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1 Wstęp

W wielu problemach rachunku prawdopodobieństwa i jego zastosowań pojawiają się wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wykładu będzie przedstawienie wybranych narzędzi pozwalających
badać takie obiekty. Wykład będzie dotyczył tak zwanej teorii nieasymptotycznej, tzn. na-
cisk będzie położony na różne szacowania, a nie na twierdzenia graniczne.

W pierwszej części wykładu omówimy pewne zagadnienia związane z teorią koncen-
tracji miary, które pozwalają szacować odchylenia funkcji zależnej od wielu zmiennych
losowych od jej wartości oczekiwanej. W drugiej pokażemy kilka metod pozwalających sza-
cować suprema procesów stochastycznych. Omówimy też pewną liczbę bardziej konkretnych
przykładów zastosowań.

Oczywiście podczas semestralnego wykładu monograficznego można omówić tylko nie-
wielką część bogatej i ciągle rozwijającej się teorii. Dużo szerszy wybór zagadnień został
przedstawiony w notatkach Ramona van Handela [4] i monografii Romana Vershynina [5],
zainteresowany Czytelnik znajdzie tam też szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przykłady.

Wiele ważnych miar probabilistycznych spełnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorąc polega on na tym, że większość punktów z przestrzeni leży w pobliżu
zbioru wypełniającego przynajmniej połowę przestrzeni. By pojęcie to sformalizować po-
trzebujemy dwóch ważnych definicji.

Definicja 2.1. Niech (X, d) będzie przestrzenią metryczną, zaś A dowolnym podzbiorem
X. Dla t > 0 określamy t-otoczenie zbioru A wzorem

At := {x ∈ X : d(x,A) < t} =
⋃
y∈A

B(y, t),

gdzie B(y, t) oznacza kulę otwartą w X o środku w y i promieniu t.

Definicja 2.2. Niech µ będzie borelowską miarą probabilistyczną na (X, d). Funkcję kon-
centracji miary µ definiujemy jako

αµ(t) = α(X,d,µ)(t) := sup
{

1− µ(At) : µ(A) ­ 1
2

}
.

Na początek wykładu podamy kilka przykładów, dla których można dobrze oszacować
funkcję koncentracji. Dowody podanych oszacowań przedstawimy później.

Przykład 1. Niech d oznacza odległość geodezyjną na n-wymiarowej sferze Sn =
{x ∈ Rn+1 : |x| = 1}, zaś σn oznacza unormowaną miarę powierzcniową na Sn. Wówczas
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okazuje się, że jeśli chcemy zminimalizować σn(At) po wszystkich zbiorach ustalonej miary,
ekstremalne są kule (zwane też czapeczkami), to znaczy

σn(A) = σn(B(x0, r)) ⇒ σn(At) ­ σn(B(x0, r)t) = σn(B(x0, r + t)).

W szczególności jeśli σn(A) ­ 1/2, to

σn(At) ­ σn
(
B
(
x0,

π

2
+ t
))
­ 1− exp

(
− (n− 1)t2

2

)
.

Zatem ασn(t) ¬ exp(−n−1
2 t2).

Uwaga 2.3. Zauważmy, że funkcja koncentracji σn szybko zbiega do 0 przy n→∞. Jedną
z przyczyn tego zjawiska jest to, że miara ta nie jest dobrze unormowana. Jeśli przez
σn,R określimy rozkład jednostajny na sferze RSn, to ponieważ jest on obrazem σn przy
jednokładności o skali R, to

ασn,R(t) = ασn

( t
R

)
¬ exp

(
− n− 1

2R2 t
2
)
.

Zauważmy też, że ∫
RSn

xixjdσn,R(x) =
R2

n+ 1
δi,j .

Zatem miara jednostajna na
√
n+ 1Sn ma dobrą normalizację, to znaczy taką, że macierz

kowariancji jest identycznością. Dla tej miary dla n ­ 2,

ασn,√n+1(t) ¬ exp
(
− n− 1

2(n+ 1)
t2
)
¬ exp

(
− 1

6
t2
)
.

Przykład 2. Niech γk oznacza kanoniczny rozkład gaussowski na Rk, tzn. rozkład
z gęstością (2π)−k/2 exp(−|x|2/2). Wówczas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazują się półprzestrzenie, tzn. jeśli

γk(A) = γk
(
(−∞, r]× Rk−1

)
= Φ(r),

to
γk(At) ­ γk

((
(−∞, r]× Rk−1)

t

)
= γk

(
(−∞, r + t]× Rk−1

)
= Φ(r + t).

W szczególności

αγk(t) = 1− Φ(t) ¬ 1
2
e−t

2/2.

Zauważmy, że powyższe oszacowania nie zależą od wymiaru przestrzeni.

Przykład 3. Niech ν będzie symetrycznym rozkładem wykładniczym, tzn. rozkładem
na R z gęstością 1

2 exp(−|x|). Przez νk będziemy oznaczać rozkład produktowy ν⊗. . .⊗ν na
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Rk. Wyznaczenie ekstremalnych zbiorów dla problemu izoperymetrycznego związanego z tą
miarą jest trudne i nieznane dla k 6= 1. Choć wiadomo, że ekstremalne nie są półprzestrzenie
postaci (−∞, r]× Rk−1, to są one optymalne z dokładnością do stałej, tzn.

νk(A) = ν((−∞, r]) ⇒ νk(At) ­ ν
((
−∞, r +

1

2
√

6
t
])
.

W szczególności

ανk(t) ¬ 1− ν
((
−∞, 1

2
√

6
t
])

=
1
2

exp
(
− 1

2
√

6
t
)
.

Zauważmy, że znowu uzyskane oszacowanie nie zależy od wymiaru przestrzeni.

Przykład 4. Niech µ będzie unormowaną miarą liczącą na kostce dyskretnej {0, 1}n
z metryką d(x, y) = 1

n#{i : xi 6= yi}. Tu problem izoperymetryczny daje się rozwiązać
(optymalne są kule, ewentualnie z dodanymi niektórymi punktami na brzegu). W tym
przypadku można pokazać, że

αµ(t) ¬ e−2nt2 .

Krótki przegląd wyników pokazuje, że w wielu ważnych zastosowaniach można wykazać,
że αµ(t) ¬ C1 exp(−t2/C2) – mówimy wtedy, że funkcja koncentracji jest typu gaussow-
skiego. Widzielismy też przykład, w którym αµ(t) ¬ C1 exp(−t/C2) – mówimy wtedy o
koncentracji wykładniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia się miara otoczenia zbioru, a raczej
jak szybko maleją ogony funkcji określonych na przestrzeni. W tej części powiążemy ze
sobą te zjawiska. Zacznijmy od definicji mediany i modułu ciągłości.

Definicja 2.4. Niech µ będzie miarą probabilistyczną na (X, d) oraz f będzie mierzalną
funkcją z X w R.
Medianą funkcji f względem miary µ nazywamy taką liczbę M = Medµ(f) dla której

µ({x : f(x) ­M}) ­ 1
2

oraz µ({x : f(x) ¬M}) ­ 1
2
.

Modułem ciągłości f nazywamy funkcję

wf (t) := sup{|f(x)− f(y)| : d(x, y) ¬ t}.

Fakt 2.5. Dla dowolnej funkcji mierzalnej F : X→ R,

µ({x : F (x) > Medµ(F ) + wF (t)}) ¬ αµ(t)

oraz
µ({x : |F (x)−Medµ(F )| > wF (t)}) ¬ 2αµ(t).

5



Dowód. Niech A := {x : F (x) ¬ Medµ(F )} wówczas µ(A) ­ 1/2 zatem µ(At) ­ 1 −
αµ(t). Ponadto, jeśli x ∈ At, to istnieje y ∈ A takie, że d(x, y) < t i wówczas F (x) ¬
F (y) +wF (t) ¬ Medµ(F ) +wF (t), stąd pierwsza nierówność w fakcie. Stosując ją do −F i
zauważając, że Medµ(−F ) = −Medµ(F ) oraz w−F = wF dostajemy

µ({x : F (x) < Medµ(F )− wF (t)}) ¬ αµ(t).

Dodając powyższą nierówność do poprzedniej otrzymamy ostatnią część faktu.

Przypomnijmy definicję funkcji lipschitzowskiej

Definicja 2.6. Funkcję F : (X, d)→ R nazywamy lipschitzowską, jeśli

‖F‖Lip := sup
x 6=y

|F (x)− F (y)|
d(x, y)

<∞.

Mówimy, że funkcja jest L-lipschitzowska jeśli ‖F‖Lip ¬ L, tzn. |F (x) − F (y)| ¬ Ld(x, y)
dla wszystkich x, y ∈ X.

Analogicznie można zdefiniować funkcje lipschitzowskie między przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jeśli F jest lipschitzowska ze stałą L, to dla t > 0,

µ({x : F (x) > Medµ(F ) + t}) ¬ αµ(t/L)

oraz
µ({x : |F (x)−Medµ(F )| > t}) ¬ 2αµ(t/L).

ii) Na odwrót, jeśli dla każdej funkcji 1-lipschitzowskiej F i ustalonego t > 0,

µ({x : F (x) ­ Medµ(F ) + t}) ¬ α,

to αµ(t) ¬ α.

Dowód. i) Wynika z Faktu 2.5 i oczywistego szacowania wf (t) ¬ tL.
ii) Ustalmy zbiór A taki, że µ(A) ­ 1/2 i określmy F (x) := d(x,A). Wówczas F jest

1-lipschitzowska oraz Medµ(F ) = 0, zatem

α ­ µ({F ­ t}) = µ({x : d(x,A) ­ t}) = 1− µ(At).

Często łatwiej i naturalniej jest wykazywać koncentrację funkcji lipschitzowskich wokół
średniej a nie mediany. Kolejny fakt pokazuje jak odzyskać funkcję koncentracji w takim
przypadku.
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Fakt 2.8. Załóżmy, że µ jest miarą probabilistyczną na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F i t > 0 zachodzi

µ
({
x : F (x) >

∫
Fdµ+ t

})
¬ α(t). (1)

Wówczas dla dowolnego zbioru borelowskiego A takiego, że µ(A) > 0 zachodzi

1− µ(At) ¬ α(µ(A)t).

W szczególności

αµ(t) ¬ α
( t

2

)
.

Ponadto, jeśli limt→∞ α(t) = 0, to dowolna funkcja 1-lipschitzowska jest całkowalna wzglę-
dem µ i jeśli dodatkowo α jest ciągła, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowód. Ustalmy zbiór borelowski A taki, że µ(A) > 0 oraz liczbę t > 0. Zdefiniujmy
F (x) := min{d(x,A), t}, wówczas funkcja F jest ograniczona, 1-lipschitzowska i

∫
Fdµ ¬

t(1− µ(A)). Stąd na mocy (1),

1− µ(At) = µ({F ­ t}) ¬ µ
({
F ­

∫
Fdµ+ µ(A)t

})
¬ α(µ(A)t).

W szczególności, jeśli µ(A) ­ 1/2, to 1− µ(At) ¬ α(t/2).
By udowodnić drugą część faktu, ustalmy funkcję 1-lipschitzowską F i niech Fn :=

min{|F |, n}. Z (1) zastosowanej do −Fn dostajemy

µ
({
x : Fn(x) ¬

∫
Fndµ− t

})
¬ α(t).

Wybierzmy t0 takie, że α(t0) < 1/2 orazm := Medµ|F |. Wówczas µ({Fn ¬ m}) ­ 1/2, czyli
zbiory {Fn ¬ m} oraz {Fn >

∫
Fndµ−t0} mają niepuste przecięcie. Zatem

∫
Fndµ ¬ m+t0

i z twierdzenia Lebesgue’a o zbieżności monotonicznej dostajemy
∫
|F |dµ ¬ m + t0 < ∞.

Ostatnią część tezy dostajemy stosując (1) do min{max{F,−n}, n} i przechodząc z n →
∞.

3 Nierówności izoperymetryczne

W tej części omówimy kilka nierówności izoperymetrycznych, pokazując różne sposoby ich
dowodzenia - poprzez powiązane nierówności funkcyjne, symetryzacje czy transport miary.
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3.1 Klasyczna izoperymetria

Chociaż w tym wykładzie będziemy się zajmować miarami probabilistycznymi, to przegląd
nierówności izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a λn.

Twierdzenie 3.1. Jeśli A jest podzbiorem borelowskim Rn takim, że λn(A) = λn(B(x0, r)),
to dla dowolnego t > 0,

λn(At) ­ λn(B(x0, r)t) = λn(B(x0, r + t)).

Twierdzenie 3.2 (Nierówność Prékopy-Leindlera). Jeśli s ∈ [0, 1] oraz f, g, h : Rn →
[0,∞) spełniają warunek

h(sx+ (1− s)y) ­ f(x)sg(y)1−s dla x, y ∈ Rn, (2)

to ∫
Rn
h(x)dx ­

( ∫
Rn
f(x)dx

)s( ∫
Rn
g(x)dx

)1−s
.

Dowód. Najpierw wykażemy, że dla niepustych zbiorów A,B ∈ B(Rn) zachodzi

λ1(A+B) ­ λ1(A) + λ1(B).

Ponieważ λ1(A) = sup{λ1(K) : K ⊂ A,K zwarty}, to możemy przyjąć, że zbiory A i B są
zwarte. Ponadto odpowiednio je przesuwając możemy też zakładać, że supA = inf B = 0.
Wówczas A ∩B = {0} oraz

λ1(A+B) ­ λ1(A ∪B) = λ1(A) + λ1(B).

Nierówność Prékopy-Leindlera udowodnimy przez indukcję po n. Najpierw rozważ-
my n = 1. Możemy zakładać, że f, g i h są ograniczone, a z uwagi na jednorodność, że
sup f(x) = sup g(x) = suph(x) = 1. Zauważmy, że dla 0 ¬ r < 1, {h ­ r} ⊃ s{f ­
r}+ (1− s){g ­ r}, więc całkując przez części dostajemy∫

h(x)dx =
∫ 1

0
λ1({h ­ r})dr ­

∫ 1

0
λ1(s{f ­ r}+ (1− s){g ­ r})dr

­
∫ 1

0
λ1(s{f ­ r}) + λ1((1− s){g ­ r})dr

= s

∫
fdx+ (1− s)

∫
gdx ­

( ∫
fdx

)s( ∫
gdx

)1−s
,

gdzie ostatnia nierówność wynika z porównywania ważonych średnich arytmetycznych i
geometrycznych.
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Załóżmy teraz, że n ­ 2 oraz teza twierdzenia zachodzi dla n−1. Niech f, g, h spełniają
(2) i określmy dla x ∈ R

F (x) =
∫

Rn−1
f(x, z)dz, G(x) =

∫
Rn−1

g(x, z)dz oraz H(x) =
∫

Rn−1
h(x, z)dz.

Zauważmy, że dla ustalonego x, y ∈ R

h(sx+ (1− s)y, sz1 + (1− s)z2) ­ f(x, z1)sg(y, z2)1−s dla z1, z2 ∈ Rn−1.

Zatem na mocy założenia indukcyjnego

H(sx+ (1− s)y) ­ F (x)sG(y)1−s.

Stosując nierówność Prékopy-Leindlera w udowodnionym wcześniej przypadku n = 1 do-
stajemy ∫

Rn
h(x)dx =

∫
R
H(x)dx ­

( ∫
R
F (x)dx

)s( ∫
R
G(x)dx

)1−s

=
( ∫

Rn
f(x)dx

)s( ∫
Rn
g(x)dx

)1−s
.

Wniosek 3.3 (Nierówność Brunna-Minkowskiego). Dla dowolnych niepustych zbiorów bo-
relowskich A,B ⊂ Rn,

λn(sA+ (1− s)B) ­ λn(A)sλn(B)1−s dla s ∈ [0, 1]

oraz
λn(A+B)1/n ­ λn(A)1/n + λn(B)1/n.

Dowód. Pierwsza nierówność natychmiast wynika z nierówności Prékopy-Leindlera zasto-
sowanej do funkcji f = 1A, g = 1B oraz h = 1sA+(1−s)B.

By udowodnić drugą wystarczy rozważyć przypadek, gdy A i B są zbiorami skończonej
i niezerowej miary. Przyjmijmy wtedy

Ã =
A

s
, B̃ =

B

1− s
oraz s =

λn(A)1/n

λn(A)1/n + λn(B)1/n .

Wówczas λn(Ã) = λn(B̃) = (λn(A)1/n + λn(B)1/n)n, więc na podstawie wykazanej po-
przednio nierówności

λn(A+B) = λn(sÃ+ (1− s)B̃) ­ λn(Ã)sλn(B̃)1−s = (λn(A)1/n + λn(B)1/n)n.

Uwaga 3.4. Suma Minkowskiego dwu zbiorów borelowskich nie musi być zbiorem borelow-
skim, ale można wykazać, że jest zbiorem mierzalnym w sensie Lebesgue’a.
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Dowód Twierdzenia 3.1. Niech cn = λn(B(0, 1)), wówczas λn(A) = cnr
n i na podstawie

Wniosku 3.3,

λn(At) = λn(A+B(0, t)) ­ (λn(A)1/n + λn(B(0, t))1/n)n

= cn(r + t)n = λn(B(x0, r + t)).

Definicja 3.5. Dla miary µ na przestrzeni probabilistycznej (X, d) określamy zewnętzną
miarę brzegową µ+ wzorem

µ+(A) := lim inf
t→0+

µ(At)− µ(A)
t

.

Uwaga 3.6. Jeśli miara µ na Rn ma ciągłą gęstość g(x) oraz zbiór A ma gładki brzeg, to

µ+(A) =
∫
∂A
g(x)dHn−1(x),

gdzie Hn−1 oznacza n− 1 wymiarową miarę Haussdorffa.

Równoważna różniczkowa forma klasycznej nierówności izoperymetrycznej mówi, że
spośród zbiorów ustalonej objętości najmniejszą powierzchnię brzegu ma kula. Dokładniej:

Twierdzenie 3.7. Jeśli A jest podzbiorem borelowskim Rn takim, że λn(A) = λn(B(x0, r)),
to

λ+
n (A) ­ λ+

n (B(x0, r)) = nc1/n
n (λn(A))(n−1)/n,

gdzie

cn = λn(B(0, 1)) =
πn/2

Γ(n/2 + 1)
.

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jeśli A jest podzbiorem borelowskim Sn takim, że σn(A) = σn(B(x0, r)),
to dla dowolnego t > 0,

σn(At) ­ σn(B(x0, r)t) = σn(B(x0, r + t)).

Wniosek 3.9.

ασn(t) ¬
√
π

8
exp

(
− (n− 1)

2
t2
)
.
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Dowód. Dla n = 1 nie ma co dowodzić (bo zawsze αµ(t) ¬ 1/2). Będziemy więc zakładać,
że n ­ 2. Zauważmy, że

σn(B(x0, r)) = s−1
n

∫ r

0
sinn−1 tdt,

gdzie sn =
∫ π

0 sinn−1 tdt. Zatem

ασn(t) = 1− σn(B(x0, t+ π/2)) = s−1
n

∫ π

t+π/2
sinn−1 udu = s−1

n

∫ π/2

t
cosn−1 udu.

Stosując oszacowanie cosu ¬ exp(−u2/2) dla t ∈ [0, π/2], dostajemy∫ π/2

t
cosn−1 udu ¬

∫ π/2

t
e−(n−1)u2/2du ¬ 1√

n− 1

∫ ∞
t
√
n−1

e−s
2/2ds

=

√
2π√
n− 1

(1− Φ(t
√
n− 1)) ¬

√
π√

2(n− 1)
e−(n−1)t2/2.

Ponadto łatwe całkowanie przez części daje, że dla n ­ 3, sn = n−2
n−1sn−2, stąd

√
n− 1sn =

n− 2√
n− 1

sn−2 ­
√
n− 3sn−2,

zatem
inf
n­2

√
n− 1sn = min{s2,

√
2s3} = min{2, π/

√
2} = 2.

3.3 Izoperymetria gaussowska

Przypomnijmy, że przez γk oznaczamy kanoniczny rozkład gaussowski na Rk, tzn. rozkład
z gęstością (2π)−k/2 exp(−|x|2/2).

Głównym wynikiem, który wykażemy jest to, że dla rozkładów gaussowskich optymalne
dla problemu izoperymetrycznego są półprzestrzenie afiniczne, to znaczy zbiory postaci

H = {x ∈ Rk : 〈x, u〉 < r} dla pewnych u ∈ Sk−1 i r ∈ [−∞,∞]. (3)

Twierdzenie 3.10. Niech H będzie półprzestrzenią afiniczną, a A zbiorem borelowskim w
Rk takim, że γk(H) = γk(A). Wówczas dla dowolnego t > 0, γk(Ht) ¬ γk(At)

Zanim przystąpimy do dowodu twierdzenia pokażemy, że γk jest granicą rzutowań roz-
kładów jednostajnych na

√
nSn−1.

Niech P = Pk,n oznacza kanoniczny rzut Rn na Rk dla k < n, zaś σ̃n−1 oznacza
unormowaną miarę powierzchniową na

√
nSn−1. Oznaczmy przez µk,n obraz σ̃n−1 przy

tym rzutowaniu tzn.

µk,n(A) = σ̃n−1

(
P−1
k,n(A)

)
dla A ∈ B(Rk).

11



Fakt 3.11 (Lemat Poincaré). Miara µk,n zbiega słabo przy n→∞ do miary γk, co więcej

lim
n→∞

µk,n(A) = γk(A) dla dowolnego zbioru borelowskiego A.

Dowód. Proste rozumowanie pokazuje, że miara µk,n ma gęstość gk,n(x) = c−1
k,ng̃k,n(x), gdzie

g̃k,n = (n−|x|
2

n )(n−k−2)/2
1{|x|¬

√
n} oraz ck,n =

∫
Rk g̃n,k(x)dx. Oczywiście limn→∞ g̃k,n(x) =

exp(−|x|2/2), ponadto |g̃k,n(x)| ¬ exp(−(n − k − 2)|x|2/(2n)) ¬ exp(−|x|2/(2n)) dla n ­
k + 2. Z twierdzenia Lebesgue’a o zbieżności zmajoryzowanej otrzymujemy limn→∞ cn,k =∫
Rk exp(−|x|2/2)dx, czyli gęstość miary µk,n zbiega punktowo do gęstości miary γk. Teza

faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [1]).

Dowód Twierdzenia 3.10. Ze względu na rotacyjną niezmienniczość miary γk możemy dla
uproszczenia notacji założyć, że H = {x : x1 < r}. Ustalmy dowolne r0 < r i niech
H0 = {x : x1 < r0}. Zauważmy, że γk(H0) < γk(A), zatem na podstawie Lematu Poin-
caré, µk,n(H0) ¬ µk,n(A) dla dużych n. Ponieważ P−1

k,n(H0)∩
√
nSn−1 jest kulą w

√
nSn−1,

więc na mocy izoperymetrii sferycznej

σ̃n−1

(
(P−1

k,n(A))t
)
­ σ̃n−1

(
(P−1

k,n(H0))t
)
.

Zauważmy, że przekształcenie Pk,n jest oczywiście 1-lipschitzowskie, więcAt ⊃ Pk,n((P−1
k,n(A))t)

i
µk,n(At) ­ µk,n(Pk,n((P−1

k,n(A))t)) ­ µk,n(Pk,n((P−1
k,n(H0))t)).

Nietrudno zauważyć, że
Pk,n((P−1

k,n(H0))t) = {x : x1 < rn}

oraz rn → r0 + t przy n→∞. Stąd

γk(At) = lim
n→∞

µk,n(At) ­ lim
n→∞

µk,n({x : x1 < rn}) = γk({x : x1 < r0 + t}),

z dowolności r0 < r wynika teza.

Twierdzenie 3.12. Jeśli γk(A) = Φ(x) to γk(At) ­ Φ(x + t) oraz γ+
k (A) ­ Iγ(γk(A)),

gdzie Iγ(x) := ϕ(Φ−1(x)) oraz ϕ(x) = Φ′(x) = 1√
2π

exp(−x2/2).

Dowód. Wystarczy zauważyć, że jeśli γk(H) = Φ(r) i H jest postaci (3), to Ht = {x ∈
Rk : 〈x, u〉 < r + t} i γk(Ht) = Φ(r + t).

Zauważając, że Φ(0) = 1/2 otrzymujemy:

Wniosek 3.13. αγk(t) ¬ 1− Φ(t) ¬ 1
2 exp(−t2/2).

Jak widzieliśmy już w dowodzie Twierdzenia 3.10 bardzo użyteczne jest pojęcie tzw.
transportu miary.
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Definicja 3.14. Niech µ i ν będą miarami na przestrzeniach mierzalnych X i Y. Powiemy,
że funkcja mierzalna T : X→ Y transportuje miarę µ na miarę ν (ew. miara ν jest obrazem
miary µ przy przekształceniu T ) jeśli ν(A) = µ(T−1(A)) dla wszystkich mierzalnych A ⊂ Y.

Szczególnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jeśli T : X → Y jest L-lipschitzowska oraz T transportuje miarę µ na ν, to
αν(t) ¬ αµ(t/L).

Dowód. Wystarczy zauważyć, że (T−1(A))t/L ⊂ T−1(At).

Transportując w sposób lipschitzowski miarę gaussowską można uzyskać oszacowania
funkcji koncentracji dla innych miar. Pokażemy dwa przykłady.

Wniosek 3.16. Niech µ[0,1]n oznacza rozkład jednostajny na kostce [0, 1]n. Wówczas µ[0,1]n

jest (2π)−1/2-lipschitzowskim obrazem γn. W szczególności αµ[0,1]n ¬
1
2 exp(−πt2).

Dowód. Określmy f : R→ (0, 1) wzorem

f(x) = µ[0,1]([0, f(x)]) = γ1((−∞, x]) = Φ(x).

Wówczas funkcja f transportuje miarę gaussowską γ1 na µ[0,1], to znaczy µ[0,1] = γ1 ◦ f−1.
Ponadto f ′(x) = (2π)−1/2 exp(−x2/2) ¬ (2π)−1/2, czyli f jest (2π)−1/2-lipschitzowska. Jeśli
teraz określimy F : Rn → (0, 1)n wzorem F (x) = (f(x1), . . . , f(xn)), to F transportuje
γn na µ oraz F jest (2π)−1/2-lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencją Faktu 3.15 i Wniosku 3.13.

Wniosek 3.17. Niech Bn = {x ∈ Rn : |x| ¬ 1} oznacza kulę jednostkową w Rn, zaś µBn
będzie rozkładem jednostajnym na Bn. Wówczas istnieje stała C taka, że µBn jest Cn−1/2-
lipschitzowskim obrazem γn. W szczególności αµBn ¬

1
2 exp(−nt2/(2C)).

Ponieważ obie miary γn i µBn są rotacyjnie niezmiennicze, będziemy szukać funkcji
T : Rn → Bn transportującej γn na µBn postaci Tx = x

|x|ϕ(|x|). Dalsze szczegóły pozosta-
wiamy Czytelnikowi jako ćwiczenie.

Otwarty problem. Rozwiązać zagadnienie izoperymetryczne dla zbiorów symetrycz-
nych, to znaczy znaleźć dla ustalonego t > 0, c ∈ [0, 1],

inf
{
γk(At) : γk(A) = c, A = −A

}
oraz

inf
{
γ+
k (A) : γk(A) = c, A = −A

}
.

Dość naturalna hipoteza mówi, że dla c ­ 1/2 rozwiązaniem obu problemów są zbiory
postaci [−a, a]×Rk−1 zaś dla c < 1/2 drugi problem się optymalizuje dla (R\[−a, a])×Rk−1.
Podobny problem można postawić dla miary σn, ale tam analogiczna hipoteza okazuje się
być niestety fałszywa.
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4 Metoda Martyngałowa

4.1 Transformata Laplace’a

Wiele dalszych szacowań będzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatą Laplace’a zmiennej losowej Z nazywamy funkcję

LZ(λ) := EeλZ λ ∈ R.

Podobnie jeśli µ jest miarą probabilistyczną na pewnej przestrzeni X oraz F : X → R, to
transformatę Laplace’a F względem µ określamy

LF,µ(λ) :=
∫
X
eλF (x)dµ(x).

Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z ­ t) ¬ inf
λ­0

e−λtLZ(λ) dla t ­ 0.

W szczególności, jeśli dla pewnego a > 0,

LZ(λ) ¬ exp(aλ2) λ ∈ R,

to dla t ­ 0

P(Z ­ t) ¬ exp
(
− t2

4a

)
oraz P(|Z| ­ t) ¬ 2 exp

(
− t2

4a

)
.

Dowód. Pierwsza część wynika z nierówności Czebyszewa, a druga z pierwszej i prostego
rachunku.

Zatem by udowodnić, że funkcja koncentracji miary µ jest gaussowska wystarczy wy-
kazać, że LF,µ(λ) ¬ exp(aλ2) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, że

∫
Fdµ = 0.

4.2 Nierówność Azumy

Twierdzenie 4.3 (Nierówność Hoeffdinga-Azumy). Niech (Mk,Fk)nk=0 będzie martynga-
łem o ograniczonych przyrostach takim, że ‖Mk −Mk−1‖∞ ¬ ak. Wówczas

P(Mn −M0 ­ t) ¬ exp
(
− t2

2
∑n
i=1 a

2
i

)
.
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Dowód. Określmy dla 1 ¬ k ¬ n, dk := Mk −Mk−1, wówczas E(dk|Fk−1) = 0. Mamy
1−u

2 (−x) + 1+u
2 x = ux, więc z wypukłości exp(x),

eux ¬ 1− u
2

e−x +
1 + u

2
ex = u sinh(x) + cosh(x) dla |u| ¬ 1.

Stosując tę nierówność dla u = dk/ak i x = λak dostajemy

E(eλdk |Fk−1) ¬ E
(dk
ak

∣∣∣Fk−1

)
sinh(λak) + cosh(λak) = cosh(λak).

Liczymy

Eeλ(Mn−M0) = Eeλ(Mn−1−M0+dn) = E(eλ(Mn−1−M0)E(eλdn |Fn−1))

¬ cosh(λan)Eeλ(Mn−1−M0).

Zatem iterując powyższą nierówność i stosując oszacowanie (wynikające np. z rozwinięcia
w szereg Taylora) cosh(x) ¬ exp(x2/2) dostajemy

LMn−M0(λ) = Eeλ(Mn−M0) ¬
n∏
k=1

cosh(λak) ¬ exp(
1
2

n∑
k=1

a2
kλ

2).

Teza twierdzenia wynika z Faktu 4.2.

Uwaga 4.4. Najczęściej będziemy mieli F0 = {∅,Ω}, wówczas M0 jest stałe, a ponieważ
martyngał ma stałą wartość oczekiwaną, to M0 = EMn.

W poniższych zastosowaniach będziemy przyjmować Mk = Eµ(F |Fk) dla całkowalnej
funkcji F : X→ R i odpowiednio dobranego (Fk) ciągu σ-ciał podzbiorów X.

4.3 Zastosowania nierówności Azumy

Wniosek 4.5. Niech (Xi, di) będą przetrzeniami metrycznymi, X = X1 × · · · × Xn z od-
ległością l1, to znaczy d(x, y) =

∑n
i=1 di(xi, yi) dla x, y ∈ X oraz niech µ = µ1 ⊗ . . . ⊗

µn będzie produktem miar probabilistycznych µi na Xi. Wówczas dla dowolnej funkcji 1-
lipschitzowskiej F na X

µ
({
x : F (x) ­

∫
Fdµ+ t

})
¬ exp(− t2

2D2 ),

gdzie D = (
∑n
i=1 Diam(Xi)2)1/2. W szczególności

αµ(t) ¬ exp
(
− t2

8D2

)
.
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Dowód. Na mocy Faktu 2.8 wystarczy wykazać pierwszą nierówność tezy. Niech Fk będzie
σ ciałem generowanym przez pierwsze k-współrzędnych oraz Mk := Eµ(F |Fk). Wówczas
oczywiście

Mk(x) = M̃k(x1, . . . , xk) =
∫

Xk+1×...×Xn
F (x)dµi+1(xi+1) · · · dµn(xn),

stąd

|Mk(x)−Mk−1(x)| = |M̃k(x1, . . . , xk)−
∫

Xk
M̃k(x1, . . . , xk)dµk(xk)|

¬ sup
yk,zk∈Xk

|M̃k(x1, . . . , xk−1, yk)− M̃k(x1, . . . , xk−1, zk)|

¬ sup
y∈X,zk∈Xk

|F (x1, . . . , xk−1, yk, yk+1, . . . , yn)− F (x1, . . . , xk−1, zk, yk+1, . . . , yn)|

¬ sup
yk,zk∈Xk

dk(yk, zk) ¬ Diam(Xk)

i teza wynika z Twierdzenia 4.3.

Przykład 1. Niech X = {0, 1}n z odległością d(x, y) = 1
n#{i : xi 6= yi} i unormowaną

miarą liczącą µ. Kładąc Xi = {0, 1} z odległością di(x, y) = 1
nI{x 6=y} widzimy, że możemy

stosować poprzedni wniosek i D = (
∑n
i=1 Diam(Xi)2)1/2 = n−1/2. Zatem

α({0,1}n,d,µ) ¬ exp(−nt
2

8
).

Definicja 4.6. Mówimy, że skończona przestrzeń metryczna (X, d) ma długość co najwyżej
l, jeśli istnieje rosnący ciąg podziałów X, {X} = A0,A1, . . . ,An = {{x} : x ∈ X} (Ai
jest podpodziałem Ai−1) oraz liczby a1, . . . , an spełniające (

∑n
i=1 a

2
i )

1/2 ¬ l takie, że dla
dowolnego A ∈ Ai−1 oraz B,C ∈ Ai, B, C ⊂ A istnieje bijekcja Φ: B → C dla której
d(x,Φ(x)) ¬ ai dla x ∈ B.

Uwaga 4.7. Biorąc A0 = {X} i A1 = {{x} : x ∈ X} widzimy, że każda skończona przestrzeń
metryczna ma długość nie większą niż Diam(X).

Twierdzenie 4.8. Jeśli (X, d) jest skończoną przestrzenią metryczną o długości co naj-
wyżej l, zaś µ unormowaną miarą liczącą na X, to dla funkcji 1-lipschitzowskich F na
X,

µ
({
x : F (x) ­

∫
Fdµ+ t

})
¬ exp(− t2

2l2
),

w szczególności

αµ(t) ¬ exp
(
− t2

8l2
)
.
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Dowód. Ustalmy funkcję 1-lipschitzowską F . Niech Fi będzie σ-ciałem generowanym przez
Ai oraz Mi := Eµ(F |Fi) dla i = 0, . . . , n. Wówczas

Mi(x) =
1

#A

∑
y∈A

F (y) dla x ∈ A ∈ Ai.

Zatem, jeśli A ∈ Ai−1, B,C ∈ Ai, B,C ⊂ A oraz Φ: B → C jest bijekcją jak w Definicji
4.6, to dla x ∈ B, y ∈ C,

|Mi(x)−Mi(y)| =
∣∣∣ 1
#B

∑
z∈B

(F (z)− F (Φ(z))
∣∣∣ ¬ sup

z∈B
|F (z)− F (Φ(z))|

¬ sup
z∈B

d(z,Φ(z)) ¬ ai.

Ponieważ Mi−1 na A ∈ Ai−1 jest uśrednieniem Mi po B ⊂ A,B ∈ Ai, to mamy |Mi(x)−
Mi−1(x)| ¬ ai, czyli ‖Mi −Mi−1‖∞ ¬ ai−1. Teza wynika z Twierdzenia 4.3 oraz Faktu
2.8.

Przykład 2. Niech Πn będzie grupą permutacji zbioru {1, . . . , n} z metryką d(σ, π) =
1
n#{i : σi 6= πi}, a µ unormowaną miarą liczącą na Πn. Niech Ai składa się ze zbiorów
postaci

Aj1,...,ji = {σ ∈ Πn : σ(1) = j1, . . . , σ(i) = ji}.

Wówczas jeśli B,C ∈ Ai są podzbiorami pewnego A ∈ Ai−1 to B = Aj1,...,ji−1,p, C =
Aj1,...,ji−1,q i możemy zdefiniować bijekcję Φ między B i C jako Φ(σ) = τp,q ◦ σ, gdzie
τp,q jest transpozycją zamieniającą p z q. Łatwo sprawdzić, że d(σ,Φ(σ)) ¬ 2/n, zatem
l = 2/

√
n i

α(Πn,d,µ) ¬ exp(−nt
2

32
).

5 Nierówność Poincaré

5.1 Definicja i podstawowe własności

Definicja 5.1. Mówimy, że miara probabilistyczna µ na (X, d) spełnia nierówność Poincaré
ze stałą C, jeśli dla wszystkich ograniczonych lipschitzowskich funkcji f na X zachodzi

Varµ(f) ¬ C
∫
|∇f |2dµ, (4)

gdzie

|∇f |(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y)

,

jeśli x jest punktem skupienia X i |∇f |(x) = 0, jeśli x jest punktem izolowanym X.

17



Uwaga 5.2. W przypadku, gdy X = Rn ze standardową metryką euklidesową możemy użyć
twierdzenia Rademachera, które mówi, że każda funkcja Lipchitzowska jest różniczkowalna
prawie wszędzie i wtedy |∇f |(x) jest dla prawie wszystkich x równy długości zwykłego gra-
dientu f . Ponadto argument aproksymacyjny pokazuje, że by wykazać nierówność Poincaré
dla miar probabilistycznych na Rn wystarczy sprawdzić (4) dla ograniczonych funkcji klasy
C1(Rn) o ograniczonych pochodnych rzędu jeden.

Uwaga 5.3. Będziemy wykorzystywali tylko dwie własności |∇f |. Mianowicie, że dla funk-
cji 1-lipschitzowskich |∇f | ¬ 1 oraz, że dla dowolnej funkcji klasy C1(R), |∇g(F )| ¬
|g′(F )||∇F | (w szczególności |∇(f + c)| = |∇f |).
Uwaga 5.4. Załóżmy, że miara µ ma gęstość postaci e−V na Rn. Wówczas proste całkowanie
przez części pokazuje, że ∫

|∇f |2dµ =
∫

(−4f + 〈∇V,∇f〉)fdµ.

Definiując operator Lf := −4f + 〈∇V,∇f〉 widzimy, że L1 = 0. Nierówność Poincaré
mówi, że dla funkcji f o średniej 0, czyli prostopadłych do 1,

∫
fLfdµ ­ C−1 ∫ f2dµ. Biorąc

pod uwagę samosprzężoność L nierówność (4) jest równoważna temu, że kolejna wartość
własna L to conajmniej 1/C. Dlatego nierówność Poincaré się nazywa nierównością „luki
spektralnej” (spectral gap inequality).

Czasem wygodniej w nierówności Poincaré zastąpić wariancję funkcji przez całkę kwa-
dratu odchylenia od mediany, okazuje się, że prowadzi to do równoważnej nierówności.

Fakt 5.5. Nierówność Poincaré jest równoważna nierówności

∀f∈Lip(X) Eµ|f −Medµf |2 ¬ C̃
∫
|∇f |2dµ.

Co więcej optymalne stałe w obu nierównościach spełniają Copt ¬ C̃opt ¬ 3Copt.

Dowód. Ponieważ

Varµ(f) = inf
c∈R

Eµ(f − c)2 ¬ Eµ|f −Medµf |2,

więc oczywiście Copt ¬ C̃opt.
By udowodnić przeciwne oszacowanie zauważmy, że

Varµ(f) ­ |Medµf −Eµf |2µ({|f −Eµf | ­ |Medµf −Eµf |})

­ 1
2
|Medµf −Eµf |2.

Stąd
Eµ|f −Medµf |2 ¬ Varµ(f) + |Medµf −Eµf |2 ¬ 3Varµ(f)

i otrzymujemy C̃opt ¬ 3Copt.
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Fakt 5.6. Symetryczny rozkład wykładniczy ν na R z gęstością 1
2e
−|x| spełnia nierówność

Poincaré ze stałą 4.

Dowód. Proste całkowanie przez części pokazuje, że dla funkcji h ∈ C1
ogr(R),∫

h(x)dν(x) = h(0) +
∫

sgn(x)h′(x)dν(x).

Niech f ∈ C1
ogr(R) i g(x) = f(x)− f(0) wówczas∫
g2dν = 2

∫
sgn(x)g′(x)g(x)dν(x) ¬ 2

( ∫
g′2dν

)1/2( ∫
g2dν

)1/2
,

stąd

Varν(f) ¬
∫
g2dν ¬ 4

∫
g′2dν = 4

∫
f ′2dν.

5.2 Nierówność Poincaré a koncentracja wykładnicza

Twierdzenie 5.7. Załóżmy, że miara µ spełnia nierówność Poincaré ze stałą C. Wówczas
dla każdej funkcji 1-lipschitzowskiej F i t > 0

µ
({
F ­

∫
Fdµ+ t

})
¬ 2 exp

(
− t√

C

)
.

W szczególności αX(t) ¬ 2 exp(−t/2
√
C).

Dowód. Rozpatrując F −
∫
Fdµ możemy założyć, że F ma średnią zero. Zauważmy, że dla

dowolnej funkcji różniczkowalnej g mamy |∇g(F )| ¬ |g′(F )||∇F | ¬ |g′(F )|. Niech

M(λ) := Mµ,F (λ) =
∫
eλFdµ.

Stosując nierówność Poincaré do eλF/2 dostajemy

M(λ)−M
(λ

2

)2
= Varµ(eλF/2) ¬ C

∫
|∇eλF/2|2dµ ¬ Cλ2

4
M(λ).

Zatem dla λ < 2/
√
C dostajemy

M(λ) ¬ 1
1− Cλ2/4

M
(λ

2

)2
.

Iterując tę nierówność n razy dostajemy

M(λ) ¬
n−1∏
k=0

( 1
1− Cλ2/4k+1

)2k

M
( λ

2n
)2n

.
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Ponieważ M(0) = 1 i M ′(0) =
∫
Fdµ = 0, to M(λ/2n)2n → 1 przy n→∞ i

M(λ) ¬
∞∏
k=0

( 1
1− Cλ2/4k+1

)2k

.

Zauważmy, że

∞∏
k=0

(
1− Cλ24−k−1

)2k

­ 1− Cλ2
∞∑
k=0

2k4−k−1 = 1− C

2
λ2.

W szczególności M(1/
√
C) ¬ 2 i teza wynika z nierówności Czebyszewa.

Uwaga 5.8. Nierówność Poincaré nie implikuje lepszej koncentracji niż wykładnicza. Istot-
nie symetryczny rozkład wykładniczy na prostej ν spełnia nierówność Poincaré ze stałą 4,
a biorąc f(x) = x widzimy, że dla t > 0,

ν

({
x ∈ R : f(x) ­

∫
fdν + t

})
= ν([t,∞)) =

1
2
e−t.

5.3 Tensoryzacja

Fakt 5.9. Załóżmy, że µi są miarami probabilistycznymi na Xi, X = X1 × . . . × Xn oraz
µ = µ1 ⊗ µ2 ⊗ · · · ⊗ µn. Wówczas dla dowolnej funkcji f ∈ L2(X, µ)

Varµ(f) ¬
n∑
i=1

EµVarµi(f).

Dowód. Prosta indukcja pokazuje, że wystarczy rozpatrzeć przypadek n = 2. Wówczas

Varµ(f) = Eµ2Eµ1(f −Eµf)2 = Eµ2 [Varµ1(f) + (Eµ1f −Eµf)2]

= EµVarµ1(f) + Eµ2 [Eµ1(f −Eµ2f)]2

¬ EµVarµ1(f) + Eµ2Eµ1 [(f −Eµ2f)2] = EµVarµ1(f) + EµVarµ2(f),

gdzie ostatnia nierówność wynika np. z nierówności Jensena.

Wniosek 5.10. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają nierówność
Poincaré ze stałą Ci względem gradientu |∇i|. Wówczas miara µ = µ1 ⊗ · · · ⊗ µn spełnia
nierówność Poincaré ze stałą C = maxiCi względem gradientu ∇f danego wzorem

|∇f |2 =
n∑
i=1

|∇if |2.
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Dowód. Z Faktu 5.9 dostajemy

Varµ(f) ¬
n∑
i=1

EµVarµi(f) ¬
n∑
i=1

EµCiEµi |∇if |2 ¬ CEµ

n∑
i=1

|∇if |2.

Wniosek 5.11. Produktowy rozkład wykładniczy νn spełnia nierówność Poincaré na Rn

ze stałą 4. W szczególności ανn(t) ¬ 2 exp(−t/4).

5.4 Dodatkowe własności. Charakteryzacja na prostej.

Kolejną przyjemną własnością nierówności Poincaré jest jej stabilność ze względu na zabu-
rzenia miary µ.

Fakt 5.12. Załóżmy, że µ jest miarą probabilistyczną na X, V jest ograniczoną funkcją bo-
relowską oraz dν = Z−1eV dµ, gdzie Z =

∫
eV dµ. Wówczas jeśli miara µ spełnia nierówność

Poincaré ze stałą C to ν spełnia nierówność Poincaré ze stałą Ce2‖V ‖∞.

Dowód. Weźmy funkcję lipschitzowską f , odejmując stałą możemy założyć, że Eµf = 0.
Wówczas

Varν(f) ¬ Eνf
2 =

1
Z

∫
f2eV dµ ¬ 1

Z
e‖V ‖∞

∫
f2dµ

¬ 1
Z
e‖V ‖∞C

∫
|∇f |2dµ = Ce‖V ‖∞

∫
|∇f |2e−V dν

¬ Ce2‖V ‖∞
∫
|∇f |2dν.

Fakt 5.13. Jeśli miara ν na (Y, ρ) jest L-lipschitzowskim obrazem miary µ na (X, d) oraz
µ spełnia nierówność Poincaré ze stałą C, to ν spełnia nierówność Poincaré ze stałą CL2.

Dowód. Niech ν = µ ◦ ϕ−1, gdzie ϕ : X → Y i ‖ϕ‖Lip ¬ L. Dla funkcji lipschitzowskich f
na Y otrzymujemy

Varν(f) = Varµ(f ◦ ϕ) ¬ C
∫
|∇f ◦ ϕ|2dµ ¬ CL2

∫
|∇f |2(ϕ(x))dµ(x)

= CL2
∫
|∇f |2dν,

gdzie przedostatnia nierówność wynika z oszacowania |∇f ◦ ϕ|(x) ¬ L|∇f |(ϕ(x)).

Kolejne twierdzenie (które podamy bez dowodu) charakteryzuje miary na prostej, które
spełniają nierówność Poincaré.
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Twierdzenie 5.14 (Muckenhaupt). Załóżmy, że µ jest miarą probabilistyczną na R o
medianie m, zaś p oznacza gęstość jej części absolutnie ciągłej. Wówczas miara µ spełnia
nierówność Poincaré ze skończoną stałą C wtedy i tylko wtedy gdy max{B+, B−} < ∞,
gdzie

B+ = sup
x>m

µ[x,∞)
∫ x

m

1
p(y)

dy

B− = sup
x<m

µ(−∞, x]
∫ m

x

1
p(y)

dy.

Co więcej optymalna stała Copt w nierówności Poincaré spełnia

1

(1 +
√

2)2
max{B+, B−} ¬ Copt ¬ 4 max{B+, B−}.

5.5 Nierówność Cheegera

W tej sekcji ν oznacza symetryczny rozkład wykładniczy na prostej z gęstością 1
2e
−|x|.

Zanim sformułujemy definicję zaczniemy od prostego faktu.

Fakt 5.15. Niech µ będzie miarą probabilistyczną na (X, d). Następujące warunki są rów-
noważne dla ustalonego c > 0:
(i) µ+(A) ­ cmin{µ(A), 1− µ(A)} dla dowolnego zbioru borelowskiego A,
(ii) dla dowolnego zbioru borelowskiego A i x spełniających µ(A) = ν(−∞, x] zachodzi
µ(At) ­ ν(−∞, x+ ct].

Dowód. (ii)⇒(i). Niech µ(A) = ν(−∞, x], wówczas

µ+(A) = lim inf
t→0+

µ(At)− µ(A)
t

­ lim inf
t→0+

ν((−∞, x+ ct)− ν(−∞, x]
t

=
1
2
e−|x|

= min{ν(−∞, x], ν(x,∞)} = min{µ(A), 1− µ(A)}.

(i)⇒(ii). Ustalmy najpierw δ < 1 i niech

t0 = t0(δ) = inf{t > 0: µ(At) < ν(−∞, x+ δct].

Załóżmy najpierw, że t0 <∞. Wówczas z monotoniczności µ(At) łatwo wynika, że µ(At0) =
ν(−∞, x+ δct0], czyli

µ+(At0) ­ cmin{µ(At0), 1− µ(At0)} =
c

2
e−|x+δct0|

=
1
δ

lim
h→0+

ν(−∞, x+ δc(t0 + h)]− ν(−∞, x+ δct0]
h

.
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Definicja dolnej i zwykłej granicy implikują, że istnieje h0 > 0 takie, że dla 0 < h ¬ h0,

µ(At0+h)− µ(A)
h

­ µ((At0)h)− µ(A)
h

­
√
δ
c

2
e−|x+δct0|

­ ν(−∞, x+ δc(t0 + h)]− ν(−∞, x+ δct0]
h

.

Stąd µ(At) ­ ν(−∞, x+ δct] dla t0 ¬ t ¬ t0 + h, co przeczy definicji t0.
Otrzymana sprzeczność pokazuje, że t0(δ) =∞, czyli µ(At) ­ ν(−∞, x+δct] dla t > 0.

Przechodząc z δ do 1 otrzymujemy (ii).

Definicja 5.16. Mówimy, że miara probabilistyczna µ na (X, d) spełnia nierówność Che-
egera ze stałą c > 0, jeśli zachodzi jeden z warunków równoważnych Faktu 5.5.

Okazuje się, że nierówność Cheegera ma też formę funkcyjną przypominającą nierów-
ność Poincaré.

Twierdzenie 5.17. Miara µ spełnia nierówność Cheegera ze stałą c > 0 wtedy i tylko
wtedy, gdy dla dowolnej funkcji lipschitzowskiej ograniczonej f zachodzi

Eµ|f −Medµ(f)| ¬ 1
c

∫
|∇f |dµ

Do dowodu będziemy potrzebowali jednej z wersji tzw. „co-area formula”.

Lemat 5.18 (Nierówność co-area). Dla dowolnej funkcji Lipschitzowskiej f na X,∫
X
|∇f |dµ ­

∫ ∞
−∞

µ+({f > t})dt.

Dowód. Wystarczy udowodnić nierówność dla funkcji ograniczonych. Istotnie, przyjmując
fM = max{−M,min{f,M}}, zauważamy, że |∇fM | ¬ |∇f | i {fM > t} = {f > t} dla
|t| < M i przechodzimy z M do nieskończoności.

Rozpatrując zamiast f funkcję f + c, możemy zakładać, że f jest nieujemna. Określmy
dla t > 0 funkcję ft na X wzorem

ft(x) := sup{f(y) : d(x, y) < t}.

Lipschitzowskość f implikuje, że (ft−f)/t ¬M . Łatwo sprawdzić, że {ft > r} = {f > r}t,
stąd całkowanie przez części daje∫

X
(ft − f)dµ =

∫ ∞
0

(µ({f > r}t)− µ({f > r}))dr.
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Mamy zatem∫
X
|∇f |dµ =

∫
X

lim sup
t→0+

ft − f
t

dµ = lim sup
t→0+

∫
X

ft − f
t

dµ

­ lim inf
t→0+

∫ ∞
0

µ({f > r}t)− µ({f > r})
t

dr

­
∫ ∞

0
lim inf
t→0+

µ({f > r}t)− µ({f > r})
t

dr =
∫ ∞
−∞

µ+({f > r})dr,

gdzie pierwsza i trzecia nierówność wynikają z Lematu Fatou (w pierwszej zastosowanego
do funkcji nieujemnych M − (ft − f)/t).

Uwaga 5.19. Dla miar µ na Rn absolutnie ciągłych względem miary Lebesgue’a można
udowodnić, że w nierówności co-area zachodzi równość.

Dowód Twierdzenia 5.17. „⇒”. Bez straty ogólności możemy założyć, że Medµ(f) = 0,
wówczas µ{f > t} ¬ 1/2 dla t > 0 i µ{f > t} ­ 1/2 dla t > 0. Nierówność co-area
implikuje∫

|∇f |dµ ­
∫ ∞
−∞

µ+({f > t})dt ­ c
∫ ∞

0
µ({f > t})dt+ c

∫ 0

−∞
(1− µ{f > t})dt

= cEµ max{f, 0}+ cEµ max{−f, 0} = cEµ|f |.

„⇐” Udowodnimy szacowanie (i) z Faktu 5.5. Idea polega na aproksymacji 1A przez
funkcje lipschitzowskie. Jeśli µ(Ā) > µ(A), to µ+(A) =∞ i nie ma co dowodzić, będziemy
zatem zakładać, że µ(Ā) = µ(A), co jest równoważne temu, że µ(At) → µ(A) przy t → 0.
Dla 0 < t < 1/2 określmy

ft(x) =
1
t

min{dist(x,At2), t− 2t2}.

Wówczas ft jest 1/t-lipschitzowska, ft = 0 na At2 i ft = 1− 2t poza At−t2 , zatem |∇ft| ¬
1
t IAt\A. Mamy zatem

µ(At)− µ(A)
t

­
∫
|∇ft|dµ ­ cEµ|ft −Medµ(ft)|.

Jeśli µ(A) ­ 1/2 to Medµ(ft) = 0 dla wszystkich t i

µ+(A) ­ c lim inf
t→0+

Eµ|ft| ­ c lim inf
t→0+

(1− 2t)(1− µ(At−t2)) = 1− µ(A).

Jeśli µ(A) < 1/2 to µ(At) < 1/2 dla małych t czyli Medµ(ft) = 1− 2t dla małych t i

µ+(A) ­ c lim inf
t→0+

Eµ|ft − 1 + 2t| ­ c lim inf
t→0+

(1− 2t)µ(At2) = µ(A).
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Następny fakt pokazuje, że nierówność Cheegera jest silniejsza od nierówności Poincaré.

Fakt 5.20. Jeśli µ spełnia nierówność Cheegera ze stałą c > 0, to spełnia nierówność
Poincaré ze stałą 4c−2.

Dowód. Niech f będzie Lipschitzowską funkcją ograniczoną o medianie 0, zaś g := sgn(f)f2.
Nietrudno sprawdzić, że g jest Lipschitzowska, ograniczona, ma medianę 0. Twierdzenie
5.17 implikuje

Eµf
2 = Eµ|g| ¬

1
c
Eµ|∇g| =

2
c
Eµ(|f ||∇f |) ¬ 2

c
(Eµ|f |2)1/2(E|∇f |2)1/2.

Dzieląc stronami przez (Eµ|f |2)1/2 dostajemy

Varµ(f) ¬ Eµ|f |2 ¬
4
c2 Eµ|∇f |2.

Uwaga 5.21. Z nierówności Poincaré nie można wywnioskować nierówności Cheegera. Moż-
na pokazać, że miara z gęstością 1+α

2 |x|
αI{|x|¬1} dla α ∈ (0, 1) spełnia nierówność Poincaré,

a nie spełnia nierówności Cheegera.

Kolejne twierdzenie, pochodzące od Talagranda, rozwiązuje zagadnienie izoperyme-
tryczne dla miary ν.

Twierdzenie 5.22. Miara ν spełnia nierówność Cheegera ze stałą 1.

Dowód. Dowód przeprowadzimy w kilku krokach, wykorzystując równoważności z Faktu .
Krok I. ν+([a, b]) ­ min{ν([a, b]), 1− ν([a, b])}.
Rozpatrzymy trzy przypadki.

i) a ­ 0. Wówczas ν+([a, b]) = e−a + e−b ­ e−a − e−b = ν([a, b]).
ii) b ¬ 0. Mamy ν+([a, b]) = ea + eb ­ eb − ea = ν([a, b]).
iii) a < 0 < b. Wtedy ν+([a, b]) = ea + e−b = 1− ν([a, b]).

Krok II. Jeśli A jest skończoną sumą przedziałów, to ν+(A) ­ min{ν(A), 1− ν(A)}.
W rozważanym przypadku ν(A) = ν(Ā) i ν+(A) = ν+(Ā), zatem bez straty ogólności

możemy zakładać, że A =
⋃n
i=1[ai, bi] oraz bi < ai+1 dla 1 ¬ i ¬ n−1. Niech pi := ν([ai, bi]).

Mamy

ν+(A) =
n∑
i=1

ν+([ai, bi]) ­
n∑
i=1

min{pi, 1−pi} ­ min{
∑
i

pi, 1−
∑
i

p} = min{ν(A), 1−ν(A)}.

Pierwsza równość powyżej wynika z Kroku I, a drugą łatwo uzyskać przez rozpatrzenie
dwu przypadków: pi ¬ 1/2 dla wszystkich i oraz pi > 1/2 dla pewnego i.

Krok III. Jeśli A jest skończoną sumą przedziałów oraz ν(A) = ν((−∞, x]), to ν(At) ­
ν((−∞, x+ t]).
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Zauważamy, że zbiór At jest również skończoną sumą przedziałów, więc z Kroku II
wynika, że ν+(At) ­ min{ν(At), 1− ν(At)}. Teza Kroku III wynika z analogicznego rozu-
mowania jak w dowodzie implikacji (i)⇒(ii) Faktu .

Krok IV. JeśliA jest zbiorem otwartym oraz ν(A) = ν((−∞, x]), to ν(At) ­ ν((−∞, x+
t]).

Zbiór A jest przeliczalną sumą przedziałów, więc dla δ > 0 istnieje B ⊂ A, który jest
skończoną sumą przedziałów i ν(B) ­ ν((−∞, x−δ]). Na mocy Kroku III ν(At) ­ ν(Bt) ­
ν((−∞, x− δ + t]) i wystarczy przejść z δ od zera.

Krok V. Jeśli A jest dowolnym zbiorem borelowskim oraz ν(A) = ν((−∞, x]), to
ν(At) ­ ν((−∞, x+ t]).

Zauważmy, że At ⊃ (Aδ)t−δ, ponadto Aδ jest zbiorem otwartym i ν(Aδ) ­ ν((−∞, x]).
Korzystając z Kroku IV dostajemy ν(At) ­ ν((Aδ)t−δ) ­ ν((∞, x+ t− δ]) i przechodzimy
z δ do 0.

Na prostej można scharakteryzować miary spełniające nierówność Cheegera.

Twierdzenie 5.23. Niech µ będzie miarą probabilistyczną na R, F (x) = µ(−∞, x], zaś p
będzie gęstością części absolutnie ciągłej µ. Wówczas następujące warunki są równoważne
dla c > 0:
i) µ spełnia nierówność Cheegera ze stałą c,
ii) µ jest 1

c -lipschitzowskim obrazem ν,
iii) essinf p(x)

min{F (x),1−F (x)} ­ c.

Szkic dowodu. Implikacja ii)⇒i) jest oczywistym wnioskiem z Twierdzenia 5.22 .
i)⇒iii). Wystarczy zauważyć, że µ+((−∞, x]) = p(x) dla p.w. x ∈ R.
iii)⇒ii). Definiujemy T : R 7→ R wzorem ν(−∞, x] = µ(−∞, Tx]. Wówczas T trans-

portuje ν na µ oraz

ν((x, y]) = µ((Tx, Ty]) ­
∫ Ty

Tx
p(z)dz ­ c

∫ Ty

Tx
min{F (z), 1− F (z)}dz.

Stąd łatwo wynika, że T jest ciągłe i lim supy→x
Tx−Ty
x−y ¬ 1/c, czyli T jest 1/c-Lipschitzowskie.

6 Logarytmiczna Nierówność Sobolewa

6.1 Entropia funkcji

Definicja 6.1. Załóżmy, że µ jest miarą probabilistyczną na X, zaś f nieujemną funkcją
mierzalną na X. Entropię f względem µ definiujemy wzorem

Entµ(f) :=

{ ∫
f log fdµ−

∫
fdµ log

∫
fdµ jeśli

∫
f log(1 + f)dµ <∞

∞ jeśli
∫
f log(1 + f)dµ =∞.

26



Z wypukłości funkcji x log x na [0,∞) wynika, że Entµ(f) ­ 0, łatwo też zauważyć, że
Entµ(λf) = λEntµ(f) dla λ ­ 0.

Lemat 6.2. Dla dowolnej funkcji nieujemnej na X,

Entµ(f) = sup
{∫

fgdµ :
∫
egdµ ¬ 1

}
. (5)

Dowód. Z jednorodności obu stron tożsamości (5) możemy zakładać, że
∫
fdµ = 1, wówczas

Entµ(f) =
∫
f log fdµ.

Nietrudno sprawdzić, że dla u > 0, supv∈R(uv − ev) = u log u− u, zatem

uv ¬ u log u− u+ ev dla u ­ 0, v ∈ R. (6)

Zatem biorąc g takie, że
∫
egdµ ¬ 1 dostajemy∫

fgdµ ¬
∫

(f log f − f + eg)dµ = Entµ(f)− 1 +
∫
egdµ ¬ Entµ(f).

By udowodnić nierówność w przeciwną stronę wystarczy przyjąć g = log f .

Z powyższego lematu łatwo wykazać tensoryzowalność entropii:

Fakt 6.3. Załóżmy, że µi są miarami probabilistycznymi na Xi, X = X1 × . . . × Xn oraz
µ = µ1 ⊗ µ2 ⊗ · · · ⊗ µn. Wówczas dla dowolnej nieujemnej funkcji f na X zachodzi

Entµ(f) ¬
n∑
i=1

EµEntµi(f).

Dowód. Weźmy funkcję g na X taką, że
∫
egdµ ¬ 1 oraz przyjmijmy dla i = 1, . . . , n,

gi(x1, . . . , xn) := log
(∫ eg(x1,...,xn)dµ1(x1) · · · dµi−1(xi−1)∫

eg(x1,...,xn)dµ1(x1) · · · dµi(xi)

)
.

Wówczas g ¬
∑n
i=1 g

i oraz
∫
eg
i
dµi ¬ 1, stąd∫

fgdµ ¬
n∑
i=1

∫
fgidµ =

n∑
i=1

∫ ( ∫
fgidµi

)
dµ ¬

n∑
i=1

∫
Entµi(f)dµ.
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6.2 LNS - definicja, tensoryzowalność, związek z koncentracją

Definicja 6.4. Mówimy, że miara probabilistyczna na (X, d) spełnia logarytmiczną nie-
równość Sobolewa ze stałą C, jeśli dla wszystkich ograniczonych lipschitzowskich funkcji f
na X zachodzi

Entµ(f2) ¬ 2C
∫
|∇f |2dµ. (7)

Fakt 6.5. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają logarytmiczną nie-
równość Sobolewa ze stałą Ci względem gradientu |∇i|. Wówczas miara µ = µ1 ⊗ · · · ⊗ µn
spełnia logarytmiczną nierówność Sobolewa ze stałą C = maxiCi względem gradientu ∇f
danego wzorem

|∇f |2 =
n∑
i=1

|∇if |2.

Dowód. Z Faktu 6.3 dostajemy

Entµ(f2) ¬
n∑
i=1

EµEntµi(f
2) ¬

n∑
i=1

Eµ2CiEµi |∇if |2 ¬ 2CEµ

n∑
i=1

|∇if |2.

Twierdzenie 6.6. Załóżmy, że miara µ spełnia logarytmiczną nierówność Sobolewa ze
stałą C. Wówczas dla każdej funkcji 1-lipschitzowskiej F i t > 0,

µ
({
F ­

∫
Fdµ+ t

})
¬ exp

(
− t2

2C

)
.

W szczególności αX(t) ¬ exp(−t2/8C).

Dowód. Ustalmy ograniczoną funkcję 1-Lipschitzowską F taką, że
∫
Fdµ = 0. Wystarczy,

że pokażemy iż dla λ ­ 0

M(λ) := MF,λ =
∫
eλFdµ ¬ eCλ2/2.

Zastosujmy logarytmiczną nierówność Sobolewa do f2 := eλF . Wówczas

Entµ(f2) = λEµFe
λF −Eµe

λF log Eµe
λF = λM ′(λ)−M(λ) logM(λ)

oraz ∫
|∇f |2dµ =

λ2

4

∫
|∇F |2eλF ¬ λ2

4
M(λ).

Zatem (7) daje

λM ′(λ)−M(λ) logM(λ) ¬ Cλ
2

2
M(λ). (8)
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Określmy H(λ) := 1
λ logM(λ) dla λ > 0. Wówczas

lim
λ→0

H(λ) =
M ′(0)
M(0)

=
∫
Fdµ = 0

oraz na podstawie (8)

H ′(λ) = − 1
λ2 logM(λ) +

1
λ

M ′(λ)
M(λ)

¬ C

2
.

Zatem H(λ) ¬ Cλ/2 czyli M(λ) ¬ exp(Cλ2/2).

6.3 LNS dla miary gaussowskiej

Fakt 6.7. i) Niech µ1 = 1
2δ1 + 1

2δ−1, wówczas dla dowolnego f : {−1, 1} → R,

Entµ1(f
2) ¬ 2Eµ1 |Df |2,

gdzie Df(x) = 1
2(f(x)− f(−x)).

ii) Niech µn = µ1 ⊗ · · · ⊗ µ1 będzie rozkładem jednostajnym na {−1, 1}n, wówczas dla
dowolnego f : {−1, 1}n → R,

Entµn(f2) ¬ 2Eµn |Df |2,

gdzie

|Df |2(x) =
1
4

n∑
i=1

(f(x)− f(si(x)))2,

oraz si((x1, . . . , xn)) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn) dla 1 ¬ i ¬ n.

Dowód. i) Z uwagi na jednorodność możemy zakładać, że Eµ1f
2 = 1, wówczas istnieje

t ∈ [−1, 1] takie, że f(1) =
√

1 + t oraz f(−1) =
√

1− t i nierówność z punktu i) ma
postać α(t) ­ 0, gdzie

α(t) := 1−
√

1− t2 − 1 + t

2
log(1 + t)− 1− t

2
log(1− t).

Nietrudno sprawdzić, że α(0) = α′(0) = 0 oraz

α′′(t) =
1

1− t2
( t2√

1− t2
− t2

1 +
√

1− t2
)
­ 0,

więc istotnie α(t) ­ 0.
ii) Wynika z punktu i) i Faktu 6.3.

Twierdzenie 6.8. Miara γn spełnia logarytmiczną nierówność Sobolewa z C = 1.
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Dowód. Z uwagi na Fakt 6.3 wystarczy rozważyć przypadek n = 1. Niech f ∈ C1
ogr(R).

Określmy gn : {−1, 1}n → R wzorem

gn(x) := f

(
x1 + . . .+ xn√

n

)
.

Niech µn i |Df | będą jak w Fakcie 6.7. Wówczas na mocy centralnego twierdzenia granicz-
nego

Entµn(g2
n) =

∫
g2
n log g2

ndµn −
∫
g2
ndµn log

∫
g2
ndµn → Entγ1(f

2).

Ponadto kładąc Tn(x) = n−1/2(x1 + . . .+ xn)

|Dgn|(x)2 =
1
4

n∑
i=1

(
f(Tn(x))− f

(
Tn(x)− 2

xi√
n

))2
= f ′(Tn(x))2 + rn

gdzie rn zbiega do zera jednostajnie względem |Tn(x)|. Zatem

lim
n→∞

Eµn |Dgn|(x)2 = lim
n→∞

Eµnf
′(Tn(x))2 = Eγ1f

′(x)2.

Fakt 6.9. Załóżmy, że µ jest miarą probabilistyczną na X, V jest ograniczoną funkcją bore-
lowską oraz dν = Z−1eV dµ, gdzie Z =

∫
eV dµ. Wówczas jeśli miara µ spełnia logaryticzną

nierówność Sobolewa ze stałą C to ν spełnia logarytmiczną nierówność Sobolewa ze stałą
Ce4‖V ‖∞.

Dowód. Funkcja ϕ(u) = u log u jest wypukła na [0,∞) stąd dla dowolnych s, t, ϕ(s+ t) ­
ϕ(t) + ϕ′(t)s, więc

ϕ
( ∫

f2dν
)

= ϕ
(
t+

∫
(f2 − t)dν

)
­ ϕ(t) + ϕ′(t)

∫
(f2 − t)dν.

Zatem

Entν(f2) = inf
t∈R

∫ [
ϕ(f2)− ϕ(t)− ϕ′(t)(f2 − t)

]
dν

¬ 1
Z
e‖V ‖∞ inf

t∈R

∫ [
ϕ(f2)− ϕ(t)− ϕ′(t)(f2 − t)

]
Ze−V dν

=
1
Z
e‖V ‖∞Entµ(f2) ¬ 2C

Z
e‖V ‖∞

∫
|∇f |2dµ

¬ 2Ce2‖V ‖∞
∫
|∇f |2dν.

Kolejny fakt dowodzimy tak samo jak dla nierówności Poincaré.
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Fakt 6.10. Jeśli miara ν na (Y, ρ) jest L-lipschitzowskim obrazem miary µ na (X, d)
oraz µ spełnia logarytmiczną nierówność Sobolewa ze stałą C, to ν spełnia logarytmiczną
nierówność Sobolewa ze stałą CL2.

Stosując logarytmiczną nierówność Sobolewa do funkcji f = 1 + εg dowodzimy

Fakt 6.11. Jeśli miara probabilistyczna µ spełnia logarytmiczną nierówność Sobolewa ze
stałą C, to spełnia również nierówność Poincaré ze stałą C.

Opierając się na twierdzeniu Muckenhoupta da się wyprowadzić kryterium równoważne
nierówności logarytmicznej Sobolewa dla miar na prostej.

Twierdzenie 6.12. Załóżmy, że µ jest miarą probabilistyczną na R o medianie m, zaś
p oznacza gęstość jej części absolutnie ciągłej. Wówczas miara µ spełnia logarytmiczną
nierówność Sobolewa ze skończoną stałą C wtedy i tylko wtedy gdy max{B+, B−} < ∞,
gdzie

B+ = sup
x>m

µ[x,∞) ln
( 1
µ[x,∞)

) ∫ x

m

1
p(y)

dy

B− = sup
x<m

µ(−∞, x] ln
( 1
µ(−∞, x]

) ∫ m

x

1
p(y)

dy.

Co więcej optymalna stała Copt w nierówności Poincaré spełnia

1
150

(B+ +B−) ¬ Copt ¬ 468(B+ +B−).

6.4 Nierówność Bobkowa

Logarytmiczna nierówność Sobolewa implikuje koncentrację gaussowską, ale nie implikuje
gaussowskiej izoperymetrii. Okazuje się, że jest silniejsza nierówność, która implikuje gaus-
sowską izoperymetrię, a jednocześnie ma szereg równie dobrych własności jak nierówność
Poincaré czy logarytmiczna nierówność Sobolewa.

Przedstawione poniżej rozumowania można podobnie jak w poprzednich sekcjach pro-
wadzić w większej ogólności, jednak by uniknąć szczegółów technicznych ograniczymy się
do miar na Rn i funkcji gładkich.

W tej części przez I będziemy oznaczać gaussowską funckję izoperymetryczną, tzn
I(x) = ϕ(Φ−1(x)), gdzie ϕ = (2π)−1/2 exp(−|x|2/2). Dodatkowo określamy I(0) = I(1) =
0.

Definicja 6.13. Mówimy, że miara probabilistyczna µ na Rn spełnia nierówność Bobkowa
ze stałą C, jeśli dla wszystkich f ∈ C1

ogr(Rn) o wartościach w przedziale [0, 1] zachodzi

I
( ∫

fdµ
)
¬
∫ √

I(f)2 + C2|∇f |2dµ. (9)
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Fakt 6.14. Jeśli miary µi spełniają nierówność Bobkowa ze stałymi Ci, to miara µ1⊗· · ·⊗
µn spełnia nierówność Bobkowa ze stałą maxiCi.

Twierdzenie 6.15. Jeśli miara probabilistyczna µ na Rn spełnia nierówność Bobkowa na
ze stałą C, to

µ+(A) ­ 1
C
I(µ(A)) dla A ∈ B(Rn)

oraz
µ(At) ­ Φ(Φ−1(µ(A)) + t/C) dla A ∈ B(Rn), t > 0.

Twierdzenie 6.16. Kanoniczna miara gaussowska γn spełnia nierówność Bobkowa z C =
1.

7 Nierówności Splotu Infimum

7.1 Własność (τ) Maureya

Zacznijmy od zaproponowanej przez Maureya definicji.

Definicja 7.1. Splotem infimum dwu funkcji f i g określonych na Rn nazywamy funkcję
f�g daną wzorem

f�g(x) := inf{f(y) + g(x− y) : y ∈ Rn}.

Niech µ będzie miarą probabilistyczną na Rn oraz ϕ : Rn → [0,∞]. Mówimy, że para (µ, ϕ)
ma własność (τ) bądź, że miara µ spełnia nierówność splotu infimum z funkcją kosztu ϕ
jeśli ∫

ef�ϕdµ

∫
e−fdµ ¬ 1

dla dowolnej ograniczonej mierzalnej funkcji f na Rn.

Pierwszą użyteczną cechą własności (τ) jest jej tensoryzowalność.

Fakt 7.2. Jeśli pary (µi, ϕi) mają własność (τ), µ = µ1 ⊗ · · · ⊗ µn oraz

ϕ(x1, . . . , xn) = ϕ1(x1) + . . .+ ϕn(xn),

to również para (µ, ϕ) ma własność (τ).

Dowód. Prosty argument indukcyjny pokazuje, że wystarczy udowodnić tezę dla n = 2.
Niech f = f(x, y) będzie ograniczoną funkcją na Rn1 × Rn2 , określmy g na Rn2 jako

g(y) := − ln
( ∫

e−f(x,y)dµ1(x)
)
.

Dodatkowo wprowadźmy oznaczenie fy(x) = f(x, y). Wówczas dla dowolnych y, ỹ∫
ef�ϕ(x,y)dµ1(x) ¬

∫
ef

ỹ�ϕ1(x)+ϕ2(y−ỹ)dµ1(x) ¬ eg(ỹ)+ϕ2(y−ỹ)
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na mocy własności (τ) dla (µ1, ϕ1). Stąd∫
ef�ϕ(x,y)dµ1(x) ¬ eg�ϕ2(y)

i korzystając z Twierdzenia Fubiniego i (τ) dla (µ1, ϕ2).∫
ef�ϕdµ1 ⊗ µ2 ¬

∫
eg�ϕ2(y)dµ2(y) ¬

( ∫
e−g(y)dµ2(y)

)−1

= (
∫
e−fdµ1 ⊗ µ2)−1.

Następny fakt pokazuje w jaki sposób można transportować (τ).

Fakt 7.3. Załóżmy, że µ jest miarą probabilistyczną na Rn, zaś ϕ funkcją kosztu na Rn

taką, że (µ, ϕ) spełnia własność (τ). Jeśli T : Rn → Rm oraz funkcja ψ na Rm spełnia
ψ(Tx− Ty) ¬ ϕ(x− y) dla wszystkich x, y, to para (µ ◦ T−1, ψ) ma własność (τ).

Dowód. Niech f będzie ograniczoną funkcją na Rm. Zauważmy, że

f ◦ T�ϕ(x) = inf
y

(f(Ty) + ϕ(x− y)) ­ inf
y

(f(Ty) + ψ(Tx− Ty)) ­ f�ψ(Tx).

Zatem ∫
ef�ψdµ ◦ T−1 =

∫
ef�ψ(Tx)dµ(x) ¬

∫
ef◦T�ϕ(x)dµ(x) ¬

( ∫
e−f◦Tdµ

)−1

=
( ∫

e−fdµ ◦ T−1
)−1

.

7.2 Splot infimum a koncentracja

By sformułować związki nierówności splotu infimum z koncentracją określmy zbiór

Bϕ(t) = {x : ϕ(x) ¬ t}.

Zacznijmy od prostego faktu

Fakt 7.4. Jeśli (µ, ϕ) ma własność (τ) to dla dowolnego zbioru borelowskiego A takiego,
że µ(A) > 0 mamy

1− µ(A+Bϕ(t)) ¬ 1
µ(A)

e−t.
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Dowód. Zastosujmy własność (τ) do funkcji f = 0 na zbiorze A i f =∞ poza zbiorem A.
Zauważmy, że f�ϕ ­ t poza zbiorem A+Bϕ(t), zatem

1 ­
∫
ef�ϕdµ

∫
e−fdµ ­ et(1− µ(A+Bϕ(t))µ(A).

Uwaga 7.5. Funkcja f w poprzednim dowodzie nie była oczywiście ograniczona, ale łatwo
ominąć ten problem stosując nierówność (τ) do fn = n1Rn\A dla n ­ t.

Poprzedni Fakt daje dobre oszacowanie tylko dla dużych wartości t. Nieco modyfikując
jego dowód da się uzyskać też nierówności koncentracyjne dla małych t.

Fakt 7.6. Załóżmy, że para (µ, ϕ) ma własność (τ). Wówczas dla dowolnego zbioru bore-
lowskiego A i t > 0,

µ(A+Bϕ(t)) ­ etµ(A)
(et − 1)µ(A) + 1

. (10)

W szczególności
µ(A+Bϕ(t)) > min{et/2µ(A), 1/2} (11)

oraz
µ(A) ­ 1

2
⇒ 1− µ(A+Bϕ(t)) < e−t/2(1− µ(A)). (12)

Ponadto
µ(A) = ν(−∞, x] ⇒ µ(A+Bϕ(t)) ­ ν(−∞, x+ t/2]. (13)

Dowód. Niech f(x) = t1Rn\A. Wówczas f jest nieujemna, więc f�ϕ też jest nieujemna
(rozpatrujemy tylko nieujemne funkcje kosztu). Dla x 6∈ A+Bϕ(t) mamy f�ϕ(x) ­ t.

Zatem własność (τ) daje

1 ­
∫
ef�ϕ(x)dµ(x)

∫
e−f(x)dµ(x)

­
[
µ
(
A+Bϕ(t)

)
+ et

(
1− µ(A+Bϕ(t))

)][
µ(A) + e−t(1− µ(A))

]
,

skąd bezpośredni rachunek prowadzi do (10).
Niech ft(p) := etp/((et − 1)p + 1), zauważmy, że ft is rosnąca względem p oraz dla

p ¬ e−t/2/2,

(et − 1)p+ 1 ¬ et/2 + 1− 1
2

(et/2 + e−t/2) < et/2,

skąd otrzymujemy (11). Ponadto dla p ­ 1/2,

1− ft(p) =
1− p

(et − 1)p+ 1
¬ 1− p

(et + 1)/2
< e−t/2(1− p)
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i dostajemy (12).
Niech F (x) = ν(−∞, x] i gt(p) = F (F−1(p) + t). Poprzednie rachunki pokazują, że dla

t, p > 0, ft(p) ­ gt/2(p), jeśli F−1(p) + t/2 ¬ 0 lub F−1(p) ­ 0. Ponieważ gt+s = gt ◦ gs i
ft+s = ft ◦ fs, otrzymujemy ft(p) ­ gt/2(p) dla wszystkich t, p > 0, zatem (10) implikuje
(13).

7.3 Dwupoziomowa koncentracja dla rozkładu wykładniczego

Niech jak do tej pory ν oznacza miarę na R z gęstością 1
2e
−|x|, zaś ν+, ν− miary z gęstościami

odpowiednio e−x1[0,∞) i ex1(−∞,0].

Fakt 7.7. Para (ν+, ϕ0) ma własność (τ), gdzie

ϕ0(x) =

{
1
18x

2 dla |x| ¬ 2
2
9(|x| − 1) dla |x| > 2.

Lemat 7.8. Dla wszystkich x ∈ R mamy 2|ϕ′0(x)| ¬ 1 oraz

(1− 4ϕ′0(x)2)eϕ0(x) ­ 1.

Dowód. Pierwszą nierówność otrzymujemy przez łatwe sprawdzenie. By udowodnić drugą,
z uwagi na symetrię ϕ0, wystarczy rozpatrywać przypadek x ­ 0. Ponadto ϕ′0(x) jest stałe
dla x ­ 2 a ϕ0 rosnące na tym przedziale, więc możemy zakładać, że 0 ¬ x ¬ 2. Wówczas
nierówność po podstawieniu y = x2/18 ma postać

e−y ¬ 1− 8
9
y, 0 ¬ y ¬ 2

9
.

Funkcja e−y jest wypukła, więc wystarczy sprawdzić tylko y = 0 i y = 2/9.

Dowód Faktu 7.7. Ustalmy funkcję ograniczoną f , przyjmijmy g := f�ϕ0 i niech

I0 :=
∫ ∞

0
e−f(x)−xdx, I1 :=

∫ ∞
0

eg(x)−xdx.

Musimy pokazać, że I0I1 ¬ 1. Dla t ∈ (0, 1) zdefiniujmy x(t) i y(t) wzorami∫ x(t)

0
e−f(x)−xdx = tI0 oraz

∫ y(t)

0
eg(x)−xdx = tI1.

Wówczas
x′(t) = I0e

f(x(t))+x(t), y′(t) = I1e
−g(y(t))+y(t).

Na mocy definicji g, g(y(t)) ¬ f(x(t)) + ϕ0(y(t)− x(t)), więc

y′(t) ­ I1e
−f(x(t))−ϕ0(y(t)−x(t))+y(t).
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Niech z(t) = 1
2(x(t) + y(t))− ϕ0(x(t)− y(t)), wówczas

z′(t) =
(1

2
− ϕ′0(x(t)− y(t))

)
x′(t) +

(1
2

+ ϕ′0(x(t)− y(t))
)
y′(t).

Pisząc dla uproszczenia x i y zamiast x(t) i y(t) stosując poprzednie oszacowanie y′(t)
oraz nierówność między średnia arytmetyczną i geometryczną dostajemy (wykorzystując
parzystość ϕ0)

z′(t) ­ 1
2

(1− 2ϕ′0(x− y))I0e
x+f(x) +

1
2

(1 + 2ϕ′0(x− y))I1e
−ϕ0(x−y)+y−f(x)

­
√

1− 4ϕ′0(x− y)2
√
I0I1e

1
2 (x+y)− 12ϕ0(x−y)

=
√
I0I1e

z(t)
√

1− 4ϕ′0(x− y)2e
1
2ϕ0(x−y).

Zatem na mocy Lematu 7.8, (−e−z(t))′ = e−z(t)z′(t) ­
√
I0I1, co po odcałkowaniu daje√

I0I1 ¬ 1.

Uwaga 7.9. Funkcja g jest ciągła, więc y jest różniczkowalna. Funkcja f nie musi być ciągła
więc x nie musi być różniczkowalna. Jednak z ograniczoności f łatwo wywnioskować lokalną
Lipschitzowskość x (stąd też z), a zatem różniczkowalność x prawie wszędzie. Funkcja e−z(t)

jest zatem lokalnie lipschitzowska, czyli jest całką swojej pochodnej, która istnieje p.w..

Wniosek 7.10. Miara ν spełnia nierówność infimum z funkcją kosztu ϕ1 postaci

ϕ1(t) = 2ϕ0(
t

2
) =

{
1
36 t

2 dla |t| ¬ 4
2
9(|t| − 2) dla |t| > 4.

Dowód. Z wypukłości funkcji ϕ0 łatwo wynika, że ϕ1 = ϕ0�ϕ0. Ponieważ miara ν− jest
symetrycznym odbiciem ν+ a funkcja ϕ0 jest symetryczna, to (ν−, ϕ0) ma własność (τ),
więc (ν+⊗ν−, ϕ0(x) +ϕ0(y)) też ma (τ). Miara ν jest splotem miar ν+ i ν−, czyli obrazem
ν+ ⊗ ν− przy przekształceniu T (x, y) = x+ y. Teza wynika z Faktu 7.3

Wiemy, że miara ν a zatem i miara produktowa νn spełniają nierówność Poincaré, więc
jeśli νn(A) ­ 1

2 , to νn(A + tBn
2 ) ­ 1 − e−t/C dla pewnej stałej absolutnej C. Okazuje się,

że można tę nierówność wzmocnić.
Zanim sformułujemy twierdzenie (które pierwszy z gorszymi stałymi udowodnił Tala-

grand) wprowadźmy następujące oznaczenie kuli jednostkowej w lnp dla 1 ¬ p <∞

Bn
p := {x ∈ Rn :

n∑
i=1

|xi|p ¬ 1}.
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Twierdzenie 7.11. Dla dowolnego zbioru borelowskiego A w Rn takiego, że νn(A) > 0
mamy dla t ­ 0,

1− νn(A+ 6
√
tBn

2 + 9tBn
1 ) ¬ 1

νn(A)
e−t.

Ponadto

νn(A) = ν(−∞, x] ⇒ νn(A+ 6
√

2tBn
2 + 18tBn

1 ) ­ ν(−∞, x+ t].

Dowód. Para (νn, ϕn) ma własność (τ), gdzie ϕn(x1, . . . , xn) = ϕ1(x1)+. . .+ϕ1(xn). Łatwo
sprawdzić, że

Bϕn(t) ⊂ 6
√
tBn

2 + 9tBn
1 .

Teza wynika zatem z Faktów 7.4 i 7.6.

8 Nierówności transportowe

8.1 Koszt optymalnego transportu

By zdefiniować koszt transportu miar będziemy potrzebowali kilku definicji.

Definicja 8.1. Przez P(X) będziemy oznaczać rodzinę miar probabilistycznych na prze-
strzeni mierzalnej X. Dla µ, ν ∈ P(X) przez Π(µ, ν) będziemy oznaczali zbiór wszystkich
miar probabilistycznych π na X × X takich, że µ i ν są miarami brzegowymi π, czyli
π(A× X) = µ(A) i π(X×A) = ν(A) dla dowolnego zbioru mierzalnego A ⊂ X.

Uwaga 8.2. Zbiór Π(µ, ν) jest niepusty, gdyż zawiera miarę produktową µ⊗ ν. Zauważmy
też, że jeśli T transportuje µ na ν oraz X ma rozkład µ, to rozkład zmiennej (X,TX)
należy do Π(µ, ν).

Definicja 8.3. Załóżmy, że c : X × X → [0,∞] jest funkcją mierzalną. Dla µ, ν ∈ P(X)
definiujemy optymalny koszt transportu miary µ na ν z funkcją kosztu c wzorem

Tc(µ, ν) := inf
{∫

X×X
c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
.

W przypadku, gdy (X, d) jest przestrzenią metryczną, a c(x, y) = dp(x, y) będziemy pisać
Tp zamiast Tc. Określamy też odległość Wassersteina miar µ, ν ∈ P(X) jako

Wp(µ, ν) := Tp(µ, ν)1/p = inf

{(∫
X×X

dp(x, y)dπ(x, y)
)1/p

: π ∈ Π(µ, ν)

}
, 1 ¬ p <∞,

Wp(µ, ν) := Tp(µ, ν) = inf
{∫

X×X
dp(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
, p ∈ (0, 1].
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Uwaga 8.4. Można udowodnić, że jeśli X jest przestrzenią polską, to Wp jest metryką na
przestrzeni miar probabilistycznych µ na X takich, że

∫
X d(x, x0)pdµ(x) <∞ dla pewnego

(równoważnie każdego) x0 ∈ X.

Uwaga 8.5. Równoważnie możemy zdefiniować

Tc(µ, ν) = inf{Ec(X,Y ) : X ∼ µ, Y ∼ ν}.

Uwaga 8.6. Zauważmy, że

Tc(µ, ν) ¬ inf{Eµc(x, Tx) : T transportuje µ na ν}.

W wielu przypadkach można udowodnić, że w powyższej nierówności zachodzi równość, ale
nie jest tak zawsze – np. gdy µ ma atomy, a ν jest bezatomowa, to nie istnieje transport µ
na ν.

Definicja 8.7. Jeśli (X, d) jest przestrzenią metryczną, to określamy odległość Monge’a-
Kantorowicza miar µ, ν ∈ P(X) wzorem

WLip
1 (µ, ν) := sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ : f : X → R 1-Lipschitzowska, ograniczona
}
.

Fakt 8.8. Dla dowolnej przestrzeni metrycznej (X, d) zachodzi

WLip
1 (µ, ν) ¬W1(µ, ν) dla µ, ν ∈ P(X).

Dowód. Zauważmy, że dla dowolnego π ∈ Π(x, y) i f 1-Lipschitzowskiego mamy∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ =
∣∣∣∣∫ (f(x)− f(y))dπ(x, y)

∣∣∣∣ ¬ ∫ |f(x)−f(y)|dπ(x, y) ¬
∫
d(x, y)dπ(x, y).

Biorąc supremum po f i infimum po π dostajemy tezę.

Przy dodatkowym założeniu ośrodkowości odległości WLip
1 i W1 się pokrywają.

Twierdzenie 8.9 (Dualność Monge’a-Kantorowicza-Rubinsteina). Załóżmy, że (X, d) jest
ośrodkową przestrzenią metryczną. Wówczas

W1(µ, ν) = WLip
1 (µ, ν) dla µ, ν ∈ P(X).

8.2 Względna entropia

Definicja 8.10. Niech µ, ν będą dwiema miarami probabilistycznymi na X. Określamy
entropię miary ν względem miary µ wzorem

H(ν|µ) :=

{
Entµ dνdµ = Eν log( dνdµ), jeśli ν � µ,

+∞ w przeciwnym przypadku.
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Lemat 8.11 (Zasada wariacyjna Gibbsa). Dla dowolnej ograniczonej z góry funkcji mie-
rzalnej f ,

log Eµe
f = sup

ν
{Eνf −H(ν|µ)}

Dowód. Określmy miarę µ̃ wzorem

dµ̃ =
ef

Eµef
dµ.

Wówczas dla dowolnej miary probabilistycznej ν � µ,

Eνf −H(ν|µ) = Eνf −Eν log(
dν

dµ
) = Eνf −Eν log(

dµ̃

dµ
)−Eν log(

dν

dµ̃
)

= log(Eµe
f )−H(ν|µ̃).

Wystarczy zauważyć, że H(ν|µ̃) ­ 0 i H(µ̃|µ̃) = 0.

Twierdzenie 8.12 (Bobkow-Goetze). Niech µ będzie miarą probabilistyczną na przestrzeni
metrycznej (X, d) i α > 0. Wówczas n.w.s.r.
i) WLip

1 (ν, µ) ¬
√

2αH(ν|µ) dla dowolnej miary probabilistycznej ν,
ii) dla dowolnej funkcji 1-Lipschitzowskiej ograniczonej f ,

Eµe
λ(f−Eµf) ¬ eαλ2/2 dla λ ∈ R.

Dowód. Zamieniając f na −f widzimy, że ii) wystarczy dowodzić dla λ ­ 0. Zasada wa-
riacyjna Gibbsa pokazuje, że warunek ii) jest równoważny

0 ­ sup
λ­0

sup
f

sup
ν

{
λ(Eνf −Eµf)−H(ν|µ)− αλ2

2

}

= sup
ν

sup
λ­0

sup
f

{
λ(Eνf −Eµf)−H(ν|µ)− αλ2

2

}

= sup
ν

sup
λ­0

{
λWLip

1 (µ, ν)−H(ν|µ)− αλ2

2

}
= sup

ν

{
WLip

1 (µ, ν)2

2α
−H(ν|µ)

}
,

co jest oczywiście równoważne warunkowi i).

Uwaga 8.13. Logarytmiczna nierówność Sobolewa ze stałą C implikuje zachodzenie wa-
runku ii) z α = C (zob. dowód Twierdzenia 6.6). W szczególności miara gaussowska γn
spełnia warunki twierdzenia Bobkowa-Goetzego z α = 1.
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8.3 Tensoryzacja nierówności transportowych

Definicja 8.14. Powiemy, że miara probabilistyczna µ na X spełnia nierówność Tp ze
stałą α, jeśli

Tp(ν, µ) ¬ (2αH(ν|µ))p/2 dla ν ∈ P(X).

Uwaga 8.15. Dla p > q i µ, ν ∈ P(X) zachodzi Tp(µ, ν)1/p ­ Tq(µ, ν)1/q, zatem nierówność
Tp pociąga za sobą nierówność Tq dla q < p.

Naturalne jest pytanie czy nierówności Tp się tensoryzują. Wykorzystamy do tego ogólne
twierdzenie.

Twierdzenie 8.16 (Marton). Załóżmy, że funkcja ϕ : [0,∞) → [0,∞) jest wypukła oraz
dla i = 1, . . . , n, ci są nieujemnymi mierzalnymi funkcjami na Xi × Xi, zaś µi ∈ P(Xi)
spełniają warunek

inf
π∈Π(µi,ν)

ϕ(Eπci(x, y)) ¬ H(ν|µi) dla wszystkich ν ∈ P(Xi).

Wówczas dla wszystkich miar probabilistycznych ν na X(n) := X1 × · · · × Xn zachodzi

inf
π∈Π(µ1⊗···⊗µn,ν)

n∑
i=1

ϕ(Eπci(xi, yi)) ¬ H(ν|µ1 ⊗ · · · ⊗ µn).

Wniosek 8.17. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają nierówność T1

ze stałymi αi, 1 ¬ i ¬ n. Na X = X1 × . . . × Xn określmy ważoną l1-metrykę dc(x, y) :=∑n
i=1 cidi(xi, yi). Wówczas miara µ1 ⊗ · · · ⊗ µn spełnia nierówność T1 na (X, dc) ze stałą

(
∑n
i=1 c

2
i )

1/2 maxi αi .

Dowód. Niech ν i ρ będą miarami probabilistycznymi na (X, dc). Wówczas

T1(ν, ρ) = inf
π∈Π(ν,ρ)

n∑
i=1

ciEπdi(xi, yi) ¬

√√√√ n∑
i=1

c2
i inf
π∈Π(ν,ρ)

(
n∑
i=1

(Eπdi(xi, yi))2

)1/2

.

Teza wniosku wynika teraz łatwo z Twierdzenia 8.16 z ci(xi, yi) = di(xi, yi). ϕ(x) =
(x/2α)2, α := maxi αi.

Innym wnioskiem z Twierdzenia Marton jest tensoryzowalność nierówności T2 względem
metryki l2.

Wniosek 8.18. Załóżmy, że miary probabilistyczne µi na (Xi, di) spełniają nierówność T2

ze stałymi αi. Na X = X1 × . . . × Xn określmy l2-metrykę d(x, y) := (
∑n
i=1 di(xi, yi)

2)1/2.
Wówczas miara µ1 ⊗ · · · ⊗ µn spełnia nierówność T2 ze stałą maxi αi na (X, d).

Dowód. Stosujemy Twierdzenie 8.16 z ϕ(x) := 1
2αx, α = maxi αi oraz ci(xi, yi) := d2

i (xi, yi).
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8.4 Nierówność T2 Talagranda a bezwymiarowa koncentracja

Wniosek 8.19. Załóżmy, że miara µ spełnia nierówność T2 ze stałą α na przestrzeni
metrycznej (X, d). Wówczas dla dowolnej funkcji 1-Lipschitzowskiej na Xn z l2-metryką
dn(x, y) := (

∑n
i=1 d(xi, yi)2)1/2 zachodzi

µn({x ∈ Xn : f(x)−Eµnf ­ t}) ¬ e−t
2/2α.

W szczególności αµn(t) ¬ exp(−t2/8α).

Dowód. Z Wniosku 8.18 wynika, że µn spełnia nierówność T2 ze stałą α, zatem dla dowolnej
miary probabilistycznej ν na Xn zachodzi

WLip
1 (µn, ν) ¬W1(µn, ν) ¬W2(µn, ν) ¬

√
2αH(ν|µn)

i teza łatwo wynika z Twierdzenia 8.12.

Okazuje się, że nierówność T2 jest równoważna bezwymiarowej koncentracji.

Twierdzenie 8.20 (Gozlan). Załóżmy, że µ jest miarą probablistyczną na ośrodkowej
przestrzeni polskiej (X, d), zaś dn są l2-metrykami na Xn. Wówczas następujące warunki
są równoważne:
i) µ spełnia nierówność T2 na (X, d) ze stałą α:

W2(ν, µ) ¬
√

2αH(ν|µ) dla każdego ν ∈ (X),

ii) dla każdego n miara µn spełnia nierówność T1 na (Xn, dn) ze stałą α:

W1(ν, µn) ¬
√

2αH(ν|µn) dla każdego ν ∈ P(Xn),

iii) istnieje stała C taka, że dla każdego n i każdej funckji 1-Lipschitzowskiej f na (Xn, dn),

µn({x ∈ Xn : f(x)−Eµnf ­ t}) ¬ Ce−t
2/2α.
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