OPERATOR /, =+ {;, NORMS OF RANDOM MATRICES WITH IID ENTRIES
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ABsTRACT. We prove that for every p, ¢ € [1, co] and every random matrix X = (X; ;)i<m,j<n
with iid centered entries satisfying the a-regularity assumption || X; j|l2p < || X; ;||, for every
p = 1, the expectation of the operator norm of X from ¢; to £7* is comparable, up to a
constant depending only on «, to
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We give more explicit formulas, expressed as exact functions of p, ¢, m, and n, for the two-sided
bounds of the operator norms in the case when the entries X; ; are: Gaussian, Weibullian,
log-concave tailed, and log-convex tailed. In the range 1 < g < 2 < p we provide two-sided
bounds under the weaker regularity assumption (IEXfl)l/4 < a(]EXil)l/Q.

Keywords and phrases: random matrices, operator norm, a-regular moments, iid random
variables, log-concave tails, log-convex tails, Weibull random variables

1. INTRODUCTION AND MAIN RESULTS

Let X = (X; j)i<m,j<n be an m X n random matrix with iid entries. Seginer proved in [13]
that if the entries X; ; are symmetric, then the expectation of the spectral norm of X is of the
same order as the expectation of the maximum Euclidean norm of rows and columns of X. In
this article we address a natural question: do there exist similar formulas for operator norms of
X from £ to £, where p, g € [1,00]? Recall that if A = (4; j)i<m, j<n is an m X n matrix, then

| Allen—sem = sup [[At[lg = sup sTAt = sup Z A; jsit;
teBrn teB sEBT teBp s€BR  h,

denotes its operator norm from £} to £;"; by p* we denote the Holder conjugate of p € [1, o0],
i.e., the unique element of [1, co] satisfying % + p% =1, and by ||z, = (3, |2i|?)*/* we denote
the £,-norm of a vector x (a similar notation, ||Z||, = (E|Z|¢)'/# is used for the L,-norm of a
random variable Z). Whenever we write p > p; or p < py we mean p € [p1,00] or p € [1,p2],
respectively. If p = 2 = ¢, then ||Af ¢z is the spectral norm of A, so the case p = 2 = ¢
corresponds to the aforementioned result by Seginer.

Let us note that bounds for E[|X|[|¢z—¢m yield both tail bounds for [|X|[gz¢m and bounds
for (E||X ”2);? H@)U ? for every p > 1, provided that the entries of X satisfy a mild regularity
assumption; see [1, Proposition 1.16] for more details. Thus, estimating the expectation of the
operator norm automatically gives us more information about the behaviour of the operator
norm.

Not much is known about the non-asymptotic behaviour of the operator norms of iid random
matrices if (p,q) # (2,2); see the introduction to article [11] for an overview of the state of the
art. In the case when X;; = g;; are iid standard N (0,1) random variables one may use the

2020 Mathematics Subject Classification. Primary 60B20; Secondary 60E15; 46B09.
1



2 R. LATALA AND M. STRZELECKA

classical Chevet’s inequality [4] to derive the following two-sided bounds (see [11] for a detailed
calculation; compare also with [7, Remark 1.5]):

ml/a=1/2p1/p" 4 nl/p*fl/zml/qy p* q <2,
E| (9:,5) I " A Lognn'/P"mt/a=1/2 1 m1/a, q<2<p",
GirjJismj<nlgn g n'/?" 4 /g ANLogmm!'/ant/P =1/2, pr<2<gq,
VP ALogn /" + g ALogmm!/?, 2.< q,p*
(1) ~ /p* ALogn mMI2VORP" L J A Togm n(/P =1/2V0m /e,

where
Logx = max{1,lnz}, forx >0,

and for two nonnegative functions f and g we write f 2 g (or g < f) if there exists an absolute
constant C' such that Cf > g; the notation f ~ g means that f 2> g and g = f. We write
Sa, ~K,y, etc. if the underlying constant depends on the parameters given in the subscripts.
Equation (1) yields that for n = m we have

Bl 0o~ A, PLa<2,
9ii)ig=tlleg—ey VP AqALognnt/®A) - pry g > 2,

However, even in the case of exponential entries it was initially not clear for us what the order
of the expected operator norm is. This question led us to deriving in [11] two-sided Chevet type
bounds for iid exponential and, more generally, Weibull random vectors with shape parameter

€ [1,2]. In consequence, we obtained the desired non-asymptotic behaviour of the operator
norm in the Weibull case when r € [1,2] (r = 1 is the exponential case). Note that this does not
cover the case of a matrix (g;;); ; with iid Rademacher entries, which corresponds to the case
r = oo. It is well known (by [2, 3], cf. [1, Remark 4.2]) that in this case

m/a=12p1 /0" gV 21 e g <2
@ E||(5ij)7,'<m j<nHen_>€m s mll//q*_l/in/f +ml/a, q <2< p*,
g Jismoj<nllgn_, n T /P /P12 P <2<q,

nt/P" 4 mt/a, 2 < p*.q

Moreover, it is not hard to show that constants in lower bounds do not depend on p and q,
whereas [12, Lemma 173] shows that in the case of square matrices the constants in (2) may be
chosen independent of p and ¢, i.e.,

" nl/Q+1/p*_1/2’ p*’ q é 27
E||(€i1j)i»j:1||€g—>€g ~ ,nl/(p*/\q) p* Vv q >9

It is natural to ask if the upper bound in (2) does not depend on p and ¢ also in the rectangular
case. Surprisingly, the answer to this question is negative — in Corollary 14 below we provide
an exact two-sided bound (different than the one in (2)) up to a constant non-depending on p
and q.

The two-sided bounds for operator norms in all the aforementioned special cases may be
expressed in the following common form:

Zt X1

Therefore, it is natural to ask if this formula is valid for other distributions of entries. We are able
to prove it for the class of random variables X; ; satisfying, for some a € [1,00), the following

1/e sSup HZSZ i,1

gA\Logm éeBm

1
E[|(X,5 Z<mu<nH1]n—>em ~m!? sup

teByp p*ALogn
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mild regularity condition
3) X 5ll2p < ol Xigll, forall p> 1

This condition was investigated in [10] and is sometimes called the a-regularity, and random
variables satisfying it are called a-regular. This condition may be rephrased in terms of tails
of random variables X ; (see Proposition 9). The class of a-regular random variables contains,
among others, Gaussian, Rademacher, log-concave, and Weibull random variables with any pa-
rameter r € (0,00). Although condition (3) is not very rigorous, it fails for some natural classes
of random variables, such as lognormal and [-stable variables with 8 € (0, 2).

The main result of this paper is the following two-sided bound.

Theorem 1. Let (X; j)i<m, j<n be #d centered random variables satisfying a-regularity condition
(3) and let p,q € [1,00]. Then

1/e Sup HZS’L i,1

gA\Logm éeBm

1/q
EH ] 7f<m,]<n||gn_>gm am sup

tEB" p*ALogn

Zt X1

Remark 2. If ¢ < 2 < p, then the assertion of Theorem 1 holds under a weaker condition that
random variables X, ; are independent, centered, have equal variances, and satisfy ||X; ;|4 <
a|| X5 j]|2. We prove this in Subsection 6.1.

Remark 3. In the case when random variables X; ; are not necessarily centered, Theorem 1 and
Jensen’s inequality imply that (see Subsection 3.3 for a detailed proof)

EH(Xivj)i’jHZg—Mm ~a ml/qnl/p |EX1 1| +m 1/a Sup Hzt X1 . ]EXl 1) aALogm
=1
(4) p* 2%17)11 HZ Z 1= EXIJ) p*ALogn

provided that iid random variables X; ;, i < m, j < n, satisfy
(5) ||Xi,j — EX1]||2p < OzHX ]EXZJHP fOI‘ all 14 Z 1.

The formula in Theorem 1 looks quite simple but, because of the suprema appearing in it, it
is not always easy to see how the right-hand side depends on p and ¢. In Section 3 we give exact
formulas for quantities comparable to the one from Theorem 1 in the case when the entries are
Weibulls (this includes exponential and Rademacher random variables) or, more generally, when
the entries have log-concave or log-convex tails.

The next proposition reveals how the two-sided bound from Theorem 1 depends on p and g
in the case when n =m and p* VvV g > 2.

Proposition 4. Let p,q € [1,00] and p*V q > 2. Let X, ; be iid centered random variables
satisfying (3). Then

Zt leJ ZS’L 11‘

Moreover, if one of the parameters p*, ¢ is not larger than 2, then in the general rectangular
case one of the terms from the formula in Theorem 1 can be simplified in the following way.

»*
+nt sup
gALogn sEB.

nt/q sup
teBy

~o
p*ALogn

Proposition 5. For ¢ € [1,2], p € [1,00] and centered iid random variables X; we have

Ln(l/p*—l/2)+||xl||q <

2\/5 HQ

il < n(1/P"=1/2)+ | X1
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Similarly, for p € [1,2] and q € [1, 0],

1
—— m1/a=1/2)4 Xi|j; € su
2\& ” 1 B SEBE"

In particular, if 1 < p*,q < 2, and X;;’s are iid random variables satisfying &_1|\Xi’j
[ Xijlla =1, then

Zt X

Theorem 1 and the last part of Proposition 5 imply that under the regularity assumption (3)
the behaviour of E||(X; ;)71 [lep—ep in the range 1 < p*, ¢ < 2 is the same as in the case of an
iid Gaussian matrix (see (1)), whose entries have the same variance as X7 1.

Propositions 4 and 5 yield that in the case of square matrices the bound from Theorem 1 may
be expressed in a more explicit way in the whole range of p and g¢:

< m/a= 1/2)+||X1||2

1 >

ml/4 sup
teBn

m

. . . _

+n/?" sup H E siXi,lH ~g mYIpt/PT Y2 gt a2,
seB 1T p*

Corollary 6. Let (X; ;)i j<n be #id centered random variables satisfying regularity condition (3)
and let 1 < p,q < 0. Then

» nM/at/P =12 X o, pq<2,
[(Xi,5) ij= 1”2"%5” T nt/ ("N X |

p*AgALogn» p* \ q Z 2.

The rest of this article is organized as follows. In Section 2 we review properties of random
variables satisfying a-regularity condition (3). In Section 3 we provide explicit functions of
parameters p*, g, n, m comparable to the bounds from Theorem 1 for some special classes of
distributions, and prove Remark 3. In Section 4 we establish the lower bound of Theorem 1,
and in Section 5 we give proofs of Propositions 4 and 5. Section 6 contains the proof of the
upper bound of Theorem 1. It is divided into several subsections corresponding to particular
ranges of (p,q), since the arguments we use in the proof vary depending on the range we deal
with. In Subsections 6.3 and 6.4 we reveal the methods and tools, respectively, used in the most
challenging parts of the proof.

2. PROPERTIES OF a-REGULAR RANDOM VARIABLES

In this section we discuss crucial properties of random variables satisfying a-regularity condi-
tion (3). We also show how to express this condition in terms of tails.

One of the important consequences of a-regularity condition (3) is the comparison of weak
and strong moments of linear combinations of independent centered variables X ;, proven in
[10], stating that for every p > 1 and every nonempty bounded U C R™™,

’p'

/e

(6) (E sup’Z Xi,jui,j’ ) ~Na Esup’Z Xivjui,j’ + SHPHZXi’jUi’j
uelU 4] uclU ij uclU i

Another property of independent centered variables satisfying (3) is the following Khintchine—

Kahane-type estimate, derived in [10, Lemma 4.1],

(7) H g ui’in’jH <a ( ) H E w; ;X JH for every p1 > pa > 1,
.. P1 P2
iJ

where (8 := % Vlogy a and w is an arbitrary m X n deterministic matrix.
For iid random variables X, ; we define their log-tail function N: [0,00) — [0,00] via the
formula

(8) P(| X | >t) =e VB t>0.
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The function N is nondecreasing, but not necessary invertible. However, we may consider its
generalized inverse N~1: [0,00) — [0, 00) defined by

N~Y(s) = sup{t > 0: N(t) < s}.
Lemma 7. Suppose that condition (3) holds and N is defined by (8). Then for every p > 1,
1Xiillp ~a N7H(p V (2I0(20))).

Proof. To simplify the notation set v := 21n(2«). Note that o > 1 and v > 1.
For t < N~1(pV ~) we have by Chebyshev’s inequality

1Xijllp > P(1 X5 > )Pt > e WO/ > 677,

Hence, N1 (pV v) < 402X,
To derive the opposite bound, observe that the Paley-Zygmund inequality and a-regularity

assumption (3) yield that for every r > 1,

2 (E[Xi4]")?

—2r > 7T,
E| X 5[ o

>

1 T - ™ -r 1
P11 = 51 Xill-) = P(XisI" 2 27 EIXiyl") = (1-27") 7

Therefore, N~1(yr) > 1|/ X; ;| for every r > 1, so by taking r = 1V (p/7) and applying (3)
multiple times we get

B 1 1 g L o \—log,a
N7 pvy) 2 Xl 2 5@ Moz 11 X5 51, > 5(27) g2 X Sl - O

Remark 8. The proof above shows that
1
IN-1(p) < |1 Xill, < 24 1n(20))°5=ON"1(p)  for p > 2In(20).

e

The next proposition shows how to rephrase condition (3) in terms of tails of Xj ;.

Proposition 9. Let X be a random variable and P(|X| > t) = e~ N® for N: [0,00) — [0, oc].
Then the following conditions are equivalent

i) there exists ay € [1,00) such that || X ||z, < aq|| X ||, for every p > 1;

ii) there exist g € [1,00), P € [0,00) such that N71(2s) < aaN~1(s) for every s > fB2;

iii) there exist as € [1,00), B2 € [0,00) such that N(agt) > 2N(t) for every t > 0 satisfying
N(t) > ,62.

Proof. i)= ii) By Lemma 7 we have for s > 2In(2a),
N7Y(25) ~ay [ X]l2s < x| X ls ~ay N7H(s).

Equivalence of ii) and iii) is standard.
iii)= i) Let us fix p > 1. We have || X|[|§ > t’P(|X| > t) = tPe N Thus, N(t) > S for
t >ty = e/P||X|,, and so

X135 = a3 [ 2prtrte et ar <o (a3 2p [ oie N ar)
0 to

<ay (tﬁ” + 2p/ tre~ NWpp=1e=N{) dt) <ay (t?f’ + 2||X||§p/ e~ N® dt)

to to

(oo}
<o (1 + 20X [ 01N ar) = X +2) < (oale® + VE)X |

Remark 10. Remark 8 and the proof above show that i) implies ii) and iii) with constants
as = 2ea;(4In(2aq))°8291 By = 2In(2a4), and conditions ii), iii) imply i) with constants
a1 = (e +/2).
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3. EXAMPLES

In this section we focus on two particular classes of distributions: with log-concave and log-
convex tails. They include Rademachers, subexponential Weibulls, and heavy-tailed Weibulls.
Our aim is to provide an explicit function of parameters p*, ¢, n, m comparable to the bounds
from Theorem 1; such a function in the case of iid Gaussian matrices is given in (1).

Throughout this section, we assume that X; ; are iid symmetric random variables and their
log-tail function N: [0, 00) — [0, 00] is given by (8).

3.1. Variables with log-concave tails. In this subsection we consider variables with log-
concave tails, i.e., variables with convex log-tail function N. Since N(0) = 0 and N is convex,
for every s >t > 0 we have

>

(9) . "

In particular, Proposition 9 yields that a random variable with log-concave tails satisfy (3) with
a universal constant «. Hence, in the square case Corollary 6 and Lemma 7 imply that

NG | N,

nl/at1/P =12 N1(1) P q<2,
E[|(Xi)7,= 1|\euen T\ Y@ ADN-L(p* A gALogn) ptVg>2

~ N=L(p" A g A Log n)n}/ @ A0 (/" Va)1/2)v0,

In the case of log-concave tails it is more convenient to normalize random variables in such
a way that N~!'(1) = 1 rather than [|X; [lo = 1. Observe that Lemma 7 and (9) yield that
1Xi,5ll2 ~ NH(D).

Lemma 11. Let X4,..., X, be @id symmetric random variables with log-concave tails such that
N=Y1) =1. Then for every p,q > 1,

max kP N7V (q/k) + (g An)/ 2TV (/07 =1/2)v0,

su
D 1<k<gAn

teBp

Proof. The result of Gluskin and Kwapien [6] states that

H { 2t 3 NG <a}+va(Xr)”

1<gAn i>q
where ¢7,...,t is the nonincreasing rearrangement of [t1], ..., |t,].
Let us fix t € B). Then for every ¢ > n,

St va( ) = ot <t =t G (g h )

i<q k>q i<n

For p > 2 and ¢ < n we have
1/2
Zt; n \/a(Z(tZ)Q) < giUP 4 g2 (- )2V 212V /2= Ve R
i<q k>q
Note that t; <t; whenever k > g. Therefore, for p € [1,2], ¢ < n we obtain
1/2 1/2
Sotreva(do)?) =D+ VAt (Y)Y g ()
i<q k>q i<q k>q
< 2¢'7VP = 2(g A )P,
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The estimates above might be reversed up to universal constants if we take t =Y | n~1/Pe; for
p>2,and t = 3" (qg An)~Pe; for p € [1,2]. Thus, in any case,

sup ( Z t;k + \/6(2|t:<|2>1/2) N (q/\n)l/(p*VQ)n(l/P**l/Q)\/O.

t€BL N onn i>q

Moreover, since N~1(1) = 1,

va(X ) < 3w va(Se)”

i>q i<gAn i>q
1/2
<swp{ 3 trsi S NG <af+va( Y IaE)
i<gAn i<gAn i>q

Hence, it remains to prove that

sup sup{ Z tis;: Z N(s;) < q} = sup{( Z |8i‘p*)1/p*t Z N(s;) < q}

i<gAn i<gAn i<gAn i<gAn

~ max kYP N7 q/k).

1<k<gAn
The lower bound is obvious since N(N ~!(u)) < u for every u > 0. To show the upper estimate
let
a:= max kY?" N7'(q/k),

1<k<qgAn

where the maximum runs through integers k satisfying 1 < k < ¢ An. Then (9) implies that

sup tl/p*N_l(q/t) < 2a,
1<t<gAn

where the supremum runs through all ¢ € R satisfying 1 <t < ¢ A n. Hence,
s

N(s) > (7

() 2 a5

Therefore, condition >, ., N(si) < ¢ yields that s; < a and so

p” *
) whenever 2a > s > 2a(qg An)” /P

> <o Y o éN (1)) <2(20)" < (40)"". O

i<gAn 1<gAn
Theorem 1 and Lemma 11 yield the following corollary.

Corollary 12. Let (X, ;)i<m,j<n be iid symmetric random variables with log-concave tails such
that N=Y(1) = 1. Then for every p,q > 1,

E[|(Xig)ismi<nllgy e

m/a=1/2p1/p" /P =1/2p1/a *,q <2,
nl/p*( p* Am A Lognm!'/1-1/2 4 sup ll/qN’l(p*/\#)>+ml/q, q <2< p*
I<p*AmALogn
nl/p*+m1/q( gAnALogmn/P —1/2 4 sup kl/p*N’l(qAL%)), p*<2<gq,
~Na k<gAnALogm
nl/p” ((p* /\m/\LOgn)l/q+ sup ll/qN—l(P*/\L#))
I<p*AmALogn
+m1/q<(q/\n/\Logm)1/p*+ sup kl/p*N_l(qAL%))y 2<7%¢q
k<gAnALogm
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3.1.1. Subexponential Weibull matrices. Let X;; be symmetric Weibull random variables with
parameter 7, i.e., N(t) = t". If X, ; are subexponential, i.e. r > 1, then N is convex, and
| Xiill, = (T(1+ p/r)t/?) ~ p'/7. Thus, Corollary 6 implies that
E[(X I ni/eri/e /2 P q <2,
1] 7.7 1 o —en (p* AgA Logn)l/rnl/(p*/\q)7 p* Vg>2
~ (p* A q A Log n)l/rnl/(p*/\q)n(l/(p*VQ)*1/2)V0'

To obtain a formula in the rectangular case we first observe that N~1(1) = 1 and

sup kl/p*Nfl(q/k) _ ql/rl(l/p*fl/r)\/O
1<k<I

If r € [1,2], then 1/p* — 1/r < 0 for p* > 2 and Corollary 12 allows to recover the following
bound from [11, Corollary 1.7].

E|(Xi5)i<mi<nl oy em
ml/a=1/2,1/p" + nl/p*—l/Zml/q, g <2
(p* A Logn)!/rp!/Pmm(/a=1/mV0 4 /pF ATogn nt /P mt /a2 4 mlla, g
nl/p* —+ (q A Log m)l/rml/Qn(l/p*fl/r)vo + \/mml/qnl/p*fl/{ p* S 2
(p* ALogn)Y/™nt/?" + (q A Logm)'/"m1/4, 9 < p*

~ (p* A Logn)l/rm(l/qfl/r)vo 1/p" L DA Lognm(l/q71/2)\/0 1/p*

+ (q/\Logm)l/r (A/p*=1/m)VO0,p1/a 4 \/mﬂ 1/p*=1/2)V0,1/q

In the case r > 2 Corollary 12 yields the following.

Corollary 13. Let (X; ;)i<m, j<n be tid Weibull random variables with parameter r > 2. Then
for every p,q > 1,

E||(Xig)ism.s<nll gy
m/ a1/ 2p1/p" 4 pt/et =121/ p*,q <2,
ml/q71/2(p* A Logn)l/r(p* AmA Logn)l/Zfl/rnl/p* + ml/q’ q< 2< p*,
~ /P p/PT =12 (g A Logm)Y 7 (g An ALogm)t/2rmila pr <2 < g,
(p* A Logn)Y/"(p* Am A Logn)/a=1/mVop1/p"
+(g ALogm)'/" (g An A Logm)H/P"=1/mVoml/a, 2<p'.q
m(l/q71/2)\/0(p* A Logn)l/r(p* Am A Logn)(l/(q\/Z)fl/r)\/(]nl/p*
4+ n(/P =1/2V0(4 A Log m) Y7 (g An A Log m)(1/®V2=1/rV01/q.
In particular, when r = oo we get the following two-sided bound for matrices with iid

Rademacher entries ¢; ;.

Corollary 14. If1 < p,q < oo, then

m/ a1 210" g/t 12 pq <2
Bl izl B L ils g <2<
54 . . 3 n m ~ * *
g )ismi<nll gy nl/p +W”1/p ~1/2pp1/a, p* <2<q,

(p* Am)Y I (g An) /P ma 2 < p*q.
o (p* A )Y @D (/a=1/2N0R 10 L (0 p ) 1TV (10 <1/20V0, 1/
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Remark 15. In [11, Theorem 3.3] we provide two-sided bounds for EH(aiiji,j)igm’anHggﬁg;n,
where the vectors a € R™ and b € R" are arbitrary, and X; ;’s are Weibull random variables
with parameter r € [1,2]. We do not know similar formulas for r > 2.

3.2. Variables with log-convex tails. In this subsection we assume that X; ; have log-convex
tails, i.e., the function N given by (8) is concave.

Lemma 16. Let (X, ;) be iid symmetric random variables with log-convez tails and assume that
(3) holds. Then for every p,q > 1,

Zt XLJH o X

Proof. 1f ¢ < 2, then (7) yields

Zt XLJH ~q SUp

tEB"

lq + /@) X, [|2n /27— H/2VO,

sup
teBy

sup
teBy

Zt X |, = sup Il Xislle = DY

~ [ Xi5llq + vall Xi,jll2n 1/”*71/2)

Now assume that ¢ > 2. By [8, Theorem 1.1] we have

n n 1/q n 1/2
H thXl,qu ~ (Z |tj|qE|X17j|q) + \/E(Z |tj|2E|X1,j|2)
Jj=1 j=1 j=1

= [1#lgl1Xe.5llq + Valltll21 X5 ll2 2 [1Elloc I Xi5llq + Valltlll| X s]l2-

We shall show that the last estimate may be reversed up to a constant depending only on a. To
this aim put a = [t X sllg + v/l ]2} X s l2- Then

Il 1 X 5llq < (tllooll Xigla) 92 1M1 X510 < allXiglla/ 1Xi5012)7¢ Sa a,
where the last estimate follows by (7). Thus, for ¢ > 2,

sup
teBy

Zf Xu| v sup (el Xl + V21X 1) ~ 1l + VAl Xl =120
p
|

Remark 17. Since N is concave, N~! is convex and N=!(0) = 0, hence N~'(¢q) > IN~1(2)
whenever ¢ > 2. So (3) and Lemma 7 imply that || X; ;g ~a N7(q) Za ql|Xi,;|l2. Thus, we get
by Lemma 16,

sup
teBy

Zt X“H ~a |1 Xijllq for p*,q>2.

Theorem 1, Lemma 16, and Remark 17 yield the following corollary.

Corollary 18. Let (X; ;j)i<m,j<n be tid symmetric random variables with log-convex tails such
that (3) holds. Then

EH ¥ z<m,g<n”gn_>gm

(ml/qfl/in/p + nl/p*71/2m1/q)||Xi,j”2, p*,q <2,
P (Va2 pe ALognl| Xijll2 + 1 X jllpe avog n) +mM U Xz, g <2<,
) nEXG e+ mM (02 g A Tog ml| X jlla + 1 X jllgaLegm)s Pt <2< g,

nl/p*HX',' 1/qHXi,j||<1ALog7m 2<p*,q
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3.2.1. Heavy-tailed Weibull random wvariables. Weibull random variables with parameter r €
(0,1] have log-convex tails. Moreover, in this case || X; ||, = (T'(1 + p/r)*/?) ~, p'/7, so the
X, j’s satisfy (3) with @ ~, 21/ and thus Corollary 6 implies that

B nt/a+1/p"=1/2 p*,q <2,
1(Xi.5) = 1Hen—>zn ~r {(p* A g ALogn)/rpt/ 0 AD) | pry g <2

~ (p* A q A Log n)l/Tnl/(p*/\q)n(l/(p*vQ)—1/2)V0‘
In the rectangular case Corollary 18 yields the following.

Corollary 19. Let (X, ;)i<m.,j<n be iid Weibull random variables with parameter r € (0,1].
Then for every 1 < p,q < oo we have

B[|(X: g)icm j<nllg g ~r (0 A Logm)!/2nl/e"=1BV0mL/ 4 (g A Logm)!/7m!/4
+ (p* A Logn)!/2m M/ a=1/DVOpL/P™ 4 (p* A Logn)'/"n'/?".

3.3. Non-centered random variables. In this subsection we prove (4) under centered regu-
larity assumption (5). Note that

1/q
IEXi gt = BX1a] - NDisllegoey = [BXaa] - (Z\Zt D

P’Lljl

= [EXy |- m'/ Sup ‘Z ‘ = m"/ P EX 4.

By the triangle inequality we have
El[(Xij)lep—em <E[(Xi5 - EXz',j)Hgn%m + 1 EXi ) ep—ere

=E|(X;; - EX; +mY P EX, 4],

(2] HZ"—)E"’

so Theorem 1 implies the upper bound in (4). Moreover, Jensen’s inequality yields E|[(X; ;)| e >
[(EXi j)llez—em, so applying the triangle inequality we get

1 1
EJ[(Xi.)legep 2 §E||<Xi,j>||wgn + 5 (Bl = EXi) gy e = IEXi ooy )

> JE|[(Xi, - EX

'L?J)HZ}"}—)Z;"

Hence, Theorem 1 and another application of the inequality E[[(X;, ;)| —er > [[(EX ) [[en—em =
m!'/4n!/P"|[EX, 4| yield the lower bound in (4).

4. LOWER BOUNDS

In this section we shall prove the lower bound in Theorem 1. The crucial technical result we
use is the following lower bound for ¢,.-norms of iid sequences.

Lemma 20. Let r > 1 and Y1,Ys,..., Yy be iid nonnegative random variables satisfying the
condition ||Yi|l2r < ;| for some a € [1,00). Assume that k > 4a®". Then

k 1/r 1
IE( W) >
; ¢ ~ 128a2

Y1
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Proof. Define

k
T 1 T T ]' T
Z::Zui, A= {7 > SEY; p={v= 51EY1}
The Paley-Zygmund inequality yields
LEY)? 1,
R - 2 > - T
P(di) = Ey? - 1%
Since k > 4a?", this gives
k
k
EZ=Y P(4)>-a ¥ >1
; (4i) > Jo
and
k
EZ® =2 Y PA)P(4;)+ Y P(4) < (E2)* +EZ < 2(EZ)>.
1<i<j<k i=1

Applying again the Paley-Zygmund inequality we obtain

Hence,

NG 1 11 e 1 1r
B(Yv) " 2 p(22 082) (5EZ5EY) > < (e MEYY) > K/l O
; i) =\ 2 72 ) =\t 8a2 11l

Proof of the lower bound in Theorem 1. Let us fix t € B} and put Y; := \Z?Zl t;X; ;|. Then
Y1,...,Y,, are iid random variables. Moreover, by (7), |Yill2r < @|Yi||, for » > 1, where
a constant & > 1 depends only on «.

If m > 424, then by Lemma 20 we get

1/q 1
EH 7 Z<m7]<"||£"~>€m Z E(Z}/zq) Z 128&27711/(1”)/@”(1

i=1

If m < 4&2%, then by (7) we have
EH .7 1<m7]<”||enﬁem > [|Yillh Za HY”Logm ~a ml/qHY”q/\Logm

If 462 < m < 4627, then m = 4% for some 1 < § < q. Moreover, in this case m/9 ~y 1 ~g
m!/% and § ~o q A Logm. Hence, Lemma 20 and ( ) yield

s 23(5) ()

ml/qHY:LHQ ~a ml/qHY;Hq/\Logm-

EH .7 7,<m,]<n

> o
— 12842
The argument above shows that

Zt X1

The bound by the other term follows by the following duahty

EH 7 l<m]<n||én_>em 204 ml/q sup

tEB” q/\Logm.

(10) 1Xiddizmiznlloy ey = [Xiidiznizmllom on -
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5. FORMULA IN THE SQUARE CASE

This section contains proofs of Propositions 4 and 5, which immediately yield the equivalence
of formulas from Theorem 1 and Corollary 6 in the square case.

Proof of Proposition 4. By duality it suffices to show that for p* > qV 2,

Zt X1 Zqu

The lower bound is obvious (with constant 1). To derive the upper bound we observe first
that if we substituted ¢ and p* by g A Logn and p* A Log n, respectively, then both sides of (11)
would change only be a constant factor. So it is enough to consider the case Logn > p* > ¢V 2.

Now we shall show that

(12) HzthLj .
j=1

To this end fix t € Bg and assume without loss of generality that ¢ > to > --- > ¢,
1 < g < 4, then by (7) we have

n
HzthuH Sa
i=1 !
If ¢ > 4, then
| 32 axus]| < 32 101Xl < €7 el X0l < Xl

j<eta j<eta

1
p*ALogn N T /q”Xl,lHq/\Logn-

+n v’ sup

(11)  n7 sup
gALogn sEB"

tEB"

Sa [ X11llg  for every t € B).

Y
e
—
=

n
> tiX |, = Izl X1alle < ol Xually < afl Xua, .
j=1

Moreover, by Rosenthal’s inequality [5, Theorem 1.5.11],

q
| 3t < O Ue)mess ol Xl + 15 ) el X0 1o)
j>eta

If 7 > e*?, then t; < j‘l/p < 6_4‘1/1’, so for p* > q > 4 we have

2— 2 _ _ _
|(t5)j>etallg < |[(t))j>etall2 < ||t|\g/2]n>1% f§ p)/ < ||t||§/2(e 4q/:0)1 /2 < oa

and (12) follows.
To conclude the proof it is enough to show that for Logn > p* > qV 2,

Zs X“H <amn 1/a sup
* teBp

(13) ntP" sup
s€B.

Zt X+ n Xl
Fork =0,1,...define p; := 3282 Log®)(p*), where Log(’”l) 2 == Log(Log™® z), Log\® z == x,

and = % V log, . Observe that (pg)x is nonincreasing and for large k we have p, = 3232
If p*/q < 32/32, i.e., p* < 322¢, then (7) implies that

n p* B
o siall, = (T) 2ol <
i=1 P 4 i=1 4

* . .
Moreover, Bg. C nl/a=1/p B}, so in this case

n
E SiXi71 H .
i=1 a

n'/P" sup

ZS X“H <an 4 gup
SEB" p*

teBy

ZtXUHq

and (13) follows.
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Now suppose that p, < p*/q < pr—1 for some k > 1. Define qi := 2p*/pi. > q V 2. Estimates
(7) and (12), applied with p* := g and ¢ := g > 2, yield

ZS )(Z 1H .

Since g > q we have Bj. C nl/q*l/q’c Bg;i' Therefore,

sup
5€B *

1 X11lg-

Pk
K| S Al S (22)
sEB dk

.
n'/?" sup
SGB:;*

n p*\P N p*\P
> siXaa|| | Sa (B) m et ol = (B) 0 0
— P q q
Hence, it is enough to show that
¥\ B a2—
(14) (%) o™ <1
q

Observe that p*/q > 3232 > 8, so Logn > p* > 8¢ > 8, Log(p*/q) = In(p*/q), and Logn = Inn.
Thus, (14) is equivalent to

*

Pr—2 D
2 )
26 Log(Z) ~ Logn

(15)

We have p*/Logn < 1 and

p—2 24P Log™ (p*) S 24B% - 23 +28 Log™ (p*) S
28Log(E) ~ 28Logpr—1 ~ 28In(326%) + 26 Log™ (p*)

where in the first inequality we used Log(k) x > 1 and 832 > 2, in the second one Log(ab) <
Ina + Logb for a > 1, and in the last one In(32e3%) < 123 for 8 > 1/2. a

Now we move to the proof of Proposition 5. Observe that m,n are arbitrary (not necessarily
m=n).

Proof of Proposition 5. 1t is enough to establish the first part of the assertion. We have

sup
teBy

< sup
teBn

= sup [[tll2] X1 ]2
teBn

and the upper bound immediately follows.

If p < 2, then (1/p* —1/2)1 = 0 and the lower bound is obvious (with constant 1 instead
of 1/2v/2). Assume that p > 2. Let (X}); be an independent copy of (Xj);, and let &;’s be iid
Rademachers independent of all other randorn variables. Then

:

Zt X H > p1/p ZX H % *1/1’
Jj=1
’ = ,nfl/p
2

1, =
> o Zlgj(XrEXJ/.) . leijHq.
1= J=

Moreover, Khintchine’s and Hélder’s inequalities yield (recall that ¢ € [1,2])

E‘i&j
j=1

1
sup ‘ = —p /P
teBn 2

(X - Xj)

> ei(X; - X))
j=1

q _ n /2 o n _ o _
X 22 PE(YX) T 2 2 it YD IXGI = 2 PG D
j=1 j=1
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6. UPPER BOUNDS

To prove the upper bound in Theorem 1 we split the range p*,q > 1 into several parts. In
each of them we use different arguments to derive the asserted estimate.

6.1. Case p*,q < 2. In this subsection we shall show that the two-sided bound from Theorem 1
holds in the range p*, ¢ < 2 under the following mild 4th moment assumption

(16) (EX{ )Y < a(EXT )2,
Observe that then Hoélder’s inequality yields
EXT, < (BX{)PEIX11])*? < o (BXT )P (ElX11])*7,
SO
(17) E|X1,1| > o 2(EXT,)Y2

Let us first consider the case p = ¢ = 2. Then we shall see that it may be easily extrapolated
into the whole range of p*,q < 2.

Proposition 21. Let (X; ;)i<m,j<n be iid centered random variables satisfying (16). Then
EH %7 z<m j<’rLHZn_>[m ~Ma (EX1271)1/2(\/E+ \/E)

Proof. By [9, Theorem 2] we have

B0zl oy S i [SEXE +m3X\/ZEX?,j+</ZEX%
J ]
< (IEX%,1>1/2<\/E+ Vm + avnm) Sa (EXT )2 (Vi + vm).

To get the lower bound we use Jensen’s inequality and (17):
EH 7 Z<m]<n||én_)€nz ZmaX{EH |le z<mH27EH |X1,J J<n|| }
g jgnﬂz} > o (EX] ) *Vnvm.O

> max{” (E|X;1])

Corollary 22. Let (X; j)i<m,j<n be #id centered random variables satisfying (16). Then for
p*,q < 2 we have

E[|(Xi5)i<mj<nll gy om ~o (BXT )12 (m! /47120107 4 gl07=1 2 1/9),

Proof. Let ¢; ;’s be iid Rademacher random variables independent of (X; ;). Symmetrization (as
in the proof of Proposition 5) and (17) yields

EH 1, 7,<m,]<ann*>[m = QEH 51,]|X ,]|)7,<m,j<ann*>[m = QEH 51]E|X13|)2<77L]<n

>a (EXT)Y2E|(

n m
Ln—Ly

El 2J 'L<m j<ann_)gm'

We have

n
E||(5i1j)%m,j§n||e;_>z;n = ”71/p]EH (Z 5111)
j=1

n 1/q
o (B () )
n i
i<mllq ; 7 q

n
E 517].H ~ P2 e
j=1 I

i<m

— pl/P =1, 1/a




OPERATOR /¢, — £, NORMS OF RANDOM MATRICES WITH IID ENTRIES 15

where in the first line we used the Kahane-Khintchine and in the second one the Khintchine
inequalities. By duality (10) we get

> m/a2pl/eT

m s gn A~
q* p*

E[(eis)i<mi<nllonem = Ell(Eig)isn,jsm

so the lower bound follows.
To get the upper bound we use Proposition 21 together with the following simple bound

G Dismssallg g < Mg [O6es izl g

— pl/2 U1 (X O

i,j)i<m,j<n

n m
L3 —L03

Corollary 22, Proposition 5 and (17) yield that under condition (16) Theorem 1 holds whenever

p*,q < 2. Moreover, one may prove by repeating the same arguments that the two-sided estimate
]EH i Z<m1]<n|‘zn_wm ~e ml/a=1/2,1/p" +n1/p*71/2m1/q

holds for every p*,¢q < 2 and independent random variables X; ; satisfying (16) and ]EXiQ, ;=1
(we do not need to assume that X; ;’s are identically distributed).

6.2. Case p* > Logn or ¢ > Logm. In this subsection we shall show that Theorem 1 holds
under the regularity assumption (3) if p* > Logn or ¢ > Logm.

Remark 23. For p* > Logn, ¢ € [1,00) and iid random variables X; we have
1Xuls < sup D% < ellXalls
teBplli] q
Similarly, for ¢ > Logm and p € [1, 00),

[ X1l <
seB™.

il <ellXilp.

P
Proof. The lower bounds are obvious. To see the first upper bound it is enough to use the
triangle inequality in L; and observe that ||t[|; < n'/?"||t||, < e for p* > Logn and t € By. O

By Remark 23, Theorem 1 in the case p* > Logn or ¢ > Logm reduces to the following
statement.

Proposition 24. Let (X, ;)i<n j<n be iid centered random variables such that (3) holds. Then
for q = Logm,

Zt X17]H +n1/P*||X1’1||p*ALOgn,
teBn Logm

r j<n

E[|(Xi, Z<mJ<n||en—>2m a Sub

Analogously, for p* > Logn,

|en*>€m o Sup HZ Si Xz 1 ’ +m1/qHX1,1Hq/\Logm~
Logn

EH %7 z<m3<n
GB’"

Proof. The lower bounds follow by Section 4 and Remark 23. Hence, we should establish only
the upper bounds.

By duality (10) it is enough to consider the case ¢ > Logm. We have ||(2;)i<m|lcc <
1(@i)i<mllq < ell(@i)i<mlloo, sO

H 1,7 z<m,j<n”en_)em m%%(H(Xl ) S
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Note that for arbitrary random variables Y7, ..., Y, we have
(18) Emax || < [|max Y|, , < (ZE|Y|L°gk) o e max [ YilLog .
i<k
Hence,
E[[(X:iicmi<nllgnm S II11(X05)

Inequality (6) (applied with m =1, U = {1} ® B}, and p = Log m) implies

Zt Xy

H||(X1,j)j§n

~o E[[(X1,5)j<nl| - + sup
Logm te By

p* Log m

If p* > Logn, then
E[|(X1,5)5<

pr ~ Emax | Xy S 1X 1 llogn,
where the last bound follows by (18). In the case p* < Logn we have
p:)l/p* _ nl/p*
P

6.3. Outline of proofs of upper bounds in remaining ranges. Let us first note that we
may assume that random variables X; ; are symmetric, due to the following remark.

E||(X1,5)i< o = (EH(XI i< O

Remark 25. It suffices to prove the upper bound from Theorem 1 under additional assumption
that random variables X;; are symmetric.

Proof. Let (X] ;)i<m,j<n be an independent copy of a random matrix (X;;)i<m.j<n, and let
Yij = Xij — X, ;. Then (3) implies for every p > 1,
1Yijllzp < 1X50l20 + 1X7 5120 = 201X 5ll2p < 20/ X301, = 201 X5 — EXT 51,
< 20]1 X5 — X 5ll, = 20|V 51,-
Therefore, (Y; j)i<m,j<n are iid symmetric random variables satistying (3) with a := 2a. More-
over,

E su X;jsitj =E su X, i —EX! )s;ts
sGS,tpeT Z 1,554 s€Stp€T Z (Xij z,g)zj

i<m,j<n i<m,j<n
<E sup E (Xi,; — Xiyj)sitj =E sup g Y jsit;,
SESHET ;e SESHET jch =y,
so it suffices to upper bound Esup,cg et D i< j<n YiiSitj bY
m
m/ sup E t;Y1 +ntP" sup H E 5:Yi1
teBp i qALogm seBn T p*ALogn
m
< 2mY7 sup E t; X1, + 207" sup H d " s5iXia .
teBy qALogm seBm i p*ALogn

We shall also assume without loss of generality that o > /2. Then (7) holds with 3 = log, c.

One of the ideas used in the sequel is to decompose certain subsets S of Bjt and T of B}
in the following way. Let T' be a monotone subset of B} (we need the monotonicity only to
guarantee that if ¢ € T and I C [n], then (tI;eny) € T). Fix a € (0,1] and write t € T as
t = (til{e,1<ay) + (til{je;1>a}). Since aP [{i: [t;| > a}| < ||t||b < 1, we get T C T1 + Tz, where

T, =TNaBL, To={teT: |suppt| <a P}
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Choosing a = k=P we see that for every 1 < k <n we have T' C T} + 15, where
T, =TNk™YPBY,  Ty={teT:|suppt| <k}.

Similarly, we may also decompose monotone subsets .S of By into two parts: one containing
vectors with bounded /,,-norm and the other containing vectors with bounded support.

Once we decompose B and Bg: as above, we need to control the quantities of the form
Esup,cgs e 2 Xi jsitj provided we have additional information about the £.-norm or the size
of the support (or both of them) for vectors from S and T. In the next subsection we present

a couple of lemmas allowing to upper bound this type of quantities in various situations.
6.4. Tools used in proofs of upper bounds in remaining ranges.

Lemma 26. Assume that k,l € Z4, p*,q > 1, a,b > 0 and (X”)l<mj<n are td symmetric

random variables satisfying (3) with o > /2, and EXQ- = 1. Denote B = log, a.
Ifg>2,SCBNaBY and T C {t € B} : |supp(t )| < k}, then

(19)

n
sup Z X j5it; S mb/d bupHZXthj + (n A (k Logn))ﬂk(l/p*_1/2)voa(2_q*)/2.
= q

seS teT teT
Ifp*>2, 8 C{s€ Bj: [supp(s)| <} and T C By NbBL,, then
(20)

E sup Z Xijsit; San /P’ supHZX“sl

ses,teT i<m,j<n seS

Proof. Tt suffices to prove (19), since (20) follows by duality.
Without loss of generality we may assume that k < n. Let Tj be a %—net (with respect to ly-
metric) in T of cardinality at most 5™ A ((})5%) < 5" A(5n)* = e?, where d = (nIn5) A (kIn(5n)).
Then by (18) we get

1/d
E sup Z X j8:t; < 2 sup sup Z X j8it; <Qesup<Esup Z X”st‘>

i<m,j<n

(m A (1Logm))’10/a=1/2)V0p(2=p)/2,

SES7tETz§m i<n teTy s€S i<m,j<n teTo ses i<m,j<n
1/d
(21) < 2esup<Esup E Xi jsit; ‘ )
teT seS i<m,j<n

Fix t € T. By (6) applied with U = {(slt)z i s €S}t and p=d we have

d
(22) (Esup Z Xm-slvtj‘) Sa Esup Z X”sz ‘JrsupH Z lestH

ses i<m.j<n SES
Since S C B2,
n 1/q
(23) ]Esgg Z X”sl < (EH (Z Xi,jtj)Km ) _ ml/qHZ X1t
S ]:1 =

Since a > /2, B = l V log, a, so by inequality (7)

sup| 37 Xugsits|, <o sup sl < 07 sup || E 2l sup /200 )

s€S i<m,j<n s€S
(24) < dB (/P =120, (2-a7)/2
Inequalities (21)-(24) yield (19). O

In the sequel (g; ;)i<m,j<n are iid standard Gaussian random variables.
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Lemma 27. Let (X; ;)i<m,j<n e #d symmetric random variables satisfying (3) and EXZ?J =1.
Let B =logy a. Then for any nonempty bounded sets S C R™ and T C R™ we have

sup Z X jsit; < Log”(mn sup Z 9i,jSitj

SGS teT SGS teT

i<m,j<n i<m,j<n

Proof. Since X, ;’s are independent and symmetric, (X; ;)i<m,j<n has the same distribution
as (&i,j]1Xi j)i<m,j<n, where (€;;)i<m,j<n are ild Rademachers independent of X; ;’s. By the
contraction principle

E sup Z Xijsit; =E sup Z €i,5]1 X j]st;

sESHET ; h e, sESHET ; m e,

(25) <E max |X;;|-E sup Z €i,jSitj.
i<m,j<n SES’tETiSm,an

Moreover, by (18) and regularity assumption (3) we have
(26) E max |X; ;] < el|X11[logimn) S Log” (mn) ]| X1,1]|2 = Log® (mn).

i<m,j<n
Jensen’s inequality yields
(27) E sup Z €i,jSit; ~E sup Z €i,;Elgi jlsit; S sup Z Gi,jSit;.

SESIET < j<n SESIET i< j<n 565 €T i<m,j<n

Inequalities (25)-(27) yield the assertion. O

The next result is an immediate consequence of the contraction principle (see also (25) together
with (27)), but turns out to be helpful.

Lemma 28. Let (X, j)i<m,j<n be centered random variables. Then

sup g X jsit; Smax || X jlloE  sup E Gi,jSit;.
QES teT 7 seSteT

i<m,j<n 1<m,j<n
Let us recall Chevet’s inequality from [4]:
(28) sup Z Gi,jSilj sup IIs||2E sup Zgjt + sup |It||2E sup Z JiSi-
SES teT i<m,j<n t ]<n s€ i<m

We use it to derive the following two lemmas.

Lemma 29. Let¢>2,p>1,1<m, S C{s€ B/: [supp(s)| <} NaBY, and T C By . Then

E sup > gigsit; S Vpra®m0 Pl g Up1/2N0 o 1/,

SES’tETiSmJSn

If we assume additionally that | =m, p* > 2, and T C bBZ,, then

(29) E sup > gigsity S Vpral 2l qpCn e,

SESIET i< j<n

Proof. We have
sup ||tz < sup ||t]]o = n/P —Y/2VO,
teT teBn

suplsila < sup [l I &7% < a2,

< (Bll(g))=1lp) V" = llgnllp=n'/?" < VpFnl/P,

Esungjt <E sup Zggt =E|/(95)}-

L€ p]l
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and

Esunglsl <E sup (Z lg:|? ) < ll/quga}flgiI < 1Y\ /Logm.

s€S IC[m],|I|<I

The first assertion follows by Chevet’s inequality (28) and the four bounds above.
In the case when [ = m, p* > 2, and T' C bBY, we use a different bound for sup,c ||t||2,
namely

sup ||t]l2 < sup [[¢]2/2]|t]| @772 < p2P)/2
teT teT

and for Esup,cg > ", gi$i, namely

]Esungzsl < E sup Zngz < \fm O

eES seEB™.

The next lemma is a slight modification of the previous one.

Lemma 30. Let2 <p*,q<v,1<m, S C{se Bjl: |supp(s)| <I}NaBY and T C By. Then

sup Z gijsit; S ((2 )2p P 4 [Log (m/1) ll/q)

SES tET1<m i<n

Proof. We proceed as in the previous proof, observing that /p* < /7 and, by [11, Lemmas 3.12
and 4.2],

sup (Z 90) " < VAV Lo/ 15, O

IC[m] 1<l
The next proposition is a consequence of the ¢ — ¢5* bound from [9)].

Lemma 31. Let (X ;)i<m.j<n, be be iid symmetric random variables satisfying (3) with o > /2
and IEXZ-Q’]- = 1. Then for M >0,
EI(X, T < 11106]\41/10g «
|| (X Igx: 5150 )) e Sa (vVn + v/m)exp 10

Proof. By [9, Theorem 2] we have

i<m,j<n

1/2 1/2
2
B[ (X Lx. 51200 i< jnllg ep S?;%(ZEXi,jI{\Xi,mM}) +maX(ZEXuf{\XU\>M})
i<n - i<m
1/4
4

+( > EXi,jI{lxi,jle}) :

i<m.j<n

Regularity condition (3) and the normalization [|X; ;|2 = 1 yields || X; ||, < a!°827 for all
p > 1. Thus, for all p > 4,

logy p\ p/4
2 1/2 4 1/4 4- 1/4 -
(EXE I x,i20n) ' € BXE T, 2an) " < 0 EIX 1) < M ()

Let us choose p := %Ml/logﬂ‘. If M > o3, then p >4, s0

log; p\ p/4 1 1
(Y (B ) (),

If M < a2, then

1/2 1/4 o
(EX L., 200) " < BXDTgx,,2an) ' < EXHY < a Sa (-5

Ml/ log, a)' 0
10
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6.5. Case p* 2, Logm or ¢q 2, Logn.
Proposition 32. Theorem 1 holds in the case p* 2, Logm or q 2, Logn.

Proof. Without loss of generality we may assume that ||X; ;|2 = 1. By Remark 25 it suffices to
assume that X; ;’s are symmetric and o > /2, and by duality (10) it suffices to consider the
case ¢ > Cy(a) Log n, where
Co(a) = 88 = 8log, a.

In particular ¢ > 4, so ¢* < 4/3. By Subsection 6.2 it suffices to consider the case p* < Logn.

Define

Sy =BjiNe "BY, Sy={s¢€ By [supp(s)| < e }.

Then Bgi C S+ 5.

If s € S5, then

Isll < llslg- supp(s)| 7V HH < e < /2,

so Sy C 64/3Bm*. Thus, Proposition 24 and (7) imply

sup Z Xz St t EH Xz,] i<m,j<n

SGSQ teBy =t
e tsequn thXl"jHLogm +n1/p*HX1,1HP*
P j<n
L .
<a (1 Y ogm) sup Zt XUH + 0P X |-

tEB"

Since the function 0 < ¢ — llnm + flng attains its minimum at ¢ = lnm/g, where the

function’s value is equal to —Bln(ﬂ/e) + BInlnm, we have (Logm/q)? <, m!/9. Hence, the
previous upper bound yields

(30) E sup Z X8t So mY/9 sup
s€Sy,teBn teBy

Zt XUH + nl/P sup
sEBM

E Si le .

a = e 9 and k = n, together

P i<m,j<n

Moreover, (19) from Lemma 26 applied with S = S1, T = By,
with the inequality ¢* < 4/3, implies that

(31) sup Z X j8it; So mY9 sup
sEShtEB teBy

ZtXl H 4 pBH/PT=1/2)V0) —q/3

P i<m,j<n

Since ¢ > Cp(a) (30) and (31) yield
the assertion. O

6.6. Case p*,q > 3. By Subsection 6.2 we may assume that p* < Logn and ¢ < Logm. In this
subsection we restrict ourselves to to the case p*,q > 3. However, similar proofs work also in
the range p*,q > 2 4 ¢, where € > 0 is arbitrary — in this case the constants in upper bounds
depend also on € and blow up when ¢ approaches 0. If p* or ¢ lies above and close to 2, then we
need different arguments, which we show in next subsections.

Lemma 33. Assume that 3 < p*,q < Log(mn), (X ;)i<m,j<n are iid symmetric random
variables satisfying (3) with a > /2, EX?, =1, S c B*n Log % (mn)B™, and T C
By N Log %% (mn)B™,, where § = log, o.. Then

E sup Z Xi’jsitj S ml/q + nl/p* .

SESIET i<m j<n
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Proof. Lemma 27 and inequality (29) yield

(32)

E sup Z X jsit; < Log'/* ™ (mn) (ml/q Log~*#C=P) (mn) + n/?" Log_46(2_‘m(mn)).
SES’tETiSm,jﬁn
Since p* >3, (2—p) > 1/2, s0

Log~**?=P)(mn) < Log=%*(mn) < Log™#~'/2(mn),
and similarly
Log /=4 (mn) < Log™"~"/?(mn),
This together with bound (32) implies the assertion. O

Now we are ready to prove the upper bound in Theorem 1 in the case when p*, q are separated
from 2.

Proposition 34. Let (X; j)i<m, j<n e iid symmetric random variables such that (3) holds with
a > /2. Then the upper bound in Theorem 1 holds whenever 3 < g < Logm and 3 < p* < Logn.

Proof. Without loss of generality we assume that EXE ; =1 and that ¢ > p* (the opposite case
follows by duality (10)).
Recall that 3 = logy o > 1/2 and let us consider the following subsets of balls B} and By:

Sy =BjiNe By, Sy={s€ By [supp(s)| < et Y,
S = Byt NLog *(mn)BY, Sy ={s € BJL: |supp(s)| < Log**" (mn)},
=B;nN e P B, Ty,={te By [supp(t)| < ey,
and
T3 = By NLog™ 8 (mn)BY, T,={te By : [supp(t)| < Log®P (mn)}.
Note that B C S1 + S2, Bt C S3+ Sa, By CT1 + T, and By C T3+ T}. In particular
(33) H(Xi,j)igm,erLHz;_mgm = sup > Xijsit;

m
SEBJLtEBY A=

< sup E Xi7j8itj + sup E Xi7j8itj + sup E Xiyjsitj
s€S,teTy i<m,j<n s€Sy,teBn SEB:;;'( tETS

P ism.j<n i<m.j<n
If s € Sy, then
Islly < llsllge [ supp(s)| 77+ < e < e3/2 < 5,

so Se C 5B = 5B7. and we may proceed as in the proof of (30) to get

(34) E sup Z X jsit; So mY7 sup
s€Sy,teBR teBy

Zt XUH + nl/?" sup
sEBI

E Si le .

P i<m,j<n

and, by duality,

(35) E sup Z Xijsit;i Sam Y4 gup

s€BL teT2 teBp

Zt leH + 0P sup
SEB’”

S,

i<m,j<n
Bounds (33)-(35) imply that it suffices to prove that

m
Zt Xl’jH 4 pl/P sup HZS%XZ’IH
i=1 i=1 7

SEB;Z

(36) sup Z X j8it; So mY9 sup

s€51,t€T) i<m,j<n teBy

Recall that ¢ > p* > 3. Let us consider three cases.
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Case 1, when ¢,p* > 6052 LogLog(mn). Then e, e ?" < Log % (mn), so S; C S3 and
T, C T5. Thus, (36) follows by Lemma 33.
Case 2, when ¢ > 604% Log Log(mn) > p*. Then S; C S3 and T} C By C T3 + Ty, so

E sup Z Xivjsitj § E sup Z Xiyjsitj + E sup Z Xi,jsitj-

seS1,teTy i<m,j<n s€S3,teTs i<m,j<n SES,tETy i<m,j<n
The first term on the right-hand side may be bounded properly by Lemma 33. In order to
estimate the second term we apply (19) from Lemma 26 with a = e~ and k = |Log'**(mn)] >

| Log®?(mn)| (the inequality follows by p < 3* = 3) to get

o m'/9 sup

E sup E Xijgsit; S
teTy

s€S1,teTy i<m.j<n
<m,

ZXut [, + (Log! " (mm))Pemetear2

Since ¢* < 3* = 3/2, we have
(Log'*8 (mn))Pe~12=9)/2 < Loglw2 (mn)e” ¥4 <1,

o (36) holds.
Case 3, when 6052 Log Log(mn) > ¢q,p*. Since Ty C T3 + Ty and S; C S3 + S4, we have

E sup Z Xi,jsitj <E sup Z Xi,jsitj + E sup Z Xi,jsitj

seSq,teTy i<m,j<n s€S3,teTs i<m,j<n SGB;’; €Ty i<m,j<n
+ E sup E Xiyjsitj.
s€S,,teB?

P i<m,j<n

The first term on the right-hand side may be bounded by Lemma 33. Now we estimate the
second term — the third one may be bounded similarly (by using (20) from Lemma 26 instead
of (19)). By (19) applied with a = 1 and k = |Log"**(mn)| > |Log®? (mn)| we have

ZXLJ

For a fixed 8 = log, @ > 1/2 there exists C(8) > 3 such that for every x > C(8) =: Cy(a) we
have 2832 Inx < x/(603% Inz). Hence, if mn > e“0(®) and p* < ¢ < 6082 Log Log(mn), then

+ Loglw2 (mn).

E sup Z X jsit; So mY 9 sup

m
SEBRL Ty, = teT,

144% InLog(mn) < fln(mn)/q < (lnm/q+1nn/p ) <max{lnm/q,lnn/p*},

so for every m,n € N,
Loglw2 (mn) So max{m'9, n'/P"},
and (36) follows. O

6.7. Case q > 248 > 3 > p* or p* > 248 > 3 > ¢. In this subsection we assume (without
loss of generality — see Remark 25) that X; ; are iid symmetric random variables satisfying (3)
with a > /2. We also use the notation 3 = logy o > 1/2, so 243 > 3. By duality (10) it
suffices to consider the case ¢ > 245 > 3 > p*. In particular, ¢* < 3/2 whenever ¢ > 243. By
Subsections 6.2 and 6.5 it suffices to consider the case Logm A (C(a)Logn) > ¢. In this case
Theorem 1 follows by the following two lemmas.

Lemma 35. If Logm > ¢ > 3> p*, n'/3 > m'1¢", and | X1 1]l2 =1, then

EH( 7J)’L<m,j<n”5”~>€m Sa nt/r’
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Proof. By (7) we get
H Zt X; 1” =¢° sup Itz = ¢°.

sup ‘ t; X, 1H q sup
te€BY,, Z ’ - teBy ,

This together with the assumption n'/3 > ml/qqﬁ and the estimate in the case p
illlen ,—em S n/3. Therefore, for every p

<q
<3,

3/2

(already obtained in Subsection 6.6) gives E||(X;
lep—ep < 111d lepsey ,EBI(Xi ) e ,ep Sa 0> HPnl/S = /P O

B (Xt < .
Lemma 36. Assume that Logm A C(a)Logn > q > 243 > 3 > p* and ¢°m'/? > n'/3. Then

the upper bound in Theorem 1 holds.
Proof. Without loss of generality we may assume that EX% =1and C(a) > 2. Let
Sy = {s e BJ:: |supp(s)| < Logwq*(mn)}, S1=BjnN Log™* (mn)B™.
Then BJ* C S1 + Si.
If Logm < C?(a)Log”n, then inequality (20) from Lemma 26 (applied with b = 1, p A 2
instead of p and | = Log(mn)*??" < Log(mn)%?) yields

Z X jsitj San/®V2) SUPHZXz 18 v

E sup
s€S1 =1

6651¢€BPA2 i<m,j<n
§ Xz 15§
p

1/(p*Vv2
<am /(p"Vv2) sup HE Xi 18
seB™ " — p
q i=1

+ (Logn)“+(®

+nl/3

<, eV g
SeB’I”

1/2
, SO NOw

In the case Logm > C?(a)Log®n we have m!'/4 > elogm/(Cla)Logn) > o(Logm)

inequality (20) yieldg
+ (Logm)©>(®)

Z Xi jsit; Sa nt/(P7V2) supHZX 15;
p*V2

E sup
sESl,tEBPA21<mJ<n sEST j=1
m
1/(p*Vv2 1
<am /(p"V2) sup H E Xi1si +ml/a,
seBR iz P

Thus, in any case
E sup Z Xijsit; < /P =1/2V0 sup Z X jsit;
5651 ISGBW\2 i<m,j<n

sesy, tEBY i<m,j<n
<, n'/? sup H E Xi 18

~ O
seB"’

4 ml/ap1/p"=1/2)V0

p*

Let
| supp(s)| < mLog ™t (mn)} N Log™*’ (mn) B2,

Sy = {S S Bg;b
S3 = Bt N m~ Y Log(ﬁﬂ)q/q* (mn) B

Then S C Sy + S3.
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Lemmas 27 and 29 (applied with I = m Log~?#*Y (mn) and a = Log™*’(mn)), and inequality
g < % yield

sup Z X 8t

GESQ,I‘GBP i<m<n
< Log (mn)(Log_Qﬁ(Z_‘I*)(mn)nl/T’* + n/P =1/2V0, 1/ Log_ﬁ_l/Q(mn))
(38) < pl/P" 4 (/P =1/2)V0,1/g
Moreover, if Logm < C?(a) Log®n, then inequalities n'/3 < m'/1¢f < ml/a Log’ﬁm and
q/(3¢") = 4B + q/(12¢") imply
m'/9" Log= DU (1) > nd/(34") Log=P9/0"  Log=PHDU " (mp) >, n*?,
and if Logm > C?(a) Log®n > Log®n, then
mM 4 Log=FHDIT (mp) > eloam/a" [og=Ca(@d > exp((Logm)/2 — Cy(a) Logn - In(Log m))
>, elog®n)/d > 4B
Since ¢* S 2. in both cases we have
(mM 7 Log=BTV/a" () 2=a)/2 > pf.

Therefore, inequality (19) from Lemma 26 (applied with @ = m~1/9 Log#tVa/a" (mn) and
k =n) yields

(39) sup Z X8t So mY9 sup
sES3,tEB teBy

S

P i<m,j<n

Since

n
1/p*—1/2)V0
RV — sup [l < sup (|37 Xty | |
tGB;" tGBg j=1 q

estimates (37)-(39) yield the assertion. O

6.8. Case 2485 > g > p* or 245 > p* > q. Once we prove the upper bound in the case
248 > q > p*, the upper bound in the case 248 > p* > ¢ follows by duality (10). We first deal
with the case p* > 2 and then move to the case 2 > p* at the end of this subsection.

Let us begin with the proof in the case p* = ¢ > 2, where an interpolation argument works.

Lemma 37. If p* = q > 2, then the upper bound in Theorem 1 holds.

Proof. By Subsections 6.1 and 6.6 we know that the assertion holds when p* = ¢ € {2} U[3, x].
Assume without loss of generality that EX?; = 1. Fix p* = ¢ € (2,3) and let § € (0,1) be

such that % = g + %9, ie., 5 =1- E = g + 1?;9. Then (7) implies that
40 sup t; X4 4 sup t; X4 4 H =1,
( ) te By Z / gALogm e teBy Z /

and similarly

41 su H $i X ~al

( ) sEBl?n Z 7,1 p*ALogn a 4y
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By the Riesz-Thorin interpolation theorem, Holder’s inequality, (40) and (41) we get
E[|(x <E(l(x

0
)i st m’)i,szg—m;ﬂH( i.5 ,JHen —>é"’)

1-0
= (EH(XM)M eg—w;") (]EH(Xivj)ivj é;}*—wgn)
<o (VM) (nvm)=03 = (n v m)Y ~ P /e 0

Proof of the upper bound in Theorem 1 in the case 245 > q > p* > 2. By Remark 25 it suffices
to assume that X; ;’s are symmetric and o > /2. Then 3 = log, o > 1/2. Inequality (7) implies
that in the case 248 > ¢ > p* > 2 the upper bound in Theorem 1 is equivalent to

(42) E[|(X:;)i,j

If m < n, then Lemma 37 yields

1/p* 1
e Sam P 4 m!/a

E|(Xi)igllen—sen < 1dllen—en, BIN(Xo5)i5llen, —ep = n'/T TVPE(Xig)igllen, sem Sa n/P
Thus, in the sequel we assume that 2 < p* < ¢ < 245 and m > n. Define
ko = inf{k €{0,1,...}: 28 > — Logm}
Ina g*
Observe that
10 2 —
(43) ko=0 or 2F < _— < Logm.
Ina g¢*

By Lemma 31 and the definition of ky we have

EH(Xiva{‘Xi,j‘Zako})igm,jgnnlg—Mm < EH(XiﬁjI{|Xi,j|Zak0})i§m,j§nHZ’;—M;"
< \Fexp(—ll—OZko)
< méfQZ‘_Tq* =m!/.
By Lemma 28 and two-sided bound (1) we have

Bl (Xii Lx01<1) igmjznlleysep S ENGi0)ismisnlleg e San'/" 4+ m!/1.

We have Bt C Sy + S2, where
Sy ={s€ B [supp(s)| < mt/ B0y Gy = Bjin m Y/ (28aa7) gm.
Inequality (20) from Lemma 26 applied with b =1, I = m!/(2#9) shows that

(44) sup Z X8t Sa nt/P /e,

§€S1,t€BP i<m,j<n

Since 2Bgq* < 10032 we have
Sy C Sy := Bt N~ /(10059 g
Thus, to finish the proof it is enough to upper bound the following quantity

E sup Z X; 7JI{1<|XLJ‘<QI€0}S t < ZE sup Z Xi,jl{a’“_lilXi,j|<ak}5itj'

seSs, teB™ seSs,teB™

P i<m,j<n P i<m,j<n

Let wq,...,u, be positive numbers to be chosen later. We decompose the set S; in the
following way, depending on k:
S3 C Sa i+ Ss.,
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where

1/q"
Syk={s€ B |supps| <m/ug} N rrL_l/(l()()52)Bc7>"07 S5k = BN (%) BZ.

m oo
Thus,
E sup . E XZ'JI{Qk—IS‘Xi‘j‘<ak}8itj
SES3,tEBY i<m.j<n
< E sup E Xi,jl{|Xi’j\<o¢k}5itj +E sup E X@j]{akflg‘xiﬂ}sitj.
SEIIIEBT i< j<n €851t €8 i< j<n
Observe that B C By and
up\ T
a /2y p1(2—q%)/2 LANEDS
sup ||sll2 < sup ||sllg-""[lsllss <(—) -
SESs. K SGS{,,)Q m

Hence, Lemma 31 yields

2-g

Uk 2q*
E_swp 3 Xiglaorgpxpsis < (00) 7 BN arrgix, ) llepors
$€55,k,tEBY i<m,j<n

*

= Ina
<a ml/qukz" exp(f—2k*1) .

10
Thus, if we choose
( ¢"Ina k)
ug = exp| ————2%),
: Pl202 —¢)
we get
2 N 1/q o, 1/q
ZE sup Z Xijliar-1<1x, ;13 5itj Sa Zm exp(—TOQ ) Sam i,
=1 S€SsmIEBY Ty =1

Lemmas 28 and 30 applied with [ = ™, a = m_l/(looﬁz), and v = 240 yield

uk7

_(2=d¥) «
E sup Z Xi,jl{\Xi,jKa’c}sitj ,Sa Ozk (m 20052 nl/p + LOg Uk(m/uk)l/‘I).
S€34kt€BY <y <

Property (43) yields

(=) . _(2=q%) . 10 2 —¢* logzo _ 2=a) 1y *
Zakm 20 /P < ako T Loy w0 pl/P <, (17 . Logm) o~ 20057 M, 1/p
no

. .
<o n'/P sup OBz e < /P
>0

Finally, since ¢ < 248 and uy, > 1 we get v/Logug(m/ug)*/? <, ml/qugl/@q), SO

ko

*1
Zak\/Loguk(m/uk)l/‘] <a m'/ Zak exp(fﬁfﬁ <a m/9. O
k=1 k>1

The case 2 > p*, g was considered in Subsection 6.1. The proof in the case 245 > ¢ > 2 > p*
is easy and bases on the already proven case when ¢ > 2 = p* (see the proof above).
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Proof of the upper bound in Theorem 1 in the case 243 > q > 2 > p*. Inequality (7) implies that
in the case 248 > ¢ > 2 > p* the upper bound in Theorem 1 is equivalent to

(45) (X )ijllensem San'/P" +m!ant/v =172,

~

In particular, an already obtained upper bound in the case 2438 > ¢ > 2 = p* yields

E[[(Xi,j)illegsem Sa n'/2 4 mi/a,
S0
EN(X:)iilen—er < I11d lesmenBI(Xi 1) glleg—er Sa nl/P" 12012 4 m!/9)
=nl/P" 4 ml/qn1/p*,1/2’
and thus, (45) holds. .
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