (van Handel). Zaldzmy, Ze funkcje rn,: T — [0,00), n = 0,1,... spelniajg
warunek

VnzoVacT en(A) < ZA(A) + supry(t). (28)

teA

D=

Wowczas

o0
v2(T') < 70sup Z 2 2p, (1).
teT n=0

Dowdd. Dla dopuszczalnego ciagu podzialéw A = (Ay,)n>0 przestrzeni T okreslmy

[e.9]

Ya(A) ==sup Y 2"2A(A4,(1)).
teT n=0
Zauwazmy, ze funkcje 7, := min{r,, A(T)} spelniaja (28), wiec mozemy bez straty

ogblnosci zaktadaé, ze r, < A(T).

Okreslimy w sposéb indukeyjny dopuszczalny ciag podziatéw (A, )n>o. Kladziemy Ay =
Ay = {T}. Zalézmy, ze mamy okreslony podzial A, dla n > 1 taki, ze |A,| < Np,
skonstruujemy jego podpodzial A, 1. Ustalmy w tym celu zbiér A € A,, i podzielmy go
najpierw na zbiory A!,... A"*! dane wzorami:

Al={tc A: 27°A(T) < rpq(t) < 2VPA(T)} dla 1 <i <,
A=t e A, () < 27A(T)).

Wéwezas jak tatwo zauwazy¢
Tro1(8) < 2rp_1(t) +27"A(T) dlas,t€ A, 1<i<n+1,

zatem z zalozenia (28)

en 1(A) < ZA(A) +2r, 1 () +27"A(T) dlate A, 1<i<n+1,

| =
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w szczegblnosci kazdy A’ da sie podzieli¢ na mniej niz N,_; zbioréw A% takich, ze

A(AT) < SA(A) + dry 1 (1) + 2 A(T).

Okreslmy
Api1 = {Aiﬂ‘: Ac A, i<n+1,j <Nn}.

Wéwczas
|Ans1] < No(n +1)Np—1 < Npqy.

Zauwazmy, ze na mocy indukcyjnej konstrukcji

1
A(Aus1 (1) < GAMA(H) +draa () + 2 7"AT) dlat €T, n> 1.

Stad
S 9V2A(AL(1) < (1 + VI)A(T) + i 2n/2 @A(Anl(t)) +drn—(t) + 22_"A(T)>
n=0 =2
*3[ i 22A(A, () + 8 i 2", (t) + (5 + 3V2)A(T).

n=0

Zauwazmy, ze (28) implikuje

1
A(T) < 2e0(T) < =A(T) + 2supro(t),
3 teT
stad
A(T) < 3supro(t)
teT
Zatem
- n/2 \/i - n/2 n/2
STEA(AL () < - ST 2Y2A(A,(1)) + (23 + 9V2) sup Z 2
n=0 3 n=0 teT =
Zatem biorac supremum obu stron po ¢ otrzymujemy
\/é .- n/2
72(A) < = 72(A) + (23 + 9V2)sup > 2", (t).
teT n=0
Stad
3
T) < 72(A 23 4+ 9v2)sup ¥ 227, () < T0sup > 2"/27,
(1) <) < 5= S ap S 2V,
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Zalézmy, ze (Xi)ier jest scentrowanym procesem gaussowskim takim, ze Esup,cr X <

00. Okreslmy

g(A):=EsupX;, ACT
teA

oraz
K(a,t) := ir>1g {ar +¢g(T) — g(B(t,r))} a>0,teT.

Ponadto dla 6 > 0 niech 7s5(a,t) € [0,,00) spelnia nieréwnosé
ars(a,t) + g(T) = g(B(t,75(a, 1)) < K(a,1).

Lemat 12.13. Dla € > 0 i ciggu 6, zachodzi

supZQ”/Q (e22 ¢ )\2+\/§<g(T)+§:5n>.

tETn 0 €
Dowdd. Mamy K (b,t) < brs(a,t) + g(T) — g(B(t,rs(a,t))), zatem

d+ K(a,t) — K(b,t) > (a —b)r(a,t)+6 a,b,6 >0,t €T,

stad
> e2™2(1 — 27125 (£27/2 1) <Y ( K(e2V2 1) — K (2 D/2 1) 4 5n)
n=0 n=0
= K(2™?,t) = K272, 0) + 3 00 < g(T) + > b,

n>=0 n>0
gdzie ostatnia nieréwnosé¢ wynika z szacowania 0 < K (a,t) < g(7).

Dowdéd Twierdzenia 12.10. Wykazemy wpierw, ze dla €,0 > 0in > 0,

en(4) < CeA(A) + (z + C’e) suprs(e2™/2,t) + C27/%5,
tcA

gdzie C jest stalg uniwersalna, za$ o stala z Twierdzenia 11.12.
Okredlmy

o :=suprs(e2?,t), r:=o0+ A(A).
teA

By udowodni¢ (29) wystarczy rozpatrze¢ przypadek, gdy o < §e,(T). Na mocy definicji
en(T), istnieja t; € T, 1 < i < N, takie, ze d(t;,t;) > e, (T')/2 dla i # j. Twierdzenie 11.12

implikuje, ze

Nn
g <U B(ti,0)> > —en )V 1log N, + Imn g (ti,0)).
i=1
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Stad istnieje k < N, takie, ze

V 10g22n/2

T en(T).

Np,
9(T)—g <U B(ti,0)> <y(T) — g(B(ty,0)) —
=1

Mamy

9(T) — g(B(ty, o)) < g(T) — g(Bty, rs(2™%,13))) < K (22, t3) + 0

Ny
<e2"2r+ g(T) — g(Bltg,r)) + 6 < 2"?r 4+ g(T) — g (U B(%U)) +9,
i=1

gdzie ostatnia nieréwno$¢ wynika stad, ze U;<, B(ti; o) C B(ty,7). Poréwnujac ostatnie
dwa oszacowania dostajemy

16
vlog 2

i nieréwnosé (29) zachodzi z C' = 16/+/log 2.
By zakonczy¢ dowdd wystarczy wybrad

en(4) < (57“ + 2*”/26)

1 1 2 1 _
=g nim gD maim (245 20 + 02,
1 zastosowaé Fakt 12.12 i Lemat 12.13. UJ

Whiosek 12.14 (Fernique-Talagrand). Niech (Xi)ier bedzie scentrowanym, osrodkowym
procesem gaussowskim oraz d(t, s) = || Xy — Xs||2. Wowczas

Esup X; ~ 72(T7 d) ~ &Q(Ta d)
teT

12.3 Zmienne i procesy subgaussowskie

Fakt 12.15. Niech Z bedzie zmienng losowq. Nastepujace wiasnosci zmiennej Z sq row-
nowazne:
i) Ogony zmiennej Z spelniajq

P(|Z] > t) < 2exp(—t*/K?) dlat > 0.
it) Momenty zmiennej Z spelniajq
1Zllp = (E|Z]P)'/? < Ko/p dlap>1.

iii) Transformata Laplace’a Z* spelnia

1
Eexp(A\?Z%) < exp(K3\?)  dla |\ < T
3
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i) Zmienna Z ma skoniczong norme y-Orlicza , tzn.
Eexp(Z?/K?) <2

Jesli dodatkowo EZ = 0 to warunki i)-iv) sq rownowazne
v) Transformata Laplace’a X? spelnia

Eexp(\Z) < exp(KZM\?) dla A € R.

Ponadto optymalne state dla ktorych zachodzg powyzisze mieréwnosci sg porownywalne ze
sobg z doktadnosciq do stalej uniwersalnej, tzn. K; < CKj dlai,j =1,...,5.

Dowdd. 1)=-ii) Stosujemy calkowanie przez czesci:
o0 o0
E|Z]P = p/ PP (|Z] > t)dt < 2p/ P~ exp(—t2/K?)dt
0 0
[e.e]
— pK? / sP2/2 exp(—s)ds = 2KPT(p/2 + 1).
0

Funkcja T" jest logarytmicznie wypukla, stad dla z € [1,2], I'(x) < max{I'(1),T'(2)} =1,
oraz dla z € [k, k+ 1], k =1,2,... mamy

N+ =z@z—-1)(x—k+ 1)z —-k+1) <z’ <z

Zatem || Z||, < 2K14/p/2 iii) zachodzi z K2 = V2K].
ii)=>iii) Mamy dla 2eA’K3 < 1,

k )

Eexp(\2Z?) =1+ Z E]Z]% <1+ Z SN <14 (eNK3)F
k=1

e)\QKQ

W <1 —+ 26)\2K2 eXp(2€K2A2)

=1+
Stad dostajemy iii) z K3 = v/2eKo.
iii)=iv) Oczywiste z K4 = K3/vIn2.
iv)=-1) Natychmiastowy wniosek z nier6wnoéci Czebyszewa z Ky = Kj.
iii)=v) Mamy ¢ < z +¢* dla z € R (funkcja f(z) = z + ¢ — e* spelnia f(0) =
f(0) =01 f">0), zatem dla |\| < K3 ' mamy

Eexp(AZ) < E(AZ + exp(\2Z?)) < exp(K3\?).

Dla A > K3 korzystamy z nieréwnosci 2\x < A\2K3 + x2K3 i dostajemy

1 2 1
Eexp(AZ) < exp <2K§/\2) E exp (( ) > < exp (2(K§/\2 + 1)) < exp(K3)\?),

Z
V2K
czyli v) zachodzi z K5 = K.

v)=-1) Wynika z Faktu 4.2 z K| = 2K5. O
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Definicja 12.16. Jedli Z spelnia réwnowazne witasnosci wymienione w Fakcie 12.15, to
moéwimy, ze Z jest subgaussowka.

Uwaga 12.17. Uzywa sie réznych definicji stalej subgaussowskosci zmiennej Z. Najczesciej
si¢ definiuje te stalg albo poprzez transformate Laplace’a jako:

inf {0 > 0: Eexp(\(Z — EZ)) < exp(\0?/2) dla A € R},
albo poprzez norme Orlicza 1)s:
| Z ||, = inf{t > 0: Eexp((Z/t)%) < 2.

Dla procesu subgaussowskiego najwygodniej jest przyjaé¢ definicje oparta o norme Or-
licza.

Definicja 12.18. Moéwimy, ze proces (X;)ier jest subgaussowski wzgledem metryki d, jesli

X — X,

B2 < d(t, s)

> <1 dlat,seT.
Tweirdzenia 12.1 (dla ¢ = 19, zob. tez Fakt 12.9) i 12.10 implikuja nastepujace wazne
twierdzenie dotyczace poréwnywania proceséw subgaussowskich i gaussowskich.

Twierdzenie 12.19. Zaldézimy, Ze X; jest osrodkowym procesem gaussowskim o $redniej
zero. Wowczas dla dowolnego osrodkowego procesu (Yi)ier, ktory jest subgaussowski wzgle-
dem metryki d(t,s) = || X; — Xs||2 zachodzi

E sup (Y; — Y;) < CE sup (X; — X,).
t,seT t,seT
Jednym z mozliwych przyktadéw proceséw subgaussowskich sa procesy kanoniczne po-
staci Xy = (X, t) = >, ;X; dla t € R™. Proces taki jest subgaussowski wzgledem (wie-
lokrotnosci) metryki euklidesowej, jesli ||(X,t)|y, < K|t|. Mowimy wtedy o wektorach
subgaussowskich.

Definicja 12.20. Méwimy, ze n-wymiarowy wektor losowy X = (X1,...,X,,) jest sub-
gaussowski, jesli

HXH¢’2 = \ilu—pl H<t7X>H¢2 < 0.

Norme || X||y, nazywamy stalq subgaussowskosci wektora X.

Przyktad 1. Jedli X, Xo,..., X, sa niezaleznymi subgaussowskimi zmiennymi loso-
wymi o sredniej zero to X = (X1, ..., X,,) jest subgaussowski oraz

1w ~ mase | X s

Przyktad 2. Jesli wektor X jest jednostajnie rozlozony na S™ ! to X jest Cn~1/2
subgaussowski.
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12.4 Oszacowania przez cigg metryk L,

Nie wszystkie procesy stochastyczne maja przyrosty kontrolowane tylko przez jedng metry-
ke. Jednym ze sposobow radzenia sobie z tym problemem jest uogélnienie kombinatorycznej
definicji funkcjonatu 2 na przypadek, gdy na n-tej partycji rozpatrujemy odlegloéé¢ L, z
p = 2". Przypomijmy, ze dla zmiennej losowej Z i p > 1 kladziemy ||Z]|, := (B|Z[P)1/P.

Definicja 12.21. Niech (X})ier bedzie osrodkowym procesem stochastycznym, ktérego
przyrosty maja wszystkie momenty skoficzone. Okredlmy

An(A) = sup{|| X; — Xy|lan: t,s€ A}, ACT,n=0,1,....

Definiujemy

T) := inf su An(An(t)),
() 1= infsnp 3 A,(4u(0)

gdzie infimum jest brane po wszystkich dopuszczalnych ciagach podzialéw A = (A,)n>0
zbioru T.

Fakt 12.22. i) Jesli (X;) jest scentrowanym procesem gaussowskim, to cy2(T) < yx(T) <
72(T).
i) Jesli (X) jest procesem subgaussowskim wzgledem metryki d, to vx(T) < V2v(T, d).

Dowéd. Dla procesu gaussowkiego o §redniej zero mamy c,/p|| Xy — X|| < [ Xy — X[ <
VP Xy — Xsll2 dla p > 1, a dla procesu subgaussowskiego || X; — X[, < /2pd(t,s) dla
p > 1 (zobacz Fakt 12.15 i jego dowéd by dostaé stata v/2). O

Twierdzenie 12.23. Niech (X;)ier bedzie osrodkowym procesem stochastycznym, ktdrego
przyrosty majg wszystkie momenty skoriczone. Wowczas dla dowolnego p > 1,

sup |Xs — Xy
t,seT

< 487vx (T') + 256 sup || Xs — X¢|p.
t,seT

p

Dowéd. Wystarczy udowodnié¢ oszacowanie dla zbioréw skonczonych. Niech 2F0~1 < 2p <
2o dla pewnego ko = 2,3, ... oraz wybierzmy ki > ko takie, ze Ny, = 221 > |T.
Ustalmy ¢ > 0 i wybierzmy dopuszczalny ciag podzialéw A,, zbioru T taki, ze

sup Y An(An(t)) < (1+)yx (D).

Mozemy przyjaé, ze Ay, (t) = {t}. Wybierzmy zbiory T}, C T takie, ze Ty = {to} oraz
|Tk| < Ni i Ty zawiera po jednym punkcie z kazdego ze zbioréw k-tej partycji A dla
k=0,...,ki. Niech dla 0 < k < ky, mi(t) € T N Ax(t), w szczegblnosci mo(t) = to oraz
Ty (t) =t.

89



Z nieréwnosci trojkata w L, dostajemy

sup | Xy — Xyl <2|sup|X; — Xo, )] sup [ Xy (5) = Xrgy (0)]
t,seT p teT p P
Zauwazmy, ze Tjy1(t) € Apt1(t) C Ag(t), wiec
kl 1 kl 1
M :=sup Z HXﬂkH(t Xﬂk(t)HQk < sup Z Ak(Ag(t) < (14 e)vx (T).

Dla u > 16 szacujemy

P(sup [ Xt = Xop 0] = uM)

teT
k1—1
P(Sup Z [ X (t) = Xmp(] = uM)

< P(3k0<k<k1—13teT | Xrpi1t) = Xmp)l 2wl Xy ) — ka(t)HQk)
ki—1

<Y > Y PX - X = ull X — Xolon)

k= k’o SeTk+1 S GTk

< ¥ malm® < & (3 <2 <2 (3"
k=ko k=ko

Catkujac przez czesci dostajemy

[o¢]
Esup | X, — X, ol < (8M)P(2° +p / P~ 2u P du)
teT 0 2

= (8M)P(2P + 2172P) < (24M)P < (24(1 + &)yx (T))P.

Ponadto
E sup [ Xy () = Xy ()P < > ElXy — XglP < |Ti,|* sup E|X; — X,
t se t/,SIETkO tSE
< 2% sup || Xy — X2,
s,teT

Powyzsze szacowania implikuja

sup | Xg — Xy
t,s€T

< 48(1 4 e)yx (T) +2° sup || X¢ — Xslp
s, teT

p

i teza wynika z dowolnosci € > 0.
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Uwaga 12.24. Poniewaz sup; e || X — Xsl[1 < vx(T), wige Twierdzenie 12.23 implikuje,
ze
E sup | X — X¢| < 304vx (T).
t,s€T

Whniosek 12.25. Zalozmy, ze (Xi)ier jest oSrodkowym procesem subgaussowskim wzgle-
dem metryki d. Wowczas

P (sup | Xt — Xg| > C(72(T,d) + udiam(T, d))> <exp(—u?) dlau>0.
s,teT

Dowdéd. Dal v < 1 teza latwo wynika z uwagi i nieréwnosci Czebyszewa (bierzemy C =
304e). Dla u > 1 teza wynika z nieréwnosci Czebyszewa i Twierdzenia 12.23 dla u = /p
(na mocy Faktu 12.15 || X; — X,||, < C/pd(t, 5)). O

13 Macierze losowe o subgaussowskich rzedach

W tym rozdziale poznamy kilka silnych szacowan dla pewnej klasy macierzy losowych. Be-
dziemy potrzebowali jej pewnego unormowania. Typowym normowaniem wektora losowego
jest zalozenie jego izotropowosci.

Definicja 13.1. Moéwimy, ze n-wymiarowy wektor losowy X jest izotropowy, jesli ma
srednig zero i identyczno$ciowa macierz kowariancji, tzn. EX; = 0 oraz EX; X, = ¢;; dla
1, < n.

Fakt 13.2. Jesli wektor X jest izotropowy, to
E(X,t)(X,s) = (t,s) dlat,seR"
Dowadd. Liczymy

E<X, t><X, $> = ZtiSjEXin = Ztisi = <t, $>.

O

Sprecyzujemy teraz klase macierzy, ktére bedziemy bada¢ podczas dalszych rozwazan.

Definicja 13.3. Powiemy, ze macierz losowa m X n spelnia zafozZenie o subgaussowskos$ci
z parametrem K| jesli jej wiersze Ay, ..., Ay, sa niezaleznymi, izotropowymi, subgaussow-
skimi n-wymiarowymi wektorami losowymi oraz

max | Aslly, = maxmax||{4i, 8) [l < K.
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Uwaga 13.4. Zauwazmy, ze € —1 > 22, zatem || X ||, > || X||2 i izotropowosé A; implikuje,
ze K > 1.

Podamy teraz kilka przyktadéw klas macierzy spelniajacych zatozenia Definicji 13.3.
Literami C| ¢ oznaczamy dodatnie state skoniczone, ktorych wartoéci moga si¢ zmieniaé
przy kazdym wystapieniu (jesli bedziemy chcieli ustali¢ warto$é jakiej$ stalej bedziemy
pisa¢ ¢1,C1, c2,Co, . . .).

Przyktad 1. Macierz A = (A;;), ktérej wspélezynniki sa niezaleznymi subgaussowskimi
zmiennymi losowymi o Sredniej zero i wariancji 1 spelnia zatozenia Definicji 13.3 z pa-
rametrem K < Cmax; [|Ajjlg,. W szczegdlnodci macierz, ktorej wyrazy sa niezaleznymi
zmiennymi A (0, 1) spelia to zalozenie z K = /8/3.

Przyklad 2. Macierz, ktérej wiersze A; sa niezalezne i maja rozklad jednostajny na
/1S ! spetnia zatozenia Definicji 13.3 z parametrem K < C.

Przyktad 3. Macierz, ktérej wiersze A; sa niezalezne, izotropowe i maja rozklady spelnia-
jace logarytmiczna nieréwnos$¢ Sobolewa z parametrem « spelnia zatozenia Definicji 13.3
z parametrem K < Ca.

Bedziemy tez uzywaé nastepujacych wielkosci dla T C R”,

Z t;g;

9(T) = Esupztzgz, V(T) == g(T'U-T) =Esup
teT i1 teT

,  R(T) :=suplt],
teT
gdzie jak zwykle g1, ..., g, oznacza niezalezne zmienne losowe N (0, 1).

13.1 Odchylenia dla subgaussowskich macierzy losowych

Twierdzenie 13.5. Zaldzmy, Ze A jest macierzg m X n, ktora spetnia zatozenia Defini-
cji 13.8 z parametrem K. Wowczas dla dowonego niepustego ograniczone zbioru T C R™
zachodzi
Esup ||At| — vmlt|| < OK?*y(T).
teT

Ponadto
P (sup ||At| — vmlt|| > CK*(v(T) + uR(T))) < exp(—u?) dlau>0.
teT

Okreslmy proces (X;) wzorem
= |At| — v/mlt|, teR™ (30)

Kluczowym elementem dowodu Twierdzenia 13.5 jest wykazanie subgaussowskosci tego
procesu.
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Twierdzenie 13.6. Zaldimy, Ze macierz losowa A spelnia zaloZenia speinia zalozenia
Definicji 13.3 z parametrem K oraz proces Xy jest zadany wzorem (30). Wowczas

1X; — Xsllyy < CK?|t —s| dlat,scR™ (31)
Dowdd Twierdzenia 13.5. Niech T =T U {0}.

sup | X;| = sup || At] — v/mlt|| < sup (X; — X;)
teT teT t,s€T

oraz

g(T) <2y(T) i sup |t —s| <2R(T).
t,sET
Szacowanie wartosci oczekiwanej wynika natychmiast z Twierdzenia 13.6 i Twierdzenia
12.19 (zastosowanego do zbioru T'). Szacowanie prawdopodobiefistwa jest konsekwencja
Twierdzenia 13.6 oraz Wniosku 12.25 i Twierdzenia 12.10 (réwniez zastosowanych do zbiéru
T). O

By wykaza¢ Twierdzenie 13.6 bedziemy potrzebowali kilku lematéw.

VA

Lemat 13.7. Dla dowolnych subgaussowskich zmiennych losowych X,Y zachodzi || XY |y,
[ X o Y Tl

Dowdéd. Zatézmy, ze a > || X ||y, 10> ||Y ||y, Wowezas

1/2 o\ \ 1/2
| XY| X2 y? X? Y
Eexp (ab ) < Eexp 22 + — 2 < [Eexp 2 Eexp =l < 2,

czyli || XY ||y, < ab. O
Lemat 13.8. Oszacowanie (31) zachodzi dla s = 0, tzn.
[|At] — vmlt|||y, < CK?|t| dlat € R™

Dowdd. Z uwagi na jednorodno$é bedziemy zakltadaé, ze |t| = 1. Na mocy Faktu 12.15
wystarczy udowodnié, ze P(||At| — /m| > K?u) < 2exp(—cu?) dla u > 0. Rozpatrzymy
dwa przypadki.

Przypadek 1. K?u < \/m. Mamy

P(||At] — V/m| > K*u) = P(||At]* — m| > K?ul|At] + v/m]) < P(||At]* —m| > K*uv/m).

Zauwazmy, ze

|At]?2 —m = Z (|(A;, t)> = 1),
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zmienne |(A;,t)|?> — 1 sa niezalezne, maja $rednig zero oraz
1AL B = Uy < (A P llyy + Ll < KA I, + 1111y, < 22,
gdzie wykorzystaliSmy to, ze dla u > K,
> Bexp((Ai, )2 /u?) > exp(B(A;, 1) /u?) = exp(1/u?).
Stad nier6wno$¢ Bernsteina dla zmiennych subwykladniczych (Twierdzenie 4.16) implikuje

K4u’m
P(||At| — > K2 At2 —m| > K2 2 —
(I|At| = v/m]| ) < P(||At]* —m| > K*uy/m) < 2exp 16mK* + 8K uy/m
u2
<2
exp< 24)

w ostatniej nieréwnosci skorzystalismy z tego, ze u < K?u < /m. O

Przypadek II. K?u > /m. Wéwczas
P(||At| — v/m| > K?u) = P(|At| > K*u+ vm) < P(|At]> —m > K*?)

Ponownie stosujac nieréwnoéé Bernsteina i to, ze K > 1 oraz m < K*u? dostajemy

K8yt 2
P(|[Af] — Vi) > K?u) < 2exp <_ u > e <_u> |

16mK* + 8 K62 24

Lemat 13.9. Oszacowanie (31) zachodzi dla |t| = |s| = 1, tzn.
[|At| — |As|||ly, < CK?|t —s| dlat,se€ S™

Dowdd. Na mocy Faktu 12.15 i tego, ze min{l,4u} < 2\/u wystarczy udowodnié, ze
P(||At| — |As|| > uK?|t — s]) < 4exp(—cu?) dla v > 0. W tym celu rozpatrzymy dwa
przypadki.

Przypadek 1. uK? < 2y/m. Mamy

P(||At] — [As|| > uK?|t — s]) = P(||At]* — |As]*| > uk*[t — s|(|At] + |As]))
=P([(A(t +5), At — 5))| > uK>|t — s[(|At] + |As]))

i
<P (|At| < \/ﬁ> +P ((A(t+5),A(t— s))| > %\/Rulﬂt— s|) .

Na mocy Lematu 13.8,

1
2

1 1
P (]At] < 2\/5) <P (HAt\ —Vm| > 2\/%) < 2exp(—em/K*) < 2exp(—cu?/4).
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Zauwazmy, ze
m

(At +5), A(t = 5)) = Y (it +5)(Ait —s).
i=1
Zmienne (A;, t+5s)(A;,t—s) maja (na mocy Faktu 13.2) érednia (t+s,t—s) = [t|*—]|s|> =0
oraz

1A £+ 8) s t = )lon < 1(Aist + )yl (A t = 8)lly < Kt + slt — 5| < 2Kt — ]

Stosujac nieréwno$é¢ Bernsteina dla zmiennych subwyktadniczych (Twierdzenie 4.16) do-
stajemy

1 mu?K*|t — s|*/4
P(|(A At —s))| > = K2t —s|) <2 -
(’< (t+ ), At = 9))| > 5v/mukCt 3) eXp( T6mKA[t — 32 + dy/muKA]t — 52

< 2exp(—u®/96),

gdzie w ostatniej nieréwnodci uzylismy tego, ze u < uK? < 2y/m.
Przypadek II. uK? > 2,/m. Wéwczas

P(||At| — |As|| > uK?|t — s|) < P(|A(t — )| > uK?|t — s|)
<P <||A(t —8)| —Vmlt —s|| > %uK2|t - s|>
< 2exp(—cu?)
na mocy Lematu 13.8.

Dowdd Twierdzenia 13.6. Z uwagi na jednorodnosé, wystarczy wykazaé (31) dla [t| =1 <
|s|. Niech § = s/|s|, woéwczas

1 Xt = Xsllyy < IN1Xe — Xzlly, + 1Xs — Xsllyy = [1Xe = Xzllg, + 15 — s][| X5y,
Stosujac Lematy 13.8 i 13.9 dostajemy
1X: = Xollyw < CK2(1t — 3] +15 — ).
By zakonczy¢ dowéd wystarczy zauwazyé, ze trojkat A(t, s, s) jest rozwartokatny, zatem
It — 5+ |5—s| <V2(t — 5> + 5 — 5|2 < V2|t — 5.
O

Whniosek 13.10. Niech A bedzie macierzq losowg m X n spetniajgcq zatozenia zalozenia
Definicji 13.3. Wéwczas dlau > 1 z prawdopodobieristwem nie mniejszym niz 1—exp(—u?)
zachodzi

Vm — CK?*(v/n +u) < ﬁnfl |At] < li‘nfl |At| < vVm + CK?(vn + u).
t|l= t|l=

Dowéd. Stosujemy Twierdzenie 13.5 do T = S™~! i zauwazamy, ze v(T') = /n oraz R(T) =
1. O
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13.2 Lemat Johnsona-Lindenstraussa

Whiosek 13.11. (Addytywny lemat Johnsona-Lindenstraussa) Niech T C R", za$ A bedzie
macierzg losowg m X n spetniajocg zatozenia Definicji 13.3. Wowczas z prawdopodobieri-
stwem 0.99 zachodzi zdarzenie

1 1
—At - —=A
vm Vvm s

[t —s|—0 < <|t—s|+9d  dla wszystkich s,t € T,

gdzie § < %KQQ(T).

Dowdd. Wystarczy zastosowaé Twierdzenie 13.5 do T' — T otrzymujac

1 1 C
—At———A <—=K*5(T-T
N T T -1),

zauwazy¢, ze y(T — T) = 2¢g(T) i skorzystaé z nieréwnosci Czebyszewa. O

— |t — s

E sup
s,teT

Whniosek 13.12 (Multyplikatywny Lemat Johnsona-Lindenstraussa). Zaldzmy, zZe T jest
zbiorem skoriczonym w R™, a A jest macierzq losowg m X n spetniajgcq zatozenia Definicji
13.8. Wowczas z prawdopodobieristwem 0.99 zachodzi

1 1
(1)t —s| < ‘WAt—\/mAs <L+t s,
; 2, /log|T]|
gdzie e < CK %.
Dowdd. Niech ;
S = {S:t,SGT,t#S}
|t — s

Zauwazmy, ze na mocy Lematu 11.11,
7(8) = g(5) < y/2log 5] < 2y/log|T7,
zatem Twierdzenie 13.5 zastosowane do zbioru S implikuje

|At — As|
Vmlt — s|

1 log | T’
1’ = —Esup||At'| — vm|t'|| < CK? M.
VM yes m

E sup
t,s€T t#s

O]

Uwaga 13.13. Klasyczny Lemat Johnsona Lindenstraussa mial postaé jak we Wniosku
1

13.12, ale dotyczyl przypadku, gdy zamiast ﬁA bada sie przeksztalcenia \/%P, gdzie
P jest rzutem ortogonalnym na losowo wybrana podprzestrzen E € Gy, . To jakie sie
rozpatruje losowe przeksztalcenie jest mato istotne, kluczowe jest to, ze z duzym prawdo-
podobienstwem jest ono (po obcieciu do zbioru skonczonego) bliskie izometrii i ma wartosci
w przestrzeni nie za wysokiego wymiaru m, ktéry (przy ustalonym ¢) jest proporcjonalny

do log |T.
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13.3 Losowe przekroje

W tej czesci bedziemy badaé srednice losowego przekroju podzbioru R™. Nasza losowosé
bedzie wyznaczona poprzez branie podprzestrzeni F := KerA, gdzie A jest macierza m xn
o niezaleznych subgaussowskich rzedach. Zauwazmy, ze dim(E) > n —m oraz jesli A; maja
ciagte rozklady, to dim(E) = n —m p.n. Co wiecej, jesli wspélczynniki A sa niezaleznymi
zmiennymi losowymiu N (0,1), to z niezmienniczosci rozkladu gaussowskiego na obroty
wynika, ze £ ma rozklad jednostajny na przestrzeni Grassmana Gy, y—m.

Twierdzenie 13.14. Niech T C R", zas A bedzie macierzq losowg m X n spelniajgcq
zatozenia Definicji 15.3. Wowczas

C
Ediam (7 N KerA) < ﬁKzg(T).
Dowod. Wystarczy zauwazy¢, ze na mocy Twierdzenia 13.5,
Eymdiam(T NKerA) =E  sup ||At — As| —vm|t — s|| <E sup [||A| —vm|t||
t,seTNKerA teT-T

< OK*y(T —T) = 2CK?*g(T).
O
Przyktad. Zauwazmy, ze diam(B}) = 2, ale g(B}) = Emax; |g;| < /2log(2n), stad

1
Ediam(B} N E) < Oy 22,
m

gdzie érednia jest brana po losowej podprzestrzeni E € Gy, y—p. Np dla m = n/10 otrzy-
mujemy, ze losowy przekréj B} wymiaru 0,9n ma $rednice rzedu +/logn/n.

Twierdzenie 13.15. Zaléimy, e T C S" ! oraz A jest macierzq losowg mxn spetniajgcq
zaloZenia Definicji 13.3. Wéwczas dla m > CK*~y(T)?

P(T Nker(A) = ) > 1 — exp(—cem/K*Y).

Dowdd. Oczywiscie R(T) = 1, wiec Twierdzenie 13.5 méwi, ze z prawdopodobienstwem
przynajmniej 1 — exp(—u?) mamy

sup| 4] — VAl < CU((T) + )
te

Zal6zmy, ze zachodzi powyzsze zadarzenie i istnieje ¢t € T Nker(A). Wéwczas
Vm < CLE*((T) + w).
Jedli u = v/m/(2C1 K?), to dostajemy

Vi < CR*((T) + 5 im

czyli m < 402 K42(T). O
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