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1 Wstep

W wielu problemach rachunku prawdopodobienstwa i jego zastosowan pojawiaja sie wielo-
wymiarowe obiekty losowe takie jak wektory losowe, macierze losowe, procesy stochastyczne
czy grafy losowe. Celem wyktadu bedzie przedstawienie wybranych narzedzi pozwalajacych
badaé takie obiekty. Wyklad bedzie dotyczyl tak zwanej teorii nieasymptotycznej, tzn. na-
cisk bedzie polozony na rézne szacowania, a nie na twierdzenia graniczne.

W pierwszej czesci wykltadu oméwimy pewne zagadnienia zwigzane z teoria koncen-
tracji miary, ktére pozwalaja szacowaé¢ odchylenia funkcji zaleznej od wielu zmiennych
losowych od jej wartosci oczekiwanej. W drugiej pokazemy kilka metod pozwalajacych sza-
cowad suprema proceséw stochastycznych. Oméwimy tez pewna liczbe bardziej konkretnych
przyktadéw zastosowan.

Oczywiscie podczas semestralnego wyktadu monograficznego mozna oméwié tylko nie-
wielka czed¢ bogatej i ciagle rozwijajacej si¢ teorii. Duzo szerszy wybér zagadnien zostat
przedstawiony w notatkach Ramona van Handela [4] i monografii Romana Vershynina [5],
zainteresowany Czytelnik znajdzie tam tez szersze zestawienie bibliografii.

2 Koncentracja miary - wprowadzenie

2.1 Funkcja koncentracji miary - definicja i przyktady.

Wiele waznych miar probabilistycznych spetnia tzw. fenomen koncentracji miary. Niefor-
malnie rzecz biorac polega on na tym, ze wiekszo$¢ punktéw z przestrzeni lezy w poblizu
zbioru wypelniajacego przynajmniej potowe przestrzeni. By pojecie to sformalizowaé po-
trzebujemy dwoch waznych definicji.

Definicja 2.1. Niech (X, d) bedzie przestrzenia metryczna, zas A dowolnym podzbiorem
X. Dla t > 0 okreslamy t-otoczenie zbioru A wzorem

Ay ={r e X:d(z,A) <t} = U B(y,t),
yeEA

gdzie B(y,t) oznacza kule otwarta w X o $rodku w y i promieniu ¢.

Definicja 2.2. Niech p bedzie miara probabilistyczna na (X, d). Funkcjg koncentracji
miary p definiujemy jako

(1) = @x g (1) = sup {1 — p(A4): (4) > 2}

Na poczatek wyktadu podamy kilka przyktadéw dla ktorych mozna dobrze oszacowaé
funkcje koncentracji. Dowody podanych oszacowan przedstawimy pozniej.

Przyklad 1. Niech d oznacza odlegloéé¢ geodezyjna na m wymiarowej sferze S™ =
{z € R": |z| = 1}, za$ 0, oznacza unormowang miare powierzcniowa na S”. Wéwczas



okazuje sig, ze jesli chcemy zminimalizowaé o, (A;) po wszystkich zbiorach ustalonej miary
ekstremalne sa kule (zwane tez czapeczkami), to znaczy

on(A) = on(B(z0,7)) = 0n(As) = on(B(z0,7)t) = on(B(zo, 7 +1)).

W szczegdlnosci jesli o, (A4) > 1/2, to

on(Ap) > O‘n(B<ZL'(), g +t>) >1—exp ( — (n—21)t2)

Zatem a,,, (t) < exp(—251t2).

Uwaga 2.3. Zauwazmy, ze funkcja koncentracji o, szybko zbiega do 0 przy n — oo. Jedna
z przyczyn tego zjawiska jest to, ze miara ta nie jest dobrze unormowana. Jesli przez
on,r okredlimy rozklad jednostajny na sferze RS™, to poniewaz jest on obrazem o, przy
jednoktadnosci o skali R, to

t n—1
Qg (L) = ag, (ﬁ) < exp ( Y tz).
Zauwazmy tez, ze
/ don p(z) = -2
zixido = e
Ran L0 R n+1 ,J

Zatem miara jednostajna na v/n 4+ 15™ ma dobra normalizacje, to znaczy taka, ze macierz
kowariancji jest identycznoscia. Dla tej miary dla n > 2,

<_ 2(n + 1)t2)

1
Ao, ey (1) < exp < exp ( - 6t2>.

Przyklad 2. Niech 7; oznacza kanoniczny rozklad gaussowski na R¥ tzn. rozklad z
gestoscia (2m) %2 exp(—|z|?/2). Wéwczas ekstremalnymi zbiorami w problemie izopery-
metrycznym okazuja sie péiprzestrzenie, tzn. jesli

M(A) = e ((=00,7] x R¥) = a(r),

to
Yi(Ay) > *yk(((—oo,r] X Rk_l)t> = yk((—oo, r 4 t] X ]Rk_1> =®O(r +t).
W szczegdlnosei

1
(1) <1—3(t) < 56—9/2.

Zauwazmy, ze poOwyzsze oszacowania nie zalezg od wymiaru przestrzeni.

Przyktad 3. Niech v bedzie symetrycznym rozkladem wyktadniczym, tzn. rozktadem
na R z gestoécia § exp(—|z|). Przez v* bedziemy oznaczaé rozklad produktowy v®...®v na
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R*. Wyznaczenie ekstremalnych zbioréw dla problemu izoperymetrycznego zwigzanego z ta
miara jest trudne i nieznane dla k # 1. Choé¢ wiadomo, ze ekstremalne nie sg pétprzestrzenie
postaci (—oo, 7] X R*~1 to sa one optymalne z doktadnoscia do stalej, tzn.

VH(A) = v((=00,1]) = vF(A) > v((—oo,r + 2\1/64)

W szczegdlnosci

1 1 1
ak(t) <1 —I/((—OO, 27\/675}) = §exp(— ﬁt>

Zauwazmy, ze znowu uzyskane oszacowanie nie zalezy od wymiaru przestrzeni.

Przyktad 4. Niech p bedzie unormowang miara liczaca na kostce dyskretnej {0, 1}"
z metryka d(z,y) = %#{z x; # y;}. Tu problem izoperymetryczny daje sie rozwiazaé
(optymalne sa kule, ewentualnie z dodanymi punktami na brzegu). W tym przypadku
mozna pokazaé, ze
a,(t) < e 2,

Krétki przeglad wynikéw pokazuje, ze w wielu waznych zastosowaniach mozna wykazac,
ze a,(t) < Chexp(—t?/Cs) — méwimy wtedy, ze funkcja koncentracji jest typu gaussow-
skiego. Widzielismy tez przyktad, w ktérym o, (t) < Ciexp(—t/Cs) — méwimy wtedy o
koncentracji wyktadniczej.

2.2 Koncentracja funkcji lipschitzowskich

W wielu zastosowaniach nie interesuje nas jak zmienia si¢ miara otoczenia zbioru, a raczej
jak szybko maleja ogony funkcji okredlonych na przestrzeni. W tej czedci powiazemy ze
soba te zjawiska. Zacznijmy od definicji mediany i modutu ciagtosci.

Definicja 2.4. Niech p bedzie miara probabilistyczna na (X, d) oraz f: X — R.
Mediang funkeji f wzgledem miary p nazywamy taka liczbe M = Med,,(f) dla ktorej

—~

N |

p({e: f(@) > MY) > 5 oran p({e: f(x) < M}) >
Modulem cigglosci f nazywamy funkcje
wy () = sup{lf (@) — F(y)]: dl,y) < ).
Fakt 2.5. Dla dowolnej funkcji F: X — R,
u({z: F(z) > Med, (F) + wp(t)}) < a,(t)

u({z: |F(x) — Med,(F)| > wr(t)}) < 204,(t).



Dowdd. Niech A := {x: F(xz) < Med,(F)} wéwczas u(A) > 1/2 zatem p(A;) > 1 —
ay,(t). Ponadto, jesli x € Ay, to istnieje y € A takie, ze d(z,y) < t i1 wowczas F(x) <
F(y) +wp(t) < Med,(F)+wp(t), stad pierwsza nieréwnos¢ w fakcie. Stosujac ja do —F i
zauwazajac, ze Med,(—F) = —Med,(F') oraz w_p = wr dostajemy

u({x: F(a) < Med, (F) — wip(H)}) < au(t).
Dodajac powyzsza nieréwno$é¢ do poprzedniej otrzymamy ostatnig czes¢ faktu. O
Przypomnijmy definicje funkcji lipschitzowskiej
Definicja 2.6. Funkcje F': (X, d) — R nazywamy lipschitzowskq, jesli

|| F'||Lip := sup —’F(JU) — F(y)l < 00.
TF#Y d(l‘,y)

Moéwimy, ze funkcja jest L-lipschitzowska jesli || F||rip < L, tzn. |F(z) — F(y)| < Ld(z,y)
dla wszystkich z,y € X.

Analogicznie mozna zdefiniowa¢ funkcje lipschitzowskie miedzy przestrzeniami metrycz-
nymi.

Fakt 2.7. i) Jesli F jest lipschitzowska ze stalq L, to dla t > 0,
u({x: F(z) > Med, (F) + ) < a,(t/L)

u({e: |F(z) — Med, (F)| > t}) < 2a,(t/L).

it) Na odwrdt, jesli dla kazdej funkcji 1-lipschitzowskiej F' i ustalonego t > 0,
u({a: F(z) > Med,(F) +1}) < a,
to a,(t) < a.

Dowdd. i) Wynika z Faktu 2.5 i oczywistego szacowania wy(t) < tL.
ii) Ustalmy zbiér A taki, ze pu(A) > 1/2 i okreSlmy F(z) := d(x, A). Wéwczas F' jest
1-lipschitzowska oraz Med, (F') = 0, zatem

a > p({F > t}) = p({z: d(z, A) > t}) = 1 — p(Ay).
O

Czesto tatwiej i naturalniej jest wykazywaé koncentracje funkcji lipschitzowskich wokot
Sredniej a nie mediany. Kolejny fakt pokazuje jak odzyskaé funkcje koncentracji w takim
przypadku.



Fakt 2.8. Zaloimy, Ze u jest miarg probabilistyczng na przestrzeni metrycznej (X, d) oraz
dla ograniczonych funkcji 1-lipschitzowskich F it > 0 zachodzi

u({x: F(z) > /qu+t}) < aft). (1)
Wéwczas dla dowolnego zbioru borelowskiego A takiego, Ze u(A) > 0 zachodzi
1= p(Ay) < ap(A)t).

W szczegolnosci

a,(t) < a(%).

Ponadto, jesli limy_.o a(t) = 0, to dowolna funkcja 1-lipschitzowska jest calkowalna i jesli
dodatkowo « jest ciggla, to (1) zachodzi dla wszystkich funkcji 1-lipschitzowskich.

Dowdd. Ustalmy zbiér borelowski A taki, ze u(A) > 0 oraz liczbe ¢ > 0. Zdefiniujmy
F(z) := min{d(x, A),t}, wowczas funkcja F' jest ograniczona, 1-lipschitzowska i [ Fdu <
t(1 — u(A)). Stad na mocy (1),

L= p(A) = p({F > 1)) < p({F > /qu + p(A)E}) < alp(A)).

W szczegdlnoscei, jesli p(A) > 1/2, to 1 — p(Ar) < af(t/2).
By udowodni¢ druga czes¢ faktu, ustalmy funkcje 1-lipschitzowska F' i niech F, :=
min{|F|,n}. Z (1) zastosowanej do —F,, dostajemy

u({e: Fule) < /Fndu 1)) <alt).

Wybierzmy tg takie, ze a(tog) < 1/2 oraz m := Med,|F|. Wowczas u({F, < m}) > 1/2, czyli
zbiory {F,, < m} oraz {F,, > [ F,du—to} maja niepuste przecigcie. Zatem [ F,,dp < m—+to
i z twierdzenia Lebesgue’a o zbieznosci monotonicznej dostajemy [ |F|du < m + to < oo.
Ostatnia czes$¢ tezy dostajemy stosujac (1) do min{max{F,—n},n} i przechodzac z n —
0. 0

3 Nieréwnosci izoperymetryczne

W tej czedci oméwimy kilka nieréwnosci izoperymetrycznych, pokazujac rézne sposoby ich
dowodzenia - poprzez powigzane nierownosci funkcyjne, symetryzacje czy transport miary.



3.1 Klasyczna izoperymetria

Chociaz w tym wyktadzie bedziemy sie zajmowaé miarami probabilistycznymi, to przeglad
nieréwnosci izoperymetrycznych zaczniemy od klasycznego przypadku n-wymiarowej miary
Lebesgue’a A,,.

Twierdzenie 3.1. Jesli A jest podzbiorem borelowskim R™ takim, ze A (A) = A\ (B(xo, 7)),
to dla dowolnego t > 0,

M (Ar) = An(B(z0,7)e) = A\ (B(xo, 7+ t)).

Twierdzenie 3.2 (Nieréwnosé¢ Prékopy-Leindlera). Jesli s € [0,1] oraz f,g,h: R" —
[0,00) spelniajq warunek

h(sz+ (1—s)y) > f(z)°g(y)' ™ dlaz,y € R", (2)

to
/n h(z)dz > ( - f(x)dx)s(/Rn g(x)dx)l_s.

Dowdd. Najpierw wykazemy, ze dla niepustych zbioréw A, B € B(R™) zachodzi
M(A+ B) = M(A) + \(B).

Poniewaz A\ (A) = sup{\i(K): K C A, K zwarty}, to mozemy przyjac, ze zbiory A i B sa
zwarte. Ponadto odpowiednio je przesuwajac mozemy tez zakladaé, ze sup A = inf B = 0.
Woéwczas AN B = {0} oraz

)\1(A+B) > )\1(AU B) = )\1(14) + )\1(3)

Nierownosé Prékopy-Leindlera udowodnimy przez indukcje po n. Najpierw rozwaz-
my n = 1. Mozemy zakladaé¢, ze f,g i h sa ograniczone, a z uwagi na jednorodnos¢, ze
sup f(z) = supg(x) = suph(z) = 1. Zauwazmy, ze dla 0 < r < 1, {h > r} D s{f >
r} 4+ (1 —s){g > r}, wiec calkujac przez czesci dostajemy

/h(x)d:c _ /01 M{h > e > /01 M(s{f >} + (1= s){g > r}dr

1
> [ Mals{f 2 D) + A1 = s){g > e
0

:s/fda;+(1—s)/gdx> (/fdx)s(/gdﬂ?)l_sv

gdzie ostatnia nieréwnos$¢ wynika z poréwnywania wazonych Srednich arytmetycznych i
geometrycznych.



Zalézmy teraz, ze n > 2 oraz teza twierdzenia zachodzi dla n— 1. Niech f, g, h spelniaja
(2) i okre$lmy dla z € R

F(z)= /Rn—l f(z,2)dz, G(z)= /Rn—l g(x,z)dz oraz H(x)= /]Rn—l g(x, z)dz.
Zauwazmy, ze dla ustalonego z,y € R
h(sz 4+ (1 —8)y,s21 + (1 — 8)29) > f(x,21)%g(y, 22)' ™% dla 21,20 € R*7L.
Zatem na mocy zalozenia indukcyjnego
H(sz + (1 —s)y) > F(x)*G(y)' .

Stosujac nieréwnoé¢ Prékopy-Leindlera w udowodnionym wczesniej przypadku n = 1 do-
stajemy

S

- h(z)dx = /RH(:E)dx > (/RF(x)da:)s(/RG(x)da:>l_

= ( - f(x)dx)s(/ng($)dx)l_s.
t

Whiosek 3.3 (Nieréwno$é Brunna-Minkowskiego). Dla dowolnych niepustych zbioréw bo-
relowskich A, B C R",

M(sA+ (1 =58)B) > M(A)P*N (B dla s €[0,1]

oraz

An(A+ B)Y™ > N\, (A" 4 2,(B)Y™

Dowdd. Pierwsza nieréwno$é¢ natychmiast wynika z nieréwnosci Prékopy-Leindlera zasto-
sowanej do funkcji f = 14,9 =1p oraz h =1 441_4)B-
By udowodnié¢ druga wystarczy rozwazy¢ przypadek, gdy A i B sg zbiorami skonczonej
i niezerowej miary. Przyjmijmy wtedy
A B An(A)H/7

s 1—s % 77 (A 1 (B)n

Wowezas Ap(A) = A(B) = (A(A)Y" + A (B)Y/™)", wiec na podstawie wykazanej po-
przednio nieréwnosci

M(A+ B) = My (sA + (1= 8)B) = My(A)* A (B)175 = M (Y™ + M\ (B)Ym)",



Uwaga 3.4. Suma dwu zbioréw borelowskich nie musi by¢ zbiorem borelowskim, ale mozna
wykazaé, ze jest zbiorem mierzalnym w sensie Lebesgue’a.

Dowdéd Twierdzenia 3.1. Niech ¢, = A\, (B(0,1)), wéwczas A\p,(A) = ¢,r" 1 na podstawie
Whniosku 3.3,

An(Ag) = M(A + B(0,1) = (Aa(A)Y™ + A (B(0,£)) /)"
=cp(r+t)" = M\ (B(zo, 7 + 1)).
0

Definicja 3.5. Dla miary p na przestrzeni probabilistycznej (X, d) okreslamy zewnetzng
miare brzegowg pt wzorem

pt(A) := liminf M
t—0+ t

Uwaga 3.6. Jesli miara p na R™ ma ciagla gestosé g(x) oraz zbiér A ma gladki brzeg, to

pHA) = [ @),

gdzie H,,_1 oznacza n — 1 wymiarowa miare Haussdorffa.

Réwnowazna rozniczkowa forma klasycznej nieréwnosci izoperymetrycznej mowi, ze
spoérod zbioréw ustalonej objetosci najmniejsza powierzchnie brzegu ma kula. Dokladniej:

Twierdzenie 3.7. Jesli A jest podzbiorem borelowskim R™ takim, ze A, (A) = A\ (B(xo,7)),

to
AL(A) = AE(B(wo, 1)) = nek/™ (A (A)) = D/m,
gdzie
An(B(0,1 Gl
cn = An(B(0, ))—m-

3.2 Izoperymetria sferyczna

Twierdzenie 3.8. Jesli A jest podzbiorem borelowskim S™ takim, Ze 0,,(A) = o (B(x0, 7)),
to dla dowolnego t > 0,

on(As) = on(B(z0,7)t) = on(B(xo, 7 + t)).

A, (t) < \/zexp ( — (ngl)ﬁ).

Whniosek 3.9.
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Dowdd. Dla n = 1 nie ma co dowodzi¢ (bo zawsze o, (t) < 1/2). Bedziemy wiec zaktadac,
ze n > 2. Zauwazmy, ze

,
on(B(zo,7)) = 5;1/ sin ! tdt,
0

gdzie s, = [J sin" ! tdt. Zatem

i /2
o, (t) =1 — 0, (B(zo, t +7/2)) = 5,1 / sin ! udu = s;l/t cos" L udu.

t4m/2

Stosujac oszacowanie cosu < exp(—u?/2) dla t € [0,7/2], dostajemy

/2 m/2 oo
/ cos" M udu < / e~ (m=Du/2g,, < ! / e=5/2ds
t ¢ n—1Jiyn=1

_ o Vem o - VT vy
= n_1(1 d(tvn —1)) < R D772,

Ponadto tatwe catkowanie przez czesci daje, ze dlan > 3, s, = Z—jsn,g, stad

n—2
vn—1s, = \/ﬁsn_g > vVn — 3sp—_2,

zatem

H;f2 Vn — 1s, = min{ss, v2s3} = min{2, 7/v2} = 2.
n>

3.3 Izoperymetria gaussowska

Przypomnijmy, ze przez vj oznaczamy kanoniczny rozklad gaussowski na R¥, tzn. rozktad
z gestodcia (2m) %2 exp(—|z|/2).

Gtéwnym wynikiem, ktéry wykazemy jest to, ze dla rozktadow gaussowskich optymalne
dla problemu izoperymetrycznego sa polprzestrzenie afiniczne, to znaczy zbiory postaci

H={z e R*: (x,u) <r} dla pewnych v € S¥1ir e [—o0, o). (3)

Twierdzenie 3.10. Niech H bedzie polprzestrzeniq afiniczng, a A zbiorem borelowskim w
R¥ takim, ze yp(H) = v1.(A). Wéwezas dla dowolnego t > 0, vi(Hy) < vie(Ar)

Zanim przystapimy do dowodu twierdzenia pokazemy, ze 7 jest granica rzutowan roz-
kladéw jednostajnych na /nS" 1.

Niech P = Py, oznacza kanoniczny rzut R" na RF dla k < n, za$ 6,_1 oznacza
unormowang miare powierzchniowa na /nS"~!. Oznaczmy przez Mk, Obraz &,_1 przy
tym rzutowaniu tzn.

Hin(A) = 601 (P A (A))  dla A € B(RY).

)
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Fakt 3.11 (Lemat Poincaré). Miara i, zbiega stabo przy n — oo do miary i, co wiecej

11122() tien(A) = v5(A) dla dowolnego zbioru borelowskiego A.

Dowdd. Proste rozumowanie pokazuje, ze miara py, , ma gestosé gy, (z) = c;z§n7k(x), gdzie
n—|z|? )(n—k=2)
n

Gngk = ( /QIL{‘IK\/E} oraz Cyn = [gk Gnk(x)dx. Oczywiscie limy, oo Jin(x)
exp(—|2[2/2), ponadto [Gin(2)] < exp(—(n — k — 2)|o]?/(2n)) < exp(—|[/(2n)) dla n >
k + 2. 7 twierdzenia Lebesgue’a o zbieznoSci zmajoryzowanej otrzymujemy lim, .o ¢, =
Jrr exp(—|z[?/2)dz, czyli gestos¢ miary iy, zbiega punktowo do gestosci miary vx. Teza
faktu wynika z twierdzenia Scheffé’go (zob. zad.8.1.7 w [1]).

O

Dowod Twierdzenia 3.10. Ze wzgledu na rotacyjng niezmienniczo$é miary 7y, mozemy dla
uproszczenia notacji zatozyé, ze H = {x: 1 < r}. Ustalmy dowolne r9 < 7 i niech
Hy = {z: 21 < ro}. Zauwazmy, ze v(Ho) < 'yk.(A), zatem na podstawie Lematu Poin-
caré, ppn(Ho) < pig,n(A) dla duzych n. Poniewaz Py L(Hp) N y/nS™ 1 jest kula w /nS™ 1,
wiec na mocy izoperymetrii sferycznej

On—1 ((Pl;gb(A))t) > 0n 1 ((Plgi(Ho))t)

Zauwazmy, ze przeksztalcenie Py, ,, jest oczywiscie 1-lipschitzowskie, wiec Ay D Py, (P TlL (A)))
i
1 (Ae) 2 e (P (P (A)e)) = ik (Pren (P (Ho))e))-
Nietrudno zauwazyc¢, ze
Pyn (P (Ho))) = {w: a1 <7}

oraz 1, — 1o +t przy n — 0o. Stad
Y (Ap) = nlgrolo L (Ar) > nlgrolo pen({x: z1 <rp}) =w({z: 1 <ro+t}),
z dowolno$ci ry < r wynika teza. O

Twierdzenie 3.12. Jesli vx(A) = ®(z) to w(A) > ®(z +1t) oraz v (A) > I,((A)),
gdzie I(z) := o(®71(z)) oraz p(z) = ¥'(z) = \/12?exp( x2/2).

Dowdd. Wystarczy zauwazy¢, ze jesli v, (H) = ®(xz) i H jest postaci (3), to Hy = {x €
RF: (z,u) <7r+t}iy(Hy) = ®(z+1t). O

Zauwazajac, ze ®(0) = 1/2 otrzymujemy:
Whiosek 3.13. ., (1) < 1— ®(t) < 5 exp(—t?/2).

Jak widzieliSmy juz w dowodzie Twierdzenia 3.10 bardzo uzyteczne jest pojecie tzw.
transportu miary.
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Definicja 3.14. Niech u i v beda miarami na przestrzeniach metrycznych X i Y. Powiemy,
ze funkcja borelowska T': X — Y transportuje miare p na miare v (ew. miara v jest obrazem
miary pu przy przeksztatceniu T) jesli v(A) = p(T—1(A)) dla wszystkich A € B(Y).

Szczegdlnie wygodny jest transport lipschitzowski.

Fakt 3.15. Jesli o: X — Y jest L-lipschitzowska oraz ¢ transportuje miare p na v, to
ay(t) < au(t/L).

Dowdd. Wystarczy zauwazy¢, ze (T71(A)),, € T (Ay). O

Transportujac w sposéb lipschitzowski miare gaussowska mozna uzyskaé¢ oszacowania
funkcji koncentracji dla innych miar. Pokazemy dwa przyktady.

Whiosek 3.16. Niech pujg1» 0znacza rozklad jednostajny na kostce [0, 1]". Wowczas i 1)n

jest (2m) =Y/ 2-lipschitzowskim obrazem ~,. W szczegdlnosci Qg qpn S 3 exp(—mt?).

Dowdd. Okreslmy f: R — (0,1) wzorem

f(@) = ppo,a) (10, F(@)]) = (=00, 2]) = @(x).

Wowezas funkcja f transportuje miarg gaussowska v1 na pg 1], to znaczy pjg 1 =710 f -1
Ponadto f'(z) = (2m) Y2 exp(—22/2) < (21)~1/2, czyli f jest (2r)~1/2-lipschitzowska. Jesli
teraz okre§limy F': R" — (0,1)" wzorem F(z) = (f(z1),..., f(zn)), to F transportuje
Yn na p oraz F' jest (27r)_1/ 2_lipschitzowska. Ostatnie oszacowanie w tezie wniosku jest
konsekwencja Faktu 3.15 1 Wniosku 3.13. O

Whniosek 3.17. Niech B, = {x € R": |z| < 1} oznacza kule jednostkowg w R"™, za$ pp,
bedzie rozkiadem jednostajnym na By,. Wowczas istnieje stata C taka, Ze g, jest Cn~1/2.
lipschitzowskim obrazem ~,. W szczegdlnodci oy < 3 exp(—nt?/(20)).

Poniewaz obie miary 7, i pp, sa rotacyjnie niezmiennicze, bedziemy szukaé funkcji
T:R" — B, transportujacej v, na pp, postaci Tz = ﬁ(p(\x]) Dalsze szczegély na éwi-
czeniach.

Otwarty problem. Rozwiazaé zagadnienie izoperymetryczne dla zbioréw symetrycz-
nych, to znaczy znalez¢ dla ustalonego t > 0, ¢ € [0, 1],

inf {75 (A¢): (A) =c,A=—A}

oraz
inf {7 (A): 1(A) =c,A=—A}.

Dos$é naturalna hipoteza moéwi, ze dla ¢ > 1/2 rozwiazaniem obu probleméw sa zbiory

postaci [—a, a] xR¥~! zag dla ¢ < 1/2 drugi problem si¢ optymalizuje dla (R\[—a, a]) x R¥~1.

Podobny problem mozna postawié¢ dla miary o,, ale tam analogiczna hipoteza okazuje si¢

by¢ niestety falszywa.
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4 Metoda Martyngalowa
4.1 Transformata Laplace’a
Wiele dalszych szacowan bedzie oparte na transformacie Laplace’a zmiennej losowej.

Definicja 4.1. Transformatqe Laplace’a zmiennej losowej Z nazywamy funkcje
Lz(\):=Ee* XeR.

Podobnie jesli p jest miarg probabilistyczng na pewnej przestrzeni X oraz F: X — R, to
transformate Laplace’a F wzgledem p okre$lamy

Lg,(N) ::/ M@ dp ().
X
Fakt 4.2. Dla dowolnej zmiennej losowej Z,

P(Z >1) < inf e MLy(\) dlat > 0.

W szczegolnosc, jesli dla pewnego a > 0,
Lz(\) <exp(a)?) XER,

to dlat >0

#2 2
P(Z>1)< exp(— E) oraz P(|Z| > t) < 2exp<— @)

Dowdd. Pierwsza czesé¢ wynika z nieréwnosci Czebyszewa, a druga z pierwszej i prostego
rachunku. n

Zatem by udowodnié, ze funkcja koncentracji miary p jest gaussowska wystarczy wy-
kaza¢, ze L, ()\) < exp(ar?) dla pewnego a > 0 i wszystkich funkcji 1-lipschitzowskich F
takich, ze [ Fdu = 0.

4.2 Nieréwno$¢ Azumy

Twierdzenie 4.3 (Nieréwnoé¢ Hoeffdinga-Azumy). Niech (My, Fi)}_, bedzie martynga-
tem o ograniczonych przyrostach takim, ze | My — My—_1|loo < ax. Wowczas

2
P(M, — My >1t) < - —— .
( 0 ) exp( 22?:1%2>
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Dowdd. Okreslmy dla 1 < k < n, d := My — My_1, woéwcezas E(dg|Fr—1) = 0. Mamy
I_Tu(—w) + H_Tul‘ = uzx, wiec z wypuklodci exp(z),
1—u n l+u ,

e’ < Te*z 5 ¢ = usinh(x) 4 cosh(z) dla |u| < 1.

Stosujac te nieréwnosé dla u = di/ar 1 * = Aay dostajemy
d
E(e*M | F_y) < E(—k‘fk,l) sinh(Aag) + cosh(Aax) = cosh(Aay).
ak

Liczymy
Ee)\(Mn—Mo) — EeA(Mnfl_MO'i‘dn) — E(eA(Mnfl—Mo)E(ekdn ‘fnfl))
< cosh(Aay, ) EeNMn-1=Mo)

Zatem iterujac powyzsza nieréwnos¢ i stosujac oszacowanie (wynikajace np. z rozwiniecia
w szereg Taylora) cosh(z) < exp(2?/2) dostajemy

n 1 n
L, —ay(A) = BEeMMn=Mo) H cosh(Aag) < exp(i Z az\?).
k=1 k=1

Teza twierdzenia wynika z Faktu 4.2. O

Uwaga 4.4. Najczesciej bedziemy mieli Fy = {0, Q}, woéwczas My jest stale, a poniewaz
martyngal ma stalta wartoéé¢ oczekiwana, to My = EM,,.

W ponizszych zastosowaniach bedziemy przyjmowaé My = E,(F|F;) dla catkowalnej
funkeji F': X — R i odpowiednio dobranego (F}) ciagu o-cial podzbioréw X.

Whniosek 4.5. Niech (X;,d;) bedqg przetrzeniami metrycznymi, X = Xy x -+ X X, 2
odlegloscig 11, to znaczy d(z,y) = Y i di(zi,y;) dla x,y € X oraz niech p = 1 @ ... ®
n bedzie produktem miar probabilistycznych p; na X;. Wowczas dla dowolnej funkcji 1-
lipschitzowskiej F' na X

t2

202

,u({:z: F(x) > /qu+t}) < exp(—

gdzie D = (X1, Diam(X;)?)'/2. W szczegdlnosci
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Dowdd. Na mocy Faktu 2.8 wystarczy wykazaé pierwsza nieréwnosé tezy. Niech Fi bedzie
o cialem generowanym przez pierwsze k-wspéirzednych oraz My, := E,(F|Fy). Wowczas
oczywiscie

M) = V(o) = [ F(@)dpir (i01) - din(n),
X1 XX Xn

stad
| My (z) — M1 ()] = [My(21,. .., 25) — y My (1, ..., x)dpx(zx)|
k
< osup  [Mi(x1, ..o 2p—1,yk) — Mi(2, -0, 2p—1, 21) |
Yk 2k €EXg
< sup ‘F((Eh"'7xk717yk7yk+17"'7y7’L)_F(‘Tla'"7‘rk*1azk7yk+17"‘7yn)‘
yeX,zp€Xk
< sup  dg(ygk, 2x) < Diam(Xy)
Y 2k €EXk
i teza wynika z Twierdzenia 4.3. 0

Przyktad 1. Niech X = {0,1}" z odlegloscia d(z,y) = %#{i: x; # y;} 1 unormowana
miara liczaca p. Kladac X; = {0,1} z odlegtoscia d;(z,y) = %I{xiy} widzimy, ze mozemy
stosowaé poprzedni wniosek i D = (327, Diam(X;)?)Y/? = n=1/2. Zatem

nt?

Q{0,1}7dy) S €XP(— ?)-
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