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1 Wstęp

W wielu problemach rachunku prawdopodobieństwa i jego zastosowań pojawiają się wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wykładu będzie przedstawienie wybranych narzędzi pozwalających
badać takie obiekty. Wykład będzie dotyczył tak zwanej teorii nieasymptotycznej, tzn. na-
cisk będzie położony na różne szacowania, a nie na twierdzenia graniczne.

W pierwszej części wykładu omówimy pewne zagadnienia związane z teorią koncen-
tracji miary, które pozwalają szacować odchylenia funkcji zależnej od wielu zmiennych
losowych od jej wartości oczekiwanej. W drugiej pokażemy kilka metod pozwalających sza-
cować suprema procesów stochastycznych. Omówimy też pewną liczbę bardziej konkretnych
przykładów zastosowań.

Oczywiście podczas semestralnego wykładu monograficznego można omówić tylko nie-
wielką część bogatej i ciągle rozwijającej się teorii. Dużo szerszy wybór zagadnień został
przedstawiony w notatkach Ramona van Handela [4] i monografii Romana Vershynina [5],
zainteresowany Czytelnik znajdzie tam też szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przykłady.

Wiele ważnych miar probabilistycznych spełnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorąc polega on na tym, że większość punktów z przestrzeni leży w pobliżu
zbioru wypełniającego przynajmniej połowę przestrzeni. By pojęcie to sformalizować po-
trzebujemy dwóch ważnych definicji.

Definicja 2.1. Niech (X, d) będzie przestrzenią metryczną, zaś A dowolnym podzbiorem
X. Dla t > 0 określamy t-otoczenie zbioru A wzorem

At := {x ∈ X : d(x,A) < t} =
⋃
y∈A

B(y, t),

gdzie B(y, t) oznacza kulę otwartą w X o środku w y i promieniu t.

Definicja 2.2. Niech µ będzie miarą probabilistyczną na (X, d). Funkcją koncentracji
miary µ definiujemy jako

αµ(t) = α(X,d,µ)(t) := sup
{

1− µ(At) : µ(A) ­ 1
2

}
.

Na początek wykładu podamy kilka przykładów dla których można dobrze oszacować
funkcję koncentracji. Dowody podanych oszacowań przedstawimy później.

Przykład 1. Niech d oznacza odległość geodezyjną na n wymiarowej sferze Sn =
{x ∈ Rn+1 : |x| = 1}, zaś σn oznacza unormowaną miarę powierzcniową na Sn. Wówczas
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okazuje się, że jeśli chcemy zminimalizować σn(At) po wszystkich zbiorach ustalonej miary
ekstremalne są kule (zwane też czapeczkami), to znaczy

σn(A) = σn(B(x0, r)) ⇒ σn(At) ­ σn(B(x0, r)t) = σn(B(x0, r + t)).

W szczególności jeśli σn(A) ­ 1/2, to

σn(At) ­ σn
(
B
(
x0,

π

2
+ t
))
­ 1− exp

(
− (n− 1)t2

2

)
.

Zatem ασn(t) ¬ exp(−n−1
2 t2).

Uwaga 2.3. Zauważmy, że funkcja koncentracji σn szybko zbiega do 0 przy n→∞. Jedną
z przyczyn tego zjawiska jest to, że miara ta nie jest dobrze unormowana. Jeśli przez
σn,R określimy rozkład jednostajny na sferze RSn, to ponieważ jest on obrazem σn przy
jednokładności o skali R, to

ασn,R(t) = ασn

( t
R

)
¬ exp

(
− n− 1

2R2
t2
)
.

Zauważmy też, że ∫
RSn

xixjdσn,R(x) =
R2

n+ 1
δi,j .

Zatem miara jednostajna na
√
n+ 1Sn ma dobrą normalizację, to znaczy taką, że macierz

kowariancji jest identycznością. Dla tej miary dla n ­ 2,

ασn,√n+1(t) ¬ exp
(
− n− 1

2(n+ 1)
t2
)
¬ exp

(
− 1

6
t2
)
.

Przykład 2. Niech γk oznacza kanoniczny rozkład gaussowski na Rk tzn. rozkład z
gęstością (2π)−k/2 exp(−|x|2/2). Wówczas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazują się półprzestrzenie, tzn. jeśli

γk(A) = γk
(
(−∞, r]× Rk−1

)
= Φ(r),

to
γk(At) ­ γk

((
(−∞, r]× Rk−1)

t

)
= γk

(
(−∞, r + t]× Rk−1

)
= Φ(r + t).

W szczególności

αγk(t) ¬ 1− Φ(t) ¬ 1
2
e−t

2/2.

Zauważmy, że powyższe oszacowania nie zależą od wymiaru przestrzeni.

Przykład 3. Niech ν będzie symetrycznym rozkładem wykładniczym, tzn. rozkładem
na R z gęstością 12 exp(−|x|). Przez νk będziemy oznaczać rozkład produktowy ν⊗. . .⊗ν na
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Rk. Wyznaczenie ekstremalnych zbiorów dla problemu izoperymetrycznego związanego z tą
miarą jest trudne i nieznane dla k 6= 1. Choć wiadomo, że ekstremalne nie są półprzestrzenie
postaci (−∞, r]× Rk−1, to są one optymalne z dokładnością do stałej, tzn.

νk(A) = ν((−∞, r]) ⇒ νk(At) ­ ν
((
−∞, r +

1

2
√

6
t
])
.

W szczególności

ανk(t) ¬ 1− ν
((
−∞, 1

2
√

6
t
])

=
1
2

exp
(
− 1

2
√

6
t
)
.

Zauważmy, że znowu uzyskane oszacowanie nie zależy od wymiaru przestrzeni.

Przykład 4. Niech µ będzie unormowaną miarą liczącą na kostce dyskretnej {0, 1}n
z metryką d(x, y) = 1

n#{i : xi 6= yi}. Tu problem izoperymetryczny daje się rozwiązać
(optymalne są kule, ewentualnie z dodanymi punktami na brzegu). W tym przypadku
można pokazać, że

αµ(t) ¬ e−2nt2 .

Krótki przegląd wyników pokazuje, że w wielu ważnych zastosowaniach można wykazać,
że αµ(t) ¬ C1 exp(−t2/C2) – mówimy wtedy, że funkcja koncentracji jest typu gaussow-
skiego. Widzielismy też przykład, w którym αµ(t) ¬ C1 exp(−t/C2) – mówimy wtedy o
koncentracji wykładniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia się miara otoczenia zbioru, a raczej
jak szybko maleją ogony funkcji określonych na przestrzeni. W tej części powiążemy ze
sobą te zjawiska. Zacznijmy od definicji mediany i modułu ciągłości.

Definicja 2.4. Niech µ będzie miarą probabilistyczną na (X, d) oraz f : X → R.
Medianą funkcji f względem miary µ nazywamy taką liczbę M = Medµ(f) dla której

µ({x : f(x) ­M}) ­ 1
2

oraz µ({x : f(x) ¬M}) ­ 1
2
.

Modułem ciągłości f nazywamy funkcję

wf (t) := sup{|f(x)− f(y)| : d(x, y) ¬ t}.

Fakt 2.5. Dla dowolnej funkcji F : X → R,

µ({x : F (x) > Medµ(F ) + wF (t)}) ¬ αµ(t)

oraz
µ({x : |F (x)−Medµ(F )| > wF (t)}) ¬ 2αµ(t).
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Dowód. Niech A := {x : F (x) ¬ Medµ(F )} wówczas µ(A) ­ 1/2 zatem µ(At) ­ 1 −
αµ(t). Ponadto, jeśli x ∈ At, to istnieje y ∈ A takie, że d(x, y) < t i wówczas F (x) ¬
F (y) +wF (t) ¬ Medµ(F ) +wF (t), stąd pierwsza nierówność w fakcie. Stosując ją do −F i
zauważając, że Medµ(−F ) = −Medµ(F ) oraz w−F = wF dostajemy

µ({x : F (x) < Medµ(F )− wF (t)}) ¬ αµ(t).

Dodając powyższą nierówność do poprzedniej otrzymamy ostatnią część faktu.

Przypomnijmy definicję funkcji lipschitzowskiej

Definicja 2.6. Funkcję F : (X, d)→ R nazywamy lipschitzowską, jeśli

‖F‖Lip := sup
x 6=y

|F (x)− F (y)|
d(x, y)

<∞.

Mówimy, że funkcja jest L-lipschitzowska jeśli ‖F‖Lip ¬ L, tzn. |F (x) − F (y)| ¬ Ld(x, y)
dla wszystkich x, y ∈ X.

Analogicznie można zdefiniować funkcje lipschitzowskie między przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jeśli F jest lipschitzowska ze stałą L, to dla t > 0,

µ({x : F (x) > Medµ(F ) + t}) ¬ αµ(t/L)

oraz
µ({x : |F (x)−Medµ(F )| > t}) ¬ 2αµ(t/L).

ii) Na odwrót, jeśli dla każdej funkcji 1-lipschitzowskiej F i ustalonego t > 0,

µ({x : F (x) ­ Medµ(F ) + t}) ¬ α,

to αµ(t) ¬ α.

Dowód. i) Wynika z Faktu 2.5 i oczywistego szacowania wf (t) ¬ tL.
ii) Ustalmy zbiór A taki, że µ(A) ­ 1/2 i określmy F (x) := d(x,A). Wówczas F jest

1-lipschitzowska oraz Medµ(F ) = 0, zatem

α ­ µ({F ­ t}) = µ({x : d(x,A) ­ t}) = 1− µ(At).

Często łatwiej i naturalniej jest wykazywać koncentrację funkcji lipschitzowskich wokół
średniej a nie mediany. Kolejny fakt pokazuje jak odzyskać funkcję koncentracji w takim
przypadku.
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Fakt 2.8. Załóżmy, że µ jest miarą probabilistyczną na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F i t > 0 zachodzi

µ
({
x : F (x) >

∫
Fdµ+ t

})
¬ α(t). (1)

Wówczas dla dowolnego zbioru borelowskiego A takiego, że µ(A) > 0 zachodzi

1− µ(At) ¬ α(µ(A)t).

W szczególności

αµ(t) ¬ α
( t

2

)
.

Ponadto, jeśli limt→∞ α(t) = 0, to dowolna funkcja 1-lipschitzowska jest całkowalna i jeśli
dodatkowo α jest ciągła, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowód. Ustalmy zbiór borelowski A taki, że µ(A) > 0 oraz liczbę t > 0. Zdefiniujmy
F (x) := min{d(x,A), t}, wówczas funkcja F jest ograniczona, 1-lipschitzowska i

∫
Fdµ ¬

t(1− µ(A)). Stąd na mocy (1),

1− µ(At) = µ({F ­ t}) ¬ µ
({
F ­

∫
Fdµ+ µ(A)t

})
¬ α(µ(A)t).

W szczególności, jeśli µ(A) ­ 1/2, to 1− µ(At) ¬ α(t/2).
By udowodnić drugą część faktu, ustalmy funkcję 1-lipschitzowską F i niech Fn :=

min{|F |, n}. Z (1) zastosowanej do −Fn dostajemy

µ
({
x : Fn(x) ¬

∫
Fndµ− t

})
¬ α(t).

Wybierzmy t0 takie, że α(t0) < 1/2 orazm := Medµ|F |. Wówczas µ({Fn ¬ m}) ­ 1/2, czyli
zbiory {Fn ¬ m} oraz {Fn >

∫
Fndµ−t0} mają niepuste przecięcie. Zatem

∫
Fndµ ¬ m+t0

i z twierdzenia Lebesgue’a o zbieżności monotonicznej dostajemy
∫
|F |dµ ¬ m + t0 < ∞.

Ostatnią część tezy dostajemy stosując (1) do min{max{F,−n}, n} i przechodząc z n →
∞.

3 Nierówności izoperymetryczne

W tej części omówimy kilka nierówności izoperymetrycznych, pokazując różne sposoby ich
dowodzenia - poprzez powiązane nierówności funkcyjne, symetryzacje czy transport miary.
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3.1 Klasyczna izoperymetria

Chociaż w tym wykładzie będziemy się zajmować miarami probabilistycznymi, to przegląd
nierówności izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a λn.

Twierdzenie 3.1. Jeśli A jest podzbiorem borelowskim Rn takim, że λn(A) = λn(B(x0, r)),
to dla dowolnego t > 0,

λn(At) ­ λn(B(x0, r)t) = λn(B(x0, r + t)).

Twierdzenie 3.2 (Nierówność Prékopy-Leindlera). Jeśli s ∈ [0, 1] oraz f, g, h : Rn →
[0,∞) spełniają warunek

h(sx+ (1− s)y) ­ f(x)sg(y)1−s dla x, y ∈ Rn, (2)

to ∫
Rn
h(x)dx ­

( ∫
Rn
f(x)dx

)s( ∫
Rn
g(x)dx

)1−s
.

Dowód. Najpierw wykażemy, że dla niepustych zbiorów A,B ∈ B(Rn) zachodzi

λ1(A+B) ­ λ1(A) + λ1(B).

Ponieważ λ1(A) = sup{λ1(K) : K ⊂ A,K zwarty}, to możemy przyjąc, że zbiory A i B są
zwarte. Ponadto odpowiednio je przesuwając możemy też zakładać, że supA = inf B = 0.
Wówczas A ∩B = {0} oraz

λ1(A+B) ­ λ1(A ∪B) = λ1(A) + λ1(B).

Nierówność Prékopy-Leindlera udowodnimy przez indukcję po n. Najpierw rozważ-
my n = 1. Możemy zakładać, że f, g i h są ograniczone, a z uwagi na jednorodność, że
sup f(x) = sup g(x) = suph(x) = 1. Zauważmy, że dla 0 ¬ r < 1, {h ­ r} ⊃ s{f ­
r}+ (1− s){g ­ r}, więc całkując przez części dostajemy∫

h(x)dx =
∫ 1
0
λ1({h ­ r})dr ­

∫ 1
0
λ1(s{f ­ r}+ (1− s){g ­ r})dr

­
∫ 1
0
λ1(s{f ­ r}) + λ1((1− s){g ­ r})dr

= s

∫
fdx+ (1− s)

∫
gdx ­

( ∫
fdx

)s( ∫
gdx

)1−s
,

gdzie ostatnia nierówność wynika z porównywania ważonych średnich arytmetycznych i
geometrycznych.
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Załóżmy teraz, że n ­ 2 oraz teza twierdzenia zachodzi dla n−1. Niech f, g, h spełniają
(2) i określmy dla x ∈ R

F (x) =
∫

Rn−1
f(x, z)dz, G(x) =

∫
Rn−1

g(x, z)dz oraz H(x) =
∫

Rn−1
g(x, z)dz.

Zauważmy, że dla ustalonego x, y ∈ R

h(sx+ (1− s)y, sz1 + (1− s)z2) ­ f(x, z1)sg(y, z2)1−s dla z1, z2 ∈ Rn−1.

Zatem na mocy założenia indukcyjnego

H(sx+ (1− s)y) ­ F (x)sG(y)1−s.

Stosując nierówność Prékopy-Leindlera w udowodnionym wcześniej przypadku n = 1 do-
stajemy ∫

Rn
h(x)dx =

∫
R
H(x)dx ­

( ∫
R
F (x)dx

)s( ∫
R
G(x)dx

)1−s
=
( ∫

Rn
f(x)dx

)s( ∫
Rn
g(x)dx

)1−s
.

Wniosek 3.3 (Nierówność Brunna-Minkowskiego). Dla dowolnych niepustych zbiorów bo-
relowskich A,B ⊂ Rn,

λn(sA+ (1− s)B) ­ λn(A)sλn(B)1−s dla s ∈ [0, 1]

oraz
λn(A+B)1/n ­ λn(A)1/n + λn(B)1/n.

Dowód. Pierwsza nierówność natychmiast wynika z nierówności Prékopy-Leindlera zasto-
sowanej do funkcji f = 1A, g = 1B oraz h = 1sA+(1−s)B.

By udowodnić drugą wystarczy rozważyć przypadek, gdy A i B są zbiorami skończonej
i niezerowej miary. Przyjmijmy wtedy

Ã =
A

s
, B̃ =

B

1− s
oraz s =

λn(A)1/n

λn(A)1/n + λn(B)1/n
.

Wówczas λn(Ã) = λn(B̃) = (λn(A)1/n + λn(B)1/n)n, więc na podstawie wykazanej po-
przednio nierówności

λn(A+B) = λn(sÃ+ (1− s)B̃) ­ λn(Ã)sλn(B̃)1−s = (λn(A)1/n + λn(B)1/n)n.
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Uwaga 3.4. Suma dwu zbiorów borelowskich nie musi być zbiorem borelowskim, ale można
wykazać, że jest zbiorem mierzalnym w sensie Lebesgue’a.

Dowód Twierdzenia 3.1. Niech cn = λn(B(0, 1)), wówczas λn(A) = cnr
n i na podstawie

Wniosku 3.3,

λn(At) = λn(A+B(0, t)) ­ (λn(A)1/n + λn(B(0, t))1/n)n

= cn(r + t)n = λn(B(x0, r + t)).

Definicja 3.5. Dla miary µ na przestrzeni probabilistycznej (X, d) określamy zewnętzną
miarę brzegową µ+ wzorem

µ+(A) := lim inf
t→0+

µ(At)− µ(A)
t

.

Uwaga 3.6. Jeśli miara µ na Rn ma ciągłą gęstość g(x) oraz zbiór A ma gładki brzeg, to

µ+(A) =
∫
∂A
g(x)dHn−1(x),

gdzie Hn−1 oznacza n− 1 wymiarową miarę Haussdorffa.

Równoważna różniczkowa forma klasycznej nierówności izoperymetrycznej mówi, że
spośród zbiorów ustalonej objętości najmniejszą powierzchnię brzegu ma kula. Dokładniej:

Twierdzenie 3.7. Jeśli A jest podzbiorem borelowskim Rn takim, że λn(A) = λn(B(x0, r)),
to

λ+n (A) ­ λ+n (B(x0, r)) = nc1/nn (λn(A))(n−1)/n,

gdzie

cn = λn(B(0, 1)) =
πn/2

Γ(n/2 + 1)
.

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jeśli A jest podzbiorem borelowskim Sn takim, że σn(A) = σn(B(x0, r)),
to dla dowolnego t > 0,

σn(At) ­ σn(B(x0, r)t) = σn(B(x0, r + t)).

Wniosek 3.9.

ασn(t) ¬
√
π

8
exp

(
− (n− 1)

2
t2
)
.

10



Dowód. Dla n = 1 nie ma co dowodzić (bo zawsze αµ(t) ¬ 1/2). Będziemy więc zakładać,
że n ­ 2. Zauważmy, że

σn(B(x0, r)) = s−1n

∫ r

0
sinn−1 tdt,

gdzie sn =
∫ π
0 sinn−1 tdt. Zatem

ασn(t) = 1− σn(B(x0, t+ π/2)) = s−1n

∫ π

t+π/2
sinn−1 udu = s−1n

∫ π/2

t
cosn−1 udu.

Stosując oszacowanie cosu ¬ exp(−u2/2) dla t ∈ [0, π/2], dostajemy∫ π/2

t
cosn−1 udu ¬

∫ π/2

t
e−(n−1)u

2/2du ¬ 1√
n− 1

∫ ∞
t
√
n−1

e−s
2/2ds

=

√
2π√
n− 1

(1− Φ(t
√
n− 1)) ¬

√
π√

2(n− 1)
e−(n−1)t

2/2.

Ponadto łatwe całkowanie przez części daje, że dla n ­ 3, sn = n−2
n−1sn−2, stąd

√
n− 1sn =

n− 2√
n− 1

sn−2 ­
√
n− 3sn−2,

zatem
inf
n­2

√
n− 1sn = min{s2,

√
2s3} = min{2, π/

√
2} = 2.

3.3 Izoperymetria gaussowska

Przypomnijmy, że przez γk oznaczamy kanoniczny rozkład gaussowski na Rk, tzn. rozkład
z gęstością (2π)−k/2 exp(−|x|2/2).

Głównym wynikiem, który wykażemy jest to, że dla rozkładów gaussowskich optymalne
dla problemu izoperymetrycznego są półprzestrzenie afiniczne, to znaczy zbiory postaci

H = {x ∈ Rk : 〈x, u〉 < r} dla pewnych u ∈ Sk−1 i r ∈ [−∞,∞]. (3)

Twierdzenie 3.10. Niech H będzie półprzestrzenią afiniczną, a A zbiorem borelowskim w
Rk takim, że γk(H) = γk(A). Wówczas dla dowolnego t > 0, γk(Ht) ¬ γk(At)

Zanim przystąpimy do dowodu twierdzenia pokażemy, że γk jest granicą rzutowań roz-
kładów jednostajnych na

√
nSn−1.

Niech P = Pk,n oznacza kanoniczny rzut Rn na Rk dla k < n, zaś σ̃n−1 oznacza
unormowaną miarę powierzchniową na

√
nSn−1. Oznaczmy przez µk,n obraz σ̃n−1 przy

tym rzutowaniu tzn.

µk,n(A) = σ̃n−1
(
P−1k,n(A)

)
dla A ∈ B(Rk).
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Fakt 3.11 (Lemat Poincaré). Miara µk,n zbiega słabo przy n→∞ do miary γk, co więcej

lim
n→∞

µk,n(A) = γk(A) dla dowolnego zbioru borelowskiego A.

Dowód. Proste rozumowanie pokazuje, że miara µk,n ma gęstość gk,n(x) = c−1k,ng̃n,k(x), gdzie

g̃n,k = (n−|x|
2

n )(n−k−2)/21{|x|¬√n} oraz ck,n =
∫
Rk g̃n,k(x)dx. Oczywiście limn→∞ g̃k,n(x) =

exp(−|x|2/2), ponadto |g̃k,n(x)| ¬ exp(−(n − k − 2)|x|2/(2n)) ¬ exp(−|x|2/(2n)) dla n ­
k + 2. Z twierdzenia Lebesgue’a o zbieżności zmajoryzowanej otrzymujemy limn→∞ cn,k =∫
Rk exp(−|x|2/2)dx, czyli gęstość miary µk,n zbiega punktowo do gęstości miary γk. Teza

faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [1]).

Dowód Twierdzenia 3.10. Ze względu na rotacyjną niezmienniczość miary γk możemy dla
uproszczenia notacji założyć, że H = {x : x1 < r}. Ustalmy dowolne r0 < r i niech
H0 = {x : x1 < r0}. Zauważmy, że γk(H0) < γk(A), zatem na podstawie Lematu Poin-
caré, µk,n(H0) ¬ µk,n(A) dla dużych n. Ponieważ P−1k,n(H0)∩

√
nSn−1 jest kulą w

√
nSn−1,

więc na mocy izoperymetrii sferycznej

σ̃n−1
(
(P−1k,n(A))t

)
­ σ̃n−1

(
(P−1k,n(H0))t

)
.

Zauważmy, że przekształcenie Pk,n jest oczywiście 1-lipschitzowskie, więcAt ⊃ Pk,n((P−1k,n(A))t)
i

µk,n(At) ­ µk,n(Pk,n((P−1k,n(A))t)) ­ µk,n(Pk,n((P−1k,n(H0))t)).

Nietrudno zauważyć, że
Pk,n((P−1k,n(H0))t) = {x : x1 < rn}

oraz rn → r0 + t przy n→∞. Stąd

γk(At) = lim
n→∞

µk,n(At) ­ lim
n→∞

µk,n({x : x1 < rn}) = γk({x : x1 < r0 + t}),

z dowolności r0 < r wynika teza.

Twierdzenie 3.12. Jeśli γk(A) = Φ(x) to γk(At) ­ Φ(x + t) oraz γ+k (A) ­ Iγ(γk(A)),
gdzie Iγ(x) := ϕ(Φ−1(x)) oraz ϕ(x) = Φ′(x) = 1√

2π
exp(−x2/2).

Dowód. Wystarczy zauważyć, że jeśli γk(H) = Φ(x) i H jest postaci (3), to Ht = {x ∈
Rk : 〈x, u〉 < r + t} i γk(Ht) = Φ(x+ t).

Zauważając, że Φ(0) = 1/2 otrzymujemy:

Wniosek 3.13. αγk(t) ¬ 1− Φ(t) ¬ 12 exp(−t2/2).

Jak widzieliśmy już w dowodzie Twierdzenia 3.10 bardzo użyteczne jest pojęcie tzw.
transportu miary.
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Definicja 3.14. Niech µ i ν będą miarami na przestrzeniach metrycznych X i Y . Powiemy,
że funkcja borelowska T : X → Y transportuje miarę µ na miarę ν (ew. miara ν jest obrazem
miary µ przy przekształceniu T ) jeśli ν(A) = µ(T−1(A)) dla wszystkich A ∈ B(Y ).

Szczególnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jeśli ϕ : X → Y jest L-lipschitzowska oraz ϕ transportuje miarę µ na ν, to
αν(t) ¬ αµ(t/L).

Dowód. Wystarczy zauważyć, że (T−1(A))t/L ⊂ T−1(At).

Transportując w sposób lipschitzowski miarę gaussowską można uzyskać oszacowania
funkcji koncentracji dla innych miar. Pokażemy dwa przykłady.

Wniosek 3.16. Niech µ[0,1]n oznacza rozkład jednostajny na kostce [0, 1]n. Wówczas µ[0,1]n
jest (2π)−1/2-lipschitzowskim obrazem γn. W szczególności αµ[0,1]n ¬

1
2 exp(−πt2).

Dowód. Określmy f : R→ (0, 1) wzorem

f(x) = µ[0,1]([0, f(x)]) = γ1((−∞, x]) = Φ(x).

Wówczas funkcja f transportuje miarę gaussowską γ1 na µ[0,1], to znaczy µ[0,1] = γ1 ◦ f−1.
Ponadto f ′(x) = (2π)−1/2 exp(−x2/2) ¬ (2π)−1/2, czyli f jest (2π)−1/2-lipschitzowska. Jeśli
teraz określimy F : Rn → (0, 1)n wzorem F (x) = (f(x1), . . . , f(xn)), to F transportuje
γn na µ oraz F jest (2π)−1/2-lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencją Faktu 3.15 i Wniosku 3.13.

Wniosek 3.17. Niech Bn = {x ∈ Rn : |x| ¬ 1} oznacza kulę jednostkową w Rn, zaś µBn
będzie rozkładem jednostajnym na Bn. Wówczas istnieje stała C taka, że µBn jest Cn−1/2-
lipschitzowskim obrazem γn. W szczególności αµBn ¬

1
2 exp(−nt2/(2C)).

Ponieważ obie miary γn i µBn są rotacyjnie niezmiennicze, będziemy szukać funkcji
T : Rn → Bn transportującej γn na µBn postaci Tx = x

|x|ϕ(|x|). Dalsze szczegóły na ćwi-
czeniach.

Otwarty problem. Rozwiązać zagadnienie izoperymetryczne dla zbiorów symetrycz-
nych, to znaczy znaleźć dla ustalonego t > 0, c ∈ [0, 1],

inf
{
γk(At) : γk(A) = c, A = −A

}
oraz

inf
{
γ+k (A) : γk(A) = c, A = −A

}
.

Dość naturalna hipoteza mówi, że dla c ­ 1/2 rozwiązaniem obu problemów są zbiory
postaci [−a, a]×Rk−1 zaś dla c < 1/2 drugi problem się optymalizuje dla (R\[−a, a])×Rk−1.
Podobny problem można postawić dla miary σn, ale tam analogiczna hipoteza okazuje się
być niestety fałszywa.
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4 Metoda Martyngałowa

4.1 Transformata Laplace’a

Wiele dalszych szacowań będzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatą Laplace’a zmiennej losowej Z nazywamy funkcję

LZ(λ) := EeλZ λ ∈ R.

Podobnie jeśli µ jest miarą probabilistyczną na pewnej przestrzeni X oraz F : X → R, to
transformatę Laplace’a F względem µ określamy

LF,µ(λ) :=
∫
X
eλF (x)dµ(x).

Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z ­ t) ¬ inf
λ­0

e−λtLZ(λ) dla t ­ 0.

W szczególności, jeśli dla pewnego a > 0,

LZ(λ) ¬ exp(aλ2) λ ∈ R,

to dla t ­ 0

P(Z ­ t) ¬ exp
(
− t2

4a

)
oraz P(|Z| ­ t) ¬ 2 exp

(
− t2

4a

)
.

Dowód. Pierwsza część wynika z nierówności Czebyszewa, a druga z pierwszej i prostego
rachunku.

Zatem by udowodnić, że funkcja koncentracji miary µ jest gaussowska wystarczy wy-
kazać, że LF,µ(λ) ¬ exp(aλ2) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, że

∫
Fdµ = 0.

4.2 Nierówność Azumy

Twierdzenie 4.3 (Nierówność Hoeffdinga-Azumy). Niech (Mk,Fk)nk=0 będzie martynga-
łem o ograniczonych przyrostach takim, że ‖Mk −Mk−1‖∞ ¬ ak. Wówczas

P(Mn −M0 ­ t) ¬ exp
(
− t2

2
∑n
i=1 a

2
i

)
.

14



Dowód. Określmy dla 1 ¬ k ¬ n, dk := Mk −Mk−1, wówczas E(dk|Fk−1) = 0. Mamy
1−u
2 (−x) + 1+u

2 x = ux, więc z wypukłości exp(x),

eux ¬ 1− u
2

e−x +
1 + u

2
ex = u sinh(x) + cosh(x) dla |u| ¬ 1.

Stosując tę nierówność dla u = dk/ak i x = λak dostajemy

E(eλdk |Fk−1) ¬ E
(dk
ak

∣∣∣Fk−1) sinh(λak) + cosh(λak) = cosh(λak).

Liczymy

Eeλ(Mn−M0) = Eeλ(Mn−1−M0+dn) = E(eλ(Mn−1−M0)E(eλdn |Fn−1))
¬ cosh(λan)Eeλ(Mn−1−M0).

Zatem iterując powyższą nierówność i stosując oszacowanie (wynikające np. z rozwinięcia
w szereg Taylora) cosh(x) ¬ exp(x2/2) dostajemy

LMn−M0(λ) = Eeλ(Mn−M0) ¬
n∏
k=1

cosh(λak) ¬ exp(
1
2

n∑
k=1

a2kλ
2).

Teza twierdzenia wynika z Faktu 4.2.

Uwaga 4.4. Najczęściej będziemy mieli F0 = {∅,Ω}, wówczas M0 jest stałe, a ponieważ
martyngał ma stałą wartość oczekiwaną, to M0 = EMn.

W poniższych zastosowaniach będziemy przyjmować Mk = Eµ(F |Fk) dla całkowalnej
funkcji F : X → R i odpowiednio dobranego (Fk) ciągu σ-ciał podzbiorów X.

Wniosek 4.5. Niech (Xi, di) będą przetrzeniami metrycznymi, X = X1 × · · · × Xn z
odległością l1, to znaczy d(x, y) =

∑n
i=1 di(xi, yi) dla x, y ∈ X oraz niech µ = µ1 ⊗ . . . ⊗

µn będzie produktem miar probabilistycznych µi na Xi. Wówczas dla dowolnej funkcji 1-
lipschitzowskiej F na X

µ
({
x : F (x) ­

∫
Fdµ+ t

})
¬ exp(− t2

2D2
),

gdzie D = (
∑n
i=1Diam(Xi)2)1/2. W szczególności

αµ(t) ¬ exp
(
− t2

8D2
)
.
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Dowód. Na mocy Faktu 2.8 wystarczy wykazać pierwszą nierówność tezy. Niech Fk będzie
σ ciałem generowanym przez pierwsze k-współrzędnych oraz Mk := Eµ(F |Fk). Wówczas
oczywiście

Mk(x) = M̃k(x1, . . . , xk) =
∫
Xk+1×...×Xn

F (x)dµi+1(xi+1) · · · dµn(xn),

stąd

|Mk(x)−Mk−1(x)| = |M̃k(x1, . . . , xk)−
∫
Xk

M̃k(x1, . . . , xk)dµk(xk)|

¬ sup
yk,zk∈Xk

|M̃k(x1, . . . , xk−1, yk)− M̃k(x1, . . . , xk−1, zk)|

¬ sup
y∈X,zk∈Xk

|F (x1, . . . , xk−1, yk, yk+1, . . . , yn)− F (x1, . . . , xk−1, zk, yk+1, . . . , yn)|

¬ sup
yk,zk∈Xk

dk(yk, zk) ¬ Diam(Xk)

i teza wynika z Twierdzenia 4.3.

Przykład 1. Niech X = {0, 1}n z odległością d(x, y) = 1
n#{i : xi 6= yi} i unormowaną

miarą liczącą µ. Kładąc Xi = {0, 1} z odległością di(x, y) = 1
nI{x 6=y} widzimy, że możemy

stosować poprzedni wniosek i D = (
∑n
i=1Diam(Xi)2)1/2 = n−1/2. Zatem

α({0,1}n,d,µ) ¬ exp(−nt
2

8
).
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