Wysokowymiarowy Rachunek Prawdopodobienstwa

Rafal Latala

31 pazdziernika 2018

Ponizsze notatki powstaja na podstawie wykladéw (i wybranych ¢wiczen) z Wysokowy-
miarowego Rachunku Prawdopodobienistwa, prowadzonych w semestrze jesiennym 2018/19.

Przepraszam za wszystkie niescistosci i omytki mogace pojawi¢ sie w tekscie i jedno-
czednie zwracam si¢ z prosbg do czytelnikéw, ktorzy zauwazyli btedy lub maja jakie$ inne
uwagi na temat notatek o kontakt mailowy na adres rlatala@mimuw.edu.pl z podaniem
wersji notatek (daty) do ktérej chea sie ustosunkowac.

Dzigkuje pani Marcie Strzeleckiej za uwazne przejrzenie notatek.

Rafat Latala



Spis tresci

1

2

Wstep

Koncentracja miary - wprowadzenie
2.1 Funkcja koncentracji miary - definicja i przyktady. . . . ... ... ... ..
2.2 Koncentracja funkcji lipschitzowskich . . . . . .. ... ...,

Nieréwnosci izoperymetryczne

3.1 Klasyczna izoperymetria . . . . . . ... Lo
3.2 Izoperymetria sferyczna . . . . . .. .o
3.3 Izoperymetria gaussowska . . . . .. .. L Lo

Metoda Martyngatlowa

4.1 Transformata Laplace’a . . . . . . . .. ... L o
4.2 NieréwnosS¢ Azumy . . . . . . . . ..
4.3 Zastosowania nieréwnosci Azumy . . . . ... ...

Nieréwnosé Poincaré

5.1 Definicja i podstawowe wlasnosci . . . . . . . . . ... ...
5.2 Nierownosé Poincaré a koncentracja wyktadnicza . . . . . . ... ... ...
5.3 Tensoryzacja . . . . . . . . e
5.4 Dodatkowe wlasnosci. Charakteryzacja na prostej. . . . . .. ... .. ...
5.5 Nierowno$¢ Cheegera . . . . . . . . . . . . o i e

Logarytmiczna Nieré6wnosé Sobolewa

6.1 Entropia funkcji . . . . ...
6.2 LNS - definicja, tensoryzowalnosé¢, zwiazek z koncentracja . . . . . . . . ..
6.3 LNS dla miary gaussowskiej . . . . . . . .. ...
6.4 Nierownos¢ Bobkowa . . . . . . . ...

Nieréwnosci Splotu Infimum

7.1 Wlasno$é 7 Maureya . . . . . . . .. Lo
7.2 Splot infimum a koncentracja . . . . .. .. ..o
7.3 Dwupoziomowa koncentracja dla rozktadu wyktadniczego . . . .. . .. ..

14
14
14
15

17
17
19
20
21
22

25
25
26
28
30



1 Wstep

W wielu problemach rachunku prawdopodobienstwa i jego zastosowan pojawiaja sie wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wyktadu bedzie przedstawienie wybranych narzedzi pozwalajacych
badaé takie obiekty. Wyklad bedzie dotyczyl tak zwanej teorii nieasymptotycznej, tzn. na-
cisk bedzie polozony na rézne szacowania, a nie na twierdzenia graniczne.

W pierwszej czesci wykltadu oméwimy pewne zagadnienia zwigzane z teoria koncen-
tracji miary, ktére pozwalaja szacowaé¢ odchylenia funkcji zaleznej od wielu zmiennych
losowych od jej wartosci oczekiwanej. W drugiej pokazemy kilka metod pozwalajacych sza-
cowad suprema proceséw stochastycznych. Oméwimy tez pewna liczbe bardziej konkretnych
przyktadéw zastosowan.

Oczywiscie podczas semestralnego wyktadu monograficznego mozna oméwié tylko nie-
wielka czed¢ bogatej i ciagle rozwijajacej si¢ teorii. Duzo szerszy wybér zagadnien zostat
przedstawiony w notatkach Ramona van Handela [4] i monografii Romana Vershynina [5],
zainteresowany Czytelnik znajdzie tam tez szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przyktady.

Wiele waznych miar probabilistycznych spetnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorac polega on na tym, ze wiekszo$¢ punktéw z przestrzeni lezy w poblizu
zbioru wypelniajacego przynajmniej potowe przestrzeni. By pojecie to sformalizowaé po-
trzebujemy dwoch waznych definicji.

Definicja 2.1. Niech (X, d) bedzie przestrzenia metryczna, zas A dowolnym podzbiorem
X. Dla t > 0 okreslamy t-otoczenie zbioru A wzorem

Ay ={r e X:d(z,A) <t} = U B(y,t),
yeEA

gdzie B(y,t) oznacza kule otwarta w X o $rodku w y i promieniu ¢.

Definicja 2.2. Niech p bedzie borelowska miara probabilistyczna na (X, d). Funkcje kon-
centracji miary p definiujemy jako

(1) = @xagn (1) = sup {1 — p(A): (4) > 2}

Na poczatek wyktadu podamy kilka przyktadéw, dla ktorych mozna dobrze oszacowaé
funkcje koncentracji. Dowody podanych oszacowan przedstawimy pozniej.

Przyklad 1. Niech d oznacza odlegto$é geodezyjna na n-wymiarowej sferze S =
{x € R"': || = 1}, za$ 0, oznacza unormowang miare powierzcniowa na S”. Wéwczas



okazuje sie, ze jesli chcemy zminimalizowaé o, (A;) po wszystkich zbiorach ustalonej miary,
ekstremalne sa kule (zwane tez czapeczkami), to znaczy

on(A) = on(B(z0,7)) = 0on(As) = on(B(z0,7)t) = on(B(zo, 7 +1)).

W szczegdlnosci jesli o, (A4) > 1/2, to

on(Ap) > O‘n(B<ZL'(), g +t>) >1—exp ( — (n—21)t2)

Zatem a,,, (t) < exp(—251t2).

Uwaga 2.3. Zauwazmy, ze funkcja koncentracji o, szybko zbiega do 0 przy n — oo. Jedna
z przyczyn tego zjawiska jest to, ze miara ta nie jest dobrze unormowana. Jesli przez
on,r okredlimy rozklad jednostajny na sferze RS™, to poniewaz jest on obrazem o, przy
jednoktadnosci o skali R, to

Qg (L) = ag, (%) < exp ( - T;;;tz).

Zauwazmy tez, ze

R2
T;x:do )= —0; ;.
/RSn (g mR( ) n+1 1,J

Zatem miara jednostajna na v/n 4+ 15™ ma dobra normalizacje, to znaczy taka, ze macierz
kowariancji jest identycznoscia. Dla tej miary dla n > 2,

<_ 2(n + 1)t2)

1
Ao, ey (1) < exp < exp ( - 6t2>.

Przyktad 2. Niech 7; oznacza kanoniczny rozklad gaussowski na RF, tzn. rozklad
z gestoscia (2m) %/ exp(—|z|?/2). Wéwezas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazuja sie péiprzestrzenie, tzn. jesli

M(A) = e ((=00,7] x R¥) = 0(r),

to
Yi(Ay) > *yk(((—oo,r] X Rk_l)t> = yk((—oo, r 4 t] X ]Rk_1> =®o(r +t).
W szczegdlnosei

1
ay, (1) =1—®(t) < 56_t2/2.

Zauwazmy, ze poOwyzsze oszacowania nie zalezg od wymiaru przestrzeni.

Przyktad 3. Niech v bedzie symetrycznym rozkladem wyktadniczym, tzn. rozktadem
na R z gestoécia § exp(—|z|). Przez v* bedziemy oznaczaé rozklad produktowy v®...®v na
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R*. Wyznaczenie ekstremalnych zbioréw dla problemu izoperymetrycznego zwigzanego z ta
miara jest trudne i nieznane dla k # 1. Choé¢ wiadomo, ze ekstremalne nie sg pétprzestrzenie
postaci (—oo, 7] X R*~1 to sa one optymalne z doktadnoscia do stalej, tzn.

VH(A) = v((—o00,7]) = VF(A) > 1/(( — 00,7+ 2\1/6 D

W szczegdlnosci

1 1 1
ar(t) <1 —V((—oo, 27\/64) = §exp(— ﬁt>

Zauwazmy, ze znowu uzyskane oszacowanie nie zalezy od wymiaru przestrzeni.

Przyktad 4. Niech p bedzie unormowang miara liczaca na kostce dyskretnej {0, 1}
z metryka d(z,y) = %#{’L x; # y;}. Tu problem izoperymetryczny daje sie rozwiazaé
(optymalne sa kule, ewentualnie z dodanymi niektérymi punktami na brzegu). W tym
przypadku mozna pokazaé, ze
a,(t) < g2t

Krétki przeglad wynikéw pokazuje, ze w wielu waznych zastosowaniach mozna wykazac,
ze a,(t) < Crexp(—t?/Cs) — méwimy wtedy, ze funkcja koncentracji jest typu gaussow-
skiego. Widzielismy tez przyktad, w ktérym o, (t) < Ciexp(—t/Cs) — méwimy wtedy o
koncentracji wyktadniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia sie miara otoczenia zbioru, a raczej
jak szybko maleja ogony funkcji okreslonych na przestrzeni. W tej czesci powiazemy ze
soba te zjawiska. Zacznijmy od definicji mediany i modutu ciagtosci.

Definicja 2.4. Niech p bedzie miara probabilistyczna na (X, d) oraz f bedzie mierzalna
funkcja z X w R.
Mediang funkcji f wzgledem miary p nazywamy taka liczbe M = Med,,

—~

f) dla ktérej

N | —

p{e: f@) > MY) > 5 oz p({e: f(x) < M}) >
Modutem ciggtosci f nazywamy funkcje
wy(t) := sup{|f(z) = f(y)|: d(z,y) <t}
Fakt 2.5. Dla dowolnej funkcji mierzalnej F: X — R,
u({: F(2) > Med, (F) + wr(t)}) < a(t)

u({z: |F(z) — Med,(F)| > wr(t)}) < 204,(t).



Dowdd. Niech A := {x: F(xz) < Med,(F)} wéwczas u(A) > 1/2 zatem p(A;) > 1 —
ay,(t). Ponadto, jesli x € Ay, to istnieje y € A takie, ze d(z,y) < t i1 wowczas F(x) <
F(y) +wp(t) < Med,(F)+wp(t), stad pierwsza nieréwnos¢ w fakcie. Stosujac ja do —F i
zauwazajac, ze Med,(—F) = —Med,(F') oraz w_p = wr dostajemy

p({z: F(r) < Med,(F) —wr(t)}) < au(t).
Dodajac powyzsza nieréwno$é¢ do poprzedniej otrzymamy ostatnig czesé faktu. O
Przypomnijmy definicje funkcji lipschitzowskiej
Definicja 2.6. Funkcje F': (X, d) — R nazywamy lipschitzowskq, jesli

|F(z) = F(y)|
Fllrip :=sup —F———— < .
e =2 ™ a )

Moéwimy, ze funkcja jest L-lipschitzowska jesli ||F'||rip < L, tzn. |F(z) — F(y)| < Ld(z,y)
dla wszystkich z,y € X.

Analogicznie mozna zdefiniowaé funkcje lipschitzowskie miedzy przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jesli F jest lipschitzowska ze stalq L, to dla t > 0,
p({z: F(xz) > Med,(F) +t}) < a,(t/L)

u({e: |F(z) — Med, (F)| > t}) < 2a,(t/L).

it) Na odwrdt, jesli dla kazdej funkcji 1-lipschitzowskiej F' i ustalonego t > 0,
p({x: F(z) > Med,(F) +t}) < o
to a,(t) < a.

Dowdd. i) Wynika z Faktu 2.5 i oczywistego szacowania wy(t) < tL.
ii) Ustalmy zbiér A taki, ze pu(A) > 1/2 i okreSlmy F'(z) := d(z, A). Wéwczas F jest
1-lipschitzowska oraz Med, (F') = 0, zatem

az p({F > t}) = p({z: d(z, A) > t}) = 1 — p(Ay). O

Czesto tatwiej i naturalniej jest wykazywaé koncentracje funkcji lipschitzowskich wokot
Sredniej a nie mediany. Kolejny fakt pokazuje jak odzyskaé funkcje koncentracji w takim
przypadku.



Fakt 2.8. Zaloimy, Ze u jest miarg probabilistyczng na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F it > 0 zachodzi

u({x: F(z) > /qu+t}) < aft). (1)
Wéwczas dla dowolnego zbioru borelowskiego A takiego, zZe pu(A) > 0 zachodzi
1 1A < ou(A))
W szczegolnosci
a,(t) < a(%).

Ponadto, jeslilim;_,o a(t) = 0, to dowolna funkcja 1-lipschitzowska jest calkowalna wzgle-
dem p 1 jesli dodatkowo « jest ciggla, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowdd. Ustalmy zbiér borelowski A taki, ze u(A) > 0 oraz liczbe ¢ > 0. Zdefiniujmy
F(z) := min{d(x, A),t}, wowczas funkcja F' jest ograniczona, 1-lipschitzowska i [ Fdu <
t(1 — u(A)). Stad na mocy (1),

L= p(A) = p({F > 1)) < p({F > /qu + p(A)E}) < alp(A)).

W szczegdlnoscei, jesli p(A) > 1/2, to 1 — p(Ar) < a(t/2).
By udowodnié¢ druga czes¢ faktu, ustalmy funkcje 1-lipschitzowska F' i niech F, :=
min{|F|,n}. Z (1) zastosowanej do —F,, dostajemy

u({o: Fule) < /Fndu ~1}) <alt).

Wybierzmy ¢ takie, ze a(tg) < 1/2 oraz m := Med,|F|. Wowczas u({F, < m}) > 1/2, czyli
zbiory {F,, < m} oraz {F,, > [ F,du—to} maja niepuste przecigcie. Zatem [ F,,dp < m—+to
i z twierdzenia Lebesgue’a o zbieznosci monotonicznej dostajemy [ |F|du < m + ty < oo.
Ostatnia czes$¢ tezy dostajemy stosujac (1) do min{max{F,—n},n} i przechodzac z n —
0. 0

3 Nieréwnosci izoperymetryczne

W tej czedci oméwimy kilka nieréwnosci izoperymetrycznych, pokazujac rézne sposoby ich
dowodzenia - poprzez powigzane nierownosci funkcyjne, symetryzacje czy transport miary.



3.1 Klasyczna izoperymetria

Chociaz w tym wyktadzie bedziemy sie zajmowaé miarami probabilistycznymi, to przeglad
nieréwnosci izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a A,,.

Twierdzenie 3.1. Jesli A jest podzbiorem borelowskim R™ takim, ze A (A) = A\ (B(xo, 7)),
to dla dowolnego t > 0,

M (Ar) = An(B(z0,7)e) = A\ (B(xo, 7+ t)).

Twierdzenie 3.2 (Nieréwnosé¢ Prékopy-Leindlera). Jesli s € [0,1] oraz f,g,h: R" —
[0,00) spelniajq warunek

h(sz+ (1—s)y) > f(z)°g(y)' ™ dlaz,y € R", (2)

to
/n h(z)dz > ( - f(x)dx)s(/Rn g(x)dx)l_s.

Dowdd. Najpierw wykazemy, ze dla niepustych zbioréw A, B € B(R™) zachodzi
M(A+ B) = M(A) + \(B).

Poniewaz A\ (A) = sup{\i(K): K C A, K zwarty}, to mozemy przyjaé, ze zbiory A i B sa
zwarte. Ponadto odpowiednio je przesuwajac mozemy tez zakladaé, ze sup A = inf B = 0.
Woéwczas AN B = {0} oraz

)\1(A+B) > )\1(AU B) = )\1(14) + )\1(3)

Nierownosé Prékopy-Leindlera udowodnimy przez indukcje po n. Najpierw rozwaz-
my n = 1. Mozemy zakladaé¢, ze f,g i h sa ograniczone, a z uwagi na jednorodnos¢, ze
sup f(z) = supg(x) = suph(z) = 1. Zauwazmy, ze dla 0 < r < 1, {h > r} D s{f >
r} 4+ (1 —s){g > r}, wiec calkujac przez czesci dostajemy

/h(x)d:c _ /01 M{h > e > /01 M(s{f >} + (1= s){g > r}dr

1
> [ Mals{f 2 D) + A1 = s){g > e
0

:s/fda;+(1—s)/gdx> (/fdx)s(/gdﬂ?)l_sv

gdzie ostatnia nieréwnos$¢ wynika z poréwnywania wazonych Srednich arytmetycznych i
geometrycznych.



Zalézmy teraz, ze n > 2 oraz teza twierdzenia zachodzi dla n— 1. Niech f, g, h spelniaja
(2) i okre$lmy dla z € R

F(z) = /an f(z,2)dz, G(x)= /an g(x,z)dz oraz H(z)= /Rnil h(z,z)dz.
Zauwazmy, ze dla ustalonego =,y € R
h(sz 4+ (1 —8)y,s21 + (1 — 8)29) > f(z,21)%g(y, 22)' ™% dla 21,20 € R*7L.
Zatem na mocy zalozenia indukcyjnego
H(sz + (1= s)y) > F()°G(y)' .

Stosujac nieréwnoé¢ Prékopy-Leindlera w udowodnionym wczesniej przypadku n = 1 do-

stajemy
/Rn h(x)dx = /RH(x)dx > (/RF(:U)d‘r)S(/RG(Z‘)d;L‘)I_S

= (/nf(x)dx)s(/ng(x)d:n)l_s. O

Whniosek 3.3 (Nieréwno$é Brunna-Minkowskiego). Dla dowolnych niepustych zbioréw bo-
relowskich A, B C R",

M(sA+ (1 —=8)B) > M(A)P*N(B)' ™ dla s €[0,1]

oraz

An(A+ B)Y™ = 2\, (A 4+ 0, (B)V™

Dowdd. Pierwsza nieréwno$é natychmiast wynika z nieréwnosci Prékopy-Leindlera zasto-
sowanej do funkcji f = 14,9 =1p oraz h =1 44(1_4)B-

By udowodnié¢ druga wystarczy rozwazy¢ przypadek, gdy A i B sg zbiorami skonczonej
i niezerowej miary. Przyjmijmy wtedy

. A - B 3 An(A)L/m
A—;, B_l—s oraz S_)\n(A)l/"+)\n(B)1/”'

Wowezas Ap(A) = M(B) = (A(A)Y™ + A (B)Y™)", wiec na podstawie wykazanej po-
przednio nieréwnosci

M(A+ B) = Au(sA+ (1= 8)B) > Ma(A)°Au(B)' 7 = M ()" + A (B)V™)". O

Uwaga 3.4. Suma Minkowskiego dwu zbioréw borelowskich nie musi by¢ zbiorem borelow-
skim, ale mozna wykazaé, ze jest zbiorem mierzalnym w sensie Lebesgue’a.



Dowdd Twierdzenia 3.1. Niech ¢, = A\, (B(0,1)), woéwczas A\p(A) = ¢,7™ 1 na podstawie
Whniosku 3.3,
An(Ar) = (A + B(0,1)) > (Aa(A)Y" + Au(B(0, 1) /)"
=cp(r+6)" = A\ (B(zo,r + t)).

O]

Definicja 3.5. Dla miary p na przestrzeni probabilistycznej (X, d) okreslamy zewnetzng
miare brzegowq pt wzorem

by i oo (A — p(A)
A=

Uwaga 3.6. Jesli miara p na R™ ma ciagla gestosé g(x) oraz zbiér A ma gladki brzeg, to
wHA) = | 9(@)dHy (),

gdzie H, 1 oznacza n — 1 wymiarows miare Haussdorffa.

Réwnowazna rozniczkowa forma klasycznej nieréwnosci izoperymetrycznej mowi, ze
sposréd zbiorow ustalonej objetoéci najmniejsza powierzchnie brzegu ma kula. Doktadniej:

Twierdzenie 3.7. Jesli A jest podzbiorem borelowskim R™ takim, Ze A, (A) = A (B(xo,7)),

to
)\r—t(A) > )\;—(B(:EO,T)) = nc%/”()\n(A))(n—l)/n’
gdzie
An(B(0,1 /2
Cp = Tl( ( ) )) - W

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jesli A jest podzbiorem borelowskim S™ takim, ze 0, (A) = op(B(x0,7)),
to dla dowolnego t > 0,

on(At) 2 on(B(x0,7)t) = on(B(xo, 7+ 1)).

Whniosek 3.9.
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Dowdd. Dla n = 1 nie ma co dowodzi¢ (bo zawsze o, (t) < 1/2). Bedziemy wiec zaktadac,
ze n > 2. Zauwazmy, ze

,
on(B(zo,7)) = 5;1/ sin ! tdt,
0

gdzie s, = [J sin"! tdt. Zatem

T w/2
g, (t) =1 —0op(B(zo,t +7/2)) = sgl/ sin™ ! udu = s,_ll/t cos™ L udu.

t+m/2

Stosujac oszacowanie cosu < exp(—u?/2) dla t € [0,7/2], dostajemy

71'/2 7r/2 %)
/ cos" L udu < / e~ (m=Du/2,, < ! / e /2ds
t t tv/n—1

n—1
= ﬁ (1—-®(tvn—1)) < 2(\2%_ 1)6_("_1)t2/2.

]

Ponadto tatwe catkowanie przez czesci daje, ze dlan > 3, s, = Z—jsn,g, stad

n—2

vn —1s, = —=sn—
n \/m’ﬂQ

ZVvn— 38n—27

zatem

inf \/n — 1s, = min{sg, v2s3} = min{2, 7/v2} = 2. O

n>2

3.3 Izoperymetria gaussowska

Przypomnijmy, ze przez 7, oznaczamy kanoniczny rozklad gaussowski na R¥, tzn. rozktad
z gestoscia (2m) %/ exp(—|z|?/2).

Gléwnym wynikiem, ktéry wykazemy jest to, ze dla rozktadow gaussowskich optymalne
dla problemu izoperymetrycznego sa pdlprzestrzenie afiniczne, to znaczy zbiory postaci

H = {z eRF: (z,u) < r} dla pewnych u € ¥~ i r € [—00, . (3)

Twierdzenie 3.10. Niech H bedzie pdlprzestrzeniq afiniczng, a A zbiorem borelowskim w
R¥ takim, ze yp(H) = v1.(A). Wéwezas dla dowolnego t > 0, vi(Hy) < vie(Ar)

Zanim przystapimy do dowodu twierdzenia pokazemy, ze 7 jest granica rzutowan roz-
ktadéw jednostajnych na /nS"~1.

Niech P = Py, oznacza kanoniczny rzut R" na RF dla k < n, za$ 6,_1 oznacza
unormowang miare powierzchniowa na /nS"~!. Oznaczmy przez Hk,n Obraz o,_1 przy
tym rzutowaniu tzn.

Hin(A) = 601 (P M (A))  dla A € B(RY).

)
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Fakt 3.11 (Lemat Poincaré). Miara i, zbiega stabo przy n — oo do miary i, co wiecej

11122() tien(A) = v5(A) dla dowolnego zbioru borelowskiego A.

Dowdd. Proste rozumowanie pokazuje, ze miara py, , ma gestosé gy, (z) = c;}lgk,n(af), gdzie
n—|z|? )(n—k=2)
n

Tren = ( /QIL{‘IK\/E} oraz Cyn = [gk Gnk(x)dx. Oczywiscie limy, oo Jin(x)
exp(—|2[2/2), ponadto [Gin(2)] < exp(—(n — k — 2)|o]?/(2n)) < exp(—|[2/(2n)) dla n >
k + 2. 7 twierdzenia Lebesgue’a o zbieznoSci zmajoryzowanej otrzymujemy lim, .o ¢, =
Jrr exp(—|z[?/2)dz, czyli gestos¢ miary iy, zbiega punktowo do gestosci miary vx. Teza
faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [1]).

O

Dowod Twierdzenia 3.10. Ze wzgledu na rotacyjng niezmienniczo$é miary 7y, mozemy dla
uproszczenia notacji zatozyé, ze H = {x: 1 < r}. Ustalmy dowolne r9 < 7 i niech
Hy = {z: 21 < ro}. Zauwazmy, ze v(Ho) < 'yk.(A), zatem na podstawie Lematu Poin-
caré, ppn(Ho) < pig,n(A) dla duzych n. Poniewaz Py L(Hp) N y/nS™ 1 jest kula w /nS™ 1,
wiec na mocy izoperymetrii sferycznej

On—1 ((Pl;gb(A))t) > 0n 1 ((Plgi(Ho))t)

Zauwazmy, ze przeksztalcenie Py, ,, jest oczywiscie 1-lipschitzowskie, wiec Ay D Py, (P TlL (A)))
i
1 (Ae) 2 e (P (P (A)e)) = ik (Pren (P (Ho))e))-
Nietrudno zauwazyc¢, ze
Pyn (P (Ho))) = {w: a1 <7}

oraz 1, — 1o +t przy n — 0o. Stad
Y (Ap) = nlgrolo L (Ar) > nlgrolo pen({x: z1 <rp}) =w({z: 1 <ro+t}),
z dowolno$ci ry < r wynika teza. O

Twierdzenie 3.12. Jesli vx(A) = ®(z) to w(A) > ®(z +1t) oraz v (A) > I,((A)),
gdzie I(z) := o(®71(z)) oraz p(z) = ¥'(z) = \/12?exp( x2/2).

Dowdd. Wystarczy zauwazy¢, ze jesli vx(H) = ®(r) i H jest postaci (3), to Hy = {x €
RF: (z,u) <r+t}iy(H) = ®(r+1t). O

Zauwazajac, ze ®(0) = 1/2 otrzymujemy:
Whiosek 3.13. ., (1) < 1— ®(t) < 5 exp(—t?/2).

Jak widzieliSmy juz w dowodzie Twierdzenia 3.10 bardzo uzyteczne jest pojecie tzw.
transportu miary.
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Definicja 3.14. Niech u i v beda miarami na przestrzeniach metrycznych X i Y. Powiemy,
ze funkcja borelowska T': X — Y transportuje miare p na miare v (ew. miara v jest obrazem
miary pu przy przeksztatceniu T) jesli v(A) = p(T—1(A)) dla wszystkich A € B(Y).

Szczegdlnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jesli o: X — Y jest L-lipschitzowska oraz ¢ transportuje miare p na v, to
ay(t) < au(t/L).

Dowdd. Wystarczy zauwazy¢, ze (T71(A)),, € T (Ay). O

Transportujac w sposéb lipschitzowski miare gaussowska mozna uzyskaé¢ oszacowania
funkcji koncentracji dla innych miar. Pokazemy dwa przyktady.

Whiosek 3.16. Niech pujg1» 0znacza rozklad jednostajny na kostce [0, 1]". Wowczas i 1)n

jest (2m) =Y/ 2-lipschitzowskim obrazem ~,. W szczegdlnosci Qg qpn S 3 exp(—mt?).

Dowdd. Okreslmy f: R — (0,1) wzorem

f(@) = ppo,a) (10, F(@)]) = (=00, 2]) = @(x).

Wowezas funkcja f transportuje miarg gaussowska v1 na pg 1], to znaczy pjg 1 =710 f -1
Ponadto f'(z) = (2m) Y2 exp(—22/2) < (21)~1/2, czyli f jest (2r)~1/2-lipschitzowska. Jesli
teraz okre§limy F': R" — (0,1)" wzorem F(z) = (f(z1),..., f(zn)), to F transportuje
Yn na p oraz F' jest (27r)_1/ 2_lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencja Faktu 3.15 1 Wniosku 3.13. O

Whniosek 3.17. Niech B, = {x € R": |z| < 1} oznacza kule jednostkowg w R"™, za$ pp,
bedzie rozkiadem jednostajnym na By,. Wowczas istnieje stata C taka, Ze g, jest Cn~1/2.
lipschitzowskim obrazem ~,. W szczegdlnodci oy < 3 exp(—nt?/(20)).

Poniewaz obie miary 7, i pp, sa rotacyjnie niezmiennicze, bedziemy szukaé funkcji
T:R" — B, transportujacej v, na pp, postaci Tz = ﬁ(p(\x]) Dalsze szczegély na éwi-
czeniach.

Otwarty problem. Rozwiazaé zagadnienie izoperymetryczne dla zbioréw symetrycz-
nych, to znaczy znalez¢ dla ustalonego t > 0, ¢ € [0, 1],

inf {75 (A¢): (A) =c,A=—A}

oraz
inf {7 (A): 1(A) =c,A=—A}.

Dos$é naturalna hipoteza moéwi, ze dla ¢ > 1/2 rozwiazaniem obu probleméw sa zbiory

postaci [—a, a] xR¥~! zag dla ¢ < 1/2 drugi problem si¢ optymalizuje dla (R\[—a, a]) x R¥~1.

Podobny problem mozna postawié¢ dla miary o,, ale tam analogiczna hipoteza okazuje si¢

by¢ niestety falszywa.
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4 Metoda Martyngalowa
4.1 Transformata Laplace’a
Wiele dalszych szacowan bedzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatqe Laplace’a zmiennej losowej Z nazywamy funkcje
Lz(\):=Ee* XeR.

Podobnie jesli p jest miarg probabilistyczng na pewnej przestrzeni X oraz F: X — R, to
transformate Laplace’a F wzgledem p okre$lamy

Lg,(N) ::/ M@ dp ().
X
Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z >1) < inf e MLy(\) dlat > 0.

W szczegolnosc, jesli dla pewnego a > 0,
Lz(\) <exp(a)?) XER,

to dlat >0

#2 2
P(Z>1)< exp(— E) oraz P(|Z| > t) < 2exp<— @)

Dowdd. Pierwsza czesé¢ wynika z nieréwnosci Czebyszewa, a druga z pierwszej i prostego
rachunku. n

Zatem by udowodnié, ze funkcja koncentracji miary p jest gaussowska wystarczy wy-
kaza¢, ze L, ()\) < exp(ar?) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, ze [ Fdu = 0.

4.2 Nieréwno$¢ Azumy

Twierdzenie 4.3 (Nieréwnoé¢ Hoeffdinga-Azumy). Niech (My, Fi)}_, bedzie martynga-
tem o ograniczonych przyrostach takim, ze | My — My—_1|loo < ax. Wowczas

2
P(M, — My >1t) < - —— .
( 0 ) exp( 22?:1%2>
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Dowdd. Okreslmy dla 1 < k < n, d := My — My_1, woéwcezas E(dg|Fr—1) = 0. Mamy
I_Tu(—w) + H_Tul‘ = uzx, wiec z wypuklodci exp(z),
1—u 1+u ,

e’ < Te*z + 5 ¢ = usinh(x) 4 cosh(z) dla |u| < 1.

Stosujac te nieréwnosé dla u = di/ar 1 * = Aay dostajemy
d
E(e*M | F_y) < E(—k‘fk,l) sinh(Aag) + cosh(Aax) = cosh(Aay).
ak

Liczymy
Ee)\(Mn—Mo) — EeA(Mnfl_MO'i‘dn) — E(eA(Mnfl—Mo)E(ekdn ‘fnfl))

< cosh(Aay, ) EeNMn-1=Mo)

Zatem iterujac powyzsza nieréwnos¢ i stosujac oszacowanie (wynikajace np. z rozwiniecia
w szereg Taylora) cosh(z) < exp(2?/2) dostajemy

n 1 n
L, —ay(A) = BEeMMn=Mo) H cosh(Aag) < exp(i Z az\?).
k=1 k=1
Teza twierdzenia wynika z Faktu 4.2. O

Uwaga 4.4. Najczesciej bedziemy mieli Fy = {0, Q}, woéwczas My jest stale, a poniewaz
martyngal ma stalta wartoéé¢ oczekiwana, to My = EM,,.

W ponizszych zastosowaniach bedziemy przyjmowaé My = E,(F|F;) dla catkowalnej
funkeji F': X — R i odpowiednio dobranego (F}) ciagu o-cial podzbioréw X.
4.3 Zastosowania nieréwnosci Azumy

Whniosek 4.5. Niech (X;,d;) bedg przetrzeniami metrycznymi, X = X3 x -+ X X, 2
odleglosciq l1, to znaczy d(z,y) = Y i q di(zi,y;) dla z,y € X oraz niech p = 1 ®@ ... &
n bedzie produktem miar probabilistycznych p; na X;. Wowczas dla dowolnej funkcji 1-
lipschitzowskiej F' na X

,u({x: F(z) > /qu—i—t}) < exp(—;l;),

gdzie D = (X7, Diam(X;)?)/2. W szczegdlnosci

a,(t) < exp ( - i)
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Dowdd. Na mocy Faktu 2.8 wystarczy wykazaé pierwsza nieréwnosé tezy. Niech Fi bedzie
o cialem generowanym przez pierwsze k-wspéirzednych oraz My, := E,(F|Fy). Wowczas
oczywiscie

M) = V(o) = [ F(@)dpir (i01) - din(n),
X1 XX Xn

stad
| My (z) — M1 ()] = [My(21,. .., 25) — y My (1, ..., x)dpx(zx)|
k
< osup  [Mi(x1, ..o 2p—1,yk) — Mi(2, -0, 2p—1, 21) |
Yk 2k €EXg
< sup ‘F((Eh"'7xk717yk7yk+17"'7y7’L)_F(‘Tla'"7‘rk*1azk7yk+17"‘7yn)‘
yeX,zp€Xk
< sup  dg(ygk, 2x) < Diam(Xy)
Y 2k €EXk
i teza wynika z Twierdzenia 4.3. 0

Przyktad 1. Niech X = {0,1}" z odlegloscia d(z,y) = %#{i: x; # y;} 1 unormowana
miara liczaca p. Kladac X; = {0,1} z odlegtoscia d;(z,y) = %I{xiy} widzimy, ze mozemy
stosowaé poprzedni wniosek i D = (327, Diam(X;)?)Y/? = n=1/2. Zatem

nt?
({01 ) < eXP(=—o-).
Definicja 4.6. M6wimy, ze skoficzona przestrzen metryczna (X, d) ma dlugos$é co najwyzej
[, jesli istnieje rosnacy ciag podzialow X, {X} = Ao, Ay,..., A, = {{z}: 2z € X} (A
jest podpodziatem A;_;) oraz liczby ai,...,a, spelniajace (31" ; a?)l/2 < [ takie, ze dla

dowolnego A € A;_; oraz B,C € A;, B,C C A istnieje bijekcja ®: B — C dla ktorej
d(z,®(x)) < a; dla x € B.

Uwaga 4.7. Biorac Ag = {X} 1A = {{z}: = € X} widzimy, ze kazda skonczona przestrzen
metryczna ma dlugo$é nie wieksza niz Diam(X).

Twierdzenie 4.8. Jesli (X, d) jest skoriczong przestrzenig metryczng o dlugosci co naj-
wyzej 1, za$ p unormowang miarg liczgeg na X, to dla funkcji 1-lipschitzowskich F' na

X,
t2

,u({x: F(x) > /qu+t}) < exp(—ﬁ)a

w szczegdlnosci

a,(t) < exp ( - 52)
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Dowdd. Ustalmy funkcje 1-lipschitzowska F'. Niech F; bedzie o-cialem generowanym przez
A; oraz M; := E,(F|F;) dlai=0,...,n. Wéwczas

1

Zatem, jesli A € A;_1, B,C € A;,B,C C A oraz ®: B — C jest bijekcja jak w Definicji
4.6, todlax € B,y e C,

Mila) = M)l = | 2 X (F() — F(@(2)] < sup [F(2) - F(@()
z€EB z€

<supd(z, ®(2)) < a;.
z€B
Poniewaz M;_1 na A € A;_1 jest usrednieniem M; po B C A, B € A;, to mamy |M;(z) —
M;_1(x)| < a;, czyli |M; — M;—1||oo < aj—1. Teza wynika z Twierdzenia 4.3 oraz Faktu
2.8. ]

Przyktad 2. Niech II" bedzie grupa permutacji zbioru {1,...,n} z metryka d(o, 7) =
14{i: 0; # m;}, a p unormowang miara liczaca na II". Niech A; sklada sie ze zbioréw
postaci

Ajl:"'7ji = {U elIr: 0(1) =J1s--- 70—(1.) - jl}
Wowezas jedli B,C' € A; sa podzbiorami pewnego A € A;_1 to B = Aj, i 1p C =
Aj . ji1.q 1 mozemy zdefiniowaé bijekcje ® miedzy B i C jako ®(0) = 7,4 0 0, gdzie
Tp,q jest transpozycja zamieniajaca p z ¢. Latwo sprawdzi¢, ze d(o, ®(0)) < 2/n, zatem

I=2/yni

nt?

)

a(rin,d,) < exp(—

5 Nierownosé Poincaré

5.1 Definicja i podstawowe wtasnosci
Definicja 5.1. Mo6wimy, ze miara probabilistyczna pu na (X, d) spetnia nieréwnosé Poin-

caré ze statg C', jesli dla wszystkich ograniczonych lipschitzowskich funkcji f na X zachodzi

V() < C [ [V fPdp. (4)

gdzie

IV fl() = limsup W)

jesli z jest punktem skupienia X i |V f|(x) = 0, jesli x jest punktem izolowanym X.
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Uwaga 5.2. W przypadku, gdy X = R" ze standardowa metryka euklidesowag mozemy
uzy¢ twierdzenia Rademachera, ktore méwi, ze kazda funkcja Lipchitzowska jest réznicz-
kowalna prawie wszedzie i wtedy |V f|(z) jest dla prawie wszystkich = réwny dlugosci
zwyklego gradientu f. Ponadto standardowy argument aproksymacyjny pokazuje, ze by
wykaza¢ nieréwnos¢ Poincaré dla miar probabilistycznych na R™ wystarczy sprawdzié¢ (4)
dla ograniczonych funkcji klasy C'*(R™) o ograniczonych pochodnych rzedu jeden.

Uwaga 5.3. Bedziemy wykorzystywali tylko dwie wlasnosci |V f|. Mianowicie, ze dla funk-
cji 1-lipschitzowskich |V f| < 1 oraz, ze dla dowolnej funkcji klasy C*(R), |Vg(F)| <
|g'(F)||VF| (w szczegdlnosci |V (f + ¢)| = |V f])-

Uwaga 5.4. Zalézmy, ze miara p ma gestosé postaci e~V na R”. Wéwczas proste catkowanie

przez czesci pokazuje, ze

[198Edu =[5+ V.95 fdp

Definiujac operator Lf := —Af + (VV,Vf) widzimy, ze L1 = 0. Nieréwnos$¢ Poincaré
méwi, ze dla funkcji f o éredniej 0, czyli prostopadtych do 1, [ fLfdu > C~! [ f2du. Biorac
pod uwage samosprzezonos¢ L nieréwnosé (4) jest réwnowazna temu, ze kolejna warto$é
wlasna L to conajmniej 1/C. Dlatego nieréwnosé Poincaré sie nazywa nieréwnoscia ,,luki
spektralnej” (spectral gap inequality).

Czasem wygodniej w nieréwnosci Poincaré zastapi¢ wariancje funkcji przez catke kwa-
dratu odchylenia od mediany, okazuje sie, ze prowadzi to do réwnowaznej nieréwnosci.

Fakt 5.5. Nieréwnosé Poincaré jest rownowazna nieréwnosci
Vrctipn Ealf = Meduf? < C [ V1P dp.

Co wigcej optymalne stale w obu nieréwnosciach spetniajq Copy < éopt < 3Copt -
Dowdd. Poniewaz
Vary (f) = inf Bu(f - ¢)> <E,|f — Med, f|?,
ce

wiec oczywiscie Copt < Cop.-
By udowodnié¢ przeciwne oszacowanie zauwazmy, ze

Var,(f) > Med,, f — Euf*u({|f — Euf| > Med,.f — E,f[})
> %|Medﬂf ~E.f|%

Stad
E,|f — Med, f|* < Var,(f) + |Med, f — E, f|* < 3Var,(f)

i otrzymujemy C’Opt < 3Copt- OJ

18



Fakt 5.6. Symetryczny rozkliad wykladniczy v na R z gestoscig %e“‘”' spetnia nierownosé
Poincaré ze stalg 4.

Dowadd. Proste catkowanie przez czesci pokazuje, ze dla funkcji h € ngr(R),

/h(az)du(m) =h(0) + /sgn(x)h’(:z:)du(m).

Niech f € ngr(]R) ig(x)= f(x)— f(0) wowczas

stad

5.2 Nier6éwnosé Poincaré a koncentracja wykladnicza

Twierdzenie 5.7. Zaldimy, ze miara p spetnia nieréwnosé Poincaré ze stalg C. Wowczas
dla kazdej funkcji 1-lipschitzowskiej F' it > 0

n({F> /quth}) <2exp(—\%).

W szczegdlnosci ax (t) < 2exp(—t/2v/C).

Dowdd. Rozpatrujac F' — [ Fdu mozemy zalozyé, ze F' ma $rednia zero. Zauwazmy, ze dla
dowolnej funkcji rézniczkowalnej g mamy |Vg(F)| < |¢'(F)||VF| < |¢'(F)|. Niech

M) == M, r(\) = /e’\Fd,u.

Stosujac nieréwnosé Poincaré do eM7/? dostajemy
A\ 2 C\?
M) = M(5) = Var, (/%) < o/ VMR < ZEM(N).

Zatem dla \ < 2/v/C dostajemy

M) < ——m(2)”

1—CX2/4 \2
Iterujac te nieréwnosé n razy dostajemy
n—1 k n
1 2 A2
M()) < k];[o (= CAQ/MH) M(5) -
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Poniewaz M (0) = 11 M'(0) = [ Fdu =0, to M(\/2")*" — 1 przy n — oo i

M(A) < H (1 _C/\12/4k+1)2 )

Zauwazmy, ze

[T(1-cxah )" >1-0on Yy 2kt =1 2%
2
k=0 k=0
W szezegdlnosci M (1/y/C) < 2 i teza wynika z nieréwnoéci Czebyszewa. O

Uwaga 5.8. Nierownos¢ Poincaré nie implikuje lepszej koncentracji niz wyktadnicza. Istot-
nie symetryczny rozklad wyktadniczy na prostej v spelnia nieréwnoéé Poincaré ze stata 4,
a biorac f(r) = x widzimy, ze dla ¢t > 0,

v ({x eR: f(z) > /fdu+t}) =v([t,00)) = %e*t-

5.3 Tensoryzacja

Fakt 5.9. Zalozmy, ze p; sq¢ miarami probabilistycznymi na X;, X = X1 X ... x X, oraz
=1 @ s ® - @ . Wowezas dla dowolnej funkcji f € L*(X, )

Var,(f) <> E,Var,,(f).
=1

Dowdd. Prosta indukcja pokazuje, ze wystarczy rozpatrzeé przypadek n = 2. Wowczas

Var,(f) = BBy, (f - Euf)2 =E,,[Var,, (f) + (Ey, f — Euf)Q}
= E,Var, (f) + E[Eu (f — Eup f))?
< E,Vary, (f) + EuEu, [(f — Euzf)Q] = E,Vary, (f) + E,Var,, (f),

gdzie ostatnia nieréwno$é¢ wynika np. z nieréwnosci Jensena. 0

Whniosek 5.10. Zaldzmy, Ze miary probabilistyczne u; na (X;,d;) spelniajg nieréwno$é
Poincaré ze stalg C; wzgledem gradientu |V;|. Wowczas miara p = p1 @ -+ @ uy, spelnia
nierownos$¢ Poincaré ze stalg C = max; C; wzgledem gradientu V f danego wzorem

V2= IVif*.
=1
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Dowdd. 7 Faktu 5.9 dostajemy

n n n

Var,(f) <Y E,Vary,(f) <Y E.CE,|Vif|> < CE. Y |Vif|.
i=1 i=1 i=1
O

Whniosek 5.11. Produktowy rozklad wykladniczy v™ spelnia nieréwno$é Poincaré na R™
ze stalg 4. W szczegolnosci aun (t) < 2exp(—t/4).
5.4 Dodatkowe wlasnosci. Charakteryzacja na prostej.

Kolejna przyjemna wlasnoscig nieréwnosci Poincaré jest jej stabilno$é ze wzgledu na zabu-
rzenia miary pu.

Fakt 5.12. Zaloimy, ze p jest miarg probabilistyczng na X, V jest ograniczong funkcjg bo-
relowskq oraz dv = Z='eVdu, gdzie Z = [ €V du. Woéwczas jesli miara u spetnia nieréwnosé
Poincaré ze stalg C to v spelnia nieréwno$é Poincaré ze stalg Ce2llV e

Dowdéd. Wezmy funkcje lipschitzowska f, odejmujac stalg mozemy zalozyé, ze E, f = 0.
Wéwezas

1 1
Vary(f) < EVf2 = Z/fgevd/i < Ee”V”oo /deM
1
< Ee“‘f“wc/wfﬁdﬂ _ C€|IV||oo/|Vf‘26—vdV
< C€2||V||°°/|Vf‘2dy

O

Fakt 5.13. Jesli miara v na (Y, p) jest L-lipschitzowskim obrazem miary u na (X,d) oraz
1 spetnia nieréwnosé Poincaré ze stalg C, to v spelnia nieréwno$é Poincaré ze stalg CL?.

Dowéd. Niech v = pro @~}

na Y otrzymujemy

, gdzie o: X — Y i ||¢[lLip < L. Dla funkcji lipschitzowskich f

Var, (f) = Var,(f o.9) < C [ V1 0 glPdu < CL? [ 197 (o(w))dn(a)
—CrL? / IV |2dv,
gdzie przedostatnia nieréwno$é wynika z oszacowania |V f o |(x) < LIV f|(p(x)). O

Kolejne twierdzenie (ktére podamy bez dowodu) charakteryzuje miary na prostej, ktore
spelniaja nieréwnoé¢ Poincaré.
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Twierdzenie 5.14 (Muckenhaupt). Zaldzmy, zZe p jest miarg probabilistyczng na R o
medianie m, zas p oznacza gestosé jej czesci absolutnie cigglej. Wowczas miara p speinia
nierdwno$é Poincaré ze skoriczong stalg C wtedy i tylko wtedy gdy max{By,B_} < oo,
gdzie

z 1
By = sup plz, OO)/ ——dy
r>m m P y)

mo1
B_ = sup u(—oo,x]/ ——dy.
z<m z P(y)
Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia
1

mmaX{B%B,} < Copt < 4max{B,,B_}.

5.5 Nieréwnosé Cheegera

W tej sekcji v oznacza symetryczny rozktad wykladniczy na prostej z gestoscia %e"x'.
Zanim sformutujemy definicje zaczniemy od prostego faktu.

Fakt 5.15. Niech p bedzie miarg probabilistyczng na (X, d). Nastepujgce warunki sq réw-
nowazne dla ustalonego ¢ > 0:

(i) ut(A) > cmin{u(A),1 — u(A)} dla dowolnego zbioru borelowskiego A,

(ii) dla dowolnego zbioru borelowskiego A i = spelniajacych pu(A) = v(—oo,x] zachodzi
pu(Ay) > v(—oo, x + ct].

Dowdd. (ii)=(i). Niech p(A) = v(—o0, x|, wéwczas

Ap) — (A . (- 1
/‘I’+(A) :hmlnf :u‘( t) M( ) > hmlnf V(( OO,.Z’+Ct) l/( OO,.fL'] = "¢
t—0+ t t—0+ t 2

= min{v(—o0,z],v(x,00)} = min{p(A4),1 — u(A)}.

el

(i)=(ii). Ustalmy najpierw § < 1 i niech
to =to(d) = inf{t > 0: u(A;) < v(—o0,z + dct].

Zal6zmy najpierw, ze ty < oo. Woéwczas z monotonicznosci p(A;) tatwo wynika, ze u( A, ) =
v(—o0,x + dctol, czyli
. c _
:UJ+(At0) > len{:u(Ato)7 1- M(At0>} = 56 [+octol

1 .. v(—oo,xz+ dc(to + h)] — v(—o0,x + dcto]
= — lim
0 h—0+ h
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Definicja dolnej i zwyklej granicy implikuja, ze istnieje hg > 0 takie, ze dla 0 < h < hg,

M(Ato+h})L — w(A) S M((Ato)hg — 1(A) S \/Sge—|a:+66to|
v(—oo,x + dc(tg + h)] — v(—o0, x + dcty)
2 :

>

Stad p(A¢) > v(—oo,z + det] dla tg < t < to+ h, co przeczy definicji to.
Otrzymana sprzeczno$¢ pokazuje, ze to(d) = oo, czyli u(A¢) > v(—oo,z+dct] dlat > 0.
Przechodzac z 6 do 1 otrzymujemy (ii). O

Definicja 5.16. Mo6wimy, ze miara probabilistyczna pu na (X, d) spelnia nieréwnosé Che-
egera ze statg ¢ > 0, jesli zachodzi jeden z warunkéw réwnowaznych Faktu 5.15.

Okazuje sig, ze nieréwnoé¢ Cheegera ma tez forme funkcyjna przypominajaca nierow-
nos¢ Poincaré.

Twierdzenie 5.17. Miara p spelnia nierowno$¢ Cheegera ze stalg ¢ > 0 wtedy i tylko
wtedy, gdy dla dowolnej funkcji lipschitzowskiej ograniczonej f zachodzi

Eulf — Medy(H)] < ¢ [ I9flds

Do dowodu bedziemy potrzebowali jednej z wersji tzw. ,co-area formula”.

Lemat 5.18 (Nieréwnosé co-area). Dla dowolnej funkcji Lipschitzowskiej f na X,

[Vtlan= [ tds > e
X —00

Dowdd. Wystarczy udowodni¢ nierownosé dla funkcji ograniczonych. Istotnie, przyjmujac
fv = max{—M,min{f, M }}, zauwazamy, ze |V fr| < |[Vf] i {fm >t} = {f > t} dla
|t| < M i przechodzimy z M do nieskonczonosci.

Rozpatrujac zamiast f funkcje f + ¢, mozemy zakladaé, ze f jest nieujemna. Okreslmy
dla t > 0 funkcje f; na X wzorem

fi(@) == sup{f(y): d(z,y) <t}.

Lipschitzowsko$é¢ f implikuje, ze (f; — f)/t < M. Latwo sprawdzié, ze {fy > r} = {f > r}4,
stad catkowanie przez czeéci daje

J = P = [Tl > 1) = (s > rhyn
X 0
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Mamy zatem

/ IVfldp = [ limsup Jo= d,u = hmsup/ Ji= du
X X t—0+ 3 t—0+
S timinf [ MAS > 1) = p(f > T})dr
t—0+ Jo t
> /Ooo lgg(ﬂf p({f > r}e) t_ p({f >r}) dr — /_O:O M—&-({f > r})dr

gdzie pierwsza i trzecia nier6wnos$¢ wynikaja z Lematu Fatou (w pierwszej zastosowanego
do funkeji nieujemnych M — (f; — f)/t). O

Uwaga 5.19. Dla miar p na R™ absolutnie ciaglych wzgledem miary Lebesgue’a mozna
udowodnié, ze w nieréwnoéci co-area zachodzi réwnosc.

Dowod Twierdzenia 5.17. ,=". Bez straty ogdlno$ci mozemy zalozy¢, ze Med,(f) = 0,
wowezas p{f > t} < 1/2dlat > 01 u{f >t} > 1/2 dla t > 0. Nieréwnos¢ co-area
implikuje
0
[Vt [T s s e [T uts > e [ - uls >
= cE, max{f,0} + cE, max{—f,0} = cE,|f].

»,<" Udowodnimy szacowanie (i) z Faktu 5.15. Idea polega na aproksymacji 14 przez
funkcje lipschitzowskie. Jesli u(A) > u(A), to u(A) = co i nie ma co dowodzié, bedziemy
zatem zakladaé, ze u(A) = u(A), co jest réwnowazne temu, ze pu(A;) — pu(A) przy t — 0.
Dla 0 < t < 1/2 okreslmy

fi(z) = %min{dist(:v, Ap),t —2t%),

Wéweczas fi jest 1/t-lipschitzowska, f; = 0 na Ap i f; = 1 — 2t poza A;_s2, zatem |V fi| <
%IAt\A- Mamy zatem

p(Ar) t_ (A) > /|Vft‘d,u > ch|ft — Medu(ft)|‘

Jesli u(A) > 1/2 to Med,,(f;) = 0 dla wszystkich ¢ i
pt(A) > chmlnf E.|fi| > chmmf(l —26)(1 — pu(Ai_2)) = 1 — u(A).

Jesli u(A) < 1/2 to u(Ay) < 1/2 dla malych t czyli Med,(f;) = 1 — 2t dla malych t i

pt(A) > chmlnfEM]ft —1+2t| > chménf(l —2t)u(Ap) = u(A).
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Nastepny fakt pokazuje, ze nier6wnosé Cheegera jest silniejsza od nieréwnosci Poincaré.

Fakt 5.20. Jesli p spetnia nieréunosé Cheegera ze stalg ¢ > 0, to spelnia nieréwnosé
Poincaré ze stalg 4c2.

Dowéd. Niech f bedzie Lipschitzowska funkcja ograniczong o medianie 0, za$ g := sgn(f) f2.
Nietrudno sprawdzié, ze g jest Lipschitzowska, ograniczona, ma mediane 0. Twierdzenie
5.17 implikuje

(EulfIH)Y2(E[VFIH)Y2.

1 2 2
E“f2 =E,|g| < EEM\VQ\ = EEu(‘vaf‘) < -

Dzielgc stronami przez (Eu|f|2)1/2 dostajemy

4
Var, () < Byl < BV

O]

Uwaga 5.21. Z nieréwnosci Poincaré nie mozna wywnioskowaé nieréwnosci Cheegera. Moz-
na pokazaé, ze miara z gestoscig HTO‘|:E]°‘I{|£|<1} dla « € (0, 1) spelnia nier6wno$é Poincaré,
a nie spetnia nieréwnosci Cheegera.

Na prostej mozna scharakteryzowaé¢ miary speliajace nieréwnosé Cheegera.

Twierdzenie 5.22. Niech p bedzie miarg probabilistyczng na R, F(x) = pu(—o0, x], zas p
bedzie gestosciq czesci absolutnie cigglej p. Wowcezas nastepujgce warunki s¢ rownowazne
dla ¢ > 0:

i) p spelnia nieréwno$é Cheegera ze stalq c,

i) p jest %-lipschitzowskz’m obrazem v,

’I/I/L) eSSinfm > c.

6 Logarytmiczna Nier6wnos¢ Sobolewa

6.1 Entropia funkcji

Definicja 6.1. Zalézmy, ze p jest miarg probabilistyczng na X, zas f nieujemna funkcja
mierzalng na X. Entropie f wzgledem p definiujemy wzorem

Ent,(f) := { J flog fdp — [ fdplog [ fdp  jesli [ flog(l + f)dp < oo
e jesli [ flog(1+ f)du = oc.

Z wypuklosci funkcji o logx na [0, 00) wynika, ze Ent,(f) > 0, latwo tez zauwazy¢, ze
Ent,(Af) = AEnt,(f) dla XA > 0.
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Lemat 6.2. Dla dowolnej funkcji nieujemnej na X,

Ent,(f) = sup{/fgdu: /egdu < 1}. (5)

Dowdd. 7 jednorodnosci obu stron tozsamosci (5) mozemy zakladaé, ze [ fdu = 1, wéwcezas

Ent,(f) = [ flog fdp.
Nietrudno sprawdzié¢, ze dla v > 0, sup,cgr(uv — €”) = ulog u — u, zatem

ww < ulogu —u+e” dlau>0,veR. (6)

Zatem biorac g takie, ze [e9dp < 1 dostajemy

/fgd,u < /(flogf — f+ef)dp =Ent,(f) -1+ /egdu < Ent,(f).

By udowodnié¢ nieréwnos¢ w przeciwng strone wystarczy przyja¢ g = log f. O
7 powyzszego lematu tatwo wykazaé tensoryzowalno$é entropii:
Fakt 6.3. Zaloimy, ze u; sq miarami probabilistycznymi na X;, X = X1 x ... x X, oraz
=1 @ o ® -+ ® . Wowcezas dla dowolnej nieujemnej funkcji f na X zachodzi
n
Ent,(f) <> E,Ent,,(f).
i=1

Dowdd. Wezmy funkcje g na X taka, ze [e9du < 1 oraz przyjmijmy dlai=1,...,n,

[ eg(:cl,...,mn)dm(xl) .. 'dui—1(xi_1))

g (xla e 73371,) = 10g < f 69(9517"'7“3")(]3#1(1'1) Ce. d,ul(x’t)

Wowezas g < Yo7, ¢ oraz fegidui < 1, stad
[ o< [sgau=3" [ ([ roians)du< > [Bot(5)dp.
i=1 i=1 i=1

6.2 LNS - definicja, tensoryzowalnosé, zwigzek z koncentracjg

Definicja 6.4. Méwimy, ze miara probabilistyczna na (X, d) spetnia logarytmiczng nie-
rowno$é Sobolewa ze stata C, jesli dla wszystkich ograniczonych lipschitzowskich funkcji f
na X zachodzi

Ent,(f2) < 20/\Vf|2du. (7)
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Fakt 6.5. Zaldzmy, Ze miary probabilistyczne p; na (X;,d;) spelniaja logarytmiczng nie-
réwnosé Sobolewa ze stalq C; wzgledem gradientu |V;|. Wowczas miara p = p1 & -+ ® pup,
spetnia logarytmiczng nierdwnosé Sobolewa ze stalg C = max; C; wzgledem gradientu V f
danego wzorem

n
VI =2 IVt
i=1
Dowdd. 7 Faktu 6.3 dostajemy

Ent,(f*) <Y E.Ent,, (f*) <> E2CGE,|V:f[> <2CE, > |V,f*.
i=1 =1 i=1

O]

Twierdzenie 6.6. Zaldzmy, Ze miara p spetnia logarytmiczng nieréwno$é Sobolewa ze
statg C'. Wowczas dla kazdej funkcji 1-lipschitzowskiej F' it > 0,

u({F= /qu+t}) <exp (- Zté)

W szczegélnosei ax (t) < exp(—t?/80C).
Dowdd. Ustalmy ograniczona funkcje 1-Lipschitzowska F' taka, ze [ Fdu = 0. Wystarczy,
ze pokazemy iz dla A > 0

M(X) == Mpy = /eAqu < eONV/2,

Zastosujmy logarytmiczng nieréwnosé Sobolewa do f2 := eM'. Wéwczas
Ent,(f?) = AE, Fe* — B, eM log B eM = AM/(\) — M()\)log M()\)
oraz
A2 A2
/]Vf\Qdu: Z/\VF\%AF < TMO).
Zatem (7) daje

2
AM'(X) = M(\)log M()) < C%M()\). (8)
Okreslmy H()\) := +1log M(\) dla A > 0. Woéwczas

: _ M'(0) _
lim HN = 70 _/qu_o

oraz na podstawie (8)

, 1 LM'(\) _C
= —— — < —.
H'(\) AZlogM(/\)—l-)\ Vo) S 2
Zatem H(\) < CA\/2 czyli M(\) < exp(CA?/2). O
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6.3 LNS dla miary gaussowskiej
Fakt 6.7. i) Niech j; = 361 + 36_1, wéwczas dla dowolnego f: {—1,1} — R,
Entlh (f2) < QEMI‘Df|27
gdzie Df(z) = 5(f(z) — f(~=)).
ii) Niech p, = p1 ® -+ @ p1 bedzie rozkladem jednostajnym na {—1,1}", wowczas dla
dowolnego f: {—1,1}" — R,

Enty,, (f?) < 2By, |DfI,

gdzie
1 n
IDf*(z) = 1 > (f(x) = f(si(2)))?,
i=1
oraz s;((x1,...,2n)) = (1, -+, Tic1, —Tiy Tit1,- -, Tn) dla 1 < i< n.

Dowdd. i) Z uwagi na jednorodno$¢ mozemy zakladaé, ze E,, f?2 = 1, woéwczas istnieje
t € [—1,1] takie, ze f(1) = /141t oraz f(—1) = /1 —t i nier6wno$¢ z punktu i) ma
postaé a(t) > 0, gdzie

1+1¢ 1-1¢
alt)=1—-V1—-1t2— _2‘_ log(1+t) — 5 log(1 —t).

Nietrudno sprawdzié¢, ze a(0) = o/(0) = 0 oraz

o’ (t) 1 ( 1t2_ 2 - ) >0,

T 12 112

wiec istotnie a(t) > 0.
ii) Wynika z punktu i) i Faktu 6.3. O

Twierdzenie 6.8. Miara v, spelnia logarytmiczng nieréwnosé Sobolewa z C' = 1.

Dowdd. 7 uwagi na Fakt 6.3 wystarczy rozwazy¢ przypadek n = 1. Niech f € ngr(R).
Okreslmy g, : {—1,1}" — R wzorem

xl—l—...—{—xn)
vn '

Niech p, i |Df]| beda jak w Fakcie 6.7. Wéwczas na mocy centralnego twierdzenia granicz-
nego

gn(@) = f (

Ent,,, (g7) = / g2 log gadpu, — / 92dyun log / 92dyi, — Ent., (f2).
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Ponadto kladac T, (z) = n~Y2(z1 + ... + z,)

> (#Tute)) ~ 1 (Tuto) ~ 2 N

gdzie r,, zbiega do zera jednostajnie wzgledem |7, (x)|. Zatem

NG

Dgal(z)? = ) = r @@y

Jin B, |Dg[(2)? = lim B, (T, (x)? = B, f'()*
O

Fakt 6.9. Zalozimy, zZe u jest miarg probabilistyczng na X, V jest ograniczong funkcjq
borelowskq oraz dv = Z='eVdu, gdzie Z = [ eVdu. Wowczas jesli miara ju spetnia logary-
ticzng nieréwnosé Sobolewa ze stalg C to v spetnia logarytmiczng nieréwnosé Sobolewa ze
stalg eVl

Dowdd. Funkcja p(u) = ulogu jest wypukta na [0, 00) stad dla dowolnych s, t, (s +1t) >
o(t) + ¢'(t)s, wige

o[ £2av) =g+ [(12 = 0dv) > o) +&'(0) [ (42~ .

Zatem

Ent, (f%) = inf [o(f%) — o(t) — ' ()(f* — t)]dv

1

< eVl inf [ [o(f%) = o(t) = @' ()(f* — 1)) Ze" dv
1 2C

= V=Bt (1) < —elV I / IV £[2du

< 2062”VH°°/\Vf|2dy.

Kolejny fakt dowodzimy tak samo jak dla nieréwnoéci Poincaré.

Fakt 6.10. Jesli miara v na (Y,p) jest L-lipschitzowskim obrazem miary p na (X,d)
oraz | spetnia logarytmiczng nieréuwno$é Sobolewa ze stalg C, to v spelnia logarytmiczng
nieréwno$é Sobolewa ze statg C'L2.

Stosujac logarytmiczng nieréwnoéé¢ Sobolewa do funkcji f = 1+ g dowodzimy

Fakt 6.11. Jesli miara probabilistyczna u spetnia logarytmiczng nieréwnosé Sobolewa ze
statg C, to spelnia réwniez nierowno$é Poincaré ze stalg C.
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Opierajac si¢ na twierdzeniu Muckenhoupta da si¢ wyprowadzi¢ kryterium réwnowazne
nierownosci logarytmicznej Sobolewa dla miar na prostej.

Twierdzenie 6.12. Zaléimy, ze p jest miarg probabilistyczng na R o medianie m, zas
p oznacza gesto$é jej czeSci absolutnie cigglej. Wowczas miara p speinia logarytmiczng
nierdwnosé Sobolewa ze skoriczong stalg C wtedy i tylko wtedy gdy max{By, B_} < oo,
gdzie

1 z ]
By = sup .o () [

1 mo1
B = smpuoealin () [ g

Co wigcej optymalna stata Copy w nieréwnosci Poincaré spetnia

1
5B+ + B-) < Copt < 468(By + B-).

6.4 Nieréwnos¢ Bobkowa

Logarytmiczna nieréwnosé Sobolewa implikuje koncentracje gaussowska, ale nie implikuje
gaussowskiej izoperymetrii. Okazuje sie, ze jest silniejsza nieréwnosé, ktéra implikuje gaus-
sowska izoperymetrie, a jednoczeénie ma szereg réwnie dobrych wtasnosci jak nieréwnosé
Poincaré czy logarytmiczna nieréwnos$¢ Sobolewa.

Przedstawione ponizej rozumowania mozna podobnie jak w poprzednich sekcjach pro-
wadzi¢ w wiekszej ogdlnosci, jednak by uniknaé szczegdléw technicznych ograniczymy sie
do miar na R™ i funkcji gtadkich.

W tej czesci przez I bedziemy oznaczaé gaussowska funckje izoperymetryczna, tzn
I(z) = (@ (z)), gdzie ¢ = (27)~ Y2 exp(—|z|?/2). Dodatkowo okreslamy I(0) = I(1) =
0.

Definicja 6.13. Mdéwimy, ze miara probabilistyczna p na R™ spelnia nierownosé Bobkowa

ze stalg O, jedli dla wszystkich f € ngr (R™) o wartosciach w przedziale [0, 1] zachodzi

1( [ fau) < [ 192 + 29 fPdp ©)

Fakt 6.14. Jesli miary p; spelniajg nieréwno$é Bobkowa ze stalymi C;, to miara 1 ®---®
Wn spelnia nierdwnos$é Bobkowa ze stalg max; Cj.

Twierdzenie 6.15. Jesli miara probabilistyczna p na R™ speinia nieréwnosé Bobkowa na
ze statqg C, to
1
pt(A) > GI(M(A)) dla A € B(R")

oraz

(A > (@ (u(A) +t/C)  dla A BR"Y), t> 0.

Twierdzenie 6.16. Kanoniczna miara gaussowska v, spetnia nieréunosé Bobkowa z C' =
1.
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7 Nier6éwnosci Splotu Infimum

7.1 Wtlasno$¢ 7 Maureya
Zacznijmy od zaproponowanej przez Maureya definicji.

Definicja 7.1. Splotem infimum dwu funkcji f i g okreslonych na R™ nazywamy funkcje
fOg dana wzorem

fOg(z) == inf{f(y) + g(z —y): y € R"}.

Niech p bedzie miara probabilistyczna na R™ oraz ¢: R™ — [0, 0o]. Méwimy, ze para (u, @)
ma wlasno$é (1) badz, ze miara p spelnia nieréwno$é splotu infimum z funkcja kosztu ¢

/efD“"d,u,/e_fd,u,g 1

dla dowolnej ograniczonej mierzalnej funkcji f na R™.

jesli

Pierwsza uzyteczna cecha wlasnosci (7) jest jej tensoryzowalnosé.

Fakt 7.2. Jesli pary (ui, pi) majg wlasnosé (1), p =1 ® -+ @ py, oraz

e(@1,...,2n) = p1(z1) + ...+ pnlzn),
to rowniez para (u, ) ma wlasnosé (7).

Dowdd. Prosty argument indukcyjny pokazuje, ze wystarczy udowodni¢ teze dla n = 2.
Niech f = f(z,y) bedzie ograniczona funkcja na R™ x R"™2, okreslmy g na R™ jako

o) =~ ( [T d ().
Dodatkowo wprowadzmy oznaczenie fY(z) = f(x,y). Wéwczas dla dowolnych y, g
/ /TR @Y 1y (1) < / e/ "D @2 (u=0) gy () < 9 H2(0-0)
na mocy wlasnosci (7) dla (1, ¢1). Stad
/efD“”(x’y)dul(a;) < e9He2(v)
i korzystajac z Twierdzenia Fubiniego i (7) dla (u1, ¢2).
[ 0 < [ da(y) < ( [P pat)”

= (/ e Tduy ® )7
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Nastepny fakt pokazuje w jaki spos6b mozna transportowaé (7).

Fakt 7.3. Zaloimy, ze u jest miarg probabilistyczng na R™, za$ ¢ funkcjg kosztu na R™
takg, ze (u,) spetnia wtasnosé (t). Jesli T: R™ — R™ oraz funkcja ¢ na R™ spelnia
V(Tz — Ty) < (x —y) dla wszystkich z,y, to para (o T~1,v) ma wlasnosé ().

Dowdd. Niech f bedzie ograniczona funkcja na R™. Zauwazmy, ze
f o TOp(x) = inf(f(Ty) + ol = y)) > i (F(Ty) +$(Tx — Ty)) > fO0(Ta).
Zatem

/efDI/Jd'uoT—l :/ewa(Tx)dM(x) </€foT|:|<p(x)d'u(x) < </e_fOTdM>_

_ (/e_fduoT_l)_l.

1

7.2 Splot infimum a koncentracja

By sformutowaé zwiazki nieréwnosci splotu infimum z koncentracjg okreslmy zbior
By(t) = {o: ¢(z) < t}.
Zacznijmy od prostego faktu

Fakt 7.4. Jesli (u,p) ma wlasno$é (1) to dla dowolnego zbioru borelowskiego A takiego,
ze p(A) >0 mamy

LA+ BD) < o

Dowdd. Zastosujmy wtlasno$é (1) do funkcji f = 0 na zbiorze A i f = co poza zbiorem A.
Zauwazmy, ze fOy >t poza zbiorem A 4 B,(t), zatem

1> /efD“"du/e_fdu > (1 — u(A + By (1)) u(A).
0

Uwaga 7.5. Funkcja f w poprzednim dowodzie nie byta oczywiscie ograniczona, ale tatwo
oming¢ ten problem stosujac nieréwnos¢ (1) do f, = nlgn\ 4 dlan > t.

Poprzedni Fakt daje dobre oszacowanie tylko dla duzych wartosci t. Nieco modyfikujac
jego dowodd da sie uzyskaé tez nieréwnosci koncentracyjne dla matych ¢.
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Fakt 7.6. Zaloimy, Ze para (u, ) ma wlasnosé (7). Wowczas dla dowolnego zbioru bore-
lowskiego A it > 0,

e'u(A)
1A+ By(t)) > (e — Du(A) + 1 (10)
W szczegolnosci
WA+ By(t) > min{e!/2u(4), 1/2) (11)
WA > 5 = 1 (At By(1) < e /(1 - u(A)) (12)
Ponadto
p(A) = v(—oo,z] = p(A+ By(t)) > v(—oo,x +1/2]. (13)

Dowdd. Niech f(z) = tlgm 4. Wowezas f jest nieujemna, wigc fUp tez jest nieujemna
(rozpatrujemy tylko nieujemne funkcje kosztu). Dla « ¢ A + B, (t) mamy fOo(z) > t.
Zatem wlasnoéé (1) daje

1> /ef[]‘p(x)d,u,(:c)/e‘f(x)du(x)
> [(A+ By() + €' (1 = p(A+ By(£)) | [1(A) + 7 (1 = u(A))],

skad bezposredni rachunek prowadzi do (10).
Niech fi(p) := e'p/((e! — 1)p + 1), zauwazmy, ze f; is rosnaca wzgledem p oraz dla
p<e /22,
1
(et - 1)p+ 1< 61&/2 +1— 5(615/2 +€_t/2) < et/2’
skad otrzymujemy (11). Ponadto dla p > 1/2,

1—p 1-—

p —t/2
< _
@—pri S(@rnp ¢ dp)

1— filp) =

i dostajemy (12).

Niech F(x) = v(—o0,z] i g+(p) = F(F~1(p) +t). Poprzednie rachunki pokazuja, ze dla
t,p >0, fi(p) > gi/2(p), jesli F~1(p) +t/2 < 0 lub F~!(p) > 0. Poniewaz gy+s = g¢ 0 gs i
ftvs = fr o fs, otrzymujemy fi(p) > g;/2(p) dla wszystkich ¢,p > 0, zatem (10) implikuje
(13).

O

7.3 Dwupoziomowa koncentracja dla rozkladu wykladniczego

Niech jak do tej pory v oznacza miare na R z gestoscia %e"x |, zag V4, V— miary z gestosciami
odpowiednio e™*1(g o) 1 "1 (o 0)-
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Fakt 7.7. Para (v4+, o) ma wlasnosé (1), gdzie

L2 dla |z < 2
po(x) =

18

(| —1) dia |z > 2.

Lemat 7.8. Dla wszystkich x € R mamy 2|¢((z)] < 1 oraz
(1 — dgh(2)?)er@ > 1.

Dowdd. Pierwsza nieréwno$é¢ otrzymujemy przez tatwe sprawdzenie. By udowodnié¢ druga,
z uwagi na symetrie g, wystarczy rozpatrywaé przypadek x > 0. Ponadto ¢f(x) jest stale
dla z > 2 a ¢ rosnace na tym przedziale, wiec mozemy zaktadac, ze 0 < x < 2. Wowczas
nieré6wnoéé po podstawieniu y = x?/18 ma postaé
_ 8 2
e y<1—§y, O<y<§.

Funkcja e™¥ jest wypukla, wiec wystarczy sprawdzi¢ tylko y = 01y = 2/9. O

Dowaod Faktu 7.7. Ustalmy funkcje ograniczong f, przyjmijmy g := fUlpg i niech
o0 o
Iy .= / e T@=2qe I, = / eI~ g,
0 0

Musimy pokazaé, ze IpJ; < 1. Dla t € (0, 1) zdefiniujmy x(¢) i y(¢) wzorami
a(t) y(t)
/ e T@=2qy — t1, oraz / 9O =T g — 1.
0 0

Wéwcezas

Y

/
Na mocy definicji g, g(y(t)) < f(2(t)) + @o(y(t) — (1)), wiee
Yy (t) > Le F @) =volut)—z(®)+u(®)

2 (t) = Ipe! @OHa®) 4/ (3) = e~ 9WO)+u(0),

Niech z(t) = 1 (2(t) + y(t)) — po(z(t) — y(t)), wowczas

1

2(1) = (5 — ehlal®) — y())a' (1) + (5 + eh(alt) — u($))y' (1)

Piszac dla uproszczenia = i y zamiast z(t) i y(t) stosujac poprzednie oszacowanie y'(t)
oraz nier6wno$¢ miedzy Srednia arytmetyczna i geometryczng dostajemy (wykorzystujac
parzystosé o)

[a—

2(1) > 5 (1 - 26w — ) Ioe™ @) 1 L(1+ 26z — y)) e~ VI

2
> \/1 _ 4906(1: —y)? /Iojleé(ﬂf'i'y)—%soo(w—y)
= /IoI;e*® \/1 — 4pp(z — y)Qe%‘po(x_y).
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Zatem na mocy Lematu 7.8, (—e *)) = e=*)2/(t) > /IoI;, co po odcatkowaniu daje

VIl < 1. O

Uwaga 7.9. Funkcja g jest ciagla, wiec y jest rozniczkowalna. Funkcja f nie musi by¢ ciggla
wiec x nie musi by¢ rézniczkowalna. Jednak z ograniczonosci f tatwo wywnioskowaé lokalng
Lipschitzowsko$¢ = (stad tez z), a zatem rézniczkowalnoéé = prawie wszedzie. Funkcja e~#(*)
jest zatem lokalnie lipschitzowska, czyli jest caltka swojej pochodnej, ktéra istnieje p.w..

Whniosek 7.10. Miara v spelnia nieréwno$é infimum z funkcjg kosztu @1 postaci

t L2 dla |t| < 4
t) =2p0(=) =14 36

#1t) = 2e0(3) { %(m —9)  dia|t| > 4.

Dowdd. 7 wypuklosci funkcji g tatwo wynika, ze 1 = wgldpg. Poniewaz miara v_ jest
symetrycznym odbiciem v; a funkcja ¢ jest symetryczna, to (v—,¢p) ma wlasnosé (1),
wiee (vy @v_, po(x) +¢o(y)) tez ma (7). Miara v jest splotem miar vy i v_, czyli obrazem
v4 ® v_ przy przeksztalceniu T'(z,y) = x + y. Teza wynika z Faktu 7.3 O

Wiemy, ze miara v a zatem i miara produktowa v" spelniaja nieréwnos$¢ Poincaré, wiec
jesli v"(A) > %, tov"(A+tBy) > 1— e ¥/C dla pewnej stalej absolutnej C. Okazuje sie,
ze mozna te nieréwno$¢ wzmocnic.

Zanim sformulujemy twierdzenie (ktére pierwszy z gorszymi stalymi udowodnil Tala-
grand) wprowadzmy nastepujace oznaczenie kuli jednostkowej w [ydlal<p<oo

n
Bl i={z eR": > |z’ <1}.
=1

Twierdzenie 7.11. Dla dowolnego zbioru borelowskiego A w R™ takiego, ze v™(A) > 0
mamy dla t > 0,

1 —v"(A+6VtBY +9tB}) <
Ponadto
V'(A) = v(—00,x] = V"(A+6V2tBY + 18tB}) > v(—o0,z + 1.
Dowdéd. Para (V" py,) ma wlasnoéé (1), gdzie n (21, ..., 2n) = @1(z1)+. . .+p1(x,). Latwo

sprawdzié, ze
By, (t) C 6VtBy + 9tBY.

Teza wynika zatem z Faktéw 7.4 1 7.6. O
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