
ON THE SPECTRAL NORM OF RADEMACHER MATRICES

RAFAŁ LATAŁA

Abstract. We discuss two-sided non-asymptotic bounds for the mean spectral norm of non-
homogenous weighted Rademacher matrices. We show that the recently formulated conjecture
holds up to log log logn factor for arbitrary n×n Rademacher matrices and the triple logarithm
may be eliminated for matrices with {0, 1}-coefficients.

1. Introduction and main results

One of the basic issues of the random matrix theory are bounds on the spectral norm (largest
singular value) of various families of random matrices. This question is very well understood for
classical ensembles of random matrices [2], when one may use methods based on the large degree
of symetry. Recently, a substantial progress was attained in the understanding of unhomogenous
models [13], especially in the Gaussian case [9, 3]. However, there are still many open questions
in this area, the one concerning Rademacher matrices is discussed here.

In this paper we investigate the mean operator (spectral) norm of weighted Rademacher
matrices, i.e., quantities of the form

E∥(ai,jεi,j)∥ := E sup
∥s∥2,∥t∥2≤1

∑
i,j

ai,jεi,jsitj ,

where (ai,j) is a deterministic matrix and (εi,j)i,j≥1 is the double indexed sequence of i.i.d.
symmetric ±1 r.v’s.

Since operator norm is bigger than length of every column and row we get

E∥(ai,jεi,j)∥ ∼ (E∥(ai,jεi,j)∥2)1/2 ≥ max
{
max

i
∥(ai,j)j∥2,max

j
∥(ai,j)i∥2

}
.

For two nonnegative functions f and g we write f ≳ g (or g ≲ f) if there exists an absolute
constant C such that Cf ≥ g; the notation f ∼ g means that f ≳ g and g ≳ f . Seginer [11]
proved that for n ≥ 2,

E∥(ai,jεi,j)i,j≤n∥ ≲ log1/4 n
(
max

i
∥(ai,j)j∥2 +max

j
∥(ai,j)i∥2

)
and constructed an example showing that in general the constant log1/4 n cannot be improved.

In [8, Theorem 1.1] it was shown that for any matrix (aij),

E∥(ai,jεi,j)i,j≤n∥ ≳ max
1≤i≤n

∥(ai,j)j∥2 + max
1≤j≤n

∥(ai,j)i∥2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
∥s∥2,∥t∥2≤1

∥∥∥∥∥∥
∑
i,j /∈I

ai,jεi,jsitj

∥∥∥∥∥∥
Log k

. (1)

Here and in the sequel Log x = log(x ∨ e) and ∥S∥p = (E|S|p)1/p denotes Lp-norm of a r.v. S.
1
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It was also conjectured that bound (1) may be reversed, i.e., for any scalar matrix (ai,j)i,j≤n,

E∥(ai,jεi,j)i,j≤n∥ ≲ max
1≤i≤n

∥(ai,j)j∥2 + max
1≤j≤n

∥(ai,j)i∥2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
∥s∥2,∥t∥2≤1

∥∥∥∥∥∥
∑
i,j /∈I

ai,jεi,jsitj

∥∥∥∥∥∥
Log k

. (2)

The proof of [8, Remark 4.5], based on the permutation method from [9], shows that in order
to establish (2) it is enough to show that for any submatrix (bi,j)i,j≤m of (ai,j)i,j≤n one has

E∥(bi,jεi,j)i,j≤m∥ ≲ max
1≤i≤m

∥(bi,j)j∥2 + max
1≤j≤m

∥(bi,j)i∥2 +RB(Logm), (3)

where for a matrix A = (ai,j) and p ≥ 1 we put

RA(p) := sup
∥s∥2≤1,∥t∥2≤1

∥∥∥∑
i,j

ai,jεi,jsitj

∥∥∥
p
.

Our first result states that this conjectured bounds holds for {0, 1}-matrices.

Theorem 1. Inequality (3) holds if bi,j ∈ {0, 1} for any i, j. As a consequence, for any E ⊂
[n]× [n],

E∥(1E(i, j)εi,j)i,j≤n∥ ∼ max
1≤i≤n

∥(1E(i, j))j∥2 + max
1≤j≤n

∥(1E(i, j))i∥2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
∥s∥2,∥t∥2≤1

∥∥∥∥∥∥
∑
i,j /∈I

1E(i, j)εi,jsitj

∥∥∥∥∥∥
Log k

. (4)

Inequality (3) for {0, 1}-weights is a consequence of the more general Theorem 5 below, applied

to the symmetric 2m× 2m {0,1}-matrix A =

(
0 A
AT 0

)
. Estimate (4) follows from (3) as in

the proof of [8, Remark 4.5].

Remark 2. [8, Proposition 1.4] gives an equivalent (up to a constant) form of RA(p) for {0, 1}-
matrices:

sup
∥s∥2,∥t∥2≤1

∥∥∥∥∥∥
∑
i,j

1E(i, j)εijsitj

∥∥∥∥∥∥
p

∼ max
F⊂E,|F |≤p

∥(1{(i,j)∈F})∥.

Hence the first part of Theorem 1 gives a positive answer to the question posed by Ramon van
Handel (private communication):

E∥(1E(i, j)εi,j)i,j≤n∥ ≲ max
1≤i≤n

∥(1E(i, j))j∥2 + max
1≤j≤n

∥(1E(i, j))i∥2

+ sup
F⊂E,|F |≤Logn

∥(1{(i,j)∈F})i,j∥.

One may also state the two-sided estimate (4) in the equivalent way as

E∥(1E(i, j)εi,j)i,j≤n∥ ∼ max
1≤i≤n

∥(1E(i, j))j∥2 + max
1≤j≤n

∥(1E(i, j))i∥2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

max
F⊂E,|F |≤Log k

∥(1{(i,j)∈F,i,j /∈I})i,j∥.

Remark 3. Two-sided bound on moments of norms of Rademacher vectors [7] gives that for every
p ≥ 1, (

E∥(ai,jεi,j)i,j≤n∥p
)1/p

∼ E∥(ai,jεi,j)i,j≤n∥+RA(p).
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Thus, the first part of Theorem 1 might be equivalently stated as

(E∥(1E(i, j)εi,j)i,j≤n∥2⌊Log n⌋)1/2⌊Logn⌋ ∼ max
1≤i≤n

∥(1E(i, j))j∥2 + max
1≤j≤n

∥(1E(i, j))i∥2

+ max
F⊂E,|F |≤Logn

∥(1{(i,j)∈F})i,j∥. (5)

It is quite tempting to show (5) for symmetric sets E via a combinatorial method, since for
n× n symmetric matrix A and k = ⌊Log n⌋, ∥A∥ ∼ (tr(A2k))1/2k. Such an approach worked for
Gaussian matrices [4], but we were not able to apply it in the Rademacher case.

Remark 4. Signed adjacency matrices were studied in [6] in connection with 2-lifts of graphs. [6,
Lemma 3.1] shows that to each signed adjacency matrix of a graph G one may associate the 2-lift
of G with the set of eigenvalues being the union of the eigenvalues of G and of the signed matrix.
Hence Theorem 1 provides an average uniform bound on new eigenvalues of random 2-lifts.

To state results for general matrices we need to introduce some additional notation. We
associate to a symmetric matrix (ai,j)i,j≤n a graph GA = ([n], EA), where (i, j) ∈ EA iff i ̸= j
and ai,j ̸= 0. By dA we denote the maximal degree of vertices in GA. Observe that in the case
of {0, 1}-matrices

√
dA∥(ai,j)∥∞ =

√
dA ≤ maxi ∥(ai,j)j∥2.

Theorem 5. For any symmetric matrix (ai,j)i,j≤n,

E∥(ai,jεi,j)i,j≤n∥ ≲ max
i

∥(ai,j)j∥2 +RA(Logn) + d
19/40
A ∥(ai,j)∥∞. (6)

Remark 6. Since ∥(ai,iεi,i)∥ = maxi |ai,i| we may only consider matrices with zero diagonal.
Moreover, for any unit vectors s, t we have∣∣∣∑

i ̸=j

ai,jεijsitj

∣∣∣ ≤ ∥(ai,j)∥∞
∑
i,j

1{(i,j)∈EA}
1

2
(s2i + t2j )

=
∥(ai,j)∥∞

2

(∑
i

s2i
∑
j

1{(i,j)∈EA} +
∑
j

t2j
∑
i

1{(i,j)∈EA}

)
≤ dA∥(ai,j)∥∞.

Hence,
E∥(ai,j1{i ̸=j}εi,j)i,j∥ ≤ dA∥(ai,j)∥∞ (7)

and it is enough to consider only the case n ≥ dA ≥ 3.

The proof of Theorem 5 takes the most part of the paper. Here we briefly sketch the main
ideas of this proof. Bernoulli conjecture, formulated by Talagrand and proven in [5], states that
to estimate a supremum of the Bernoulli process one needs to decompose the index set into
two parts and estimate supremum over the first part using the uniform bound and over the
second part by the supremum of the Gaussian process. Unfortunately, there is no algorithmic
method for making such a decomposition – a rule of thumb is that the uniform bound works
well for large coefficients and the Gaussian bound for small ones. We try to follow this informal
recipe, decompose vectors s, t ∈ Bn

2 into almost "flat" parts and use the uniform bound when
infinity norms of these parts are far apart. When they are of the same order we make some
further technical adjustments (using properties of the graph GA) and apply the Gaussian bound.
The crucial tool used to estimate the corresponding Gaussian process is an improvement of van
Handel’s bound [12], provided in Section 2.1.

We postpone the details of the proof till the end of the paper and discuss now some conse-
quences of Theorem 5.
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Theorem 7. For any symmetric matrix (ai,j)i,j≤n,

E∥(ai,jεi,j)i,j≤n∥ ≤ LogLog(dA)
(
max

i
∥(ai,j)j∥2 +RA(Log n)

)
.

Proof. Let M := maxi ∥(ai,j)j∥2, u0 = 1 and uk := exp(−(20/19)k) for k = 1, 2, . . .. Let k0 be
the smallest integer such that ( 2019 )

k0 ≥ Log(dA). Then k0 ∼ LogLog(dA) and uk0
≤ d−1

A . We
have

E∥(ai,jεi,j)∥ ≤ E∥(ai,j1{|ai,j |≤uk0
M}εi,j)∥+

k0∑
k=1

E∥(ai,j1{ukM<|ai,j |≤uk−1M}εi,j)∥.

For any k,
dk := max

i
|{j : |ai,j | > ukM}| ≤ u−2

k ,

so by Theorem 5

E∥(ai,j1{ukM<|ai,j |≤uk−1M}εi,j)∥ ≲ M +RA(Log n) + d
19/40
k uk−1M ≲ M +RA(Log n).

Moreover, using again Theorem 5

E∥(ai,j1{|ai,j |≤uk0
M}εi,j)∥ ≲ M +RA(Log n) + d

19/40
A uk0

M ≲ M +RA(Log n) □

Remark 8. In Theorems 5 and 7 we do not assume the symmetry of (εi,j)i,j . However analogous
bounds holds for E∥(ai,j ε̃i,j)i,j∥, where (ε̃i,j)i,j is the symmetric Rademacher matrix (i.e., ε̃i,j =
ε̃j,i = εi,j for i ≥ j), since

E∥(ai,j ε̃i,j)i,j∥ ≤ E∥(ai,j ε̃i,j1{i≤j})i,j∥+ E∥(ai,j ε̃i,j1{i>j})i,j∥
= E∥(ai,jεi,j1{i≤j})i,j∥+ E∥(ai,jεi,j1{i>j})i,j∥ ≤ 2E∥(ai,jεi,j)i,j∥.

Obviously, dA ≤ n, so Theorem 7 (together with the standard symmetrization argument)
implies that bounds (3) and (2) hold up double logarithms of n. However, decomposing matrix
into two parts and using the Bandeira-van Handel bound one may derive conjectured upper
bounds up to triple logarithms.

Theorem 9. For any matrix (ai,j)i,j≤n,

E∥(ai,jεi,j)i,j≤n∥ ≲ LogLogLog n
(
max
1≤i≤n

∥(ai,j)j∥2 + max
1≤j≤n

∥(ai,j)i∥2 +RA(Log n)
)

and

E∥(ai,jεi,j)i,j≤n∥ ≲ LogLogLog n

(
max
1≤i≤n

∥(ai,j)j∥2 + max
1≤j≤n

∥(ai,j)i∥2

+ max
1≤k≤n

min
I⊂[n],|I|≤k

sup
∥s∥2,∥t∥2≤1

∥∥∥∥∥∥
∑
i,j /∈I

ai,jεi,jsitj

∥∥∥∥∥∥
Log k

)
.

Proof. Assume first that the matrix (ai,j) is symmetric. Let gi,j be iid N (0, 1) r.v’s. The result
of Bandeira and van Handel [4] implies

E∥(ai,jεi,j)i,j≤n∥ ≲ E∥(ai,jgi,j)i,j≤n∥ ≲ max
1≤i≤m

∥(ai,j)j∥2 +
√

log n∥(ai,j)∥∞. (8)

Put M := max1≤i≤m ∥(ai,j)j∥2. Estimate (8) yields

E∥(ai,j1{|ai,j |≤MLog−1/2 n}εi,j)i,j≤n∥ ≲ max
1≤i≤m

∥(ai,j)j∥2.

We have
max

i
|{j : |ai,j | > MLog−1/2 n}| ≤ Log n,
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hence Theorem 7, applied to a matrix (ai,j1{|ai,j |>MLog−1/2 n})i,j≤n implies

E∥(ai,j1{|ai,j |>MLog−1/2 n}εi,j)i,j≤n∥ ≲ LogLogLog n
(
max

1≤i≤m
∥(ai,j)j∥2 +RA(Log n)

)
.

Therefore, for any symmetric matrix (ai,j),

E∥(ai,jεi,j)i,j≤n∥ ≲ LogLogLog n
(
max

1≤i≤m
∥(ai,j)j∥2 +RA(Log n)

)
. (9)

Now, supppose that matrix (ai,j) is arbitrary. Applying (9) to the symmetric 2n× 2n matrix(
0 A
AT 0

)
we get the first part of the assertion.

The second part follows from the first one as in the proof of [8, Remark 4.5]. □

Organization of the paper. In Section 2 we discuss basic tools used in the sequel, including
an improvement of the van Handel bound for norms of Gaussian matrices from [12]. In Section
3 we derive a weaker version of Theorem 7 with log(dA) instead of log log(dA) factors. The last
section is devoted to the proof of Theorem 5.

2. Tools

We will use the following estimate for suprema of Rademachers. It is a special case of [1,
Lemma 5.10].

Proposition 10. Let T1, . . . , Tn be nonempty bounded subsets of RN . Then

Emax
k≤n

sup
t∈Tk

N∑
i=1

tiεi ≲ max
k≤n

E sup
t∈Tk

N∑
i=1

tiεi +max
k≤n

sup
t∈Tk

∥∥∥ N∑
i=1

tiεi

∥∥∥
Logn

.

Another useful result is the estimate on the number of connected subsets of a graph.

Lemma 11. Let H = (VH , EH) be a graph with nH vertices and maximal degree dH .
i) For a fixed v ∈ V the number of connected subsets I ⊂ VH with cardinality k containing v is
at most (4dH)k−1.
ii) The number of all connected subsets I ⊂ VH with cardinality k is not bigger than nH(4dH)k−1.

Proof. i) The connected subset I may be chosen by first choosing its spanning tree rooted at
v and then labelling the vertices of the tree. The number of unlabelled rooted trees is less
than the number of oriented trees with k vertices, i.e., less than the (k − 1)-th Catalan number
Ck−1 ≤ 4k−1. The root of the tree is v and the rest of vertices may be labelled in at most dk−1

H

ways.
Part i) of the assertion immediately yields part ii). □

2.1. Van Handel-type bound. In this part we will establish the following improvement on
van Handel’s bound [12].

Proposition 12. For any n×m matrix (ai,j)i≤m,j≤n and b ∈ (0, 1] we have

E sup
s∈Bm

2 ∩bBm
∞

sup
t∈Bn

2 ∩bBn
∞

∑
i≤m,j≤n

ai,jεi,jsitj ≲ max
i

∥(ai,j)j∥2 +max
j

∥(ai,j)i∥2

+ Log((n+m)b2)∥(ai,j)i,j∥∞.

Let us first formulate and prove a symmetric variant of Propostion 12.
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Proposition 13. Let (ε̃i,j)i,j be a symmetric Rademacher matrix. Then for any symmetric
matrix (ai,j)i,j≤n and any b ∈ (0, 1],

E sup
s,t∈Bn

2 ∩bBn
∞

∑
i,j≤n

ai,j ε̃i,jsitj ≲ max
i

∥(ai,j)j∥2 + Log(nb2)∥(ai,j)i,j∥∞.

The proof uses the following, quite standard, technical lemma.

Lemma 14. Let Y1, . . . , Yn be r.v’s and mi, σi ≥ 0 be such that

P(|Yi| ≥ mi + uσi) ≤ e−u2/2 for every u ≥ 0 and i = 1, . . . , n.

Then

E sup
s∈Bn

2 ∩bBn
∞

n∑
i=1

s2iYi ≲ max
i

mi +
√

Log(nb2)max
i

σi

and

E sup
s∈Bn

2 ∩bBn
∞

√√√√ n∑
i=1

s2iY
2
i ≲ max

i
mi +

√
Log(nb2)max

i
σi.

Proof. Let (Y ∗
1 , . . . , Y

∗
n ) be a nondecreasing rearrangement of |Y1|, . . . , |Yn|. We set k = n if

b2 ≤ 1/n, otherwise we choose 1 ≤ k ≤ n−1 such that 1
k+1 < b2 ≤ 1

k . Then Log(nb2) ∼ Log(n/k)
and

sup
s∈Bn

2 ∩bBn
∞

n∑
i=1

s2iYi ≤
1

k
(Y ∗

1 + . . .+ Y ∗
k ).

A standard argument shows that EY ∗
l ≤ (E|Y ∗

l |2)1/2 ≲ maxi mi + Log1/2(n/l)maxi σi. Thus

E sup
s∈Bn

2 ∩bBn
∞

n∑
i=1

s2iYi ≲ max
i

mi +
1

k

k∑
l=1

√
Log

(n
l

)
max

i
σi ≲ max

i
mi +

√
Log

(n
k

)
max

i
σi

and

E sup
s∈Bn

2 ∩bBn
∞

√√√√ n∑
i=1

s2iY
2
i ≤ E

√
1

k
(|Y ∗

1 |2 + . . .+ |Y ∗
k |2) ≤

√√√√1

k

k∑
l=1

E|Y ∗
l |2

≲ max
i

mi +

√√√√1

k

k∑
l=1

Log
(n
l

)
max

i
σi

≲ max
i

mi +

√
Log

(n
k

)
max

i
σi. □

Proof of Proposition 13. Let (gi,j)i,j≤n be a symmetric Gaussian matrix (i.e., gi,j = gj,i and
(gi,j)i≥j are iid N (0, 1) r.v’s), independent of ε̃i,j . We have for any matrix norm ∥ · ∥,

E∥(ai,jgi,j)∥ = E∥(ai,j ε̃i,j |gi,j |)∥ ≥ E∥(ai,j ε̃i,jE|gi,j |)∥ =

√
2

π
E∥(ai,j ε̃i,j)∥.

For any symmetric matrix B we have ⟨Bs, t⟩ = 1
4

(
⟨B(s+ t), s+ t⟩ − ⟨B(s− t), s− t⟩

)
, hence,

sup
s,t∈Bn

2 ∩bBn
∞

⟨Bs, t⟩ ≤ 2 sup
s∈Bn

2 ∩bBn
∞

|⟨Bs, s⟩|.
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Therefore,

E sup
s∈Bn

2 ∩bBn
∞

∑
i,j≤n

ai,j ε̃i,jsitj ≲ E sup
s∈Bn

2 ∩bBn
∞

∣∣∣ ∑
i,j≤n

ai,jgi,jsisj

∣∣∣
≤ E sup

s∈Bn
2 ∩bBn

∞

∑
i,j≤n

ai,jgi,jsisj + E sup
s∈Bn

2 ∩bBn
∞

∑
i,j≤n

(−ai,jgi,jsisj)

= 2E sup
s∈Bn

2 ∩bBn
∞

∑
i,j≤n

ai,jgi,jsisj .

Now we follow van Handel’s approach from [12]. Let g1, g2, . . . , gn be iid N (0, 1) r.v’s and
Y = (Y1, . . . , Yn) ∼ N (0, B−), where B− is the negative part of B = (a2i,j). Define the new
Gaussian process Zs by

Zs = 2

n∑
i=1

sigi

√√√√ n∑
j=1

a2ijs
2
j +

n∑
i=1

s2iYi.

It is shown in [12] (see the proof of Theorem 4.1 therein) that for any s, s′ ∈ Rn

E
∣∣∣ ∑
i,j≤n

ai,jgi,j(sisj − s′is
′
j)
∣∣∣2 ≤ E|Zs − Zs′ |2.

Hence the Slepian-Fernique inequality [10, Theorem 3.15]. yields

E sup
s∈Bn

2 ∩bBn
∞

∑
i,j≤n

ai,jgi,jsisj ≤ E sup
s∈Bn

2 ∩bBn
∞

Zs.

Variables Yi are centered Gaussian and (see the proof of Corollary 4.2 in [12]) (EY 2
i )

1/2 ≤
∥(ai,j)j∥4. Hence Lemma 14 applied with mi = 0 and σi = ∥(ai,j)j∥4 yields

E sup
s∈Bn

2 ∩bBn
∞

n∑
i=1

s2iYi ≲
√
Log(nb2)max

i
∥(ai,j)j∥4

≤
√

Log(nb2)max
i,j

|ai,j |1/2 max
j

∥(ai,j)j∥1/22

≤ max
i

∥(ai,j)j∥2 + Log(nb2)∥(ai,j)i,j∥∞.

We have

E sup
s∈Bn

2 ∩bBn
∞

n∑
i=1

sigi

√∑
j

a2ijs
2
j ≤ E sup

s∈Bn
2 ∩bBn

∞

√∑
i,j

a2ijs
2
jg

2
i = E sup

s∈Bn
2 ∩bBn

∞

√∑
j

s2jV
2
j ,

where Vj =
√∑

i a
2
ijg

2
i . The Gaussian concentration [10, Lemma 3.1] yields

P(|Vj | ≥ ∥(ai,j)i∥2 + t∥(ai,j)i∥∞) ≤ e−t2/2,

so Lemma 14 applied with Yj = Vj , mj = ∥(ai,j)i∥2 and σj = ∥(ai,j)i∥∞ yields

E sup
s∈Bn

2 ∩bBn
∞

n∑
i=1

si

√∑
j

a2ijs
2
jgi ≲ max

j
∥(ai,j)i∥2 +

√
Log(nb2)∥(ai,j)i,j∥∞. □

Proof of Proposition 12. We apply Proposition 13 to the symmetric (n +m) × (n +m) matrix

Ã = (ãi,j) of the form Ã =

(
0 A
AT 0

)
. Observe that maxi,j |ãi,j | = maxi,j |ai,j |,

max
i

∥(ãi,j)j∥2 = max
{
max

i
∥(ai,j)j∥2,max

j
∥(ai,j)i∥2

}
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and

E sup
s,t∈Bn+m

2 ∩bBn+m
∞

∑
i,j≤n+m

ãi,j ε̃i,jsitj ≥ E sup
s∈Bm

2 ∩bBm
∞

sup
t∈Bn

2 ∩bBn
∞

∑
i≤m,j≤n

ai,jεi,jsitj . □

3. Bounds up to polylog factors

In this section we derive weaker estimates than in Theorem 7 (with powers of log dA instead
of log log(dA)). They will be used in the proof of Theorem 5 to estimate the parts of Bernoulli
process (

∑
i,j ai,jεi,jsitj)s,t∈Bn

2
, where coefficients si and tj are of the same order.

Let us first introduce the notation which will be used till the end of the paper. Recall that
GA = ([n], EA) is a graph associated to a given symmetric matrix A = (ai,j)i,j≤n. By ρ = ρA
we denote the distance on [n] induced by EA. For r = 1, 2, . . . we put Gr = Gr(A) = ([n], EA,r),
where (i, j) ∈ EA,r iff ρ(i, j) ≤ r. In particular G1 = ([n], EA) and the maximal degree of Gr is
at most dA + dA(dA − 1) + . . .+ dA(dA − 1)r−1 ≤ drA. We say that a subset of [n] is r-connected
if it is connected in Gr.

We denote by I(k) = I(k, n) the family of all subsets of [n] of cardinality k and by Ir(k) =
Ir(k,A) the family of all r-connected subsets of [n] of cardinality k.

For a set I ⊂ [n] and a vertex j ∈ [n] we write I ∼A j if (i, j) ∈ EA for some i ∈ I. By
I ′ = I ′(A) we denote the set of all neighbours of I in G1 and by I ′′ = I ′′(A) the set of all
neighbours of I ′ in G1, i.e.,

I ′ = {j ∈ [n] : ∃i∈I (i, j) ∈ EA}, I ′′ = {i ∈ [n] : ∃i0∈I,j∈[n] (i0, j), (i, j) ∈ EA}. (10)

Observe that I is a subset of I ′′, but does not have to be a subset of I ′. Moreover |I ′| ≤ dA|I|
and |I ′′| ≤ d2A|I|.

By Remark 6 we may and will assume that ai,i = 0 for all i.
For 1 ≤ k, l ≤ n define random variables

Xk,l = Xk,l(A) :=
1√
kl

max
I∈I(k),J∈I(l)

max
ηi,η′

j=±1

∑
i∈I,j∈J

ai,jεi,jηiη
′
j

and their 4-connected counteparts

Xk,l = Xk,l(A) :=
1√
kl

max
I∈I4(k),J∈I4(l)

max
ηi,η′

j=±1

∑
i∈I,j∈J

ai,jεi,jηiη
′
j .

Set

X = X(A) := max
1≤k,l≤n

Xk,l = max
∅̸=I,J⊂V

1√
|I||J |

max
ηi,η′

j=±1

∑
i∈I,j∈J

ai,jεi,jηiηj . (11)

Variables Xk,l are easier to estimate than Xk,l, since the number of 4-connected subsets is
much smaller than the number of all subsets – calculations based on this idea are made in Lemma
16. Lemma 15 shows that in expectation these variables do not differ too much.

Lemma 15. For any 1 ≤ k, l ≤ n,

EXk,l ≲ max
1≤k′≤k,1≤l′≤l

EXk′,l′ +RA(Log(kl)).

Proof. Let us first fix sets I ∈ I(k) and J ∈ I(l). Let I1, . . . , Ir be connected components of
I ∩ J ′ in G2 and Ju := J ∩ I ′u. Then sets J1, . . . , Jr are disjoint and 4-connected subsets of J .
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Hence, for every ηi, η
′
j = ±1 we have

∑
i∈I,j∈J

ai,jεi,jηiη
′
j =

∑
i∈I∩J′,j∈J

ai,jεi,jηiη
′
j =

r∑
u=1

∑
i∈Iu,j∈Ju

ai,jεi,jηiη
′
j ≤

r∑
u=1

X |Iu|,|Ju|
√
|Iu||Ju|

≤ max
k′≤k,l′≤l

Xk′,l′

r∑
u=1

√
|Iu||Ju| ≤ max

k′≤k,l′≤l
Xk′,l′

( r∑
u=1

|Iu|
)1/2( r∑

u=1

|Ju|
)1/2

≤ max
k′≤k,l′≤l

Xk′,l′
√
|I||J |.

Taking the supremum over all sets I ∈ I(k), J ∈ I(l) and ηi, η
′
j = ±1 we get

Xk,l ≤ max
k′≤k,l′≤l

Xk′,l′ . (12)

Observe that

max
I∈I4(k′),J∈I4(l′)

max
ηi,η′

j=±1

1√
k′l′

∥∥∥ ∑
i∈I,j∈J

ai,jεi,jηiη
′
j

∥∥∥
Log(kl)

≤ sup
∥s∥2,∥t∥2≤1

∥∥∥∑
i,j

ai,jεi,jsitj

∥∥∥
Log(kl)

= RA(Log(kl)).

Thus, by Proposition 10

E max
k′≤k,l′≤l

Xk′,l′ ≲ max
k′≤k,l′≤l

EXk′,l′ +RA(Log(kl)).

□

Lemma 16. We have for any 1 ≤ k, l ≤ n,

EXk,l ≲
√
Log dA max

i
∥(ai,j)j∥2 +RA(Log n).

Proof. Obviously Xk′,l′ ≤ ∥(ai,jεi,j)∥, so by (7) we may assume that n ≥ dA ≥ 3. By the
symmetry it is enough to consider only the case l ≥ k. By Lemma 11, 2k|I4(k)| ≤ n(8d4A)

k ≤
nd6kA .

We have

Xk,l ≤
1√
k

max
I∈I4(k)

max
ηi=±1

sup
∥t∥2≤1

∑
i∈I

∑
j

ai,jεi,jηitj .

For any fixed I ∈ I4(k) and ηi = ±1,

E
1√
k

sup
∥t∥2≤1

∑
i∈I

∑
j

ai,jεi,jηitj =
1√
k
E
(∑

j

(∑
i∈I

ai,jεi,jηi

)2)1/2
≤ 1√

k

(∑
j

E
(∑

i∈I

ai,jεi,jηi

)2)1/2
=

1√
k

(∑
j

∑
i∈I

a2i,j

)1/2
=

1√
k

(∑
i∈I

∑
j

a2i,j

)1/2
≤ max

i
∥(ai,j)j∥2.

In the case n ≥ d6kA , log(2k|I4(k)|) ≲ log n and

max
I∈I4(k)

max
ηi=±1

sup
∥t∥2≤1

1√
k

∥∥∥∑
i∈I

∑
j

ai,jεi,jηitj

∥∥∥
Log(2k|I4(k)|)

≲ RA(log n).
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In the case n ≤ d6kA we have log(2k|I4(k)|) ≲ k log dA and

max
I∈I4(k)

max
ηi=±1

sup
∥t∥2≤1

1√
k

∥∥∥∑
i∈I

∑
j

ai,jεi,jηitj

∥∥∥
Log(2k|I4(k)|)

≲ max
I∈I4(k)

max
ηi=±1

sup
∥t∥2≤1

√
log dA

(∑
i∈I

∑
j

(ai,jηitj)
2
)1/2

= max
I∈I4(k)

max
j

√
log dA

(∑
i∈I

a2i,j

)1/2
≤
√
log dA max

j
∥(ai,j)i∥2.

The assertion follows by Proposition 10. □

Corollary 17. We have

EX = E max
∅̸=I,J⊂V

1√
|I||J |

max
ηi,η′

j=±1

∑
i∈I,j∈J

ai,jεi,jηiηj ≲
√

Log dA max
i

∥(ai,j)j∥2 +RA(Log n).

Proof. Lemmas 15 and 16 imply that for a fixed 1 ≤ k, l ≤ n

EXk,l ≲ max
k′≤k,l′≤l

EXk′,l′ +RA(Log(kl)) ≲
√

Log dA max
i

∥(ai,j)j∥2 +RA(Log n).

Moreover,

max
1≤k,l≤n

max
I∈I(k),J∈I(l)

1√
kl

max
ηi,η′

j=±1

∥∥∥ ∑
i∈I,j∈J

ai,jεi,jηiηj

∥∥∥
Log(n2)

≤ sup
∥t∥2≤1,∥s∥2≤1

∥∥∥ ∑
i,j∈V

ai,jεi,jtisj

∥∥∥
2Logn

≲ RA(Log n)

and the assertion follows by Proposition 10. □

Proposition 18. For any symmeric matrix (ai,j)i,j≤n we have

E
∥∥(ai,jεi,j)i,j≤n

∥∥ ≲ Log3/2(dA)max
i

∥(ai,j)j∥2 + Log(dA)RA(Log n).

Proof. By Remark 6 we may assume that ai,i = 0 for all i and n ≥ dA ≥ 3.
For vectors s, t and integers k, l we define sets

Ik(s) = {i ∈ V : e−k−1 < |si| ≤ e−k}, Jl(t) = {j ∈ V : e−l−1 < |tj | ≤ e−l}.

Observe that for any s, t, k, l,∑
i∈Ik(s),j∈Jl(t)

ai,jεi,jsitj ≤ e−k−l max
ηi,η′

j=±1

∑
i∈Ik(s),j∈Jl(t)

ai,jεi,jηiη
′
j ,

therefore ∥∥(ai,jεi,j)i,j∈V

∥∥ ≤ sup
∥s∥2,∥t∥2≤1

∑
k,l

e−k−l sup
ηi,η′

j=±1

∑
i∈Ik(s),j∈Jl(t)

ai,jεi,jηiη
′
j .
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We have ∑
k

∑
l≥k+log dA

e−k−l max
ηi,η′

j=±1

∑
i∈Ik(s),j∈Jl(t)

ai,jεi,jηiη
′
j

≤
∑
k

∑
l≥k+log dA

e−k
∑

i∈Ik(s),j∈Jl(t)

|ai,j |e−l

≤
∑
k

e−k
∑

i∈Ik(s)

∑
j

|ai,j |
∑

l≥k+log dA

e−l
1{j∈Jl(t)}

≤
∑
k

∑
i∈Ik(s)

∑
j

|ai,j |e−2k−log dA ≤ ∥(ai,j)∥∞
∑
k

∑
i∈Ik(s)

e−2k

≤ ∥(ai,j)∥∞
∑
k

∑
i∈Ik(s)

e2s2i = e2∥s∥22∥(ai,j)∥∞.

In the same way we show that∑
l

∑
k≥l+log dA

e−k−l max
ηi,η′

j=±1

∑
i∈Ik(s),j∈Jl(t)

ai,jεi,jηiη
′
j ≤ e2∥t∥22∥(ai,j)∥∞.

Moreover, for any s, t,∑
k,l : |k−l|<log dA

e−k−l sup
ηi,η′

j=±1

∑
i∈Ik(s),j∈Jl(t)

ai,jεi,jηiη
′
j

≤ X

∞∑
k,l : |k−l|<log dA

e−k−l
√

|Ik(s)||Jl(t)|.

For any fixed integer r∑
k

e−k−(k+r)
√
|Ik(s)||Jk+r(t)| ≤

(∑
k

e−2k|Ik(s)|
)1/2(∑

k

e−2(k+r)|Jk+r(t)|
)1/2

≤ e2∥t∥2∥s∥2.

Hence,∥∥(ai,jεi,j)i,j≤n

∥∥ ≤ sup
∥s∥2,∥t∥2≤1

e2((∥s∥2 + ∥t∥2)∥(ai,j)∥∞ + (2 log dA + 1)X∥t∥2∥s∥2)

≤ e2(2∥(ai,j)∥∞ + (2 log dA + 1)X)

and the assertion follows by Corollary 17. □

4. Proof of Theorem 5

By Remark 6 we may assume that ai,i = 0 for all i and n ≥ dA ≥ 3.
For k = 1, 2, . . . and t, s ∈ Bn

2 we define

Ik(s) := {i : d
−k/40
A < |si| ≤ d

(1−k)/40
A }, Jl(t) := {j : d

−l/40
A < |tj | ≤ d

(1−l)/40
A }.

Then ∑
k≥1

d
−k/20
A |Ik(s)| ≤ ∥s∥22,

∑
l≥1

d
−l/20
A |Jl(t)| ≤ ∥t∥22 (13)

and
E∥(ai,jεi,j)i,j≤n∥ = E sup

∥s∥2≤1

sup
∥t∥2≤1

∑
k,l≥1

∑
i∈Ik(s)

∑
j∈Jl(t)

ai,jεi,jsitj .
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Observe that for any s, t ∈ Bn
2 ,∣∣∣∑

k≥1

∑
l≥k+41

∑
i∈Ik(s)

∑
j∈Jl(t)

ai,jεi,jsitj

∣∣∣ ≤∑
k≥1

∑
i∈Ik(s)

|si|
∑

l≥k+41

∑
j∈Jl(t)

|ai,j ||tj |

≤
∑
k≥1

∑
i∈Ik(s)

|si|d−(k+40)/40
A

∑
j

|ai,j |

≤ ∥(ai,j)∥∞
∑
k≥1

∑
i∈Ik(s)

s2i ≤ ∥(ai,j)∥∞.

Similarily, ∣∣∣∑
l≥1

∑
k≥l+41

∑
i∈Ik(s)

∑
j∈Jl(t)

ai,jεi,jsitj

∣∣∣ ≤ ∥(ai,j)∥∞.

Hence it is enough to estimate
40∑

r=−40

E sup
∥s∥2≤

sup
∥t∥2≤1

∑
k,l≥1
l−k=r

∑
i∈Ik(s)

∑
j∈Jl(t)

ai,jεi,jsitj .

By symmetry it is enough to bound only the terms with r ≥ 0. Let X be defined by (11).
Then for a fixed r ≥ 0 and α > 0,

sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

1{|Jk+r(t)|≥α|Ik(s)|}ai,jεi,jsitj

≤ sup
∥s∥2≤1

sup
∥t∥2≤1

max
ηi,η′

j=±1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

d
(2−2k−r)/40
A 1{|Jk+r(t)|≥α|Ik(s)|}ai,jεi,jηiη

′
j

≤ X sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

d
(2−2k−r)/40
A

√
|Ik(s)||Jk+r(t)|1{|Jk+r(t)|≥α|Ik(s)|}

≤ α−1/2X sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

d
(2−2k−r)/40
A |Jk+r(t)| ≤ α−1/2d

(r+2)/40
A X,

where the last inequality follows by (13).
Hence Corollary 17 yields

E sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

1{|Jk+r(t)|≥d
(2r+5)/40
A |Ik(s)|}

ai,jεi,jsitj

≲ max
i

∥(ai,j)j∥2 +RA(log n).

In a similar way we show that

sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

1{|Jk+r(t)|≤α|Ik(s)|}ai,jεi,jsitj

≤ α1/2X sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

d
(2−2k−r)/40
A |Ik(s)| ≤ α1/2d

(2−r)/40
A X

and

E sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

1{|Jk+r(t)|≥d
(2r−5)/40
A |Ik(s)|}

ai,jεi,jsitj

≲ max
i

∥(ai,j)j∥2 +RA(log n).
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Hence it is enough to bound for r = 0, 1, . . . , 40,

E sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

1{
d
(2r−5)/40
A <|Jk+r(t)|/|Ik(s)|<d

(2r+5)/40
A

}ai,jεi,jsitj .

Recall definition (10) of sets I ′ and I ′′. Let us fix 0 ≤ r ≤ 40 and k, t, s such that d(2r−5)/40
A <

|Jk+r(t)|/|Ik(s)| < d
(2r+5)/40
A . Let |Ik(s)| = m. Let us consider the following greedy algorithm

with output being a subset {i1, . . . , iM} of Ik(s) of size M ≤ m

• In the first step we pick a vertex i1 ∈ Ik(s) with maximal number of neighbours in
Jk+r(t).

• Once we have {i1, . . . , iN} and N < M , we pick iN+1 ∈ Ik(s)\{i1, . . . , iN} with maximal
number of neighbours in Jk+r(t) \ {i1, . . . , iN}′.

If lN is the number of neighbours of iN in Jk+r(t) \ {i1, . . . , iN−1}′, then l1 ≥ l2 ≥ . . . ≥ lM , so
MlM ≤ |Jk+r(t)|. Hence, using this algorithm we may find a subset I ⊂ Ik(s) with cardinality
|I| ≤ d

−(r+18)/40
A |Jk+r(t)| ≤ d

(r−13)/40
A m such that for every i ∈ Ik(s)\ I, |{j ∈ Jk+r(t)\ I ′ : i ∼A

j}| ≤ ⌈d(r+18)/40
A ⌉ ≤ 2d

(r+18)/40
A . Note that if (i, j) ∈ EA and (i, j) ∈ (Ik(s)×Jk+r(t))\ (I ′′× I ′),

then j ∈ Jk+r(t) \ I ′. Therefore,∑
(i,j)∈Ik(s)×Jk+r(t))\(I′′×I′)

|ai,j ||sitj | ≤ 2∥(ai,j)∥∞
∑

i∈Ik(s)

|si|d(r+18)/40
A d

(1−k−r)/40
A

≤ 2∥(ai,j)∥∞d
19/40
A

∑
i∈Ik(s)

s2i . (14)

Observe that if d−(r+18)/40
A |Jk+r(t)| > m we may take I = Ik(s) and then ai,j = 0 for (i, j) ∈

Ik(s)× Jk+r(t)) \ (I ′′ × I ′), so estimate (14) is also valid in this case.
Let

s′ = (s′i)i∈I′′∩Ik(s), t′ = (t′j)j∈I′∩Jk+r(s),

where

s′i :=
si

∥(si)i∈Ik(s)∥2
, t′j :=

tj
∥(tj)j∈Jk+r(t)∥2

.

Then

∥s′∥2 ≤ 1, ∥s′∥∞ ≤ d
1/40
A |Ik(s)|−1/2 = d

1/40
A m−1/2,

∥t′∥2 ≤ 1, ∥t′∥∞ ≤ d
1/40
A |Jk+r(t)|−1/2 ≤ d

(7−2r)/80
A m−1/2.

Hence, ∑
(i,j)∈(Ik(s)×Jk+r(t))∩(I′′×I′)

εi,jai,jsitj ≤ Ym,r∥(si)i∈Ik(s)∥2∥(tj)j∈Jk+r(t)∥2, (15)

where

Ym,r := max
|I|≤d

(r−13)/40
A m

sup
s∈Bn

2 ∩d
1/40
A m−1/2Bn

∞

sup
t∈Bn

2 ∩d
(7−2r)/80
A m−1/2Bn

∞

∑
i∈I′′,j∈I′

ai,jεi,jsitj .
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Define Yr := max1≤m≤n Ym,r. Estimates (14) and (15) yield

E sup
∥s∥2≤1

sup
∥t∥2≤1

∑
k≥1

∑
i∈Ik(s)

∑
j∈Jk+r(t)

1{
d
(2r−5)/40
A <|Jk+r(t)|/|Ik(s)|<d

(2r+5)/40
A

}ai,jεi,jsitj
≤ sup

∥s∥2≤1

sup
∥t∥2≤1

(∑
k≥1

2d
19/40
A ∥(ai,j)∥∞

∑
i∈Ik(s)

s2i + EYr

∑
k≥1

∥(si)i∈Ik(s)∥2∥(tj)j∈Jk+r(t)∥2

)

≤ 2d
19/40
A ∥(ai,j)∥∞ + EYr sup

∥s∥2≤1

(∑
k≥1

∥(si)i∈Ik(s)∥
2
2

)1/2
sup

∥t∥2≤1

(∑
k≥1

∥(tj)j∈Jk+r(t)∥
2
2

)1/2
≤ 2d

19/40
A ∥(ai,j)∥∞ + EYr.

Therefore, to establish Theorem 5 it is enough to prove the following lemma.

Lemma 19. For every 0 ≤ r ≤ 40,

EYr = E max
1≤m≤n

Ym,r ≲ max
i

∥(ai,j)j∥2 +RA(log n) + Log(dA)∥(ai,j)∥∞.

First we show a connected counterpart to Lemma 19.

Lemma 20. We have

E max
1≤k≤n

max
I∈I4(k)

sup
s∈Bn

2 ∩d
3/8
A k−1/2Bn

∞

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∑
i∈I′′,j∈I′

ai,jεi,jsitj

≲ max
i

∥(ai,j)j∥2 +RA(log n) + Log(dA)∥(ai,j)∥∞.

Proof. Let us first fix k and I ∈ I4(k). Then |I ′| ≤ dAk and |I ′′| ≤ d2Ak. Proposition 12, applied
with (ai,j) = (ai,j)i∈I′′,j∈I′ , n = |I ′′|, m = |I ′|, and b = d

3/8
A k−1/2 yields

E sup
s∈Bn

2 ∩d
3/8
A k−1/2Bn

∞

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∑
i∈I′′,j∈I′

ai,jεi,jsitj

≲ max
i

∥(ai,j)j∥2 + Log(dA)∥(ai,j)∥∞.

By Lemma 11, |I4(k)| ≤ n(4d4A)
k ≤ max{n2, d12kA } (recall that we assume that dA ≥ 3). We

have

sup
s∈Bn

2 ∩d
3/8
A k−1/2Bn

∞

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∥∥∥∑
i,j

ai,jεi,jsitj

∥∥∥
Log(|I4(k)|)

≤ sup
s,t∈Bn

2

∥∥∥∑
i,j

ai,jεi,jsitj

∥∥∥
2Log(n)

+ sup
s∈Bn

2

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∥∥∥∑
i,j

ai,jεi,jsitj

∥∥∥
12kLog(dA)

≤ RA(2Logn) + sup
s∈Bn

2

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

√
12kLog(dA)

(∑
i,j

a2i,js
2
i t

2
j

)1/2
≲ RA(Log n) +

√
kLog(dA)max

i
d
−1/16
A k−1/2

(∑
j

a2i,j

)1/2
≤ RA(Log n) +

√
Log(dA)d

−1/16
A max

i
∥(ai,j)j∥2 ≲ RA(log n) + max

i
∥(ai,j)j∥2.

Hence, by Proposition 10,

E max
I∈I4(k)

sup
s∈Bn

2 ∩d
3/8
A k−1/2Bn

∞

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∑
i∈I′′,j∈I′

ai,jεi,jsitj

≲ max
i

∥(ai,j)j∥2 +RA(log n) + Log(dA)∥(ai,j)∥∞.
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Applying again Proposition 10 and observing that

max
1≤k≤n

sup
s∈Bn

2 ∩d
3/8
A k−1/2Bn

∞

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∥∥∥∑
i,j

ai,jεi,jsitj

∥∥∥
Log(n)

≤ RA(log n)

we get the assertion. □

Proof of Lemma 19. Let

Zk := max
I∈I4(k)

sup
s∈Bn

2 ∩d
3/8
A k−1/2Bn

∞

sup
t∈Bn

2 ∩d
−1/16
A k−1/2Bn

∞

∑
i∈I′′,j∈I′

ai,jεi,jsitj .

Let us fix r ≥ 0, I ⊂ V such that |I| ≤ d
(r−13)/40
A m, s ∈ Bn

2 ∩ d
1/40
A m−1/2Bn

∞ and t ∈
Bn

2 ∩ d
(7−2r)/80
A m−1/2Bn

∞. Let I1, . . . , Il be 4-connected components of I. Then {I ′1, . . . , I ′l} is a
partition of I ′, {I ′′1 , . . . , I ′′l } is a partition of I ′′ and

∑
i∈I′′,j∈I′

ai,jεi,jsitj =

l∑
u=1

∑
i∈I′′

u ,j∈I′
u

ai,jεi,jsitj . (16)

Define

U1 :=
{
1 ≤ u ≤ l : ∥(si)i∈I′′

u
∥2 ≥ d

(12−r)/80
A m−1/2

√
|Iu|
}
,

U2 :=
{
1 ≤ u ≤ l : ∥(tj)j∈I′

u
∥2 ≥ d

(12−r)/80
A m−1/2

√
|Iu|
}
.

For u ∈ U1 ∩ U2 define vectors

s̃(u) :=
(si)i∈I′′

u

∥(si)i∈I′′
u
∥2

, t̃(u) :=
(tj)j∈I′

u

∥(tj)j∈I′
u
∥2

.

Then ∥s̃(u)∥2 = ∥t̃(u)∥2 = 1,

∥s̃(u)∥∞ ≤ d
(r−12)/80
A m1/2|Iu|−1/2∥s∥∞ ≤ d

(r−10)/80
A |Iu|−1/2 ≤ d

3/8
A |Iu|−1/2,

∥t̃(u)∥∞ ≤ d
(r−12)/80
A m1/2|Iu|−1/2∥t∥∞ ≤ d

−(r+5)/80
A |Iu|−1/2 ≤ d

−1/16
A |Iu|−1/2.

Hence ∑
u∈U1∩U2

∑
i∈I′′

u ,j∈I′
u

ai,jεi,jsitj ≤
∑

u∈U1∩U2

Z|Iu|∥(si)i∈I′′
u
∥2∥(tj)j∈I′

u
∥2

≤ max
k

Zk

(∑
u≤l

∥(si)i∈I′′
u
∥22
)1/2(∑

u≤l

∥(tj)j∈I′
u
∥22
)1/2

≤ max
k

Zk. (17)

Observe that∑
u/∈U1

∥(si)i∈I′′
u
∥22 ≤

∑
u

d
(12−r)/40
A m−1|Iu| = d

(12−r)/40
A m−1|I| ≤ d

−1/40
A

and by the same token ∑
u/∈U2

∥(tj)i∈I′
u
∥22 ≤ d

−1/40
A .
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Hence ∑
u/∈U1

∑
i∈I′′

u ,j∈I′
u

ai,jεi,jsitj ≤ ∥(ai,jεi,j)i,j∥
∑
u/∈U1

∥(si)i∈I′′
u
∥2∥(tj)j∈I′

u
∥2

≤ ∥(ai,jεi,j)i,j∥
(∑
u/∈U1

∥(si)i∈I′′
u
∥22
)1/2(∑

u≤l

∥(tj)j∈I′
u
∥22
)1/2

≤ d
−1/80
A ∥(ai,jεi,j)i,j∥ (18)

and ∑
u∈U1\U2

∑
i∈I′′

u ,j∈I′
u

ai,jεi,jsitj ≤ ∥(ai,jεi,j)i,j∥
∑
u/∈U2

∥(si)i∈I′′
u
∥2∥(tj)j∈I′

u
∥2

≤ ∥(ai,jεi,j)i,j∥
(∑
u≤l

∥(si)i∈I′′
u
∥22
)1/2(∑

u/∈U2

∥(tj)j∈I′
u
∥22
)1/2

≤ d
−1/80
A ∥(ai,jεi,j)i,j∥. (19)

Bounds (16)-(19) yield

Emax
m

Ym,r ≤ Emax
k

Zk + 2d
−1/80
A E∥(ai,jεi,j)i,j∥

and the assertion follows by Lemma 20 and Proposition 18. □
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