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1 Wstep

W wielu problemach rachunku prawdopodobienstwa i jego zastosowan pojawiaja sie wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wyktadu bedzie przedstawienie wybranych narzedzi pozwalajacych
badaé takie obiekty. Wyklad bedzie dotyczyl tak zwanej teorii nieasymptotycznej, tzn. na-
cisk bedzie polozony na rézne szacowania, a nie na twierdzenia graniczne.

W pierwszej czesci wykltadu oméwimy pewne zagadnienia zwigzane z teoria koncen-
tracji miary, ktére pozwalaja szacowaé¢ odchylenia funkcji zaleznej od wielu zmiennych
losowych od jej wartosci oczekiwanej. W drugiej pokazemy kilka metod pozwalajacych sza-
cowad suprema proceséw stochastycznych. Oméwimy tez pewna liczbe bardziej konkretnych
przyktadéw zastosowan.

Oczywiscie podczas semestralnego wyktadu monograficznego mozna oméwié tylko nie-
wielka czed¢ bogatej i ciagle rozwijajacej si¢ teorii. Duzo szerszy wybér zagadnien zostat
przedstawiony w notatkach Ramona van Handela [6] i monografii Romana Vershynina [7],
zainteresowany Czytelnik znajdzie tam tez szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przyktady.

Wiele waznych miar probabilistycznych spetnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorac polega on na tym, ze wiekszo$¢ punktéw z przestrzeni lezy w poblizu
zbioru wypelniajacego przynajmniej potowe przestrzeni. By pojecie to sformalizowaé po-
trzebujemy dwoch waznych definicji.

Definicja 2.1. Niech (X, d) bedzie przestrzenia metryczna, za$ A dowolnym podzbiorem
X. Dla t > 0 okreslamy t-otoczenie zbioru A wzorem

Ay ={r e X:d(z,A) <t} = U B(y,t),
yeEA

gdzie B(y,t) oznacza kule otwarta w X o §rodku w y i promieniu ¢.

Definicja 2.2. Niech u bedzie borelowska miara probabilistyczna na (X, d). Funkcje kon-
centracji miary p definiujemy jako

au(t) = ax,au(t) == sup {1 — u(Ay): p(A) > %}

Na poczatek wyktadu podamy kilka przyktadéw, dla ktorych mozna dobrze oszacowaé
funkcje koncentracji. Dowody podanych oszacowan przedstawimy pozniej.

Przyklad 1. Niech d oznacza odlegto$é geodezyjna na n-wymiarowej sferze S™ =
{z € R": |z| = 1}, za$ 0, oznacza unormowang miare powierzcniowa na S”. Wéwczas



okazuje sie, ze jesli chcemy zminimalizowaé o, (A;) po wszystkich zbiorach ustalonej miary,
ekstremalne sa kule (zwane tez czapeczkami), to znaczy

on(A) = on(B(z0,7)) = 0on(As) = on(B(z0,7)t) = on(B(zo, 7 +1)).

W szczegdlnosci jesli o, (A4) > 1/2, to

on(Ap) > O‘n(B<ZL'(), g +t>) >1—exp ( — (n—21)t2)

Zatem a,,, (t) < exp(—251t2).

Uwaga 2.3. Zauwazmy, ze funkcja koncentracji o, szybko zbiega do 0 przy n — oo. Jedna
z przyczyn tego zjawiska jest to, ze miara ta nie jest dobrze unormowana. Jesli przez
on,r okredlimy rozklad jednostajny na sferze RS™, to poniewaz jest on obrazem o, przy
jednoktadnosci o skali R, to

Qg (L) = ag, (%) < exp ( - T;;;tz).

Zauwazmy tez, ze

R2
T;x:do )= —0; ;.
/RSn (g mR( ) n+1 1,J

Zatem miara jednostajna na v/n 4+ 15™ ma dobra normalizacje, to znaczy taka, ze macierz
kowariancji jest identycznoscia. Dla tej miary dla n > 2,

<_ 2(n + 1)t2)

1
Ao, ey (1) < exp < exp ( - 6t2>.

Przyktad 2. Niech 7; oznacza kanoniczny rozklad gaussowski na RF, tzn. rozklad
z gestoscia (2m) %/ exp(—|z|?/2). Wéwezas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazuja sie péiprzestrzenie, tzn. jesli

M(A) = e ((=00,7] x R¥) = 0(r),

to
Yi(Ay) > *yk(((—oo,r] X Rk_l)t> = yk((—oo, r 4 t] X ]Rk_1> =®o(r +t).
W szczegdlnosei

1
ay, (1) =1—®(t) < 56_t2/2.

Zauwazmy, ze poOwyzsze oszacowania nie zalezg od wymiaru przestrzeni.

Przyktad 3. Niech v bedzie symetrycznym rozkladem wyktadniczym, tzn. rozktadem
na R z gestoécia § exp(—|z|). Przez v* bedziemy oznaczaé rozklad produktowy v®...®v na



R*. Wyznaczenie ekstremalnych zbioréw dla problemu izoperymetrycznego zwigzanego z ta
miara jest trudne i nieznane dla k # 1. Choé¢ wiadomo, ze ekstremalne nie sg pétprzestrzenie
postaci (—oo, 7] X R*~1 to sa one optymalne z doktadnoscia do stalej, tzn.

VH(A) = v((—o00,7]) = VF(A) > 1/(( — 00,7+ 2\1/6 D

W szczegdlnosci

1 1 1
ar(t) <1 —V((—oo, 27\/64) = §exp(— ﬁt>

Zauwazmy, ze znowu uzyskane oszacowanie nie zalezy od wymiaru przestrzeni.

Przyktad 4. Niech p bedzie unormowang miara liczaca na kostce dyskretnej {0, 1}
z metryka d(z,y) = %#{’L x; # y;}. Tu problem izoperymetryczny daje sie rozwiazaé
(optymalne sa kule, ewentualnie z dodanymi niektérymi punktami na brzegu). W tym
przypadku mozna pokazaé, ze
a,(t) < g2t

Krétki przeglad wynikéw pokazuje, ze w wielu waznych zastosowaniach mozna wykazac,
ze a,(t) < Crexp(—t?/Cs) — méwimy wtedy, ze funkcja koncentracji jest typu gaussow-
skiego. Widzielismy tez przyktad, w ktérym o, (t) < Ciexp(—t/Cs) — méwimy wtedy o
koncentracji wyktadniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia sie miara otoczenia zbioru, a raczej
jak szybko maleja ogony funkcji okreslonych na przestrzeni. W tej czesci powiazemy ze
soba te zjawiska. Zacznijmy od definicji mediany i modutu ciagtosci.

Definicja 2.4. Niech p bedzie miara probabilistyczna na (X,d) oraz f bedzie mierzalna
funkcja z X w R.
Mediang funkcji f wzgledem miary p nazywamy takg liczbe M = Med,,

—~

f) dla ktérej

N | —

p{a: f@) > MY) > 5 oz p({e: f(x) < M}) >
Modutem ciggtosci f nazywamy funkcje
wy(t) := sup{|f(z) = f(y)|: d(z,y) <t}
Fakt 2.5. Dla dowolnej funkcji mierzalnej F': X — R,
u({: F(2) > Med, (F) + wr(t)}) < a(t)

u({z: |F(z) — Med,(F)| > wr(t)}) < 200,(t).



Dowdd. Niech A := {x: F(xz) < Med,(F)} wéwczas u(A) > 1/2 zatem p(A;) > 1 —
ay,(t). Ponadto, jesli x € Ay, to istnieje y € A takie, ze d(z,y) < t i1 wowczas F(x) <
F(y) +wp(t) < Med,(F)+wp(t), stad pierwsza nieréwnos¢ w fakcie. Stosujac ja do —F i
zauwazajac, ze Med,(—F) = —Med,(F') oraz w_p = wr dostajemy

p({z: F(r) < Med,(F) —wr(t)}) < au(t).
Dodajac powyzsza nieréwno$é¢ do poprzedniej otrzymamy ostatnig czesé faktu. O
Przypomnijmy definicje funkcji lipschitzowskiej
Definicja 2.6. Funkcje F': (X,d) — R nazywamy lipschitzowskq, jesli

|F(z) = F(y)|
Fllrip :=sup —F———— < .
e =2 ™ a )

Moéwimy, ze funkcja jest L-lipschitzowska jesli ||F'||rip < L, tzn. |F(z) — F(y)| < Ld(z,y)
dla wszystkich z,y € X.

Analogicznie mozna zdefiniowaé funkcje lipschitzowskie miedzy przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jesli F jest lipschitzowska ze stalq L, to dla t > 0,
p({z: F(xz) > Med,(F) +t}) < a,(t/L)

u({e: |F(z) — Med, (F)| > t}) < 2a,(t/L).

it) Na odwrdt, jesli dla kazdej funkcji 1-lipschitzowskiej F' i ustalonego t > 0,
p({x: F(z) > Med,(F) +t}) < o
to a,(t) < a.

Dowdd. i) Wynika z Faktu 2.5 i oczywistego szacowania wy(t) < tL.
ii) Ustalmy zbiér A taki, ze pu(A) > 1/2 i okreSlmy F'(z) := d(z, A). Wéwczas F jest
1-lipschitzowska oraz Med, (F') = 0, zatem

az p({F > t}) = p({z: d(z, A) > t}) = 1 — p(Ay). O

Czesto tatwiej i naturalniej jest wykazywaé koncentracje funkcji lipschitzowskich wokot
Sredniej a nie mediany. Kolejny fakt pokazuje jak odzyskaé funkcje koncentracji w takim
przypadku.



Fakt 2.8. Zaldzmy, Ze p jest miarg probabilistyczng na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F it > 0 zachodzi

u({x: F(z) > /qu+t}) < aft). (1)
Wéwczas dla dowolnego zbioru borelowskiego A takiego, zZe pu(A) > 0 zachodzi
1 1A < ou(A))
W szczegolnosci
a,(t) < a(%).

Ponadto, jeslilim;_,o a(t) = 0, to dowolna funkcja 1-lipschitzowska jest calkowalna wzgle-
dem p 1 jesli dodatkowo « jest ciggla, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowdd. Ustalmy zbiér borelowski A taki, ze u(A) > 0 oraz liczbe ¢ > 0. Zdefiniujmy
F(z) := min{d(x, A),t}, wowczas funkcja F' jest ograniczona, 1-lipschitzowska i [ Fdu <
t(1 — u(A)). Stad na mocy (1),

L= p(A) = p({F > 1)) < p({F > /qu + p(A)E}) < alp(A)).

W szczegdlnoscei, jesli p(A) > 1/2, to 1 — p(Ar) < a(t/2).
By udowodnié¢ druga czes¢ faktu, ustalmy funkcje 1-lipschitzowska F' i niech F, :=
min{|F|,n}. Z (1) zastosowanej do —F,, dostajemy

u({o: Fule) < /Fndu ~1}) <alt).

Wybierzmy ¢ takie, ze a(tg) < 1/2 oraz m := Med,|F|. Wowczas u({F, < m}) > 1/2, czyli
zbiory {F,, < m} oraz {F,, > [ F,du—to} maja niepuste przecigcie. Zatem [ F,,dp < m—+to
i z twierdzenia Lebesgue’a o zbieznosci monotonicznej dostajemy [ |F|du < m + ty < oo.
Ostatnia czes$¢ tezy dostajemy stosujac (1) do min{max{F,—n},n} i przechodzac z n —
0. 0

3 Nieréwnosci izoperymetryczne

W tej czedci oméwimy kilka nieréwnosci izoperymetrycznych, pokazujac rézne sposoby ich
dowodzenia - poprzez powigzane nierownosci funkcyjne, symetryzacje czy transport miary.



3.1 Klasyczna izoperymetria

Chociaz w tym wyktadzie bedziemy sie zajmowaé miarami probabilistycznymi, to przeglad
nieréwnosci izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a A,,.

Twierdzenie 3.1. Jesli A jest podzbiorem borelowskim R™ takim, ze A (A) = A\ (B(xo, 7)),
to dla dowolnego t > 0,

M (Ar) = An(B(z0,7)e) = A\ (B(xo, 7+ t)).

Twierdzenie 3.2 (Nieréwnosé¢ Prékopy-Leindlera). Jesli s € [0,1] oraz f,g,h: R" —
[0,00) spelniajq warunek

h(sz+ (1—s)y) > f(z)°g(y)' ™ dlaz,y € R", (2)

to
/n h(z)dz > ( - f(x)dx)s(/Rn g(x)dx)l_s.

Dowdd. Najpierw wykazemy, ze dla niepustych zbioréw A, B € B(R™) zachodzi
M(A+ B) = M(A) + \(B).

Poniewaz A\ (A) = sup{\i(K): K C A, K zwarty}, to mozemy przyjaé, ze zbiory A i B sa
zwarte. Ponadto odpowiednio je przesuwajac mozemy tez zakladaé, ze sup A = inf B = 0.
Woéwczas AN B = {0} oraz

)\1(A+B) > )\1(AU B) = )\1(14) + )\1(3)

Nierownosé Prékopy-Leindlera udowodnimy przez indukcje po n. Najpierw rozwaz-
my n = 1. Mozemy zakladaé¢, ze f,g i h sa ograniczone, a z uwagi na jednorodnos¢, ze
sup f(z) = supg(x) = suph(z) = 1. Zauwazmy, ze dla 0 < r < 1, {h > r} D s{f >
r} 4+ (1 —s){g > r}, wiec calkujac przez czesci dostajemy

/h(x)d:c _ /01 M{h > e > /01 M(s{f >} + (1= s){g > r}dr

1
> [ Mals{f 2 D) + A1 = s){g > e
0

:s/fda;+(1—s)/gdx> (/fdx)s(/gdﬂ?)l_sv

gdzie ostatnia nieréwnos$¢ wynika z poréwnywania wazonych Srednich arytmetycznych i
geometrycznych.



Zalézmy teraz, ze n > 2 oraz teza twierdzenia zachodzi dla n— 1. Niech f, g, h spelniaja
(2) i okre$lmy dla z € R

F(z) = /an f(z,2)dz, G(x)= /an g(x,z)dz oraz H(z)= /Rnil h(z,z)dz.
Zauwazmy, ze dla ustalonego =,y € R
h(sz 4+ (1 —8)y,s21 + (1 — 8)29) > f(z,21)%g(y, 22)' ™% dla 21,20 € R*7L.
Zatem na mocy zalozenia indukcyjnego
H(sz + (1= s)y) > F()°G(y)' .

Stosujac nieréwnoé¢ Prékopy-Leindlera w udowodnionym wczesniej przypadku n = 1 do-

stajemy
/Rn h(x)dx = /RH(x)dx > (/RF(:U)d‘r)S(/RG(Z‘)d;L‘)I_S

= (/nf(x)dx)s(/ng(x)d:n)l_s. O

Whniosek 3.3 (Nieréwno$é Brunna-Minkowskiego). Dla dowolnych niepustych zbioréw bo-
relowskich A, B C R",

M(sA+ (1 —=8)B) > M(A)P*N(B)' ™ dla s €[0,1]

oraz

An(A+ B)Y™ = 2\, (A 4+ 0, (B)V™

Dowdd. Pierwsza nieréwno$é natychmiast wynika z nieréwnosci Prékopy-Leindlera zasto-
sowanej do funkcji f = 14,9 =1p oraz h =1 44(1_4)B-

By udowodnié¢ druga wystarczy rozwazy¢ przypadek, gdy A i B sg zbiorami skonczonej
i niezerowej miary. Przyjmijmy wtedy

. A - B 3 An(A)L/m
A—;, B_l—s oraz S_)\n(A)l/"+)\n(B)1/”'

Wowezas Ap(A) = M(B) = (A(A)Y™ + A (B)Y™)", wiec na podstawie wykazanej po-
przednio nieréwnosci

M(A+ B) = Au(sA+ (1= 8)B) > Ma(A)°Au(B)' 7 = M ()" + A (B)V™)". O

Uwaga 3.4. Suma Minkowskiego dwu zbioréw borelowskich nie musi by¢ zbiorem borelow-
skim, ale mozna wykazaé, ze jest zbiorem mierzalnym w sensie Lebesgue’a.

10



Dowdd Twierdzenia 3.1. Niech ¢, = A\, (B(0,1)), woéwczas A\p(A) = ¢,7™ 1 na podstawie
Whniosku 3.3,
An(Ar) = (A + B(0,1)) > (Aa(A)Y" + Au(B(0, 1) /)"
=cp(r+6)" = A\ (B(zo,r + t)).

O]

Definicja 3.5. Dla miary p na przestrzeni probabilistycznej (X, d) okreslamy zewnetzng
miare brzegowq pt wzorem

by i oo (A — p(A)
A=

Uwaga 3.6. Jesli miara p na R™ ma ciagla gestosé g(x) oraz zbiér A ma gladki brzeg, to
wHA) = | 9(@)dHy (),

gdzie H, 1 oznacza n — 1 wymiarows miare Haussdorffa.

Réwnowazna rozniczkowa forma klasycznej nieréwnosci izoperymetrycznej mowi, ze
sposréd zbiorow ustalonej objetoéci najmniejsza powierzchnie brzegu ma kula. Doktadniej:

Twierdzenie 3.7. Jesli A jest podzbiorem borelowskim R™ takim, Ze A, (A) = A (B(xo,7)),

to
)\r—t(A) > )\;—(B(:EO,T)) = nc%/”()\n(A))(n—l)/n’
gdzie
An(B(0,1 /2
Cp = Tl( ( ) )) - W

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jesli A jest podzbiorem borelowskim S™ takim, ze 0, (A) = op(B(x0,7)),
to dla dowolnego t > 0,

on(At) 2 on(B(x0,7)t) = on(B(xo, 7+ 1)).

Whniosek 3.9.

11



Dowdd. Dla n = 1 nie ma co dowodzi¢ (bo zawsze o, (t) < 1/2). Bedziemy wiec zaktadac,
ze n > 2. Zauwazmy, ze

,
on(B(zo,7)) = 5;1/ sin ! tdt,
0

gdzie s, = [J sin"! tdt. Zatem

T w/2
g, (t) =1 —0op(B(zo,t +7/2)) = sgl/ sin™ ! udu = s,_ll/t cos™ L udu.

t+m/2

Stosujac oszacowanie cosu < exp(—u?/2) dla t € [0,7/2], dostajemy

71'/2 7r/2 %)
/ cos" L udu < / e~ (m=Du/2,, < ! / e /2ds
t t tv/n—1

n—1
= ﬁ (1—-®(tvn—1)) < 2(\2%_ 1)6_("_1)t2/2.

]

Ponadto tatwe catkowanie przez czesci daje, ze dlan > 3, s, = Z—jsn,g, stad

n—2

vn —1s, = —=sn—
n \/m’ﬂQ

ZVvn— 38n—27

zatem

inf \/n — 1s, = min{sg, v2s3} = min{2, 7/v2} = 2. O

n>2

3.3 Izoperymetria gaussowska

Przypomnijmy, ze przez 7, oznaczamy kanoniczny rozklad gaussowski na R¥, tzn. rozktad
z gestoscia (2m) %/ exp(—|z|?/2).

Gléwnym wynikiem, ktéry wykazemy jest to, ze dla rozktadow gaussowskich optymalne
dla problemu izoperymetrycznego sa pdlprzestrzenie afiniczne, to znaczy zbiory postaci

H = {z eRF: (z,u) < r} dla pewnych u € ¥~ i r € [—00, . (3)

Twierdzenie 3.10. Niech H bedzie pdlprzestrzeniq afiniczng, a A zbiorem borelowskim w
R¥ takim, ze yp(H) = v1.(A). Wéwezas dla dowolnego t > 0, vi(Hy) < vie(Ar)

Zanim przystapimy do dowodu twierdzenia pokazemy, ze 7 jest granica rzutowan roz-
ktadéw jednostajnych na /nS"~1.

Niech P = Py, oznacza kanoniczny rzut R" na RF dla k < n, za$ 6,_1 oznacza
unormowang miare powierzchniowa na /nS"~!. Oznaczmy przez Hk,n Obraz o,_1 przy
tym rzutowaniu tzn.

Hin(A) = 601 (P M (A))  dla A € B(RY).

)
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Fakt 3.11 (Lemat Poincaré). Miara i, zbiega stabo przy n — oo do miary i, co wiecej

11122() tien(A) = v5(A) dla dowolnego zbioru borelowskiego A.

Dowdd. Proste rozumowanie pokazuje, ze miara py, , ma gestosé gy, (z) = c;}lgk,n(af), gdzie
n—|z|? )(n—k=2)
n

Tren = ( /QIL{‘IK\/E} oraz Cyn = [gk Gnk(x)dx. Oczywiscie limy, oo Jin(x)
exp(—|2[2/2), ponadto [Gin(2)] < exp(—(n — k — 2)|o]?/(2n)) < exp(—|[2/(2n)) dla n >
k + 2. 7 twierdzenia Lebesgue’a o zbieznoSci zmajoryzowanej otrzymujemy lim, .o ¢, =
Jrr exp(—|z[?/2)dz, czyli gestos¢ miary iy, zbiega punktowo do gestosci miary vx. Teza
faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [2]).

O

Dowod Twierdzenia 3.10. Ze wzgledu na rotacyjng niezmienniczo$é miary 7y, mozemy dla
uproszczenia notacji zatozyé, ze H = {x: 1 < r}. Ustalmy dowolne r9 < 7 i niech
Hy = {z: 21 < ro}. Zauwazmy, ze v(Ho) < 'yk.(A), zatem na podstawie Lematu Poin-
caré, ppn(Ho) < pig,n(A) dla duzych n. Poniewaz Py L(Hp) N y/nS™ 1 jest kula w /nS™ 1,
wiec na mocy izoperymetrii sferycznej

On—1 ((Pl;gb(A))t) > 0n 1 ((Plgi(Ho))t)

Zauwazmy, ze przeksztalcenie Py, ,, jest oczywiscie 1-lipschitzowskie, wiec Ay D Py, (P TlL (A)))
i
1 (Ae) 2 e (P (P (A)e)) = ik (Pren (P (Ho))e))-
Nietrudno zauwazyc¢, ze
Pyn (P (Ho))) = {w: a1 <7}

oraz 1, — 1o +t przy n — 0o. Stad
Y (Ap) = nlgrolo L (Ar) > nlgrolo pen({x: z1 <rp}) =w({z: 1 <ro+t}),
z dowolno$ci ry < r wynika teza. O

Twierdzenie 3.12. Jesli vx(A) = ®(z) to w(A) > ®(z +1t) oraz v (A) > I,((A)),
gdzie I(z) := o(®71(z)) oraz p(z) = ¥'(z) = \/12?exp( x2/2).

Dowdd. Wystarczy zauwazy¢, ze jesli vx(H) = ®(r) i H jest postaci (3), to Hy = {x €
RF: (z,u) <r+t}iy(H) = ®(r+1t). O

Zauwazajac, ze ®(0) = 1/2 otrzymujemy:
Whiosek 3.13. ., (1) < 1— ®(t) < 5 exp(—t?/2).

Jak widzieliSmy juz w dowodzie Twierdzenia 3.10 bardzo uzyteczne jest pojecie tzw.
transportu miary.
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Definicja 3.14. Niech p i v beda miarami na przestrzeniach mierzalnych X i Y. Powiemy,
ze funkcja mierzalna T': X — Y transportuje miare  na miare v (ew. miara v jest obrazem
miary p przy przeksztatceniu T) jesli v(A) = u(T~1(A)) dla wszystkich mierzalnych A C Y.

Szczegdlnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jesli T: X — Y jest L-lipschitzowska oraz T transportuje miare p na v, to
a,(t) < au(t/L).

Dowdd. Wystarczy zauwazy¢, ze (T1(A))y, € T7H(Ay). O

Transportujac w sposéb lipschitzowski miare gaussowska mozna uzyskaé¢ oszacowania
funkcji koncentracji dla innych miar. Pokazemy dwa przyktady.

Whiosek 3.16. Niech pg1j» 0znacza rozklad jednostajny na kostce [0,1]". Wowczas Ho,1)n

jest (2m)~ Y2 lipschitzowskim obrazem ~,. W szczegdlnosci Qg qpn S % exp(—t?).

Dowdd. Okredlmy f: R — (0,1) wzorem
f(@) = ppo,) (10, F(@)]) = (=00, 2]) = @(x).

Wowczas funkcja f transportuje miarg gaussowska v1 na pg 1], to znaczy pjo 1) =10 f -1
Ponadto f'(z) = (2r) /2 exp(—22/2) < (27)~V/2, czyli f jest (2r)~'/2-lipschitzowska. Jesli
teraz okreslimy F': R" — (0,1)" wzorem F(z) = (f(x1),..., f(zyn)), to F transportuje
Yn Na p oraz F jest (27r)*1/ 2_lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencja Faktu 3.15 i Wniosku 3.13. 0

Whiosek 3.17. Niech B, = {z € R": |z| < 1} oznacza kulg jednostkowg w R™, zas pp,
bedzie rozktiadem jednostajnym na By,. Wowczas istnieje stata C taka, zZe up, jest Cn~1/2.
lipschitzowskim obrazem ~y,. W szczegdlnosci ay,, < 3 exp(—nt?/(20)).

Poniewaz obie miary 7, i up, sa rotacyjnie niezmiennicze, bedziemy szukaé funkcji
T:R"™ — B, transportujacej v, na pp, postaci Tax = ﬁ«p(m) Dalsze szczegdly pozosta-
wiamy Czytelnikowi jako ¢wiczenie.

Otwarty problem. Rozwigzaé zagadnienie izoperymetryczne dla zbioréw symetrycz-
nych, to znaczy znalez¢ dla ustalonego t > 0, ¢ € [0, 1],

inf {7 (A¢): w(A) =c,A=—-A}
inf {7 (A): (A) =c,A=—A}.

Dos$é naturalna hipoteza moéwi, ze dla ¢ > 1/2 rozwiazaniem obu probleméw sa zbiory
postaci [—a, a] xR¥~! zag dla ¢ < 1/2 drugi problem si¢ optymalizuje dla (R\[~a, a]) x R¥~1.
Podobny problem mozna postawi¢ dla miary o,, ale tam analogiczna hipoteza okazuje si¢
by¢ niestety falszywa.
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4 Metoda Martyngalowa
4.1 Transformata Laplace’a
Wiele dalszych szacowan bedzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatqe Laplace’a zmiennej losowej Z nazywamy funkcje
Lz(\):=Ee* XeR.

Podobnie jesli p jest miarg probabilistyczng na pewnej przestrzeni X oraz F: X — R, to
transformate Laplace’a F wzgledem p okre$lamy

Lg,(N) ::/ M@ dp ().
X
Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z >1) < inf e MLy(\) dlat > 0.

W szczegolnosc, jesli dla pewnego a > 0,
Lz(\) <exp(a)?) XER,

to dlat >0

#2 2
P(Z>1)< exp(— E) oraz P(|Z| > t) < 2exp<— @)

Dowdd. Pierwsza czesé¢ wynika z nieréwnosci Czebyszewa, a druga z pierwszej i prostego
rachunku. n

Zatem by udowodnié, ze funkcja koncentracji miary p jest gaussowska wystarczy wy-
kaza¢, ze L, ()\) < exp(ar?) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, ze [ Fdu = 0.

4.2 Nieréwno$¢ Azumy

Twierdzenie 4.3 (Nieréwnoé¢ Hoeffdinga-Azumy). Niech (My, Fi)}_, bedzie martynga-
tem o ograniczonych przyrostach takim, ze | My — My—_1|loo < ax. Wowczas

2
P(M, — My >1t) < - —— .
( 0 ) exp( 22?:1%2>
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Dowdd. Okreslmy dla 1 < k < n, d := My — My_1, woéwcezas E(dg|Fr—1) = 0. Mamy
I_Tu(—w) + H_Tul‘ = uzx, wiec z wypuklodci exp(z),
1—u 1+u ,

e’ < Te*z + 5 ¢ = usinh(x) 4 cosh(z) dla |u| < 1.

Stosujac te nieréwnosé dla u = di/ar 1 * = Aay dostajemy
d
E(e*M | F_y) < E(—k‘fk,l) sinh(Aag) + cosh(Aax) = cosh(Aay).
ak

Liczymy
Ee)\(Mn—Mo) — EeA(Mnfl_MO'i‘dn) — E(eA(Mnfl—Mo)E(ekdn ‘fnfl))

< cosh(Aay, ) EeNMn-1=Mo)

Zatem iterujac powyzsza nieréwnos¢ i stosujac oszacowanie (wynikajace np. z rozwiniecia
w szereg Taylora) cosh(z) < exp(2?/2) dostajemy

n 1 n
L, —ay(A) = BEeMMn=Mo) H cosh(Aag) < exp(i Z az\?).
k=1 k=1
Teza twierdzenia wynika z Faktu 4.2. O

Uwaga 4.4. Najczesciej bedziemy mieli Fy = {0, Q}, woéwczas My jest stale, a poniewaz
martyngal ma stalta wartoéé¢ oczekiwana, to My = EM,,.

W ponizszych zastosowaniach bedziemy przyjmowaé My = E,(F|F;) dla catkowalnej
funkeji F': X — R i odpowiednio dobranego (F) ciagu o-cial podzbioréw X.
4.3 Zastosowania nieréwnosci Azumy

Whniosek 4.5. Niech (X;,d;) bedg przetrzeniami metrycznymi, X = X3 x --- x X, z od-
leglosciq 11, to znaczy d(x,y) = Y iy di(zi,y;) dla z,y € X oraz niech p = 1 ® ... &
n bedzie produktem miar probabilistycznych p; na X;. Wowcezas dla dowolnej funkcji 1-
lipschitzowskiej F' na X

,u({x: F(z) > /qu—i—t}) < exp(—;l;),

gdzie D = (X7, Diam(X;)2)Y/2. W szczegdlnosci

a,(t) < exp ( - i)
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Dowdd. Na mocy Faktu 2.8 wystarczy wykazaé pierwsza nieréwnosé tezy. Niech Fi bedzie
o cialem generowanym przez pierwsze k-wspéirzednych oraz My, := E,(F|Fy). Wowczas
oczywiscie

M) = My, o) = [ F(@)dpir (i01) - din(n),
Xp+1X... xXp

stad
|Mk(aj‘) — Mk_1($)| = |Mk(x1, ey xk) — . Mk(l‘l, ey xk)d,uk(xkﬂ
k
< osup  [M(xr, .. mp—1, yk) — Mi(21, .00 -1, 21)|
Yk 2k EXg
g sup |F(x17"'7xk717yk7yk+17"'7yn)_F(xla"'7xk7172k7yk+17"'7yn)|
yeX,zp €Xg
< sup  dp(yk, zx) < Diam(Xp)
Yk 2k €EXg
i teza wynika z Twierdzenia 4.3. O

Przyktad 1. Niech X = {0,1}" z odlegloscia d(z,y) = %#{i: x; # y;} 1 unormowana
miara liczaca p. Kladac X; = {0, 1} z odlegloscia d;(z,y) = %I{z?gy} widzimy, ze mozemy
stosowaé poprzedni wniosek i D = (32, Diam(X;)?)1/2 = n=1/2. Zatem

nt?
o1} dp) S exp(— ?)

Definicja 4.6. Méwimy, ze skoficzona przestrzen metryczna (X, d) ma dlugosé co najwyzej
[, jedli istnieje rosnacy ciag podzialéw X, {X} = Ag, Ay,..., A, = {{z}: 2z € X} (A4
jest podpodziatem A;_;) oraz liczby ai,...,a, spelniajace (> 1, a?)l/2 < [ takie, ze dla
dowolnego A € A;_1 oraz B,C € A;, B,C C A istnieje bijekcja ®: B — C dla ktorej
d(z,®(z)) < a; dla z € B.

Uwaga 4.7. Biorac Ay = {X} i A1 = {{z}: z € X} widzimy, ze kazda skofczona przestrzen
metryczna ma diugos$é nie wigksza niz Diam(X).

Twierdzenie 4.8. Jesli (X,d) jest skoriczong przestrzeniqg metryczng o dlugosci co naj-
wyzej 1, za$ p unormowang miarg liczgeq na X, to dla funkcji 1-lipschitzowskich F na

X

2

t2

,u({:r:: F(z) > /qu+t}> < exp(—2—l2),

w szczegolnosci
2
a,(t) < exp ( - @)
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Dowdd. Ustalmy funkcje 1-lipschitzowska F'. Niech F; bedzie o-cialem generowanym przez
A; oraz M; := E,(F|F;) dlai=0,...,n. Wéwczas

1

Zatem, jesli A € A;_1, B,C € A;,B,C C A oraz ®: B — C jest bijekcja jak w Definicji
4.6, todlax € B,y e C,

Mila) = M)l = | 2 X (F() — F(@(2)] < sup [F(2) - F(@()
z€EB z€

<supd(z, ®(2)) < a;.
z€B
Poniewaz M;_1 na A € A;_1 jest usrednieniem M; po B C A, B € A;, to mamy |M;(z) —
M;_1(x)| < a;, czyli |M; — M;—1||oo < aj—1. Teza wynika z Twierdzenia 4.3 oraz Faktu
2.8. ]

Przyktad 2. Niech II" bedzie grupa permutacji zbioru {1,...,n} z metryka d(o, 7) =
14{i: 0; # m;}, a p unormowang miara liczaca na II". Niech A; sklada sie ze zbioréw
postaci

Ajl:"'7ji = {U elIr: 0(1) =J1s--- 70—(1.) - jl}
Wowezas jedli B,C' € A; sa podzbiorami pewnego A € A;_1 to B = Aj, i 1p C =
Aj . ji1.q 1 mozemy zdefiniowaé bijekcje ® miedzy B i C jako ®(0) = 7,4 0 0, gdzie
Tp,q jest transpozycja zamieniajaca p z ¢. Latwo sprawdzi¢, ze d(o, ®(0)) < 2/n, zatem

I=2/yni

nt?

)

a(rin,d,) < exp(—

5 Nierownosé Poincaré

5.1 Definicja i podstawowe wtasnosci

Definicja 5.1. Méwimy, ze miara probabilistyczna p na (X, d) spelnia nieréwnosé Poincaré
ze stala C jedli dla wszystkich ograniczonych lipschitzowskich funkcji f na X zachodzi

V() < C [ [V fPdp. (4)

gdzie

IV fl() = limsup W)

jesli = jest punktem skupienia X i |V f|(z) = 0, jesli x jest punktem izolowanym X.
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Uwaga 5.2. W przypadku, gdy X = R" ze standardowa metryka euklidesowa mozemy uzy¢
twierdzenia Rademachera, ktére mowi, ze kazda funkcja Lipchitzowska jest rézniczkowalna
prawie wszedzie i wtedy |V f|(x) jest dla prawie wszystkich = réwny dlugosci zwyklego gra-
dientu f. Ponadto argument aproksymacyjny pokazuje, ze by wykazac¢ nieréwnos¢ Poincaré
dla miar probabilistycznych na R™ wystarczy sprawdzié¢ (4) dla ograniczonych funkcji klasy
C1(R™) o ograniczonych pochodnych rzedu jeden.

Uwaga 5.3. Bedziemy wykorzystywali tylko dwie wlasnosci |V f|. Mianowicie, ze dla funk-
cji 1-lipschitzowskich |V f| < 1 oraz, ze dla dowolnej funkcji klasy C*(R), |Vg(F)| <
|g'(F)||VF| (w szczegblnosci |V (f + ¢)| = |V f])-

Uwaga 5.4. Zalézmy, ze miara p ma gestosé postaci e~V na R”. Wéwczas proste catkowanie

przez czesci pokazuje, ze

[198Edu =[5+ V.95 fdp

Definiujac operator Lf := —Af 4+ (VV,Vf) widzimy, ze L1 = 0. Nieréwnos$¢ Poincaré
méwi, ze dla funkcji f o éredniej 0, czyli prostopadtych do 1, [ fLfdu > C~! [ f2du. Biorac
pod uwage samosprzezonos¢ L nieréwnosé (4) jest réwnowazna temu, ze kolejna warto$é
wlasna L to conajmniej 1/C. Dlatego nieréwnosé Poincaré sie nazywa nieréwnoscia ,,luki
spektralnej” (spectral gap inequality).

Czasem wygodniej w nieréwnosci Poincaré zastapi¢ wariancje funkcji przez catke kwa-
dratu odchylenia od mediany, okazuje sie, ze prowadzi to do réwnowaznej nieréwnosci.

Fakt 5.5. Nieréwnosé Poincaré jest rownowazna nieréwnosci
Vrctipn Ealf = Meduf? < C [ V1P dp.

Co wigcej optymalne stale w obu nieréwnosciach spetniajq Copy < éopt < 3Copt -
Dowdd. Poniewaz
Vary (f) = inf Bu(f - ¢)> <E,|f — Med, f|?,
ce

wiec oczywiscie Copt < Cop.-
By udowodnié¢ przeciwne oszacowanie zauwazmy, ze

Var,(f) > Med,, f — Euf*u({|f — Euf| > Med,.f — E,f[})
> %|Medﬂf ~E.f|%

Stad
E,|f — Med, f|* < Var,(f) + |Med, f — E, f|* < 3Var,(f)

i otrzymujemy C’Opt < 3Copt- OJ
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Fakt 5.6. Symetryczny rozkliad wykladniczy v na R z gestoscig %e“‘”' spetnia nierownosé
Poincaré ze stalg 4.

Dowadd. Proste catkowanie przez czesci pokazuje, ze dla funkcji h € ngr(R),

/h(az)du(m) =h(0) + /sgn(x)h’(:z:)du(m).

Niech f € ngr(]R) ig(x)= f(x)— f(0) wowczas

stad

5.2 Nier6éwnosé Poincaré a koncentracja wykladnicza

Twierdzenie 5.7. Zaldimy, ze miara p spetnia nieréwnosé Poincaré ze stalg C. Wowczas
dla kazdej funkcji 1-lipschitzowskiej F' it > 0

n({F> /quth}) <2exp(—\%).

W szczegdlnosci ax (t) < 2exp(—t/2v/C).

Dowdd. Rozpatrujac F' — [ Fdu mozemy zalozyé, ze F' ma $rednia zero. Zauwazmy, ze dla
dowolnej funkcji rézniczkowalnej g mamy |Vg(F)| < |¢'(F)||VF| < |¢'(F)|. Niech

M) == M, r(\) = /e’\Fd,u.

Stosujac nieréwnosé Poincaré do eM7/? dostajemy
A\ 2 C\?
M) = M(5) = Var, (/%) < o/ VMR < ZEM(N).

Zatem dla \ < 2/v/C dostajemy

M) < ——m(2)”

1—CX2/4 \2
Iterujac te nieréwnosé n razy dostajemy
n—1 k n
1 2 A2
M()) < k];[o (= CAQ/MH) M(5) -
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Poniewaz M (0) = 11 M'(0) = [ Fdu =0, to M(\/2")*" — 1 przy n — oo i

M(A) < H (1 _C/\12/4k+1)2 )

Zauwazmy, ze

[T(1-cxah )" >1-0on Yy 2kt =1 2%
2
k=0 k=0
W szezegdlnosci M (1/y/C) < 2 i teza wynika z nieréwnoéci Czebyszewa. O

Uwaga 5.8. Nierownos¢ Poincaré nie implikuje lepszej koncentracji niz wyktadnicza. Istot-
nie symetryczny rozklad wyktadniczy na prostej v spelnia nieréwnoéé Poincaré ze stata 4,
a biorac f(r) = x widzimy, ze dla ¢t > 0,

v ({x eR: f(z) > /fdu+t}) =v([t,00)) = %e*t-

5.3 Tensoryzacja

Fakt 5.9. Zalozimy, ze p; sq miarami probabilistycznymi na X;, X = X1 X ... X X, oraz
=1 @ s ® - @ . Wowezas dla dowolnej funkcji f € L2(X, )

Var,(f) <> E,Var,,(f).
=1

Dowdd. Prosta indukcja pokazuje, ze wystarczy rozpatrzeé przypadek n = 2. Wowczas

Var,(f) = BBy, (f - Euf)2 =E,,[Var,, (f) + (Ey f — Eﬂfﬂ
= E,Var, (f) + Ep[Eu (f — Eup f))?
<E,Vary, (f) + EuEu, [(f — Euzf)Q] = E,Vary, (f) + E,Var,, (f),

gdzie ostatnia nieréwno$é¢ wynika np. z nieréwnosci Jensena. 0

Whniosek 5.10. Zalézmy, ze miary probabilistyczne p; na (X;,d;) spelniajq nieréwno$é
Poincaré ze stalg C; wzgledem gradientu |V;|. Wowczas miara p = pq ® -+ @ ly, spelnia
nierownos$¢ Poincaré ze stalg C = max; C; wzgledem gradientu V f danego wzorem

V2= IVif*.
=1
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Dowdd. 7 Faktu 5.9 dostajemy

n n n

Var,(f) <Y E,Vary,(f) <Y E.CE,|Vif|> < CE. Y |Vif|.
i=1 i=1 i=1
O

Whniosek 5.11. Produktowy rozklad wykladniczy v™ spelnia nieréwno$é Poincaré na R™
ze stalg 4. W szczegolnosci aun (t) < 2exp(—t/4).
5.4 Dodatkowe wlasnosci. Charakteryzacja na prostej.

Kolejna przyjemna wlasnoscig nieréwnosci Poincaré jest jej stabilno$é ze wzgledu na zabu-
rzenia miary pu.

Fakt 5.12. Zalozmy, Ze p jest miarg probabilistyczng na X, V jest ograniczong funkcjg bo-
relowskq oraz dv = Z~'eVdu, gdzie Z = [ €V du. Woéwczas jesli miara u spetnia nieréwnosé
Poincaré ze stalg C to v spelnia nieréwno$é Poincaré ze stalg Ce2llV e

Dowdéd. Wezmy funkcje lipschitzowska f, odejmujac stalg mozemy zalozyé, ze E, f = 0.
Wéwezas

1 1
Vary(f) < EVf2 = Z/fgevd/i < Ee”V”oo /deM
1
< Ee“‘f“wc/wfﬁdﬂ _ C€|IV||oo/|Vf‘26—vdV
< C€2||V||°°/|Vf‘2dy

O

Fakt 5.13. Jesli miara v na (Y, p) jest L-lipschitzowskim obrazem miary u na (X,d) oraz
@ spetnia nieréwnosé Poincaré ze stalg C, to v spelnia nieréwno$é Poincaré ze stalg CL?.

Dowéd. Niech v = pro¢@~!

na Y otrzymujemy

, gdzie o: X — Y i ||¢[lLip < L. Dla funkeji lipschitzowskich f

Var, (f) = Var,(f o.9) < C [ V1 0 glPdu < CL? [ 197 (e(w))dn(a)
—CrL? / IV |2dv,
gdzie przedostatnia nieréwno$é wynika z oszacowania |V f o |(x) < LIV f|(p(x)). O

Kolejne twierdzenie (ktére podamy bez dowodu) charakteryzuje miary na prostej, ktore
spelniaja nieréwnoé¢ Poincaré.
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Twierdzenie 5.14 (Muckenhaupt). Zaldzmy, zZe p jest miarg probabilistyczng na R o
medianie m, zas p oznacza gestosé jej czesci absolutnie cigglej. Wowczas miara p speinia
nierdwno$é Poincaré ze skoriczong stalg C wtedy i tylko wtedy gdy max{By,B_} < oo,
gdzie

z 1
By = sup plz, OO)/ ——dy
r>m m P y)

mo1
B_ = sup u(—oo,x]/ ——dy.
z<m z P(y)
Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia
1

mmaX{B%B,} < Copt < 4max{B,,B_}.

5.5 Nieréwnosé Cheegera

W tej sekcji v oznacza symetryczny rozktad wykladniczy na prostej z gestoscia %e"x'.
Zanim sformutujemy definicje zaczniemy od prostego faktu.

Fakt 5.15. Niech p bedzie miarg probabilistyczng na (X,d). Nastepujoce warunki sq réw-
nowazne dla ustalonego ¢ > 0:

(i) ut(A) > cmin{u(A),1 — u(A)} dla dowolnego zbioru borelowskiego A,

(ii) dla dowolnego zbioru borelowskiego A i = spelniajacych pu(A) = v(—oo,x] zachodzi
wu(Ay) > v(—oo, x + ct].

Dowdd. (ii)=(i). Niech p(A) = v(—o0, x|, wéwczas

Ay) — (A . (- 1
/‘I’+(A) :hmlnf :u‘( t) M( ) > hmlnf V(( OO,.Z’+Ct) l/( OO,.fL'] = "¢
t—0+ t t—0+ t 2

= min{v(—o0,z],v(x,00)} = min{p(A4),1 — u(A)}.

el

(i)=(ii). Ustalmy najpierw § < 1 i niech
to =to(d) = inf{t > 0: u(A;) < v(—o0,z + dct].

Zal6zmy najpierw, ze ty < oo. Woéwczas z monotonicznosci p(A;) tatwo wynika, ze u( A, ) =
v(—o0,x + dctol, czyli
. c _
:UJ+(At0) > len{:u(Ato)7 1- M(At0>} = 56 [+octol

1 .. v(—oo,xz+ dc(to + h)] — v(—o0,x + dcto]
= — lim
0 h—0+ h
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Definicja dolnej i zwyklej granicy implikuja, ze istnieje hg > 0 takie, ze dla 0 < h < hg,

M(Ato+h})L — w(A) S M((Ato)hg — 1(A) S \/Sge—|a:+66to|
v(—oo,x + dc(tg + h)] — v(—o0, x + dcty)
2 :

>

Stad p(A¢) > v(—oo,z + det] dla tg < t < to+ h, co przeczy definicji to.
Otrzymana sprzeczno$¢ pokazuje, ze to(d) = oo, czyli u(A¢) > v(—oo,z+dct] dlat > 0.
Przechodzac z 6 do 1 otrzymujemy (ii). O

Definicja 5.16. Mdwimy, ze miara probabilistyczna p na (X, d) spelnia nieréwnosé Che-
egera ze statg ¢ > 0, jesli zachodzi jeden z warunkéw réwnowaznych Faktu 5.5.

Okazuje sig, ze nieréwno$¢ Cheegera ma tez forme funkcyjna przypominajaca nierow-
nos¢ Poincaré.

Twierdzenie 5.17. Miara p spelnia nierowno$¢ Cheegera ze stalg ¢ > 0 wtedy i tylko
wtedy, gdy dla dowolnej funkcji lipschitzowskiej ograniczonej f zachodzi

Eulf — Medy()] < ¢ [ I¥flds

Do dowodu bedziemy potrzebowali jednej z wersji tzw. ,co-area formula”.

Lemat 5.18 (Nieréwnosé co-area). Dla dowolnej funkcji Lipschitzowskiej f na X,

[ Vtlan= [ s > e
X —00

Dowdd. Wystarczy udowodni¢ nierownosé dla funkcji ograniczonych. Istotnie, przyjmujac
fvr = max{—M,min{f, M }}, zauwazamy, ze |V fr| < |[Vf] 1 {fm >t} = {f > t} dla
|t| < M i przechodzimy z M do nieskonczonosci.

Rozpatrujac zamiast f funkcje f + ¢, mozemy zakladaé, ze f jest nieujemna. Okredlmy
dla t > 0 funkcje f; na X wzorem

fi(x) == sup{f(y): d(z,y) <t}.

Lipschitzowsko$é¢ f implikuje, ze (f; — f)/t < M. Latwo sprawdzié, ze {fy > r} = {f > r}4,
stad catkowanie przez czeéci daje

L= D= [l > 3 = (s > rhyar
X 0
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Mamy zatem

/ |V flduy = | limsup Ji= du = hmsup/ Ji= du
X X -0+ t t—0+
(T D » N
t—0+ Jo t
> /0 htrgéﬂf p({f >r}e) t_ p({f > T})dr _ /_OO ,U«+({f > r})dr

gdzie pierwsza i trzecia nier6wnos$¢ wynikaja z Lematu Fatou (w pierwszej zastosowanego
do funkeji nieujemnych M — (f; — f)/t). O

Uwaga 5.19. Dla miar p na R™ absolutnie ciaglych wzgledem miary Lebesgue’a mozna
udowodnié, ze w nieréwnoéci co-area zachodzi réwnosc.

Dowod Twierdzenia 5.17. ,=". Bez straty ogdlno$ci mozemy zalozy¢, ze Med,(f) = 0,
wowezas p{f > t} < 1/2dlat > 01 u{f >t} > 1/2 dla t > 0. Nieréwnos¢ co-area
implikuje
0
[Vt [T s s e [T uts > e [ - uls >
= cE, max{f,0} + cE, max{—f,0} = cE,|f].

»,<" Udowodnimy szacowanie (i) z Faktu 5.5. Idea polega na aproksymacji 14 przez
funkcje lipschitzowskie. Jesli u(A) > u(A), to u(A) = co i nie ma co dowodzié, bedziemy
zatem zakladaé, ze u(A) = u(A), co jest réwnowazne temu, ze pu(A;) — pu(A) przy t — 0.
Dla 0 < t < 1/2 okreslmy

fi(z) = %min{dist(:v, Ap),t —2t%),

Wéweczas fi jest 1/t-lipschitzowska, f; = 0 na Ap i f; = 1 — 2t poza A;_s2, zatem |V fi| <
%IAt\A- Mamy zatem

p(Ar) t_ (A) > /|Vft‘d,u > ch|ft — Medu(ft)|‘

Jesli u(A) > 1/2 to Med,,(f;) = 0 dla wszystkich ¢ i
pt(A) > chmlnf E.|fi| > chmmf(l —26)(1 — pu(Ai_2)) = 1 — u(A).

Jesli u(A) < 1/2 to u(Ay) < 1/2 dla malych t czyli Med,(f;) = 1 — 2t dla malych t i

pt(A) > chmlnfEM]ft —1+2t| > chménf(l —2t)u(Ap) = u(A).
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Nastepny fakt pokazuje, ze nier6wnosé Cheegera jest silniejsza od nieréwnosci Poincaré.

Fakt 5.20. Jesli p spelnia nieréuwnosé Cheegera ze stalg ¢ > 0, to spelnia nieréwnosé
Poincaré ze stalg 4c¢—>

Dowéd. Niech f bedzie Lipschitzowska funkcja ograniczona o medianie 0, za$ g := sgn(f) f2.
Nietrudno sprawdzi¢, ze g jest Lipschitzowska, ograniczona, ma mediane 0. Twierdzenie
5.17 implikuje

E.f* = Eulg| < M\Vgl EL([fIIVF]) < %(Eu\f|2)1/2(E|Vf|2)1/2-

Dzielgc stronami przez (Eu|f|2)1/2 dostajemy

4
Var,(f) < Bl < BV
O

Uwaga 5.21. 7 nieréwnosci Poincaré nie mozna wywnioskowaé nieréwnosci Cheegera. Moz-
na pokazaé, ze miara z gestoscia HTO‘|:C]O‘I{|I|<1} dla « € (0, 1) spelnia nier6wno$é¢ Poincaré,
a nie spetnia nierownosci Cheegera.

Kolejne twierdzenie, pochodzace od Talagranda, rozwigzuje zagadnienie izoperyme-
tryczne dla miary v.

Twierdzenie 5.22. Miara v spelnia nierowno$é Cheegera ze stalg 1.

Dowdd. Dowbdd przeprowadzimy w kilku krokach, wykorzystujac réwnowaznoéci z Faktu .
Krok I. v*([a,b]) > min{v([a,b]),1 — v([a,b])}.
Rozpatrzymy trzy przypadki.
i) a > 0. Wowezas v7([a,b]) =e @ +e > e @ —e " =v(la,b)).
ii) b < 0. Mamy vt ([a,b]) = e + €® > e* — e = v([a, b]).
iii) @ < 0 < b. Wtedy v ([a,b]) = e + e ? =1 —v([a,b]).
Krok II. Jedli A jest skoficzona suma przedzialéw, to v (A) > min{v(A),1 — v(A)}.
W rozwazanym przypadku v(A) = v(A) i vT(A) = v (A), zatem bez straty ogélnosci
mozemy zakladaé, ze A = i [a;, b;] oraz b; < a;4;1 dla1l < i < n—1. Niech p; := v([a;, bi]).
Mamy

1/*(14):'21/Jr a;, by Zmln{pz,l pi} mm{sz,l Zp} min{v(A4),1-v(A4)}.

Pierwsza rownosé¢ powyzej wynika z Kroku I, a druga latwo uzyskaé przez rozpatrzenie
dwu przypadkéw: p; < 1/2 dla wszystkich i oraz p; > 1/2 dla pewnego .

Krok ITI. Jesli A jest skoniczong suma przedzialéow oraz v(A) = v((—oo, z]), to v(As) >
v((—o0,x +t]).
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Zauwazamy, ze zbior A; jest réwniez skonczona suma przedzialéw, wiec z Kroku II
wynika, ze v (A;) > min{r(A;), 1 — v(A;)}. Teza Kroku III wynika z analogicznego rozu-
mowania jak w dowodzie implikacji (i)=-(ii) Faktu .

Krok IV. Jedli A jest zbiorem otwartym oraz v(A) = v((—oo, z]), to v(As) > v((—o0, x+
t]).

Zbiér A jest przeliczalng suma przedzialéw, wiec dla & > 0 istnieje B C A, ktéry jest
skonczong suma przedziatéw i v(B) > v((—oo, z —0]). Na mocy Kroku IIT v(A;) > v(By) >
v((—oo,z — § + t]) i wystarczy przejsé¢ z 0 od zera.

Krok V. Jedli A jest dowolnym zbiorem borelowskim oraz v(A) = v((—oo,z]), to
v(A) > v((—o0,z + t]).

Zauwazmy, ze Ay O (As)i—s, ponadto As jest zbiorem otwartym i v(As) > v((—o0,z]).
Korzystajac z Kroku IV dostajemy v(A;) > v((As)i—s) = v((oo, x +t — d]) 1 przechodzimy
z 6 do 0. O

Na prostej mozna scharakteryzowaé¢ miary speliajace nierownosé Cheegera.

Twierdzenie 5.23. Niech p bedzie miarg probabilistyczng na R, F(x) = pu(—o0, x], zas p
bedzie gestosciq czesci absolutnie cigglej p. Wowcezas nastepujgece warunki sg réwnowazne
dla ¢ > 0:

i) p spelnia nieréwno$é Cheegera ze stalq c,

i) p jest L-lipschitzowskim obrazem v,

‘ p(x)

min{F(z),1—-F(z)} Zc.

i11) essinf
Szkic dowodu. Implikacja ii)=-1) jest oczywistym wnioskiem z Twierdzenia 5.22 .

i)=-iii). Wystarczy zauwazy¢, ze u* ((—oo, z]) = p(z) dla p.w. z € R.

iii)=-ii). Definiujemy 7: R +— R wzorem v(—oo,z] = u(—oo,Tz]. Wéwczas T trans-
portuje v na u oraz

Ty Ty
p(z)dz > C/T:v min{F(z),1 — F(z)}dz.

v((w,y]) = p((T, Ty)) > /

Tx

Tx—Ty
T=Y

Stad tatwo wynika, ze T' jest ciagle i lim sup,,_,, < 1/¢, czyli T jest 1/c-Lipschitzowskie.

O

6 Logarytmiczna Nieré6wnos$¢ Sobolewa

6.1 Entropia funkcji

Definicja 6.1. Zalézmy, ze u jest miara probabilistyczng na X, zas f nieujemna funkcja
mierzalna na X. Entropie f wzgledem p definiujemy wzorem

Ent,(f) == { [ flog fdu— [ fdulog [ fdu jesli [ flog(l+ f)dp < oo
o > jesli [ flog(1+ f)du = oco.
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Z wypuktosci funkcji xlogx na [0, 00) wynika, ze Ent,(f) > 0, tatwo tez zauwazy¢, ze
Ent,(Af) = AEnt,(f) dla XA > 0.

Lemat 6.2. Dla dowolnej funkcji nieujemnej na X,

Ent,(f) = sup{/fgdu: /egdu < 1}. (5)

Dowdd. Z jednorodnosci obu stron tozsamosci (5) mozemy zakladaé, ze [ fdu = 1, woéwczas

Ent,(f) = [ flog fdp.
Nietrudno sprawdzié, ze dla v > 0, sup,cgr(uv — €”) = ulog u — u, zatem

wo <ulogu —u+e” dlau>0,veR. (6)

Zatem biorac g takie, ze [e9dp < 1 dostajemy

[ fadun < [(Flog s = £+ e = Bnty(5) = 1+ [ efdu < Ent(£),

By udowodnié¢ nieréwnos¢ w przeciwng strone wystarczy przyjaé¢ g = log f. O
7 powyzszego lematu tatwo wykazaé tensoryzowalnosé entropii:
Fakt 6.3. Zaloimy, ze p; sqg miarami probabilistycznymi na X;, X = X1 X ... X X, oraz
b= @ o ® -+ ® wpn. Wowczas dla dowolnej nieujemnej funkcji f na X zachodzi
n
Ent,(f) <> EuEnt,,(f).
i=1

Dowdd. Wezmy funkcje g na X taka, ze [e9du < 1 oraz przyjmijmy dla i =1,...,n,

Jeotrmn) dpy () - 'dﬂi—l(xi—1>>

g (z1,...,x,) :=log ( [ €9t mn) dpiy (1) - - - dp(a7)

Woéwezas g < Yo7, ¢° oraz e dp; < 1, stad
g =1 H

/fgdu < Zzn:l/fgidu — zn:l/ (/fgidui)du < ii:/EntM(f)du.
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6.2 LNS - definicja, tensoryzowalnos¢, zwigzek z koncentracja

Definicja 6.4. Mowimy, ze miara probabilistyczna na (X,d) spelnia logarytmiczng nie-
rowno$é Sobolewa ze stata C, jesli dla wszystkich ograniczonych lipschitzowskich funkeji f
na X zachodzi

Ent,,(f2) < 2C / IV f[2dp. (7)

Fakt 6.5. Zalézmy, ze miary probabilistyczne p; na (X;,d;) spelniajg logarytmiczng nie-
rownosé Sobolewa ze stalq C; wzgledem gradientu |V;|. Wowczas miara p = pg ® -+ ® pip,
spetnia logarytmiczng nieréwnosé Sobolewa ze statg C = max; C; wzgledem gradientu V f
danego wzorem

VAP =D IVif .
i=1
Dowdd. 7 Faktu 6.3 dostajemy

Ent,(f*) <Y E.Ent,, (%) <> E2CE,|V:f[> <2CE, > |V,f*.
=1 =1 i=1

O

Twierdzenie 6.6. Zaldzmy, Ze miara p spelnia logarytmiczng nieréwno$é Sobolewa ze
statg C. Wowczas dla kazdej funkcji 1-lipschitzowskiej F' it > 0,

n({F= /qu+t}) <exp (- Qté)

W szczegdlnosci ax (t) < exp(—t?/80C).

Dowdd. Ustalmy ograniczona funkcje 1-Lipschitzowska F' taka, ze [ Fdu = 0. Wystarczy,
ze pokazemy iz dla A > 0

M(X) = Mgy = /e)‘qu < eO¥/2,

Zastosujmy logarytmiczng nieréwnosé Sobolewa do f2 := eM'. Wéwczas
Ent,(f?) = AE, Fe* — E e logE, e = AM'(\) — M(\) log M()\)
oraz
A2 A2
/|Vf|2du = Z/|VF|26AF < TMO.
Zatem (7) daje

)\2

AM'(X) = M(N)log M(A) < O M(A). (8)
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Okreslmy H()) := tlog M(X) dla A > 0. Woéwczas

lim H(\) = ]\]é’(O) :/quzo

A—0 (0)
oraz na podstawie (8)
1 IM'(\) _C
H () =—log M) + ~ < —.
W= =5gles MM+ 3705 < 3
Zatem H(\) < CA\/2 czyli M(\) < exp(CA?/2). O

6.3 LNS dla miary gaussowskiej
Fakt 6.7. i) Niech u1 = %51 + %5,1, wowczas dla dowolnego f: {—1,1} — R,
Enty, (f?) < 2E,, [Df[?,
gdzie Df(x) = 5(f(x) — f(=x)).
ii) Niech p, = pu1 ® -+ @ py bedzie rozkladem jednostajnym na {—1,1}", wéwczas dla
dowolnego f: {—1,1}" — R,

Enty,, (f?) < 2By, |DfI,

gdzie
1 n
IDfP(z) = 1 > (f(@) = f(si(x)))?,
i=1
oraz s;((x1,...,xn)) = (T1, ..., Tie1, —Ti, Tit1,---,Tp) dla 1 <i< n.

Dowdd. i) Z uwagi na jednorodno$¢ mozemy zakladaé, ze E,, f? = 1, woéwczas istnieje
t € [-1,1] takie, ze f(1) = v/1+1t oraz f(—1) = /1 —t i nieréwno$¢ z punktu i) ma
postaé a(t) > 0, gdzie

1+t 1-t¢
a(t):zl—\/l—ﬂ—%log(l—i—t)— 5 log(1 —t).

Nietrudno sprawdzié, ze «(0) = o/(0) = 0 oraz

O// (t)

1<t2 t2

= — >0,
1-12\/1—¢2 1+m)

wiec istotnie a(t) > 0.
ii) Wynika z punktu i) i Faktu 6.3. O

Twierdzenie 6.8. Miara v, spetnia logarytmiczng nieréwno$é Sobolewa z C' = 1.
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Dowdd. 7 uwagi na Fakt 6.3 wystarczy rozwazy¢ przypadek n = 1. Niech f € ngr(]Ra).
Okreslmy gy, : {—1,1}" — R wzorem

gnl2) = f (++) |

NG

Niech uy, i |Df| beda jak w Fakcie 6.7. Wéwczas na mocy centralnego twierdzenia granicz-
nego

Ent,, (g7) = / 92 log godyu, — / 92dyun log / 92dyi, — Ent., (f?).

Ponadto kladac T),(z) = n*1/2(x1 +... 4z

[Dgnl(z)? = i; (1) 1 (1) 252 ) = S @ 470

gdzie r,, zbiega do zera jednostajnie wzgledem |7, (x)|. Zatem
lim By, [Dga|(2) = lim B, J'(Tu(2))? = By, f/(2)”
O

Fakt 6.9. Zaldzmy, Ze u jest miarg probabilistyczng na X, V' jest ograniczong funkcjq bore-
lowskq oraz dv = Z'eVdu, gdzie Z = [ eVdu. Wowczas jesli miara pu spetnia logaryticzng
nierownosé¢ Sobolewa ze stalqg C to v spelnia logarytmiczng nieréwno$é Sobolewa ze stalg
Ce2lVloo

Dowdd. Funkcja p(u) = ulogu jest wypukla na [0, 00) stad dla dowolnych s, ¢, o(s+t) >
p(t) + ¢'(t)s, wige

o [ Fav)=e(t+ [(#2=0d) > o)+ 0 [ (12 - ).
Zatem

Ent, (f?) = inf [o(f%) — o(t) — ' ()(f* — t)]dv

1

< eVl inf [ [o(f%) = o(t) = ¢ ()(f* — )] Ze Vv
1 2C

— E€”V||°°Ent'u(f2> < 76”‘/”00 / |Vf|2d,u

< 2062HVH°°/Nf|2dV.

Kolejny fakt dowodzimy tak samo jak dla nieréwnoéci Poincaré.
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Fakt 6.10. Jesli miara v na (Y,p) jest L-lipschitzowskim obrazem miary u na (X,d)
oraz | spetnia logarytmiczng nieréuno$é Sobolewa ze stalg C, to v spelnia logarytmiczng
nieréwno$é Sobolewa ze statq CL2.

Stosujac logarytmiczna nieréwno$é Sobolewa do funkcji f = 1 + £g dowodzimy

Fakt 6.11. Jesli miara probabilistyczna p spetnia logarytmiczng nieréwnosé Sobolewa ze
statg C, to spelnia rowniez nieréowno$é Poincaré ze stalg C.

Opierajac si¢ na twierdzeniu Muckenhoupta da si¢ wyprowadzié¢ kryterium réwnowazne
nierownosci logarytmicznej Sobolewa dla miar na prostej.

Twierdzenie 6.12. Zalozmy, Ze p jest miarg probabilistyczng na R o medianie m, za$
p oznacza gestoS¢ jej czesci absolutnie cigglej. Wowczas miara p speinia logarytmiczng
nieréwno$é Sobolewa ze skonczong stalg C wtedy i tylko wtedy gdy max{By,B_} < oo,
gdzie

1 r 1
B = sl (i 5) |,

1 mo1
B- = sputomal () [,

Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia

1
ﬁ<B+ + Bf) < Copt < 468(B+ + Bf)

6.4 Nieré6wnosé Bobkowa

Logarytmiczna nieréwno$¢ Sobolewa implikuje koncentracje gaussowska, ale nie implikuje
gaussowskiej izoperymetrii. Okazuje si¢, ze jest silniejsza nieréwnosé, ktéra implikuje gaus-
sowska izoperymetrie, a jednocze$nie ma szereg réwnie dobrych wilasnosci jak nieréwnosé
Poincaré czy logarytmiczna nieréwnos$¢ Sobolewa.

Przedstawione ponizej rozumowania mozna podobnie jak w poprzednich sekcjach pro-
wadzi¢ w wiekszej ogdlnosci, jednak by uniknaé szczegdléw technicznych ograniczymy sie
do miar na R" i funkcji gtadkich.

W tej czeSci przez I bedziemy oznaczaé gaussowska funckje izoperymetryczna, tzn
I(z) = (@ (z)), gdzie p = (27)~ 2 exp(—|z|?/2). Dodatkowo okreslamy I(0) = I(1) =
0.

Definicja 6.13. Méwimy, ze miara probabilistyczna u na R™ spetnia nieréwnosé Bobkowa

ze stata C, jesli dla wszystkich f € ngr(R”) o wartosciach w przedziale [0, 1] zachodzi

1( [ rau) < [ 12+ c2ivspap. )
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Fakt 6.14. Jesli miary p; spelniajqg nieréwno$é Bobkowa ze stalymi Cj, to miara 1 ®---®
Wn spelnia nierownos$é Bobkowa ze stalg max; Cj.

Twierdzenie 6.15. Jesli miara probabilistyczna p na R™ spetnia nierownosé Bobkowa na

ze statlg C, to
1

W) > Z1(u(4)  dla A€ BR")

oraz

(A > ®(@ 1 (u(A) +t/C)  dla A e BR"Y), t> 0.

Twierdzenie 6.16. Kanoniczna miara gaussowska v, spetnia nierownosé Bobkowa z C' =
1.

7 Nieréwnosci Splotu Infimum
7.1 Wtlasno$é (1) Maureya
Zacznijmy od zaproponowanej przez Maureya definicji.

Definicja 7.1. Splotem infimum dwu funkcji f i g okre$lonych na R™ nazywamy funkcje
fOg dana wzorem

fOg(x) == inf{f(y) + g(z —y): y € R"}.

Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, 0o]. Méwimy, ze para (u, @)
ma wlasno$é (7) badz, ze miara p spelnia nieréwno$é splotu infimum z funkcja kosztu ¢

jesli
/efD“"d,u,/e_fd,u,< 1

dla dowolnej ograniczonej mierzalnej funkcji f na R"™.
Pierwsza uzyteczna cecha wlasnosci (7) jest jej tensoryzowalnosé.

Fakt 7.2. Jesli pary (u;, vi) majg wlasnos$é (1), p=p1 @ -+ @ fu, oraz
90(1.17 cee 7xn) = ‘Pl(xl) +...+ gon(xn),
to rowniez para (u, ) ma wlasnosé (7).

Dowdd. Prosty argument indukcyjny pokazuje, ze wystarczy udowodni¢ teze dla n = 2.
Niech f = f(z,y) bedzie ograniczona funkcja na R™ x R"2, okre§lmy fY(z) = f(x,y) oraz
zdefiniujmy g na R™? jako

g(y) :=1In (/efym“"l(x)dul(w)).
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Wtasnoéé (1) dla (u1, 1) implikuje, ze g(y) < —In([ e™/"du1), zatem

/e_gd,ug > /e_fdul ® W2-

Ponadto dla dowolnych y, y
/ @) gy () < / oD@ 02 (0=0) gy () = 9@ +e2(0-),
wiec g0pa(y) > In([ efPe@W dp, (2)) i

/egmtpzdu2 > /estodul & pia.
Teza wynika z powyzszych nieréwnosci i wlasnosci 7 dla (u2, ¢2). O

Nastepny fakt pokazuje w jaki spos6b mozna transportowaé (7).

Fakt 7.3. Zalozmy, ze p jest miarg probabilistyczng na R™, za$ ¢ funkcjqg kosztu na R™
takg, ze (u,@) spelnia wlasnosé (t). Jesli T: R™ — R™ oraz funkcja ¢ na R™ spelnia
V(Tz — Ty) < (x —y) dla wszystkich z,y, to para (o T~1,v) ma wlasnosé (7).

Dowdd. Niech f bedzie ograniczong funkcja na R™. Zauwazmy, ze
foTUOp(z) = mt(f(Ty) + ¢(z —y)) > wi(f(Ty) + ¥(Tz — Ty)) > fOU(Tx).
Zatem

/ewad,uoT*1 = /ewa(Tx)d,u(a:) < /efOTD“’(‘”)d,u(x) < (/e*fOTdu)_

_ (/efduoTl)_l.

1

7.2 Splot infimum a koncentracja

By sformutowaé zwiazki nieréwnosci splotu infimum z koncentracja okreslmy zbidr

By(t) = {x: o(z) <t}
Zacznijmy od prostego faktu

Fakt 7.4. Jesli (p, p) ma wlasnosé (1) to dla dowolnego zbioru borelowskiego A takiego,
Ze p(A) > 0 mamy
L

LA+ B0 <
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Dowdéd. Zastosujmy wlasnos$¢ (1) do funkeji f = 0 na zbiorze A i f = oco poza zbiorem A.
Zauwazmy, ze fOy > t poza zbiorem A + B,(t), zatem

1> /efDWdu/e*fdu > (1 — (A + Bo(t))u(A).
OJ

Uwaga 7.5. Funkcja f w poprzednim dowodzie nie byta oczywiscie ograniczona, ale tatwo
ominaé ten problem stosujac nieréwnosé (7) do f, = nlgm 4 dlan >t.
Poprzedni Fakt daje dobre oszacowanie tylko dla duzych wartosci t. Nieco modyfikujac

jego dowdd da sie uzyskaé tez nieréwnosci koncentracyjne dla matych ¢.

Fakt 7.6. Zaloimy, Ze para (i, p) ma wlasnosé (7). Wowczas dla dowolnego zbioru bore-
lowskiego A it > 0,

e'u(A)
W szczegolnosci
H(A + B,(t)) > min{e'/u(A),1/2) (11)
WA > 5 = 1 (At By(1) < e /(1 - u(A)) (12)
Ponadto
p(A) = v(—oo,x] = p(A+ By(t)) > v(—oo,x +1/2]. (13)

Dowdd. Niech f(z) = tlgm 4. Wowezas f jest nieujemna, wigc fUp tez jest nieujemna
(rozpatrujemy tylko nieujemne funkcje kosztu). Dla « ¢ A + B, (t) mamy fOo(z) > t.
Zatem wlasnoéé () daje

1> /efD‘P(x)dp,(x)/e‘f(“’)du(x)
> [1(A+ By(#)) + €' (1 = p(A+ By(t)))] [1(A) + e (1 = p(A))];

skad bezposredni rachunek prowadzi do (10).
Niech fi(p) := e'p/((e! — 1)p + 1), zauwazmy, ze f; is rosnaca wzgledem p oraz dla
p<e 22
1
(et - 1)p+ 1< et/2 +1— 5(615/2 +€—t/2> < 6t/27

skad otrzymujemy (11). Ponadto dla p > 1/2,

1- 1- B
1—ft(p):(et_1)§+1 < (et+11;/2<€ t2(1 — p)
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i dostajemy (12).

Niech F(x) = v(—o0, 2] i gi(p) = F(F~1(p) + t). Poprzednie rachunki pokazuja, ze dla
t,p >0, fi(p) = g12(p), jesli F~1(p) +t/2 < 0 lub F~1(p) > 0. Poniewaz gi1s = g; © gs i
ftvs = fr o fs, otrzymujemy fi(p) > g;/2(p) dla wszystkich ¢,p > 0, zatem (10) implikuje
(13).

O

7.3 Dwupoziomowa koncentracja dla rozktadu wyktadniczego

Niech jak do tej pory v oznacza miare na R z gestoscia %eﬂw |, za$ V4, V_ miary z gestoSciami
odpowiednio €™ "1y o) 1 €1 (o0 -

Fakt 7.7. Para (v, o) ma wlasno$é (1), gdzie

L2 dla |x| <2
po(z) =

18

(|| —1) dia |z > 2.

Lemat 7.8. Dla wszystkich x € R mamy 2|¢((z)] < 1 oraz
(1 — 4¢h(2))em® > 1.

Dowdd. Pierwszg nieréwnosé otrzymujemy przez latwe sprawdzenie. By udowodnié¢ drugg,
z uwagi na symetrie g, wystarczy rozpatrywaé przypadek x > 0. Ponadto ¢f(x) jest stale
dla x > 2 a g rosnace na tym przedziale, wiec mozemy zakltadaé, ze 0 < x < 2. Wowczas
nieré6wnoéé po podstawieniu y = x?/18 ma postaé

8 2
eV<1l—-y, 0<y<-.
9Y YS9
Funkcja e™¥ jest wypukla, wiec wystarczy sprawdzié¢ tylko y =01y = 2/9. O

Dowdd Faktu 7.7. Ustalmy funkcje ograniczona f, przyjmijmy g := fUpg i niech
Iy .= / e @2y I, = / 9@ =T .
0 0

Musimy pokazaé, ze IpJ; < 1. Dla t € (0,1) zdefiniujmy x(¢) i y(t) wzorami
a(t) y(t)
/ e T@) =2 gy — tly oraz / eI @) =Ty — ¢,
0 0

Woéwcezas
2/ (t) = Ipef EO+=t) /(1) = [~ 90O +y(D)

/
Na mocy definicji g, g(y(t)) < f(z(t)) + wo(y(t) — x(t)), wiec
Y (t) > Lie T EO) =@ —z®)+y(®)
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Niech z(t) = 1(2(t) + y(t)) — o(z(t) — y(t)), wowczas

1

2(1) = (5 — eh(alt) — ()2’ (0) + (5 + ehlalt) — u(1)y' (1)

Piszac dla uproszczenia z i y zamiast z(t) i y(t) stosujac poprzednie oszacowanie y'(t)
oraz nier6wno$¢ miedzy Srednia arytmetyczna i geometryczna dostajemy (wykorzystujac
parzystosé pq)

2 (t) >

> \/1 — 4l (z — y)? [Tol ez @)= 3¢0(2=y)

= VIoLe*® \/1 —dppy(z — y)%é‘”(w_y).

1
(1 = 26w — )o@ 4+ (14 2¢(x — y)) Ty~ @ W Hr=T@

|

Zatem na mocy Lematu 7.8, (—e *)) = e=*2/(t) > /IoI}, co po odcatkowaniu daje

VI < 1. O

Uwaga 7.9. Funkcja g jest ciagla, wiec y jest rozniczkowalna. Funkcja f nie musi by¢ ciggla
wiec x nie musi by¢ rézniczkowalna. Jednak z ograniczonosci f tatwo wywnioskowaé lokalna
Lipschitzowsko$¢ z (stad tez z), a zatem rézniczkowalnoéé z prawie wszedzie. Funkcja e =*(*)
jest zatem lokalnie lipschitzowska, czyli jest calka swojej pochodnej, ktéra istnieje p.w..

Whniosek 7.10. Miara v spelnia nieréwno$é infimum z funkcjg kosztu @1 postaci

P10 =200 = Y —2) diaft] > 4.

t):{ L2 dla |t| < 4

Dowdd. 7 wypuktlosci funkcji ¢g tatwo wynika, ze 1 = poldpg. Poniewaz miara v_ jest
symetrycznym odbiciem v4 a funkcja ¢g jest symetryczna, to (v—,¢p) ma wlasnosé (1),
wiee (vy @v_, po(x) +¢o(y)) tez ma (7). Miara v jest splotem miar vy i v_, czyli obrazem
v ® v_ przy przeksztalceniu T'(z,y) = x + y. Teza wynika z Faktu 7.3 O

Wiemy, ze miara v a zatem i miara produktowa v" spelniaja nieréwnos$é¢ Poincaré, wiec
jesli v™(A) > %, to v"(A+tBy) > 1— e Y/C dla pewnej stalej absolutnej C. Okazuje sie,
ze mozna te nieréwno$é¢ wzmocnic.

Zanim sformutujemy twierdzenie (ktére pierwszy z gorszymi stalymi udowodnil Tala-
grand) wprowadzmy nastepujace oznaczenie kuli jednostkowej w [ydlal<p<oo

n
Bl i={z eR": > |z’ <1}.
=1
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Twierdzenie 7.11. Dla dowolnego zbioru borelowskiego A w R™ takiego, ze v"™"(A) > 0
mamy dlat > 0,

1 —v"(A+6VtBY + 9tB}) <
Ponadto
V"(A) = v(—o00,x] = V"(A+ 6V2tBY + 18tB}) > v(—o0,z + ).

Dowdd. Para (V", ¢,,) ma wlasnosé (1), gdzie pp (21, ...,2n) = @1(z1)+. . .+p1(xy,). Latwo
sprawdzi¢, ze
B,, (t) C 63/tBY + 9tBY.

Teza wynika zatem z Faktow 7.4 1 7.6. 0

7.4 Wypukla wlasno$é (1)

Definicja 7.12. Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, co] wypu-
kta. Mowimy, ze para (u, ) ma wypukiq wlasnosé (1) badz, ze miara p spelnia nieréwno$é
splotu infimum z funkcjqg kosztu ¢ jesli

/efD“"d,u,/e_fd,u,< 1

dla dowolnej wypuklej funkcji f na R”.
Wypukta nieréwnosé (7) sie tensoryzuje podobnie jak zwykla nier6wnosé (7).

Fakt 7.13. Jesli pary (u;, vi) majg wypukle wlasnos$é (1), p=p1 @ -+ @ py, oraz

(P(:Ul, s ,ZCn) = (Pl(xl) +ot gon(:vn),
to réwniez para (p, p) ma wypukle wlasnosé (7).

Dowdd. Dowdd przebiega podobnie do dowodu Faktu 7.2. Stosujac taka jak w tamtym do-
wodzie notacje, wystarczy zauwazy¢, ze funkcja y — fYOep; jest wypukla (wykorzystujemy
tu zaréwno wypuklosé f jak i ¢q), 1 wywnioskowaé z nieréwnosci Holdera wypuktosé g. [

Tak samo jak Faktu 7.4 dowodzimy, ze wypukla nier6wnos¢ (7) implikuje koncentracje
dla zbioréw wypuktych.

Fakt 7.14. Jesli (pu, ) ma wypukle wlasnosé (1) to dla dowolnego wypuklegp zbioru bore-
lowskiego A takiego, ze pu(A) > 0 mamy

1—pu(A+ By(t)) < me_
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Lemat 7.15 (Maurey). Zalozmy, Ze p jest miarg probabilistyczng na R™ skupiong na

2
zbiorze o Srednicy nie wigkszej niz A. Wowczas para (u, %) ma wypukiq wlasnosé T.

Dowdd. Zalézmy, ze pu jest skupiona na zbiorze A i diam(A) < A. Niech f bedzie wypukta
funkcja na R™, p(z) = ﬁm2 oraz g := fOy. Ewentualnie odejmujac od f stalag mozemy
zakladaé, ze inf 4 f = 0. Ustalmy € > 0 i wybierzmy a € A taki, ze f(a) < e. Wéwcezas dla
z € AiXel0,1] mamy

Nz — al?

9(z) < Fa+ (1= X)2) + ¢(\@ — @) < Afla) + (1 - Nf() + o

<A+ (1 =N f(x)+ %/\2.

7 dowolnosci € > 0 dostajemy

N

()

1
Ag[loijl](l — A f(x) + ZV =k(f(z)) dlaze A,

gdzie k(z) =u —u? dlau € [0,1/2] i k(z) =1/4 dla z > 1/2.
Pokazemy, ze eF(®) < 2 — e~ Wystarczy te nieréwnoéé oczywiscie pokazaé dla u €
[0,1/2], ale wtedy

1
Z(F®) 4 o7y = e /2 cosh(u — u?/2) < e % /2 cosh(u) < 1.

2
~1
/egdu</ek(f)d,u<2—/e_fd,u< (/e_fd,u> .

Mamy zatem
Twierdzenie 7.16. Jesli p jest rozkladem jednostajnym na {a,b}™ (lub ogdlniej dowolnym
rozktadem produktowym o nosniku w [a,b]"™), zas A jest wypuklym podzbiorem [a,b]", to

/exp <4(bia)2dis‘c(m, A)Z) dp < M(l)

O]

W szczegolnosci

1 t2
— —_— dla t > 0.
u(4) ex‘”( 4<b—a>2> e

Dowdd. Na mocy Lematu 7.15 i tensoryzacji wiemy, ze p spelnia wypukla wlasnosé splotu
infimum z funkcja kosztu p(z) = mm% Stosujemy wlasnosé (7) do funkcji f = 0 na
Ai f =o00poza Aidostajemy

1
1 > /e_fd,u/eflj(pdlu, = /.L(A)/exp (4<b_a)2dlst(x,A)2> d/,L

1—pu(A4y) <
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Uwaga 7.17. Twierdzenie powyzsze jest nieprawdziwe bez zalozenia wypuktosci A. WeZmy
bowiem za p, rozkltad jednostajny na {—1,1}", oraz

A= {:z: e{-L1}": ) x < 0}.
i=1

Woéwezas ju,(A) > 1/2 oraz korzystajac z tego, ze |a—b| < t{a—b|? dla a,b = £1 dostajemy
AN {-1,1}" C e{-1,1}": E ;< — 5.
o } {33 { } z’:lxZ b 4}

Na mocy centralnego twierdzenia granicznego lim sup,, pin(A,,1/4) = ®(t?/4) < 1.

8 Nieréwnosci transportowe

8.1 Koszt optymalnego transportu
By zdefiniowaé¢ koszt transportu miar bedziemy potrzebowali kilku definicji.

Definicja 8.1. Przez P(X) bedziemy oznaczaé rodzine miar probabilistycznych na prze-
strzeni mierzalnej X. Dla u,v € P(X) przez II(u,v) bedziemy oznaczali zbiér wszystkich
miar probabilistycznych 7 na X x X takich, ze p i v sa miarami brzegowymi m, czyli
(A X X)=p(Ad)in(X x A) =v(A) dla dowolnego zbioru mierzalnego A C X.

Uwaga 8.2. Zbiér II(u, v) jest niepusty, gdyz zawiera miare produktowa p ® v. Zauwazmy
tez, ze jesli T transportuje p na v oraz X ma rozklad pu, to rozklad zmiennej (X, 7TX)
nalezy do II(p,v).

Definicja 8.3. Zalézmy, ze c¢: X x X — [0, 00] jest funkcja mierzalng. Dla u,v € P(X)
definiujemy optymalny koszt transportu miary p na v z funkcjq kosztu ¢ wzorem

T.(p,v) := inf {/XXX c(z,y)dr(z,y): m € I(k, y)} )

W przypadku, gdy (X, d) jest przestrzenia metryczna, a c(z,y) = dP(x,y) bedziemy pisaé
T, zamiast T,. Okredlamy tez odleglo$¢é Wassersteina miar pu,v € P(X) jako

1/p

Wy, v) =T, (p, V)P = inf { (/X dp(az,y)dw(x,y)> s e (p, 1/)} , 1<p<oo,

xX

Wy, v) = Tp(p,v) = inf {/X dP(z,y)dm(z,y): m € I(u, 1/)} , pe€(0,1].

xX

Uwaga 8.4. Mozna udowodnic, ze jesli X jest przestrzenia polska, to W), jest metryka na
przestrzeni miar probabilistycznych p na X takich, ze [y d(z,zo)Pdp(x) < oo dla pewnego
(réwnowaznie kazdego) zg € X.
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Uwaga 8.5. Réwnowaznie mozemy zdefiniowaé
Te(p,v) = inf{Ec(X,Y): X ~pu, Y ~v}.
Uwaga 8.6. Zauwazmy, ze
Te(p,v) < inf{E,c(x,Tr): T transportuje x4 na v}.

W wielu przypadkach mozna udowodnié¢, ze w powyzszej nieréwnosci zachodzi réwnosé, ale
nie jest tak zawsze — np. gdy p ma atomy, a v jest bezatomowa, to nie istnieje transport p
na v.

Definicja 8.7. Jesli (X, d) jest przestrzenia metryczna, to okreslamy odleglo$é Monge’a-
Kantorowicza miar p, v € P(X) wzorem

T P

Fakt 8.8. Dia dowolnej przestrzeni metrycznej (X, d) zachodzi

: [+ X — R 1-Lipschitzowska, ograniczona} .

WLlp( s ) Wl(:u“v V) dla p,v € P(X)

Dowdéd. Zauwazmy, ze dla dowolnego 7 € II(z,y) i f 1-Lipschitzowskiego mamy

[ s [ gav

Biorac supremum po f i infimum po 7 dostajemy teze. O

— | [@) = swpinte.)| < [ 1@ -1 @)dn(e.) < [ dzg)dn).

Przy dodatkowym zatozeniu o$rodkowosci odleglosci WlL P W, sie pokrywaja.

Twierdzenie 8.9 (Dualnos¢ Monge’a-Kantorowicza-Rubinsteina). Zaldzmy, ze (X, d) jest
o$rodkowq przestrzenig metryczng. Wowczas

Wi(p,v) = WiP(p,v)  dla p,v € P(X).

8.2 Wzgledna entropia

Definicja 8.10. Niech u, v beda dwiema miarami probabilistycznymi na X. Okreslamy
entropie miary v wzgledem miary | wzorem

7 o Entu% =E, log(g—l’:), jesli v < p,
(V) = )
+00 w przeciwnym przypadku.

Lemat 8.11 (Zasada wariacyjna Gibbsa). Dla dowolnej ograniczonej z gory funkcji mie-

rzalnej f,
log Eye! = sup{E, f — H(v|u)}
12
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Dowdd. Okredlmy miare i wzorem
f
e
du.
E,ef a

dji =

Wéwczas dla dowolnej miary probabilistycznej v < u,

dv dp dv
E f-H =E,f—Eylog(—)=E,f —E,log(—) — E, log(—
f—=Hv|p) f o8(,) f o8(5,) o8(57)
= log(E,e’) — H(v|n).
Wystarczy zauwazy¢, ze H(v|f) > 01 H(fi|f@) = 0. O

Twierdzenie 8.12 (Bobkow-Goetze). Niech p bedzie miarg probabilistyczng na przestrzeni
metrycznej (X,d) i a > 0. Wowczas n.w.s.7.

i) WlLlp(Z/, ) < \/2aH (v|p) dla dowolnej miary probabilistycznej v,

i1) dla dowolnej funkcji 1-Lipschitzowskiej ograniczonej f,

Eue’\(f_E“f) < /2 dlg \ e R.

Dowdéd. Zamieniajac f na —f widzimy, ze ii) wystarczy dowodzi¢ dla A > 0. Zasada wa-
riacyjna Gibbsa pokazuje, ze warunek ii) jest réwnowazny

AQ
0>supsupsup{)\(EVf—Euf)—H(y|u)—a}
A0 f v

aX?
= sup sup sup {)\(El,f —-E.f) - H(v|p) — }
voAS0 f

Li a)?
= supsup { AW;"P(u, v) — H(v|u) — —— 3 = sup
VA0

co jest oczywiscie réwnowazne warunkowi i). O

Uwaga 8.13. Logarytmiczna nieréwnos¢ Sobolewa ze stata C implikuje zachodzenie wa-
runku ii) z @ = C (zob. dowdd Twierdzenia 6.6). W szczegélnodci miara gaussowska 7,
spelnia warunki twierdzenia Bobkowa-Goetzego z o = 1.

8.3 Tensoryzacja nieréwnosci transportowych

Definicja 8.14. Powiemy, ze miara probabilistyczna pu na X spetnia nieréwnosé T, ze
statg «, jesli
T, (v, 1) < 2aH (v|p)P?  dla v € P(X).

Uwaga 8.15. Dla p > q i p,v € P(X) zachodzi T (1, v)'/P > T, (p,v)Y/9, zatem nieréwnosé
T, pociagga za soba nieréwnos¢ Tj dla g < p.
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Naturalne jest pytanie czy nieréwnosci 7}, si¢ tensoryzuja. Wykorzystamy do tego ogélne
twierdzenie.

Twierdzenie 8.16 (Marton). Zalézmy, zZe funkcja ¢: [0,00) — [0,00) jest wypukla oraz
dla i = 1,...,n, ¢ sq¢ nieujemnymi mierzalnymi funkcjami na X; x X;, zas p; € P(X;)
spetniajg warunek

riII(lf )@(Ewci(az,y)) < H(v|pi) dla wszystkich v € P(X;).
mell(p,v

Wowczas dla wszystkich miar probabilistycznych v na X = X1 X -+ x X, zachodzi

inf ci(wi, v e .
T (i1 pim 1) ZSD wCi(i, ¥i)) < H(v|p @ -+ @ pin)

Do dowodu twierdzenia 8.16 przydatny bedzie lemat o dekompozycji miary. Nie podamy
jego dowodu, gdyz wykorzystamy go tylko dla miar z gestoscia jak w Przyktadzie 2 ponizej,
ale ogdlne sformulowanie przydaje sie, gdy np. chcemy dowies¢, ze odlegtoéé Wassersteina
jest metryka.

Twierdzenie 8.17. Zalézmy, Ze X i Y sq przestrzeniami polskimi oraz m € P(X x Y).
Niech m bedzie rozkladem brzegowym w. Wowczas istnieje rodzina miar probabilistycznych
(2,2 )zex taka, Ze

i) dla dowolnego zbioru borelowskiego A C X x Y przeksztalcenie © — (dy @ ma4)(A) jest
mierzalne,

i) ™= [x 0y @ T pdmi(x).
Przyklad 1. Jedli rozklad brzegowy m; jest miara dyskretna ), pid.,, to mozemy przyjac
rm({z}xB) . .
ron(B) =] miep ASim{z}) >0
’ 0 jesli m ({z}) = 0.

Przyktad 2. Jedli # ma gesto$¢ g wzgledem pewnej miary produktowej py ® o, to defi-
niujemy dmo ; = g2 duz, gdzie

g0y) =1 g(i(ii?paz(y) Jesli Jie g(@, y)dpa(y) > 0
7$ - X ’ . 77
0 jesli [y g(x, y)dua(y) = 0.

Dowad twierdzenia 8.16. Twierdzenie udowodnimy przez indukcje po n. Dla n = 1 teza
jest oczywista. Zalézmy zatem, ze n > 2 i teza indukcyjna zachodzi dla n — 1, pokazemy,
ze jest tez prawda dla n. Dla uproszczenia notacji przyjmijmy

X=Xy x - xXp1, =& fn_1,

ponadto dla z € X bedziemy pisaé¢ z = (%, z,,), gdzie & € X.
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Ustalmy miare probabilistyczng v na X = X x X,, taka, ze H(v|fi @ pn) < 00. Wowezas
jak wiemy z lematu o dekompozycji (zob. Przyktad 2 powyzej)

VvV = / 51 (%9 V@dﬂ(i’),
X
gdzie 7 oznacza brzegowy rozklad v na X. Eatwo sprawdzié (zob. Przyklad 2), ze

(7 o) = HEAR) + [ H(vslna) (@),

Ustalmy ¢ > 0. Zalozenie indukcyjne implikuje, ze istnieje miara probabilistyczna 7 €
(4, v) taka, ze

n—1

> o(Baci(zi, yi) < H(0|) +e.

i=1
7 zalozenia twierdzenia wynika natomiast, ze dla # € X istnieje miara mz € I(j,, vz) dla
ktorej

P(Er;cn(r,y)) < H(vilpn) + €.

Okre$lmy 7 jako miare na X x X, ktére mozemy w naturalny sposéb utozsamiaé z X x X x
X, x X,,, wzorem

= 03,5 ® mydm (T, 7).

XxX
Wéwezas m € (g @ -+ @ pp, v),

n—1 n—1
Y eErci(ziyi) = Y o(Bxci(wi,yi) < H(P|f) + ¢
=1 =1

i z wypuktosci ¢
SO(Ean(SUmZ/n)) = (p(EﬁEﬂgCn(l'na yn)) < EﬁQO(Eﬂ-gCn(l'n, yn)) < EﬁH(V§|Mn) +e€
— [ Hyli)di(G) + <.

Zatem .
Y pErci(wiyi) < H(v|p) + 2
i=1
i z dowolnosci € > 0 otrzymujemy dowdd kroku indukcyjnego. O

Whniosek 8.18. Zalozmy, Ze miary probabilistyczne u; na (X;,d;) spelniajg nierownosé Ty
ze staltymi a;, 1 < i < n. Na X =Xy x ... x X, okreslmy wazong l1-metryke d.(z,y) =
Yo cidi(x, yi). Wowezas miara gy & - -+ ® py, spelnia nieréwnosé Ty na (X, d.) ze stalg

( ?:1 C%)l/z max; o .
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Dowdd. Niech v i p beda miarami probabilistycznymi na (X, d.). Wéwczas

n n n 1/2
T1 (V, p) = inf ZCiEﬂdi(CEi,yi) < ch inf (Z(Eﬂdz(xuyz))2> .

n€ll(v,p) i=1 i=1 me€ll(v,p) i=1

Teza wniosku wynika teraz latwo z Twierdzenia 8.16 z c¢;(xi,yi) = di(wi, ). o(x) =
(r/2)?, a == max; ;. O

Innym wnioskiem z Twierdzenia Marton jest tensoryzowalnosé nieréwnosci To wzgledem
metryki ls.

Whiosek 8.19. Zaldzmy, Ze miary probabilistyczne u; na (X;,d;) spelniajg nieréwnosé T
ze statymi o;. Na X = Xy x ... x X,, okreslmy lo-metryke d(z,y) = (X0 di(2i, y:)?) /2.
Wowczas miara g @ -+ - ® py, spelnia nieréwnosé Ty ze stalg max; a; na (X, d).

Dowéd. Stosujemy Twierdzenie 8.16 z ¢(x) 1= o=, a = max; a; oraz c;(w;, yi) 1= d> (x4, ;).

T 2a
]

8.4 Nier6éwnosé T, Talagranda a bezwymiarowa koncentracja

Whniosek 8.20. Zaldzmy, Ze miara p speinia nierdwno$c To ze stalg o na przestrzens
metrycznej (X,d). Wowczas dla dowolnej funkcji 1-Lipschitzowskiej na X" z la-metrykq
(2, ) = (S0 d(i, yi))Y/? zachodzi

p'({x e X" f(x) —Eupnf >t}) < e /2
W szczegdlnosci ayn (t) < exp(—t?/8a).

Dowdd. 7 Wniosku 8.19 wynika, ze u'* spetnia nieréwnosc Ts ze stala o, zatem dla dowolnej
miary probabilistycznej v na X" zachodzi

WP (U v) < Wi(u™,v) < Wa(p™,v) < \/2aH (v|pn)
i teza tatwo wynika z Twierdzenia 8.12. O

Okazuje sie, ze nieréwnosé Ty jest rownowazna bezwymiarowej koncentracji.

Twierdzenie 8.21 (Gozlan). Zaldzmy, zZe p jest miarg probablistyczng na osrodkowej
przestrzeni polskiej (X,d), za$ d,, sq la-metrykami na X". Wowczas nastepujgce warunki
sq rownowazne:

i) 1 spetnia nieréwno$é Ty na (X, d) ze stalg a:

Wa(v, p) < y/2aH (v|p)  dla kazdego v € (X),
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i1) dla kazdego n miara p" spetnia nierownosé Ty na (X", d,) ze stalg a:
Wi(v, ") < \/2aH (v|p™)  dla kazdego v € P(X™),
i11) istnieje stata C taka, Ze dla kazdego n i kazdej funckji 1-Lipschitzowskiej f na (X", d,,),
pt{r e X" f(z) —E;nf >1t}) < Ce /2,

Dowéd i) = ii) = iii) dowodzimy jak we Wniosku 8.20. By udowodnié¢ najbardziej za-
skakujaca implikacje #ii) = i) wykorzystamy twierdzenie o wielkich odchyleniach Sanowa.

Twierdzenie 8.22 (Sanow). Niech X1, Xo, ... bedq niezaleznymi zmiennymi losowymi o
wartoSciach w przestrzeni polskiej X @ jednakowym rozkladzie . Wowczas dla dowolnego
zbioru otwartego G w przestrzent miar probabilistycznych na X z topologiq stabej zbieznosci
zachodzi

1 & .
11nni1£f—logP (an;Xk €G> 2*31612H(V|,U,). (14)
Uwaga 8.23. Twierdzenie 8.22 to tak naprawde tylko polowa twierdzenia Sanowa dotyczaca
szacowania wielkich odchylen dla miar empirycznych z dolu. Druga czes¢ moéwi, ze dla
dowolnego zbioru zwartego F' w przestrzeni miar probabilistycznych na X z topologia stabej
zbieznosci mamy

1 1 &
limsup —logP | — 0x, € F — inf H(v
Dowdd Twierdzenia 8.22. Ustalmy v € U takie, ze H(v|u) < oo (jesli takie v nie istnieje
to infimum po lewej stronie (14) jest réwne +oo i nieréwnosé jest oczywista). Niech g = d

oraz Y1, Ys,... beda niezaleznymi zmiennymi o rozkladzie v. Wéwczas ¢(Y;) > 0 p.n. oraz
dla dowolnej funkcji mierzalnej f na X",

Ef(Y1,...,Yn) =E(f(X1,....X,) [ 9(X
k=1
Mamy
1 n
P<Z§XkeG>>P< ZéxkeG Hng >o>
Lyt k=1 k=1

-5 (157 e [T
k=1

1 1<
e MEvloggta)p [ 2N 50 G =S  logg(Yi) < Eylogg+e .
nkz::l 3 nkz::l (Yr) <E,

\V
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Mocne prawo wielkich liczb implikuje, ze z prawdopodobienstwem 1 przy n — oo zachodzi
% Y r—q1logg(Yr) — E, log g oraz % > k=1 0y, — v stabo. Stad z otwartoéci G otrzymujemy,
ze

n—oo n,

1 1 &
liminf — log P ( E dx, € G) > —-Eylogg—e¢=—H(v|u) —e.
n
k=1

Przechodzac z € do 0 i biorac supremum prawej strony ostatniej nieréwnosci po v € G
dostajemy teze. O

Zanim udowodnimy twierdzenie Gozlana, wykazemy kilka faktéw dotyczacych metryki
Wassersteina. We wszystkich trzech faktach zaktadamy, ze p jest rozktadem probabilistycz-
nym na przestrzeni polskiej X oraz 1 < p < oo.

Fakt 8.24. Funkcja v — Wy(v, 1) jest pélcigglta z dotu na P(X), tzn. jesli vy, zbiega stabo
do p, to
lim inf Wy (U, i) = Wy (v, ).

Dowdd. Niech m, € II(vy,, ) beda takie, ze

Wy (v, v) > (En, d(z,y)P) /P — l
n

Pokazemy najpierw, ze ciag (m,) jest ciasny w P(X x X). Dla € > 0 z ciasnoéci ciagu (vy,)
mozemy znalezé zbiér zwarty K1 C X taki, ze v,(K7) > 1 — /2 dla wszystkich n. Istnieje
tez zbiér zwarty Ko C X taki, ze pu(K2) > 1 — /2. Poniewaz v, i p to rozklady brzegowe
T, wiee 1 — m, (K1 X K9) <1 — v, (K7) +1— pu(K2) <e.

Uzywajac ciasnosci (m,) mozemy wybra¢ podciag ciag ny taki, ze m,, — m slabo w
P(X x X) i liminf,, Wy(vp, p) = limg Wy(vy,, p). Latwo sprawdzamy, ze © € II(v, u) oraz
dla dowolnego a < oo,

limninf Wy (Un, 1) > limkinf(Emk d(z,y)P)/P > limkinf(Emk min{a, d?(z,y)})"/?
= (E, min{a, d”(z,y)})"/?.
7 dowolnosci @ > 0 mamy
W, (v, 1) < (EpdP(z,y))/P < lim inf W (v, 12)-
0

Fakt 8.25. Funkcja gn(x1,...,%n) = Wp(L S0} 62y, 1) jest n~=YP_lipschitzowska na X"
2 lp-metrykg dp(x,y) := (Ykoy dzk, yn)")V/?.
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Dowdéd. Zauwazmy wpierw, ze kazde m € H(% > k=10, 1) jest postaci m = % > b1 Ozy @k
dla pq, ..., pu, € P(X) takich, ze %Zzzl i = p. Stad dla x,y € X™ mamy

1 & 1 &
WP <Z§$k’u> _WP (Zéykhu)
"= "=

1/p n 1/p
inf ( Z/d Tiy 2 d,u’L )) Y %ilf _ (;;/d(ylaz)pdul(z)>

= i
T D ME=L D pe H=H
) 1/p | o 1/p
< _sw <n Z/d(mi,z)pdui(z)> - (n Z/d(yiaZ)pdﬂi(2)>
T Dk MR=L k=1 =1
n l/p n l/p
1 _
< Eup (n Z / |d Tiy 2 y’Lv )| dl%( )) N 1/p (Z *Ik’yk > .
%Zk:l HEe=H k=1 h=1

O]

Fakt 8.26. Jesli X1, Xo,... sq niezalezne o rozkladzie p, oraz B d(z,x0)P™¢ < oo dia
pewnego xg € X i€ >0, to EWP(% >oh—10x,, )P =0.

Dowdd. Ustalmy a > 0. Mamy
Wy(v,p)? = inf (Eﬂdp(x7y)]l{d(x,y)<a} + Eﬁdp(x7y)]l{d(x,y)>a})

mell(v,u)
E7r (d(.f()’ ZL‘) + d(x(]v y))erE)

< inf <ap_1Eﬂmin{d(x,y),a}+ .
a

mell(v,p)

E, d pte E. d pt+e
<! it Bomin{d(e,y),ap + e el T+ Budlo p)
well(v,p) af

7 twierdzenia Skorochoda wynika, ze jesli v, — p stabo, to istnieja zmienne losowe Y;, ~ v,
iY ~ pu takie, ze Y, — Y p.n, w konsekwencji z twierdzenia Lebesgue’a o zbieznosci
zmajoryzowanej dostajemy

v, — pstabow P(X) = ﬁ?f )ETr min{d(z,y),a} — 0.
mell(vn,pu

Poniewaz + =2 k=1 0x, — p stabo z prawdopodobiefistwem 1 przy n — oo, wigc ponownie
uzywajac tw1erdzen1a Lebesgue’a o zbieznosci zmajoryzowanej dostajemy

E inf E; min{d(z,y),a} — 0.
mell( Y i Ox, 1)

Stad dla dowolnego a > 0,

1 n p 1 n
lim sup EW), <n Z 5Xk,,u,> L opteg—e <En Z d(zo, Xp)PTe + E, d(xo, y)p+a>
k=1

< 2p+€+1a_EE“d(l‘0, y)p+s

48



i biorac a — oo dostajemy teze.

Dowéd Twierdzenia 8.21. i)=+ii). Stosujemy Wniosek 8.19 i to, ze W1 < Wha.
ii)=iii). Wystarczy wykorzystac to, ze W{"® < W, i Twierdzenie 8.12.
iii)=1). Okreslmy

1 n
gn(T1, ... ) =W 725%,;1 .
"=

Fakt 8.24 implikuje, ze zbior
Gt :={v e P(X): Wa(v,u) >t}

jest otwarty. Zatem z twierdzenia Sanowa

. .. .1
— ulencflt H(v|p) < hnnr_1>£f ElogP (gn(X1,..., Xp) > 1).

7 zalozenia iii) i n~/%lipschitzowskoéci g, (Fakt 8.25) dostajemy

P (gn(X1,.. ., X)) > 1) < Cexp (-27;(15 — Egu(X1,... ,Xn))+2> .

Stad

. . (t —Egn(X1,...,Xn))2 12
zzlenGt (l/|,U) lrILILSo%p 20 2o

gdzie ostatnia nier6wno$é wynika z Faktu 8.26 (warunek iii) z n = 1 i 1-Lipschitzowsko$é
metryki implikuja, ze E,d(xo,z)? < oo dla dowolnego p < 00). Otrzymana nier6wnos¢ jest

rownowazna
\2aH (v|p) > t,  jesli Wa(u,v) > t,
skad tatwo wynika nieréwnosé Ts. O

9 Aproksymacja przez otoczke wypuklag

9.1 Definicje

W tej czesSci bedziemy zakladaé, ze przestrzen X ma strukture produktowa, tzn. X =
X3 x -+ x X,. Okredlmy metryke na X wzorem

da(xv y) = Z azﬂ{xﬁﬁyz}
=1
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Z Whiosku 4.5 wynika, ze dla |a| = 1, o, x.4,(t) < exp(—|t|?/8), jednak poszerzenie
zbioru w kazdej z metryk d, wyglada nieco inaczej. Celem tego rozdziatu jest uzyskanie
jednostajnej wersji tego wyniku.

Dla A C X iz € X okredlmy

D4 (z) := sup dg(z, A).
la]=1

Okazuje sie, ze D (x) mozna zdefiniowaé¢ w réwnowazny, nieco bardziej abstrakcyjny
sposéb.

Dla A € Xi z € X okreslmy

Ua(x) = {(1{a, 23 1<i<ns y € A} {0, 1}"
oraz
Va(z) := conv{Ua(z)} C [0,1]".
Latwo zauwazy¢, ze V4 (x) jest domknietym wielo$cianem wypuklym. Ponadto 0 € Vy(x)
wtedy i tylko wtedy gdy 0 € A.
Kolejny fakt taczy Va(z) i DY (x).
Fakt 9.1. Dla dowolnego A C X iz € X,

dist(0, Va(x)) = inf |y| = D4(x).
yeVa(z)

Dowad. i) D (x) < dist(0, Va(x)). Niech z € Va(x) takie, ze |z| = dist(0, Va(z)). Ustalmy
a€ 8", wtedy

inf (a,s) = inf {(a,y) < {a,z) < |z|.
ot (as) = ot (a,y) < (0,2) <[

Zatem istnieje y € A takie, ze s = (1y4,2,,))i € Ua(z) spemia (a,s) < |z|. Stad

da(xaA) < da(xay) = Zazﬂ{zz;éyz} = <a7 S) < |Z|7
=1

czyli DG (z) < |z| = dist(0, Va(x)).

ii) DG (z) > dist(0, Va(zx)). Ustalmy z € Va(x) taki, ze |z| = dist(0, Va(x)). Jedli z =0,
to nieréwnos¢é jest oczywista, w przeciwnym przypadku niech a := z/|z|. Zauwazmy, ze dla
dowolnego s € Va(z) i 0 € [0,1], 0s + (1 — 0)z € V4(z), zatem

|22 <105+ (1 = 0)2]* = |2+ 0(s — 2)|? = |2]® + 20(2, s — 2) + 0%|s]%.
Biorac # — 0+ dostajemy (z,s — z) > 0, czyli
1 1
<a78> = 7<Z¢3> > 7<Z?Z> = ‘Z|
2] ]
Stad

Di(z) = do(x, A) = seiUI;f(x)(a, s) = |z] = dist(0, V4 (x)).
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9.2 Twierdzenie Talagranda

Twierdzenie 9.2. Zalozimy, ze p = pu1 ® - - - Q py, jest produktowq miarg probabilistyczng

ne X =X; X -+ X X,. Wowczas dla dowolnego niepustego, mierzalnego zbioru A w X,
(D5)? !
—2 dpy < ——.
/exP( 17 )du < ()
W szczegolnosci dla t > 0,
1 _ 42 4
p({DG > t}) < ——e /4
4 u(A)

Dowéd. Przeprowadzimy indukcje po n. Dla n = 1, mamy DG (r) = Lx\ a(x), wiec

(D4)° 1/4
exp (AL )y = €41 - p(A)) + u(A) < 201 — p(A)) + p(A) < ——.
/ ( 4 ) p(A)
Zalézmy, ze n > 2 i teza zachodzi dla n — 1. Dla uproszczenia notacji przyjmiemy
X=Xy x - xXpo1, A=m® @ tp_1

oraz dla z € X bedziemy pisa¢ z = (&,,), gdzie # € X. Ustalmy A € X = X x X,, i
przyjmijmy
B={z:3yeX,z=(2,y) € A} oraz A(y)={z:2=(Z,y) € A} dlay eX,,.
Zauwazmy, ze jesli s € Uy(y,)(7), to (s,0) € Ua(x), a jesli t € Up(x), to (t,1) lub ( 0)
naleza do Ua(x). Zatem jesli wybierzemy s € Vy(,,)(z) oraz t € Vg(z), to (s,0) € Ua(x)
), (

s
oraz (t,b) € Vu(x) dla pewnego b € [0,1], czyli z wypuklosci zbioru Va(z),
0)t, (1 — 0)b) € Va(x). Stad z wypuklosci funkcji |z|?,

) €
Os + (1 -

DG (x)2 < [0s+ (1 —0)t) + (1 —0)b]2 < 0]s]> + (1 —0)|t]* + (1 — )2,
czyli z dowolnoéci wyboru ¢ i s,

Di(2)* < 0D, (@)* + (1 = 0)DR(2)* + (1 - 0).

Odcaltkowywujac i korzystajac z nierownoéci Holdera dostajemy
Di(i‘, xn)Q ~ i~
[ e (FASE dga)

c 12 c (a _
<00 [ o (P 433)" ([ exp (P )
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Zatem na mocy zalozenia indukcyjnego (zastosowanego do zbioréw A(z,) i B w X) dosta-
jemy dla dowolnego 6 € [0, 1],

C

DG (Z, x0)%N - o2 1 0, 1 \1-6
Jeo (AR )00 < 00 (i) () - 09

Zauwazmy teraz, ze

Oil[éfl} =04y =0 <2y dlaue [0, 1]. (16)
€10,

Istotnie dla u > e~1/2 mozemy przyjaé¢ § = 1+ 2logu i po zlogarytmowaniu pozostaje
sprawdzié, ze f(u) := log(2 — u) + log(u) 4 log?(u) > 0. Prosty rachunek pokazuje, ze dla
u € [0,1], (uf’) = —2(u—2)"2+2u"1 >0, czyli uf’'(u) < f/(1) = 0, wiec f(u) > f(1) = 0.

Dla u < e~ /2 kladziemy 6 = 0 i sprawdzamy (numerycznie lub korzystajac z poprzed-
niego rozumowania dla u = 6_1/2), ze e/t <2 —e 2L 2 .

Nieréwnosci (15) oraz (16) z u = fi(A(xy))/(B) implikuja

DY (%, 20)%N - 1 1(A(xn))
[ exp (R dia) < 55
Zatem
(2, 25)? 1 1(A(zn))
/)(exp( A 1 )du(a:) < /Xn 7B (2— H[L(B) )dun(xn)
1 _p(4) 1
= &m 2 wE) <
gdyz v(2 —v) < 1dlawv e [0,1]. O
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