ON THE SPECTRAL NORM OF RADEMACHER MATRICES

RAFAL LATALA

ABsTrRACT. We discuss two-sided non-asymptotic bounds for the mean spectral norm of non-
homogenous weighted Rademacher matrices. We show that the recently formulated conjecture
holds up to loglog log n factor for arbitrary nxn Rademacher matrices and the triple logarithm
may be eliminated for matrices with {0, 1}-coefficients.

1. INTRODUCTION AND MAIN RESULTS

One of the basic issues of the random matrix theory are bounds on the spectral norm (largest
singular value) of various families of random matrices. This question is very well understood for
classical ensembles of random matrices [2], when one may use methods based on the large degree
of symetry. Recently, a substantial progress was attained in the understanding of unhomogenous
models [13], especially in the Gaussian case [9, 3]. However, there are still many open questions
in this area, the one concerning Rademacher matrices is discussed here.

In this paper we investigate the mean operator (spectral) norm of weighted Rademacher
matrices, i.e., quantities of the form

Ell(aijeig)ll =  sup > aijei sits,
lsllo o<1 %

where (a;;) is a deterministic matrix and (g;;); ;>1 is the double indexed sequence of i.i.d.
symmetric +1 r.v’s.
Since operator norm is bigger than length of every column and row we get

Elese0)1 ~ (Elaise0,) )" = masx{max (e, s ma (e )i .

For two nonnegative functions f and g we write f 2 g (or ¢ < f) if there exists an absolute
constant C' such that C'f > g; the notation f ~ ¢ means that f = g and g 2 f. Seginer [11]
proved that for n > 2,

Bl (@i e)s<nll S 105"/ 0 (max | as ) + mas (o, )il

and constructed an example showing that in general the constant logl/ *n cannot be improved.
In [8, Theorem 1.1] it was shown that for any matrix (a;;),

El[(ai,jei,j)ij<nll 2 Jax ll(ai;)ill2 + max. ll(aij)ill2

max min sup E a; j€i jSit; . (1)
1<k<n IC[n], <k |s||o,||t]2<1 T
5 Logk

Here and in the sequel Log = = log(z \V e) and ||S||, = (E|S|P)'/? denotes L,-norm of a r.v. S.
1
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It was also conjectured that bound (1) may be reversed, i.e., for any scalar matrix (a; ;)i j<n,

Ell(aij€ij)ij<nll S nax l[(aig)ill2 + max [l (ai,j)ill2

+ g a; j€i jSit; . (2)
1=k 1l \f\<’fn a1 ey
Logk

The proof of [8, Remark 4.5], based on the permutation method from [9], shows that in order
to establish (2) it is enough to show that for any submatrix (b; ;)i j<m of (a; ;)i j<n one has

Bll(bijeisigemll S max [(big)jllz+ max |(bi)ill2 + Rp(Logm), (3)
where for a matrix A = (a; ;) and p > 1 we put

Ru(p) =

‘ g a; € jSil; H

Our first result states that this conjectured bounds holds for {0, 1}-matrices.

lls H2<1 Ht||2<1 ‘

Theorem 1. Inequality (3) holds if b, ; € {0,1} for any i,j. As a consequence, for any E C
[n] x [n],

Bl|(Lp(i, d)exigenll ~ masx | (Lo(i,d))slle + max (Le(i,))ill

Z ]lE(Lj)EZ‘,jSitj . (4)

+ max min sup
1<k<n IC[n], ISk ||s||o,)1t]2<1 e
’ Log k

Inequality (3) for {0, 1}-weights is a consequence of the more general Theorem 5 below, applied
to the symmetric 2m x 2m {0,1}-matrix A = < f?T 61

the proof of [8, Remark 4.5].

>. Estimate (4) follows from (3) as in

Remark 2. [8, Proposition 1.4] gives an equivalent (up to a constant) form of R4(p) for {0, 1}-
matrices:

sup 1g(i,7)eij8:t;|| ~  max e yery)ll-
szl <1 z]: Jeusit| ~  pax  I(iaer)l
’ p

Hence the first part of Theorem 1 gives a positive answer to the question posed by Ramon van
Handel (private communication):

El|(Le(i,d)ei,)ieall S max [(Le(i, )l + max [(LeG )iz

+ sup I(Lgii)ery)isll-
FCE,|F|<Logn

One may also state the two-sided estimate (4) in the equivalent way as
Bl (LeCd)eis)ij<nll ~ max [(1p(05));5ll2 + max [I(1e(,7))ill2

Lo nersier)isll-
1<I?§n Ic[ﬁ |Ill|<k FCE, \Fa|§Logk 1 periger)isl

Remark 3. Two-sided bound on moments of norms of Rademacher vectors [7] gives that for every
p=1,

1/p
(EH(ai,jEiJ)i,anHp> ~ El[(ai,j€i,5)ij<nll + Ra(p).
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Thus, the first part of Theorem 1 might be equivalently stated as
(EI(Le (i, §)ei)i5<nl*LH08 )12 Hosn] max [|(Le(i, 7)jll2 + max [(Le (7))l
<i<n <j<n

ma Legis il )

L S (R (5)

It is quite tempting to show (5) for symmetric sets E via a combinatorial method, since for

n x n symmetric matrix A and k = |Logn], ||A|| ~ (tr(A2*))'/2k. Such an approach worked for
Gaussian matrices [4], but we were not able to apply it in the Rademacher case.

Remark 4. Signed adjacency matrices were studied in [6] in connection with 2-lifts of graphs. [6,
Lemma 3.1] shows that to each signed adjacency matrix of a graph G one may associate the 2-lift
of G with the set of eigenvalues being the union of the eigenvalues of G and of the signed matrix.
Hence Theorem 1 provides an average uniform bound on new eigenvalues of random 2-lifts.

To state results for general matrices we need to introduce some additional notation. We
associate to a symmetric matrix (a; ;)i j<n @ graph G4 = ([n], E4), where (i,j) € E4 iff § # j
and a; ; # 0. By da we denote the maximal degree of vertices in G 4. Observe that in the case
of {0, 1}-matrices vdal|(a;;)|lcc = vV/da < max; ||(ai;);ll2-

Theorem 5. For any symmetric matriz (a; ;)i j<n,

19/40
Ell(aijeig)ig<nll S max||(ai;);ll2 + Ra(Logn) + Ay (@)oo (6)
Remark 6. Since ||(a;:€::)|| = max; |a; ;| we may only consider matrices with zero diagonal.

Moreover, for any unit vectors s,t we have

1
’ > ai,jez‘jsifj‘ < (@il Y 1{(¢,j)eEA}§(S? +13)
i+ i

= % (Z s} Z Wperay + Zt? Z ﬂ{mem})
J 7 7

< da|(aij)llso-
Hence,
Ell(as,;Lizjy€is)iall < dall(ais)lloo (7)

and it is enough to consider only the case n > da4 > 3.

The proof of Theorem 5 takes the most part of the paper. Here we briefly sketch the main
ideas of this proof. Bernoulli conjecture, formulated by Talagrand and proven in [5], states that
to estimate a supremum of the Bernoulli process one needs to decompose the index set into
two parts and estimate supremum over the first part using the uniform bound and over the
second part by the supremum of the Gaussian process. Unfortunately, there is no algorithmic
method for making such a decomposition — a rule of thumb is that the uniform bound works
well for large coefficients and the Gaussian bound for small ones. We try to follow this informal
recipe, decompose vectors s,t € BY into almost "flat" parts and use the uniform bound when
infinity norms of these parts are far apart. When they are of the same order we make some
further technical adjustments (using properties of the graph G 4) and apply the Gaussian bound.
The crucial tool used to estimate the corresponding Gaussian process is an improvement of van
Handel’s bound [12], provided in Section 2.1.

We postpone the details of the proof till the end of the paper and discuss now some conse-
quences of Theorem 5.



4 RAFAL LATALA

Theorem 7. For any symmetric matric (a; ;)i j<n,
E|(a52i.1)i.i<nll < LogLog(da) (max|l(ai)sllz + Ra(Logn) ).

Proof. Let M := max; ||(a; j);ll2, uo = 1 and uy := exp(—(20/19)%) for k = 1,2,.... Let ko be
the smallest integer such that (22)¥ > Log(da). Then ko ~ LogLog(d4) and uy, < dy'. We
have

ko

Ell(ai jei )| < Bl (@i 1ja, ,1<ue aryii)l + D BlI@i i 1w <far ;| <uns a3 Eis) |-

k=1

For any k,
dy == max |{j: |aij| > ueM}| < u?,
so by Theorem 5
B\ (@i L ug <y | <un 1003 Ei) | S M+ Ra(Logn) + dy” **up_y M < M + Ra(Logn).

Moreover, using again Theorem 5

EJl (@i, (jas,<ung ay€id) Il S M + Ra(Logn) + dy**u, M < M + Ra(Logn) O

Remark 8. In Theorems 5 and 7 we do not assume the symmetry of (g; ;); ;. However analogous
bounds holds for E||(a; ;&; ;)i ||, where (; ;);; is the symmetric Rademacher matrix (i.e., & ; =
;i =¢€;, for i > j), since
Ell(ai;&i5)isll < Ell(ai;&i1g<iy)ill + Ell(ai €5 1> )il
= Ell[(ai;€i.51gi<sy )il + Ell(aij€i i y)isl < 2Bl (aijgi5)i5]-
Obviously, d4 < n, so Theorem 7 (together with the standard symmetrization argument)
implies that bounds (3) and (2) hold up double logarithms of n. However, decomposing matrix

into two parts and using the Bandeira-van Handel bound one may derive conjectured upper
bounds up to triple logarithms.

Theorem 9. For any matriz (a; ;)i j<n,

Ell(ai ge1.)0 5]l S LogLogLogn( max [[(ai, )il + max [[(as)ill2 + Ra(Logn))
<i<n <j<n

and
Ell(aij€i;)i<nll S LogLogLogn ( max [(ai;);ll2 + max fl(ai;)il2
max  min sup a; ;€i,;Sit; .
L<kSn ICn] IS |5y, 2<1 il R )

Logk
Proof. Assume first that the matrix (a; ;) is symmetric. Let g; ; be iid N(0,1) r.v’s. The result
of Bandeira and van Handel [4] implies
Ell(aijeig)ig<nll S Ell(aij9i5)ii<nll S max f(ai)jll2 + vlognll(ai;)]lec- (8)
Put M := maxi<i<m ||(ai,;);]]2. Estimate (8) yields

Ell(ai,j1{ja, 1< MLog=1/2 n}€ij)i<nll S [max [1(@i,5);]l2-

‘We have
max |{j: |a; ;| > MLog™"/?n}| < Logn,



ON THE SPECTRAL NORM OF RADEMACHER MATRICES 5
hence Theorem 7, applied to a matrix (ai,jl{mi J|>MLog—1/2 n})i,an implies

Ell(aij1ja, ;1> MLog=1/2 n}€ii)ii<nll S LOgLOgLOganﬂ%n l[(ai,5)5ll2 + Ra(Log n))'

Therefore, for any symmetric matrix (a; ;),

E|(a52i.1)i.i<nll S LogLogLogn( max |(aij);]2 + Ra(Logn)). (9)
Now, supppose that matrix (a; ;) is arbitrary. Applying (9) to the symmetric 2n x 2n matrix
( /?T 61 ) we get the first part of the assertion.
The second part follows from the first one as in the proof of [8, Remark 4.5]. O

Organization of the paper. In Section 2 we discuss basic tools used in the sequel, including
an improvement of the van Handel bound for norms of Gaussian matrices from [12]. In Section
3 we derive a weaker version of Theorem 7 with log(d 4) instead of loglog(d ) factors. The last
section is devoted to the proof of Theorem 5.

2. TooLs

We will use the following estimate for suprema of Rademachers. It is a special case of [1,
Lemma 5.10].

Proposition 10. Let T, ..., T, be nonempty bounded subsets of RN . Then

N
E tig;
i=1

Another useful result is the estimate on the number of connected subsets of a graph.

N N
E max sup E t;e; < max E sup g t;e; + max sup
k<n teTy, P k<n e, = k<n e,

Logn.

Lemma 11. Let H = (Vy, Eg) be a graph with nyg vertices and mazimal degree dy .
i) For a fited v € V' the number of connected subsets I C Vi with cardinality k containing v is
at most (4dg)F1.

ii) The number of all connected subsets I C Vi with cardinality k is not bigger than ng (4dg )1,

Proof. 1) The connected subset I may be chosen by first choosing its spanning tree rooted at
v and then labelling the vertices of the tree. The number of unlabelled rooted trees is less
than the number of oriented trees with k vertices, i.e., less than the (k — 1)-th Catalan number
Cj—1 < 4*=1. The root of the tree is v and the rest of vertices may be labelled in at most d’;{_l
ways.

Part i) of the assertion immediately yields part ii). a

2.1. Van Handel-type bound. In this part we will establish the following improvement on
van Handel’s bound [12].

Proposition 12. For any n x m matriz (a; ;)i<m,j<n ond b € (0,1] we have

E  sup sup D aigeigsity Smax||(ai);ll2 +max || (@)l
seBY*NbBT te BYNbBL, i<m,j<n 3 J

+ Log((n + m)b?)|[(ai,5)i,j oo

Let us first formulate and prove a symmetric variant of Propostion 12.
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Proposition 13. Let (&;;):; be a symmetric Rademacher matriz. Then for any symmetric
matriz (a; ;)i j<n and any b € (0, 1],

|OO'

sup i ;& sity S max||(a )2 + Log(nb®)|[(ai )i s
s,tEBYNbBL ?

o g,j<n
The proof uses the following, quite standard, technical lemma.
Lemma 14. Let Yy,...,Y, be r.v’s and m;,o; > 0 be such that

P(Y;| > m; + uo;) < e~ /2 foreveryu>0andi=1,...,n

Then
n
E sup Z s7Y; < max m; + Log(nb?) max o;
s€eB3NbBY, @
and
n
E sup Z s?Y? < maxm,; + y/Log(nb?) max o;.
seBybBr, \| T i i
Proof. Let (Y7",...,Y) be a nondecreasing rearrangement of [Yi],...,|Yn]. We set k = n if

b% < 1/n, otherwise we choose 1 < k < n—1 such that Tﬂ < b? < 1. Then Log(nb?) ~ Log(n/k)
and
- 1 * *
sup ZszY;SE(Yl +...4+Y)).

s€BINbBL, T~

A standard argument shows that EY;* < (E|Y;*|?)"/2 < max; m; + Log/?(n/l) max; o;. Thus

n k
1 n
E 2Y; < t /Lo < L ,
sEBS"I:TIZBgo ; s3Y: S miaxml A g max 0 S max m; + og(k) m?x g;
and
- 1
E  sup > s2y? g]E\/(|Y1*|2+...+|Yk*|2) <
sEBFNbBL, \| =7 k

w\»—

< maxm; +

k
E max g;

< maxm; + Log(%) max ;. 0

Proof of Proposition 13. Let (g ;)i j<n be a symmetric Gaussian matrix (i.e., g;; = g;; and
(gi,j)i>; are iid N'(0,1) r.v’s), independent of &; ;. We have for any matrix norm || - ||,

) = \/EEII(%%)II-

For any symmetric matrix B we have (Bs,t) = 2((B(s+1),s+t) — (B(s —t),s — t)), hence,

)l = Ell(ai,;€i,;Elgi,;

Ell(ai;gi3)l = Ell(a: éi ;19

sup (Bs,t) <2 sup [(Bs,s)|.
s,t€BFNbBL, s€BEMbBL
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Therefore,
E sup E ai’jéi,jsitj ,S E sup ’ E aingiijiSj‘
seBFNbBY, i<n seByNbBL, ', <n
<E sup E a; ;9i;8:5; +E  sup E (—ai}jgi,jsisj)
n n
s€BYMbBL, 2, s€BYMbBL, 2,
=2E bﬂup E @;,594,55iS55-
s€ByNbBY, . J<n

Now we follow van Handel’s approach from [12]. Let g¢1,9s,...,gn be iid A(0,1) r.v’s and
Y = (Y1,...,Y,) ~ N(0,B_), where B_ is the negative part of B = (a7 ;). Define the new
Gaussian process Zs by

Zb:2zn:szgl ZGZJJ+ZSZY
i=1

It is shown in [12] (see the proof of Theorem 4.1 therein) that for any s, s’ € R™

2
!/
E‘ E i jgij(si8j — s;s75)

,7<n

<E|Zs - Zy|*.

Hence the Slepian-Fernique inequality [10, Theorem 3.15]. yields

E sup Z a; ;9i ;85 <E sup Z.

s€ByNbBL, [ s€BZNbBY,

Variables Y; are centered Gaussian and (see the proof of Corollary 4.2 in [12]) (EY;?)'/2 <
|(ai,;);lla. Hence Lemma 14 applied with m; = 0 and o; = ||(a; ;);]|4 yields

E  sup > s7%; S /Log(nb?) max||(ai;);lla
seB”ﬂbB“ g
< /Log(nb?) max|a; ;| /% max | (a; ;); 15>
(2%} J

< =1
< max||(ai;);ll2 + Log(nb®)|[(ai;)ijllo0-

We have

2 2 22,2 _ 2772
sup g Si9i g a;;sj < E sup g a;;si9; = E sup E sjVj ,
sEB"ﬁngo = ; seBymbBy, \[ 7= s€BINbBY, i

where V; = /> . aw g?. The Gaussian concentration [10, Lemma 3.1] yields
2
P(IV;] 2 (aigillz + tll(ai)ill) < €772,
so Lemma 14 applied with Y; =V, m; = ||(ai,;)ill2 and o = ||(as,5)illeo yields

w3 [ i 5 max i)l + osGb i le O

seB"ﬁngo =

Proof of Proposition 12. We apply Proposition 13 to the symmetric (n + m) x (n + m) matrix

A = (a,,) of the form A = ( 0 A

AT 0 ) Observe that max; ; |a; ;| = max; ; |a; ;|,

me | (@) l2 = maoc{ ma [ ac); 2 mave | (a2 }
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and

E sup E i j€;58:it; > E sup sup E a; ;€ jSit;. O
S,tEB;+7nﬂbB&+m ij<ndm s€EBI'NbBM te BYNbBL, i<m,j<n

3. BOUNDS UP TO POLYLOG FACTORS

In this section we derive weaker estimates than in Theorem 7 (with powers of log d4 instead
of loglog(da)). They will be used in the proof of Theorem 5 to estimate the parts of Bernoulli
process (), j Qi,jEijSit) )s,teBy, Where coefficients s; and t; are of the same order.

Let us first introduce the notation which will be used till the end of the paper. Recall that
Ga = ([n], Ea) is a graph associated to a given symmetric matrix A = (a;)i j<n. By p = pa
we denote the distance on [n] induced by E4. For r =1,2,... we put G, = G,.(A) = ([n], Ea),
where (i,7) € E4, iff p(4,5) < r. In particular G; = ([n], E4) and the maximal degree of G, is
at most dg +da(da —1)+...+da(da —1)"" < d",. We say that a subset of [n] is r-connected
if it is connected in G,..

We denote by Z(k) = Z(k,n) the family of all subsets of [n] of cardinality k& and by Z.(k) =
Z,(k, A) the family of all r-connected subsets of [n] of cardinality k.

For a set I C [n] and a vertex j € [n] we write I ~4 j if (i,5) € E4 for some ¢ € I. By
I' = I'(A) we denote the set of all neighbours of I in Gy and by I” = I"(A) the set of all
neighbours of I’ in Gy, i.e.,

I'= {.7 € [’fl] Jier ('Laj) € EA}7 1" = {Z € [TL] EIioEI,je[n] (iovj)v (17.7) € EA}' (10)

Observe that I is a subset of I”, but does not have to be a subset of I’. Moreover |I'| < dall|
and |I"| < d4 |1).

By Remark 6 we may and will assume that a; ; = 0 for all 3.

For 1 < k,l < n define random variables

Xt = Xiea(4) = ﬁ IeI(k) JeI(l m,rvIIla_Xi1 Z 01,351377177]
i€l jed
and their 4-connected counteparts
— — 1
Xig=Xp1(A) = \/H I€I4(k) J€I4(l) ’Wh Ze%:gawel,mm].
Set
X =X(4):= max Xj;= max ! Z @i j€i, NN - (11)

1<k,i<n

0A1,ICV \/|I|| ]| 77“771 Lierjers

Variables Yk,l are easier to estimate than Xy ;, since the number of 4-connected subsets is
much smaller than the number of all subsets — calculations based on this idea are made in Lemma,
16. Lemma 15 shows that in expectation these variables do not differ too much.

Lemma 15. For any 1 < k,l <n,

EXp; < max  EXpp + Ra(Log(kl)).
1<k <k, 1<V <L

Proof. Let us first fix sets I € Z(k) and J € Z(l). Let I,...,I, be connected components of
INJ in Gy and J, := JNI). Then sets Jy,...,J, are disjoint and 4-connected subsets of J.
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Hence, for every n;, 773 = +1 we have

S aigegmmy= Y aijEimn; = Z > au€u77ﬂ7j<ZX|1|u\\/lf||J

iel,jeJd i€InJ’ jeJ u=liel,,jel,
r 1/2 1/2
= k:ir}fal}'(qu' I 221 V HullJul < k/g}cal)'(<le, v (Zl ‘I”D (2:1 |J“|)
= = u=
< X Il]J|.
< o X VIV

Taking the supremum over all sets I € Z(k), J € Z(l) and n;,n; = £1 we get

Xp; < max X p. 12
k.t k' <k,l'<l kol ( )

Observe that

1
1614(3;?}614(1') mﬁ%ixﬂ VET elzzejaw 1,377177] Log(kl) ||s\|25:\1|12£)\2§1"2 @313 5it Log(kl)
= Ra(Log(kl)).
Thus, by Proposition 10
E k/g}cal)/(q X < k'1<1}cal}'{<l EX o + Ra(Log(kl)).
O

Lemma 16. We have for any 1 < k,l <n,
EXi1 S v/Logdamax ||(ai;);]2 + Ra(Logn).

Proof. Obviously X < |[(aij€i )|, so by (7) we may assume that n > ds4 > 3. By the
symmetry it is enough to consider only the case [ > k. By Lemma 11, 2¥|Z4(k)| < n(8d%)*
ndSf.

We have

X max @i i€ M
ke S \/%1514(1@)771_1[1 ltla< p ZZ G€i,jMit;

161 J
For any fixed I € Z,(k) and n; = %1,

24 1/2
E\T \|ts|\1i<1zza”5“m’ I (Z(Zam&mm) )

%\

AZE(;am@mz)Z)” FETa)”
T(ZZ“U) < max | (as,); |2

i€l j

In the case n > dSF, log(Qk\Ll(k)\) < logn and

< Ra(logn).
Log(a Tagryy~ AU10E™)

max max HE E a;i j€; ;Mit;
I€Zy(k)ni==%1 Ht||2<1 f 7
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In the case n < dF we have log(2¥|Z4(k)|) < klogda and

Log(2*|Z4(k)])

max max H E E awgmnz]‘
I€T4(k) mi= il\ltl\ <1 vk Z

1/2
S max max  su logd ( E a; imits 2)
™~ Iezq(k) m=%£1 )12 21 g A Z (ai,jnit;)

i€l j
= e maxvlog 4 (z; )" < Viog @ max | ai )il
The assertion follows by Proposition 10.
Corollary 17. We have
EX =F max 1 ma Z a; & inin; S Mmaxﬂ(a”) ll2 + Ra(Logn).

0£1,0CV \/T||J] s ’7: Lierjes

Proof. Lemmas 15 and 16 imply that for a fixed 1 < k, I <n

EXk S max IEXk, i + Ra(Log(kl)) < v/Logdamax ||(a;;);|l2 + Ra(Logn).

k' <k,l'<

Moreover,

NI IDY

max max e a; ;€ H

1ShISn 1€T(R) T ET() v/l mom o1 A BN | g 2y
3J

< H E a;,j€ijtiS;

\|t|\2<1 || o<t jev

< Ra(Logn)

2Logn

and the assertion follows by Proposition 10.

Proposition 18. For any symmeric matriz (a; ;)i j<n we have
E|(aij€i)ig<n]| S Log™?(da) max|(a; )|z + Log(da)Ra(Logn).

Proof. By Remark 6 we may assume that a; ; =0 for all ¢ and n > ds > 3.
For vectors s,t and integers k, [ we define sets

L(s)={ieV: eF sy <e ™}, Bt)={jcV: eI <t;]<e '}

Observe that for any s,t,k,,

—k—1 /
Y aigeigsit; <e max > i, i€, Nl
i€li(s),j€Ti(t) T e ny(s) e ()

therefore

. —k—l /
|(asjeii)ijev] < sup E e sup E @i €471
. —
Isll2;lIt]l2<1 k1l ntvnj*il i€l (s),5€J1(t)
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‘We have

—k—1 el
E E e ‘m/zlxil E i €, j1i7;

k I>k+logda R e ORI )

S YR IED S

k 1>k+logda 1€1L(s),j€J(t)
—k —1
<2t D Dl D eTbyenwy
i€l(s) J I>k+logda

<D0 D laigle M < gl Y Y e

k i€li(s) J k i€l (s)
<l(@i)lloo Y Y €7 =€ lsl3l(ais)lloo-

ki€l (s)

In the same way we show that
—k—1 / 2 2
§ : E : € X . E ai j€inin; < e[|tz (ai ;)| oo-
k>I+log da GRS AT A0)
Moreover, for any s, t,
—k—1 ’
E e sup E aiyjai,jnmj

. e
kb [k—I|<logda MM =% e (s), €T (1)

oo

<X > e L)l A (1)].

k,l: |k—=l|<logda

For any fixed integer r

S e ) () et |<(Ze*2’m 0’ (Ze’“” isr0)
k

< 62||75||2||8H2-
Hence,

| (aijeis)ig<n]| < ol Sm < e ((Isl® + 1) (@i ) lso + (2log da + D)X |[t]l2]s]l2)
Sil2, 2>

< e*(2l(aiy)lle + (2logda +1)X)
and the assertion follows by Corollary 17.

4. PROOF OF THEOREM 5

By Remark 6 we may assume that a;; = 0 for all ¢ and n > d4 > 3.
For k=1,2,... and t,s € By we define

Ip(s) :== {i: dAk/40 <|si] < d (- k)/40} Ji(t) == {j: d;l/w < |t;] < dg_l)/w}.

k20 l20
ST ) < IsI3 S dn )] < 13

k>1 >1

Then

and

El[(aijeij)ijenll =B sup sup > > " a; e sit;
Isll2<V 21 ) 451 i1, (s) jeTu(8)

11
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Observe that for any s,t € By,

Y Y Y aest <Y sl Y Y il

k>11>k+414iel,(s) eI (t) k>14iel,(s) 1>k+41 jEJ,(t)
—(k+40)/40
<IN sildy > " |ai ]
k>14€l,(s) J

<Ml Y Y st < Maig)loo-

k>1i€l,(s)

Similarily,

S X Y a

I>1 k>1+41 i€}, (s) j€ T, (¢

< (@i j)lloo-

Hence it is enough to estimate

ZEsup sup Z Z Z a; j€;,58it;.

r=—a0 lsll2=<It2=1 5y ser, () jen(t)
1= k=r

By symmetry it is enough to bound only the terms with r > 0. Let X be defined by (11).
Then for a fixed r > 0 and a > 0,

sup sup D> > L ()zaln () G Sit
Isll2<1 [|t][2<1 k>1i€l(s) j€Tnyr(t)

(2—2k— 40
S sup  sup  max Z Z Z di; v L{ g (012 0l L ()} 3.5 E0, TN
lsll2 <1 l1ellz <1 =L =3 0 ) seTonn ()

2—2k— 40
<X sup sup de4 L) Tt O (020l 1)}

Isll2<1 [1¢l2<1 557

<a '2X sup sup ngf%ﬂ)/wukﬂ(tﬂ < a_1/2d54r+2)/40X,
lsll><1llell2<1 £

where the last inequality follows by (13).
Hence Corollary 17 yields

E sup su Z Z Z ! TSl
lIs] glﬂt\l 31 (kg r (O12dGTT/ 0|1 (5) |} 0T S0 200
2 222 k>14€T5(s) j€Tpyr(t)

S max||(ai;);ll2 + Ra(logn).
In a similar way we show that

sup Z Z Z L1 gy (®)|<al L (s) [} @i, €4, Sit

[Isll2<1 \|t|\2<1 k=100 (5) J€Topr(t)
<al'?Xx sup sup def%ﬂ)/mﬁk(sﬂ < al/gdfﬁ)MOX
lsll2<1 it <1 7

and
E sup  sup E E § ]l{le ,y.(t)|>d5427‘_ 5)/40\Ik(s)l}ai»jgivjsitj
[Isll2<1|t]2<1 k=1 i€y (5) € opr(t) + E
S mzax ||(az‘,j)j||2 + RA(log n)
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Hence it is enough to bound for r = 0,1, ..., 40,

E su sup E E g 1 (2r—5)/40 2rt5)/40) U, i€¢ i Siti.
1ols21 421 {820 < 1/ ()| <G40} TIPS
2 2="k2>14€l,(s) € Tppr ()

Recall definition (10) of sets I’ and I”. Let us fix 0 < r < 40 and k, ¢, s such that dffr_5)/40 <

| Jktr (D] /T (8)] < dfr+5)/40. Let |Ix(s)] = m. Let us consider the following greedy algorithm
with output being a subset {iy,...,ip} of Ii(s) of size M < m

e In the first step we pick a vertex i; € I;(s) with maximal number of neighbours in

Jk_;,_r(t).
e Once we have {i1,...,iny} and N < M, we pick in41 € I(s)\{i1,...,in} with maximal
number of neighbours in Jy,(¢) \ {i1,...,in}".
If Iy is the number of neighbours of iy in Jey.(t) \ {i1,...,in—1}, then ly > 13 > ... > Iy, so

My < |Jksr(t)]. Hence, using this algorithm we may find a subset I C Ix(s) with cardinality
1) < d "0 g ()] < dUT %% such that for every i € Ii(s)\ 1, [{j € Jegr()\I': i ~4
G} < [dTI/A0) < 9d (T80 Note that if (i, §) € Ea and (i, §) € (Ix(s) X Joar (£) \ (I x I'),
then j € Ji4r(¢) \ I'. Therefore,

18)/40 ;(1—k—r)/40
3 jaigllsits| < 2@l Y. |sildy 4 0a 0/
(4,5) €L (8) X Jor (E))\ (T X TI") i€ (s)
19/40
< 2l/(ai)lled ™" Y 82 (14)
€1k (s)

Observe that if d;(r+18)/40|Jk+r(t)| > m we may take I = Ij(s) and then a; ; = 0 for (4,5) €
I (8) X Jk+r(t)) \ (I"” x I'), so estimate (14) is also valid in this case.

Let
8" = (8i)icrnn(s)s  t = () jerns . (s);
where
3/ = # t,- = t—]
o lGiensllzT 7 1E)jed w2
Then
Is'll2 <1, 18"l < dY " L(s)| 72 = d{ 'm /2,
JL/40 _ 7—2r)/80  _
Il <1, 1t s < d " Jupn ()] 72 < d 205012,
Hence,
> ei3ijsits < Yool (s:)ier, (o2l (t) je i o) ll2s (15)
(4,5) €Ik (8) X Teqr (£))N(I"" X I")
where
Y= max sup sup Z a;,;€i,5Sit;.

r—13)/40
[1]<dfy mseBrndY**m-1/2Bn teBpnd{ 2"/ m-1/2Bn e jer
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Define Y, := maxi<m<n Yo, Estimates (14) and (15) yield

E sup sup Z Z Z 1 (2r—>5)/40 (2r+5)/40
HSHZSI Ht||2§1 k,Zl ielk(s)jEJkJﬂ«(t) {dA <‘Jk+r(t)‘/|lk(s)‘<d,4 }

19 40
< s swp (zzd/ e 3 2B S shenolal (et nz)

“9”2<1”t”2<1 k>1 i€, (s) k>1

1/2
< 24" (@i ;)| se + EY, sup (Z 1(si)ieny(s)ll2 ) sup (Z 1#5)je 70002 )

lIsll2<1 k>1 lltll2<1 k>1

Qi,j€i,jSit;

< 2d"||(ai 5)l|oo + EY,.
Therefore, to establish Theorem 5 it is enough to prove the following lemma.
Lemma 19. For every 0 < r < 40,
EY, =E max Y, < max|(ai;);ll2 + Ra(logn) + Log(da)ll(ai;)llec-

First we show a connected counterpart to Lemma 19.
Lemma 20. We have

E max max sup sup E Q; ;€4 i8;ts
IV R A}
<k< _
I<k<n I€La(k) seBgﬁdi/glrl/?B" teByNd 1/16k*1/2B?: iel” jel’

S max|[|(ai;);ll2 + Ra(logn) + Log(da)| (@)l oo-
Proof. Let us first fix k and I € Zy(k). Then |I'| < dak and |I”| < d%k. Proposition 12, applied
with (a;.;) = (ai;)ierr jer, n = [I"], m = |I'|, and b = d* *k=1/2 yields
E sup sup D aijeigsity
seByndy/®k=1/2Bn teBpnd,'/'°k=1/2Bn ie1v jer
S max [(ai3)j]l2 + Log(da)ll(@ij)loc-

By Lemma 11, |Z4(k)| < n(4d%)* < max{n?,d'2¥} (recall that we assume that d4 > 3). We
have

sup sup H E a;,j€4,5Sil;
seByndy/®k=1/2Bn, teBpnd,'/'®k-1/2Bn

E a;,j€i,5Sil; H sup sup ‘
2Log(n) seB3 tEB”ﬂd_l/16k 1/2Bn

Log(|Za(k)])

< sup
s,te B

1/2
< R4(2Logn) + sup sup 12kLog(da) (Z a; ;si J)

$EBY tepnnd=1/1%,—1/2n
s€B3 teBpnd /P k—1/2Bn, i,j
1/2

E Q; i€ 7Sits H
C TIERI T o Log(d)
i

S Ra(Logn) + v/kLog(ds) max d;l/m/’c*l/2 (Z az?,j)
J
< Ra(Logn) + v/Tog(da)d; " max |(as )12 < Rallogn) + mas | (as); 1>
Hence, by Proposition 10,

E max sup sup E a; i€; iSit;
IeZy(k) 3/8 —1/16 I
seBrNdy “k=1/2Bn teBynd, ' "k~1/2BL el jel’

S max||(aij);ll2 + Ra(logn) + Log(da)| (@i ;)| oo-
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Applying again Proposition 10 and observing that

max sup sup ’ E a; j€,j8il; ’ < Ra(logn)

LSk<n e ppnd®/*k-1/2Bn, teBpnd;"/*k-1/2B1 Log(n)
we get the assertion. O
Proof of Lemma 19. Let

7y, = max sup sup E a; ;€7 Sit;.
T€L4(R) s ppra’/®k-1/2Bn, teBynd; " k-1/2Bn el jer
13)/40 1/40
Let us fix r > 0, ICVsuchthat|I|<dT ) m,seBgﬁdA/ m~1/2B" and t €

BN dg 2r)/80 m~Y2B" . Let I1,...,I; be 4-connected components of I. Then {I},... Y isa
partition of I', {I{, ..., I]'} is a partition of I and

!
Z a; j€i,jSit; :Z Z a; ;€; ;iSit;. (16)
il jer u=1liell jer,
Define
U= {1<u<l: [(sierglle = dy™ " m= VL],
= {1<u<t: (el 2 d3*7*m™ 2 VIL]}.
For u € U; N U,y define vectors

Su) = (8d)ier B = (t;)jer, .
| (si)iery|l2 [(t;)jer, ll2
Then [|5(u)ll2 = |(u)]l2 = 1,
15(u) oo < dS 2% 0mY 2|1, |72 5o < df O L T2 < P12,
() oo < dfy 275 0mA 21,72t o < dg VLTV < a0 LT,

Hence

si)iery2ll(tj)jer, [|2

Z Z Qi 5€4,58it; < Z ZrlI(

ueUNU2 i€l ,jEI], ueU1NU3
<maxzk(2|\ siergld) (St sen13)”
u<l
Sm]?XZk. (17)

Observe that
Z [(si)icrr|l3 <Z:d12 7)/40 m~YI,| = d(12 r)/40 m VI < d 1/40
ugUs

and by the same token

STl ier, 13 < dy.

u¢U2
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Hence
>0 aigeigsity < laigeig)igl Y N(sieryll2ll(t)jer ll2
wgU, i€l jel, ugly
1/2 1/2
< @i )isll( D2 Wsidiersl) ™ (3 Iti)ser 13)
u§éU1 uSl
—1/80
< d;""*||(az er )i (18)
and
SN aigeigsity < Naigeig)igll Y siiery 2l (t)er |2
weU\Us i€}/ ,j€I, u@Us
1/2 1/2
< laigesi)ell (D2 Isiers3) (D2 Mt 1)
usl ugUs
—1/80
< d3"® N (aigei)igll- (19)

Bounds (16)-(19) yield
Emax Y, < Emax Zy + 2d; " E| (i j&1.1)i5]
m

and the assertion follows by Lemma 20 and Proposition 18. g
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