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Chevet-type inequalities for subexponential Weibull
variables and estimates for norms of random matrices
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Abstract

We prove two-sided Chevet-type inequalities for independent symmetric Weibull
random variables with shape parameter r ∈ [1, 2]. We apply them to provide two-sided
estimates for operator norms from `np to `mq of random matrices (aibjXi,j)i≤m,j≤n,
in the case when Xi,j ’s are iid symmetric Weibull variables with shape parameter
r ∈ [1, 2] or when X is an isotropic log-concave unconditional random matrix. We also
show how these Chevet-type inequalities imply two-sided bounds for maximal norms
from `np to `mq of submatrices of X in both Weibull and log-concave settings.
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1 Introduction and main results

1.1 Chevet-type two-sided bounds

The classical Chevet inequality [14] is a two-sided bound for operator norms of
Gaussian random matrices with iid entries. It states that if gi,j , gi, i, j ≥ 1 are iid
standard Gaussian random variables, then for every pair of nonempty bounded sets
S ⊂ Rm, T ⊂ Rn we have

E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj ∼ sup
s∈S
‖s‖2E sup

t∈T

n∑
j=1

gjtj + sup
t∈T
‖t‖2E sup

s∈S

m∑
i=1

gisi. (1.1)

Here and in the sequel we write f . g or g & f , if f ≤ Cg for a universal constant C,
and f ∼ g if f . g . f . (We write .α, ∼K,γ , etc. if the underlying constant depends
on the parameters given in the subscripts.) The original motivation for Chevet’s result
was convergence of Gaussian random sums in tensor spaces. In this article we use
Chevet-type bounds to provide two-sided bounds for operator norms of several classes of
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Chevet-type inequalities for subexponential Weibull variables

random matrices, including structured log-concave matrices. To this end we need to find
a two-sided counterpart of (1.1) for exponential and, more generally, Weibull random
variables.

Chevet’s inequality was generalised to several settings. A version for iid stable r.v.’s
was provided in [15]. Moreover, it was shown in [1, Theorem 3.1] that the upper bound
in (1.1) holds if one replaces – on both sides of (1.1) – iid Gaussians by iid symmetric
exponential r.v.’s. It is however not hard to see (cf. Remark 3 following Theorem 3.1
in [1]) that such a bound cannot be reversed. This is the reason why the Chevet-type
bound from [1] is not sufficient for obtaining optimal (in the sense that the lower and the
upper bounds coincide up to a universal constant) bounds for a general `p → `q norm of
random matrices.

The first result of this note is an optimal counterpart of (1.1) for symmetric Weibull
matrices (Xi,j) with a fixed (shape) parameter r ∈ [1, 2], i.e., symmetric random variables
Xi,j such that

P(|Xi,j | ≥ t) = exp(−tr) for every t ≥ 0.

It is natural to consider Weibull r.v.’s since they interpolate between Gaussian and
exponential r.v.’s – the case r = 1 corresponds to exponential r.v.’s, whereas in the case
r = 2 the r.v.’s Xi,j are comparable to Gaussian r.v.’s with variance 1/2 (see Lemma 3.12
below). In particular, our result in the case r = 1 provides two-sided bounds for iid
exponential r.v.’s, which is therefore a better version of the aforementioned upper bound
obtained in [1]. In this note ρ∗ denotes the Hölder conjugate of ρ ∈ [1,∞], i.e., the unique
element of [1,∞] satisfying 1

ρ + 1
ρ∗ = 1.

Theorem 1.1. Let Xi,j , Xi, Xj , 1 ≤ i ≤ m, 1 ≤ j ≤ n be iid symmetric Weibull r.v.’s with
parameter r ∈ [1, 2]. Then for every nonempty bounded sets S ⊂ Rm and T ⊂ Rn we
have

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj ∼ sup
s∈S
‖s‖r∗E sup

t∈T

n∑
j=1

Xjtj + sup
t∈T
‖t‖r∗E sup

s∈S

m∑
i=1

Xisi

+ E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj

∼ sup
s∈S
‖s‖r∗E sup

t∈T

n∑
j=1

Xjtj + sup
s∈S
‖s‖2E sup

t∈T

n∑
j=1

gjtj

+ sup
t∈T
‖t‖r∗E sup

s∈S

m∑
i=1

Xisi + sup
t∈T
‖t‖2E sup

s∈S

m∑
i=1

gisi.

Theorem 1.1 is a two sided version of the Chevet-type bound from [1] and yields
optimal bounds for norms of random matrices in various settings, including the tensor
structured isotropic log-concave unconditional case, in which we are able to loose
logarithmic terms appearing in [31, Theorem 1.1]. Let us note that the main difficulties
in Theorem 1.1 were figuring out the correct upper bound and proving the lower bound;
the proof of the upper bound actually follows the lines of the proof of [1, Theorem 3.1].

Theorem 1.1 generalizes to the case of independent ψr random variables. There are
several equivalent definitions of this notion – in this paper we say that a random variable
Z is ψr with constant σ if

P(|Z| ≥ t) ≤ 2e−(t/σ)
r

for every t ≥ 0.

One of the reasons to investigate Weibull r.v.’s is that Weibulls with parameter r are
extremal in the class of ψr random variables, which appear frequently in probability
theory, statistics, and their applications, e.g., in convex geometry (see, e.g., [11, 13,
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Chevet-type inequalities for subexponential Weibull variables

34]). In particular, Theorem 1.1 and a standard estimate (see Lemma 2.1 below) yield
the following result (observe that we do not assume that the r.v.’s Yi,j are identically
distributed).

Corollary 1.2. Let X1, X2, . . . be iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2],
and let Yi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n be independent centered ψr random variables with
constant σ. Then for every bounded nonempty sets S ⊂ Rm and T ⊂ Rn we have

E sup
s∈S,t∈T

∑
i≤m,j≤n

Yi,jsitj . σ

(
sup
s∈S
‖s‖r∗E sup

t∈T

n∑
j=1

Xjtj + sup
s∈S
‖s‖2E sup

t∈T

n∑
j=1

gjtj

+ sup
t∈T
‖t‖r∗E sup

s∈S

m∑
i=1

Xisi + sup
t∈T
‖t‖2E sup

s∈S

m∑
i=1

gisi

)
.

Let us now focus on the case r = 1. Random vectors with independent symmetric
exponential coordinates are extremal in the class of unconditional isotropic log-concave
random vectors (cf., [9, 20]). Recall that we call a random vector Z in Rk log-concave if
for any compact nonempty sets K,L ⊂ Rk and λ ∈ [0, 1] we have

P
(
Z ∈ λK + (1− λ)L

)
≥ P(Z ∈ K)λP(Z ∈ L)1−λ.

Log-concave vectors are a natural generalization of the class of uniform distributions
over convex bodies and they are widely investigated in convex geometry and high
dimensional probability (see the monographs [5, 11]). By the result of Borell [10] we
know that log-concave vectors with nondegenerate covariance matrix are exactly the
vectors with a log-concave density, i.e., with a density whose logarithm is a concave
function with values in [−∞,∞).

A random vector Z in Rk is called unconditional if for every choice of ±1 signs ηi, the
vectors Z and (ηiZi)i≤k are equally distributed (or, equivalently, that Z and (εiZi)i≤k are
equally distributed, where ε1, . . . , εk are iid symmetric Bernoulli variables independent
of Z). A random vector is called isotropic if it is centered and its covariance matrix is
the identity.

[20, Theorem 2] yields that for every bounded nonempty set U in Rk (see Lemma 2.2
below for a standard reduction to the case of symmetric index sets) and every k-
dimensional unconditional isotropic log-concave random vector Y ,

E sup
u∈U

k∑
i=1

uiYi . E sup
u∈U

k∑
i=1

uiEi, (1.2)

where E1, E2, . . . , Ek are independent symmetric exponential r.v.’s (i.e., iid Weibull r.v.’s
with shape parameter r = 1). Hence, Theorem 1.1 yields the following Chevet-type
bound for isotropic unconditional log-concave random matrices.

Corollary 1.3. Let E1, E2, . . . be iid symmetric exponential random variables, and let
Y = (Yi,j)1≤i≤m,1≤j≤n be a random matrix with isotropic unconditional log-concave
distribution on Rmn. Then for every bounded nonempty sets S ⊂ Rm and T ⊂ Rn we
have

E sup
s∈S,t∈T

∑
i≤m,j≤n

Yi,jsitj . sup
s∈S
‖s‖∞E sup

t∈T

n∑
j=1

Ejtj + sup
s∈S
‖s‖2E sup

t∈T

n∑
j=1

gjtj

+ sup
t∈T
‖t‖∞E sup

s∈S

m∑
i=1

Eisi + sup
t∈T
‖t‖2E sup

s∈S

m∑
i=1

gisi.
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Let us stress that estimate (1.2) is no longer true for general isotropic log-concave
vectors as [1, Theorem 5.1] shows. We do not know whether there exists a counterpart
of Corollary 1.3 for arbitrary isotropic log-concave random matrices.

The next subsection reveals how our Chevet-type inequalities imply precise bounds
for norms of random matrices.

1.2 Norms of random matrices

Initially motivated by mathematical physics, the theory of random matrices [4, 33]
is now used in many areas of mathematics. A great effort was made to understand the
asymptotic behaviour of the edge of the spectrum of random matrices with independent
entries. In particular, numerous bounds on their spectral norm (i.e., the largest singular
value) were derived. The seminal result of Seginer [30] states that in the iid case the
expectation of the spectral norm is of the same order as the expectation of the maximum
Euclidean norm of rows and columns of a given random matrix. We know from [27]
that the same is true for the structured Gaussian matrices GA = (ai,jgi,j)i≤m,j≤n, where
gi,j ’s are iid standard Gaussian r.v.’s, and (ai,j)i,j is a deterministic matrix encoding the
covariance structure of GA. Although in the structured Gaussian case we still assume
that the entries are independent, obtaining optimal bounds in this case was much more
challenging than in the non-structured case. Upper bounds for the spectral norm of
some Gaussian random matrices with dependent entries were obtained very recently in
[6].

In this note we are interested in bounding more general operator norms of random
matrices. For ρ ∈ [1,∞) by ‖x‖ρ = (

∑
i |xi|ρ)1/ρ, we denote the `ρ-norm of a vector x.

A similar notation, ‖S‖ρ = (E|S|ρ)1/ρ is used for the Lρ-norm of a random variable S. For
ρ =∞ we write ‖x‖∞ := maxi |xi|. By Bkρ we denote the unit ball in (Rk, ‖ · ‖ρ). For an
m× n matrix X = (Xi,j)i≤m,j≤n we denote by

‖X‖`np→`mq = sup
t∈Bnp

‖Xt‖q = sup
t∈Bnp ,s∈Bmq∗

sTXt = sup
t∈Bnp ,s∈Bmq∗

∑
i≤m,j≤n

Xi,jsitj

its operator norm from `np to `mq . In particular, ‖X‖`n2→`m2 is the spectral norm of X. When
(p, q) 6= (2, 2), the moment method used to upper bound the operator norm cannot be
employed. This is one of the reasons why upper bounds for E‖X‖`np→`mq are known only in
some special cases, and most of them are optimal only up to logarithmic factors. Before
we move to a brief survey of these results, let us note that bounds for E‖X‖`np→`mq yield

both tail bounds for ‖X‖`np→`mq and bounds for (E‖X‖ρ`np→`mq )1/ρ for every ρ ≥ 1, provided

that the entries of X satisfy a mild regularity assumption; see [3, Proposition 1.16] for
more details.

Chevet’s inequality together with, say, Remark 3.14 below easily yields the following
two-sided estimate for `np → `mq norms of iid Gaussian matrices for every p, q ∈ [1,∞],

E
∥∥(gi,j)i≤m,j≤n

∥∥
`np→`mq

∼


m1/q−1/2n1/p

∗
+ n1/p

∗−1/2m1/q, p∗, q ≤ 2,
√
p∗ ∧ Log n n1/p∗m1/q−1/2 +m1/q, q ≤ 2 ≤ p∗,

n1/p
∗

+
√
q ∧ Logmm1/qn1/p

∗−1/2, p∗ ≤ 2 ≤ q,
√
p∗ ∧ Log n n1/p∗ +

√
q ∧ Logmm1/q, 2 ≤ q, p∗

(1.3)

∼
√
p∗ ∧ Log n m(1/q−1/2)∨0n1/p

∗
+
√
q ∧ Logm n(1/p∗−1/2)∨0m1/q,

where to simplify the notation we define

Log n = max{1, lnn}.
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If the entries Xi,j are bounded and centered, then it is known that

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

.p,q


m1/q−1/2n1/p

∗
+ n1/p

∗−1/2m1/q, p∗, q ≤ 2,

m1/q−1/2n1/p
∗

+m1/q, q ≤ 2 ≤ p∗,
n1/p

∗
+ n1/p

∗−1/2m1/q, p∗ ≤ 2 ≤ q,
n1/p

∗
+m1/q, 2 ≤ p∗, q.

(1.4)

This was proven in [8] in the case p = 2 ≤ q and may be easily extrapolated to the whole
range 1 ≤ p, q ≤ ∞ (see [7, 12], cf., [3, Remark 4.2]). Moreover, in the case of matrices
with iid symmetric Bernoulli r.v.’s inequality (1.4) may be reversed. In [28, Lemma 172] it
was shown that in the square case (i.e., when m = n) estimate (1.4) holds with a constant
non depending on p and q. The two-sided estimate for rectangular Bernoulli matrices
is more complicated – we capture the correct dependence of the underlying constants
on p and q in [24]. As for the Gaussian random matrices, the Bernoulli structured case
is much more difficult to deal with, even when p = q = 2. Nevertheless, in this case a
two-sided bound was conjectured in [25], and proven up to log log log factor in [21].

The case of structured Gaussian matrices in the range p ≤ 2 ≤ q was investigated in
[18]; in this case

E‖GA‖`np→`mq ∼p,q max
j≤n
‖(ai,j)mi=1‖q + (Logm)1/q

(
max
i≤m
‖(ai,j)nj=1‖p∗ + E max

i≤m,j≤n
|ai,jgi,j |

)
.

Since in the range p ≤ 2 ≤ q we have

‖(ai,j)mi=1‖q + ‖(ai,j)nj=1‖p∗ + E max
i≤m,j≤n

|ai,jgi,j |

∼p,q Emax
i≤m
‖(ai,jgi,j)j‖p∗ + Emax

j≤n
‖(ai,jgi,j)i‖q

(see [3, Remark 1.1]), it seems natural to expect, that, as in the case p = q = 2,

E‖GA‖`np→`mq ∼
?
p,q Emax

i≤m
‖(ai,jgi,j)j‖p∗ + Emax

j≤n
‖(ai,jgi,j)i‖q.

However, this bound fails outside the range p ≤ 2 ≤ q (see [3, Remark 1.1]). In order to
present a more reasonable conjecture how E‖GA‖`np→`mq behaves in other ranges of p
and q we need some additional notation. Let

D1 := ‖(a2i,j)i≤m,j≤n : `np/2 → `mq/2‖
1/2,

D2 := ‖(a2j,i)j≤n,i≤m : `mq∗/2 → `np∗/2‖
1/2,

bj := ‖(ai,j)i≤m‖2q/(2−q),
di := ‖(ai,j)j≤n‖2p/(p−2),

and D3 =


Emaxi≤m,j≤n |ai,jgi,j | if p ≤ 2 ≤ q,
maxj≤n

√
ln(j + 1)b∗j if p ≤ q ≤ 2,

maxi≤m
√

ln(i+ 1)d∗i if 2 ≤ p ≤ q,
0 if q < p,

where (c∗i )
k
i=1 is the nonincreasing rearrangement of (|ci|)ki=1.

The following conjecture was posed in [3].

Conjecture 1.4. Is it true that for all 1 ≤ p, q ≤ ∞,

E‖GA : `np → `mq ‖ ∼p,q D1 +D2 +D3 ? (1.5)

It is known by [3, (1.13) and Corollary 1.4] that (1.5) holds up to logarithmic terms.
However, it seems that proving the correct asymptotic bound for the operator norm from
`p to `q of a structured Gaussian is a challenge. All the more, there is currently no hope
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of getting two-sided bounds in a general case of the structured matrices (ai,jXi,j)i≤m,j≤n
for a wider class of iid random variables Xi,j . Therefore, in this paper we restrict
ourselves to a special class of variance structures (ai,j)i≤m,j≤n: the tensor structure. In
other words, we assume that the structure has a tensor form ai,j = aibj for some a ∈ Rm
and b ∈ Rn. In this case Chevet-type bounds stated in Theorem 1.1 allow us to provide
two-sided bounds – with constants independent of p and q – for exponential, Gaussian,
and, more general, Weibull tensor structured random matrices. Since these bounds have
quite complicated forms we postpone the exact formulations to Section 3. Let us only
announce here two corollaries from these bounds. The first one is an affirmative answer
to Conjecture 1.4 in the case when (ai,j) has a tensor form (see Corollary 3.2 below). In
Section 3 we state also a counterpart of this conjecture for weighted Weibull matrices
and verify it in the tensor case. Moreover, using (1.2) and a bound for E‖(aibjEi,j)‖`np→`mq
we provide a two-sided bound for weighted unconditional isotropic log-concave random
matrices (ai,jYi,j) in the tensor case ai,j = aibj (see Corollary 3.4 below). We do not
know whether a similar bound holds without the unconditionality assumption.

Let us now move to another application of Theorem 1.1. We first formulate it for
Weibull matrices. By lJp we denote the space {(xj)j∈J :

∑
j∈J |xj |p ≤ 1} equipped with

the norm ‖x‖p := (
∑
j∈J |xj |p)1/p.

Theorem 1.5. Let r ∈ [1, 2] and (Xi,j)i≤m,j≤n be independent, centered, ψr random
variables with constant σ. Then for any 1 ≤ k ≤ m, 1 ≤ l ≤ n and p, q ∈ [1,∞],

E sup
I,J

∥∥(Xi,j)i∈I,j∈J
∥∥
`Jp→`Iq

. σ
(
k(1/q−1/r)∨0l1/p

∗
(

Log
(n
l

)
∨ (p∗ ∧ Log l)

)1/r
+ k(1/q−1/2)∨0l1/p

∗
(

Log
(n
l

)
∨ (p∗ ∧ Log l)

)1/2
+ l(1/p

∗−1/r)∨0k1/q
(

Log
(m
k

)
∨ (q ∧ Log k)

)1/r
+ l(1/p

∗−1/2)∨0k1/q
(

Log
(m
k

)
∨ (q ∧ Log k)

)1/2)
,

where the supremum runs over all sets I ⊂ [m], J ⊂ [n] such that |I| = k and |J | = l.
Moreover, the above bound may be reversed if (Xi,j)i≤m,j≤n are iid symmetric Weibull
r.v.’s with parameter r.

Theorem 1.5 applied with r = 1, and (1.2) yield the following corollary.

Corollary 1.6. Let (Yi,j)i≤m,j≤n be isotropic log-concave unconditional matrix. Then for
any 1 ≤ k ≤ m, 1 ≤ l ≤ n and p, q ∈ [1,∞],

E sup
I,J

∥∥(Yi,j)i∈I,j∈J
∥∥
`Jp→`Iq

. l1/p
∗
(

Log
(n
l

)
∨ (p∗ ∧ Log l)

)
+ k(1/q−1/2)∨0l1/p

∗
(

Log
(n
l

)
∨ (p∗ ∧ Log l)

)1/2
+ k1/q

(
Log

(m
k

)
∨ (q ∧ Log k)

)
+ l(1/p

∗−1/2)∨0k1/q
(

Log
(m
k

)
∨ (q ∧ Log k)

)1/2
,

where the supremum runs over all sets I ⊂ [m], J ⊂ [n] such that |I| = k and |J | = l.
Moreover, the above bound may be reversed if (Yi,j)i≤m,j≤n are iid symmetric exponential
r.v.’s.

Theorem 1.5 and Corollary 1.6 give estimates on the largest operator norm among
all submatrices of X of fixed size. Let us remark that quantities of this type were
investigated before in [3] and, for p = q = 2, in [1] as a tool in the study of the restricted
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isometry property, and in [2, 29] in the analysis of entropic uncertainty principles for
random quantum measurements.

Applying Theorem 1.5 with k = m and l = n we derive the following bound which
extends (1.3) to the case of Weibull matrices (this also follows from Theorem 3.3 from
Section 3 applied with ai = bj = 1).

Corollary 1.7. Let (Xi,j)i≤m,i≤n be iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2].
Then for every 1 ≤ p, q ≤ ∞,

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼


m1/q−1/2n1/p

∗
+ n1/p

∗−1/2m1/q, p∗, q ≤ 2,

(p∗ ∧ Log n)1/rn1/p
∗
m(1/q−1/r)∨0 +

√
p∗ ∧ Log n n1/p∗m1/q−1/2 +m1/q, q ≤ 2 ≤ p∗,

n1/p
∗

+ (q ∧ Logm)1/rm1/qn(1/p
∗−1/r)∨0 +

√
q ∧ Logmm1/qn1/p

∗−1/2, p∗ ≤ 2 ≤ q,
(p∗ ∧ Log n)1/rn1/p

∗
+ (q ∧ Logm)1/rm1/q, 2 ≤ p∗, q

∼ (p∗ ∧ Log n)1/rm(1/q−1/r)∨0n1/p
∗

+
√
p∗ ∧ Log n m(1/q−1/2)∨0n1/p

∗

+ (q ∧ Logm)1/rn(1/p
∗−1/r)∨0m1/q +

√
q ∧ Logm n(1/p∗−1/2)∨0m1/q.

In particular, if n = m, then

E
∥∥(Xi,j)

n
i,j=1

∥∥
`np→`nq

∼

{
n1/q+1/p∗−1/2, p∗, q ≤ 2,

(p∗ ∧ q ∧ Log n)1/rn1/(p
∗∧q), p∗ ∨ q ≥ 2.

Lemma 3.8 below and the bound ‖Xi,j‖ρ =
(
Γ(ρ/r + 1)

)1/ρ ∼ (ρ/r)1/r ∼ ρ1/r imply
that the estimates in Corollary 1.7 are equivalent to

E
∥∥(Xi,j)i≤m,j≤n

∥∥
`np→`mq

∼ m1/q sup
t∈Bnp

∥∥∥ n∑
j=1

tjX1,j

∥∥∥
q∧Logm

+ n1/p
∗

sup
s∈Bm

q∗

∥∥∥ m∑
i=1

siXi,1

∥∥∥
p∗∧Logn

(1.6)

and, in the square case, to

E
∥∥(Xi,j)

n
i,j=1

∥∥
`np→`nq

∼

{
n1/q+1/p∗−1/2‖X1,1‖2, p∗, q ≤ 2,

n1/(p
∗∧q)‖X1,1‖p∗∧q∧Logn, p∗ ∨ q ≥ 2.

(1.7)

In the upcoming work [24] we show that (1.6) and (1.7) hold for a wider class of centered
iid random matrices satisfying the following mild regularity assumption: there exists
α ≥ 1 such that for every ρ ≥ 1,

‖Xi,j‖2ρ ≤ α‖Xi,j‖ρ;

this class contains, e.g., all log-concave random matrices with iid entries and iid Weibull
random variables with shape parameter r ∈ (0,∞].

The rest of this paper is organized as follows. Section 2 contains the proof of
Theorem 1.1, Corollary 1.2, and inequality (1.2). In Section 3 we formulate and prove
bounds for norms of random matrices in the tensor structured case. Finally, Section 4
contains the proof of Theorem 1.5.

2 Proofs of Chevet-type bounds

In this section we show how to derive Chevet-type bounds. Then we move to the
proofs of Corollary 1.2 and inequality (1.2).
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Chevet-type inequalities for subexponential Weibull variables

Proof of Theorem 1.1. The second estimate follows by Chevet’s inequality. The proof of
the first upper bound is a modification of the proof of [1, Theorem 3.1].

Let us briefly recall the notation from [1]. For a metric space (U, d) and ρ > 0 let

γρ(U, d) := inf
(Ul)∞l=0

sup
u∈U

∞∑
l=0

2l/ρd(u, Ul),

where the infimum is taken over all admissible sequences of sets, i.e., all sequences
(Ul)

∞
l=0 of subsets of U , such that |U0| = 1, and |Ul| ≤ 22

l

for l ≥ 1. Let dρ be the `ρ-metric
in the appropriate dimension. Since r ∈ [1, 2], by the result of Talagrand [32] (one may
also use the more general [26, Theorem 2.4] to see more explicitely that two-sided
bounds hold with constants independent of parameter r) for every nonempty U ⊂ Rk,

E sup
u∈U

∑
i≤k

uigi ∼ γ2(U, d2) and E sup
u∈U

k∑
i=1

uiXi ∼ γr(U, dr∗) + γ2(U, d2). (2.1)

For nonempty sets S ⊂ Rm and T ⊂ Rn let

S ⊗ T = {s⊗ t : s ∈ S, t ∈ T},

where s⊗t := (sitj)i≤m,j≤n belongs to the space of real m×n matrices, which we identify
with Rmn. Now we will prove that

γr(S ⊗ T, dr∗) ∼ sup
t∈T
‖t‖r∗γr(S, dr∗) + sup

s∈S
‖s‖r∗γr(T, dr∗). (2.2)

Let Sl ⊂ S and Tl ⊂ T , l = 0, 1, . . . be admissible sequences of sets. Set T−1 := T0,
S−1 := S0 and define Ul := Sl−1⊗Tl−1. Then (Ul)l≥0 is an admissible sequence of subsets
of S ⊗ T .

Note that for all s′, s′′ ∈ S, and t′, t′′ ∈ T we have

dr∗(s
′ ⊗ t′, s′′ ⊗ t′′) = ‖s′ ⊗ t′ − s′′ ⊗ t′′‖r∗ ≤ ‖s′ ⊗ (t′ − t′′)‖r∗ + ‖(s′ − s′′)⊗ t′′‖r∗

= ‖s′‖r∗‖t′ − t′′‖r∗ + ‖t′′‖r∗‖s′ − s′′‖r∗
≤ sup

s∈S
‖s‖r∗dr∗(t′, t′′) + sup

t∈T
‖t‖r∗dr∗(s′, s′′).

Therefore

γr(S ⊗ T, dr∗) ≤ sup
s∈S,t∈T

∞∑
l=0

2l/rdr∗(s⊗ t, Ul)

≤ sup
s∈S
‖s‖r∗ sup

t∈T

∞∑
l=0

2l/rdr∗(t, Tl−1) + sup
t∈T
‖t‖r∗ sup

s∈S

∞∑
l=0

2l/rdr∗(s, Sl−1).

Taking the infimum over all admissible sequences (Sl)l≥0 and (Tl)l≥0 we get the upper
bound (2.2).

To establish the lower bound in (2.2) it is enough to observe that

γr(S ⊗ T, dr∗) ≥ max
{

sup
t∈T

γr
(
S ⊗ {t}, dr∗

)
, sup
s∈S

γr
(
{s} ⊗ T, dr∗

)}
= max

{
sup
t∈T
‖t‖r∗γr(S, dr∗), sup

s∈S
‖s‖r∗γr(T, dr∗)

}
.

Bounds (2.1) and (2.2) imply

E sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj ∼ γ2(S ⊗ T, d2) + γr(S ⊗ T, dr∗)

∼ E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj + sup
t∈T
‖t‖r∗γr(S, dr∗) + sup

s∈S
‖s‖r∗γr(T, dr∗). (2.3)
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Moreover, Chevet’s inequality and (2.1) yield

E sup
s∈S,t∈T

∑
i≤m,j≤n

gi,jsitj & sup
t∈T
‖t‖2γ2(S, d2) + sup

s∈S
‖s‖2γ2(T, d2) (2.4)

≥ sup
t∈T
‖t‖r∗γ2(S, d2) + sup

s∈S
‖s‖r∗γ2(T, d2).

The first asserted inequality follows by applying (2.3), (2.4) and (2.1).

Corollary 1.2 immediately follows by a symmetrization, Theorem 1.1 and the following
standard lemma.

Lemma 2.1. Let Xi,j ’s be iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2], and Yi,j ’s
be independent symmetric ψr random variables with constant σ. Then for every bounded
nonempty sets S ⊂ Rm and T ⊂ Rn we have

E sup
s∈S,t∈T

∑
i≤m,j≤n

Yi,jsitj ≤ 2σE sup
s∈S,t∈T

∑
i≤m,j≤n

Xi,jsitj .

Proof. The ψr assumption gives P(|Yi,j | ≥ t) ≤ 2P(|σXi,j | ≥ t). Let (δi,j)i≤m,j≤n be
iid r.v.’s independent of all the others, such that P(δi = 1) = 1/2 = P(δi = 0). Then
P(|δi,jYi,j | ≥ t) ≤ P(|σXi,j | ≥ t) for every t ≥ 0, so we may find such a representation
of (Xi,j , Yi,j , δi,j)i≤m,j≤n, that σ|Xi,j | ≥ |δi,jYi,j | a.s. Let (εi,j)i≤m,j≤n be a matrix with iid
symmetric ±1 entries (Rademachers) independent of all the others. Then the contraction
principle and Jensen’s inequality imply

σE sup
s∈S,t∈T

∑
i,j

Xi,jsitj = E sup
s∈S,t∈T

∑
i,j

εi,j |σXi,j |sitj ≥ E sup
s∈S,t∈T

∑
i,j

εi,j |δi,jYi,j |sitj

= E sup
s∈S,t∈T

∑
i,j

δi,jYi,jsitj ≥ E sup
s∈S,t∈T

∑
i,j

Yi,jEδi,jsitj

=
1

2
E sup
s∈S,t∈T

∑
i,j

Yi,jsitj .

Lemma 2.2. Estimate (1.2) holds for every bounded nonempty set U ⊂ Rk and every
k-dimensional unconditional isotropic log-concave random vector Y .

Proof. [20, Theorem 2] states that for every norm ‖ · ‖ on Rk, E‖Y ‖ ≤ CE‖E‖, where
E = (E1, . . . , Ek). In other words, (1.2) holds for bounded symmetric sets U .

Now, let U be arbitrary. Take any point v ∈ U . Since E
∑k
i=1 viYi = 0 we have

E sup
u∈U

k∑
i=1

uiYi = E sup
u∈U−v

k∑
i=1

uiYi ≤ E sup
u∈U−v

∣∣∣ k∑
i=1

uiYi

∣∣∣ ≤ CE sup
u∈U−v

∣∣∣ k∑
i=1

uiEi

∣∣∣,
where the last inequality follows by (1.2) applied to the symmetric set (U − v) ∪ (v − U).
On the other hand, the distribution of E is symmetric, 0 ∈ U − v, and E

∑k
i=1 viEi = 0, so

E sup
u∈U−v

∣∣∣ k∑
i=1

uiEi

∣∣∣ ≤ E sup
u∈U−v

( k∑
i=1

uiEi

)
∨ 0 + E sup

u∈U−v

(
−

k∑
i=1

uiEi

)
∨ 0

= 2E sup
u∈U−v

( k∑
i=1

uiEi

)
∨ 0 = 2E sup

u∈U−v

k∑
i=1

uiEi = 2E sup
u∈U

k∑
i=1

uiEi.
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3 Matrices (aibjXij)

In this section we shall consider matrices of the form (aibjXi,j)i≤m,j≤n. Before
presenting our results we need to introduce some notation.

By (c∗i )
k
i=1 we will denote the nonincreasing rearrangement of (|ci|)ki=1. For ρ ≥ 1 we

set

ϕρ(t) =

{
exp(2− 2t−ρ), t > 0.

0, t = 0,

and define

‖(ci)i≤k‖ϕρ := inf
{
t > 0:

k∑
i=1

ϕρ(|ci|/t) ≤ 1
}
.

The function ϕρ is not convex on R+. However, it is increasing and convex on [0, 1] and
ϕρ(1) = 1. So we may find a convex function ϕ̃ρ on [0,∞) such that ϕρ = ϕ̃ρ on [0, 1].
Then clearly ‖ · ‖ϕρ = ‖ · ‖ϕ̃ρ . Thus ‖ · ‖ϕρ is an Orlicz norm.

Let us first present the bound in the Gaussian case.

Theorem 3.1. For every 1 ≤ p, q ≤ ∞ and deterministic sequences (ai)i≤m, (bj)j≤m,

E
∥∥(aibjgi,j)i≤m,j≤n

∥∥
`np→`mq

∼



‖a‖ 2q∗
q∗−2
‖b‖p∗ + ‖a‖q‖b‖ 2p

p−2
, p∗, q < 2,

‖a‖ 2q∗
q∗−2

(
‖(b∗j )j≤ep∗ ‖ϕ2

+
√
p∗‖(b∗j )j>ep∗ ‖p∗

)
+ ‖a‖q‖b‖∞, q < 2 ≤ p∗,

‖a‖∞‖b‖p∗ +
(
‖(a∗i )i≤eq‖ϕ2

+
√
q‖(a∗i )i>eq‖q

)
‖b‖ 2p

p−2
, p∗ < 2 ≤ q,

‖a‖∞
(
‖(b∗j )j≤ep∗ ‖ϕ2

+
√
p∗‖(b∗j )j>ep∗ ‖p∗

)
+
(
‖(a∗i )i≤eq‖ϕ2 +

√
q‖(a∗i )i>eq‖q

)
‖b‖∞, 2 ≤ p∗, q.

Before we move to the Weibull case, let us see how Theorem 3.1 implies Conjecture 1.4
for the tensor structured Gaussian matrices.

Corollary 3.2. Assume that there exists a ∈ Rm and b ∈ Rn such that aij = aibj for
every i ≤ m, j ≤ n. Then Conjecture 1.4 holds.

Proof. If p∗ =∞ or q =∞, then (1.5) is satisfied for an arbitrary matrix (ai,j)i,j by [18,
Remark 1.4], [3, Proposition 1.8 and Corollary 1.11]

In the case p∗, q <∞ we shall show that

D1 +D2 . E
∥∥(aibjgi,j)i≤m,j≤n

∥∥
`np→`mq

.
√
qD1 +

√
p∗D2. (3.1)

The lower bound follows by [3, Proposition 5.1 and Corollary 5.2].
To establish the upper bound let us first compute D1 and D2 in the case ai,j = aibj . If

p > 2, then 2(p/2)∗ = 2p/(p− 2), so for every p ∈ [1,∞],

D1 = sup
t∈Bn

p/2

( m∑
i=1

|ai|q
∣∣∣ n∑
j=1

b2j tj

∣∣∣q/2)1/q

= ‖a‖q sup
t∈Bn

p/2

∣∣∣ n∑
j=1

b2j tj

∣∣∣1/2
= ‖a‖q

{
‖b‖2p/(p−2) p∗ < 2,

‖b‖∞ p∗ ≥ 2,

and, dually,

D2 = ‖b‖p∗
{
‖a‖2q∗/(q∗−2) q < 2,

‖a‖∞ q ≥ 2.
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Moreover,

‖(b∗j )j≤ep∗‖ϕ2 +
√
p∗‖(b∗j )j>ep∗‖p∗ ≤ 2

√
p∗b∗1 +

√
p∗‖(b∗j )j>ep∗ ‖p∗ ≤ 3

√
p∗‖(b∗j )j‖p∗ ,

and similarly
‖(a∗i )i≤eq‖ϕ2

+
√
q‖(a∗i )i>eq‖q .

√
q‖(a∗i )i‖q.

Hence, Theorem 3.1 yields the upper bound in (3.1).

In the Weibull case we get the following bound.

Theorem 3.3. Let (Xi,j)i≤m,j≤n be iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2].
Then for every 1 ≤ p, q ≤ ∞ and deterministic sequences a = (ai)i≤m and b = (bj)j≤n,

E
∥∥(aibjXi,j)i≤m,j≤n

∥∥
`np→`mq

∼



‖a‖ 2q∗
q∗−2
‖b‖p∗ + ‖a‖q‖b‖ 2p

p−2
, p∗, q < 2,

‖a‖ 2q∗
q∗−2

(
‖(b∗j )j≤ep∗‖ϕ2

+
√
p∗‖(b∗j )j>ep∗ ‖p∗

)
+‖a‖ r∗q∗

q∗−r∗

(
‖(b∗j )j≤ep∗‖ϕr + (p∗)1/r‖(b∗j )j>ep∗ ‖p∗

)
+ ‖a‖q‖b‖∞, q < r, 2 ≤ p∗,

‖a‖ 2q∗
q∗−2

(
‖(b∗j )j≤ep∗‖ϕ2

+
√
p∗‖(b∗j )j>ep∗ ‖p∗

)
+‖a‖∞

(
‖(b∗j )j≤ep∗‖ϕr + (p∗)1/r‖(b∗j )j>ep∗ ‖p∗

)
+ ‖a‖q‖b‖∞, r ≤ q < 2 ≤ p∗,

‖a‖∞‖b‖p∗ +
(
‖(a∗i )i≤eq‖ϕ2 +

√
q‖(a∗i )i>eq‖q

)
‖b‖ 2p

p−2

+
(
‖(a∗i )i≤eq‖ϕr + q1/r‖(a∗i )i>eq‖q

)
‖b‖ r∗p

p−r∗
, p∗ < r, 2 ≤ q,

‖a‖∞‖b‖p∗ +
(
‖(a∗i )i≤eq‖ϕ2 +

√
q‖(a∗i )i>eq‖q

)
‖b‖ 2p

p−2

+
(
‖(a∗i )i≤eq‖ϕr + q1/r‖(a∗i )i>eq‖q

)
‖b‖∞, r ≤ p∗ < 2 ≤ q,

‖a‖∞
(
‖(b∗j )j≤ep∗‖ϕr + (p∗)1/r‖(b∗j )j>ep∗ ‖p∗

)
+
(
‖(a∗i )i≤eq‖ϕr + q1/r‖(a∗i )i>eq‖q

)
‖b‖∞, 2 ≤ p∗, q.

Corollary 3.4. Suppose that r ∈ [1, 2], a ∈ Rm, b ∈ Rn, and (Xi,j)i≤m,j≤n is a random
matrix with independent ψr entries with constant σ such that E|Xij | ≥ γ. Then

γ(D1 +D2) . E
∥∥(aibjXi,j)i≤m,j≤n

∥∥
`np→`mq

. σ
(
q1/rD1 + (p∗)1/rD2

)
. (3.2)

Moreover, if (Xi,j)i≤m,j≤n is an isotropic log-concave unconditional random matrix, then
two-sided estimate (3.2) holds with r = σ = γ = 1.

Remark 3.5. In the range p ≤ 2 ≤ q we have

D1 = max
j≤n
‖(ai,j)mi=1‖q and D2 = max

i≤m
‖(ai,j)nj=1‖p∗

(see [3, Lemma 2.1]). Therefore, Corollary 3.4 in the setting of isotropic log-concave
unconditional matrices with a tensor structure provides a bound of a better order than
the one obtained in [31], where additional logarithmic terms appear. On the other hand,
[31, Theorem 1.1] gives upper bounds also in the non-tensor structured case, so it cannot
be recovered from Corollary 3.4.

Proof of Corollary 3.4. The lower bound follows by the proof of [3, Proposition 5.1]
(which in fact shows that the assertion of [3, Proposition 5.1] holds for unconditional
random matrices whose entries satisfy E|Xij | ≥ c). To derive the upper bound we proceed
similarly as in the proof of Corollary 3.2 using Theorem 3.3 (instead of Theorem 3.1) and
then apply Lemma 2.1 – or inequality (1.2) in the log-concave case.

Corollary 3.4 suggests, that in a non-tensor case it makes sense to pose the following
counterpart of Conjecture 1.4.
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Conjecture 3.6. Assume that r ∈ [1, 2], (ai,j)i≤m,j≤n is a deterministicm×n matrix, and
(Xi,j)i≤m,j≤n are iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2]. Let

D3,r =


Emaxi≤m,j≤n |ai,jXi,j | if p ≤ 2 ≤ q,
maxj≤n b

∗
j ln1/r(j + 1) if p ≤ q ≤ 2,

maxi≤m d
∗
i ln1/r(i+ 1) if 2 ≤ p ≤ q,

0 if q < p.

Is it true that
E‖(ai,jXi,j)i,j : `np → `mq ‖ ∼p,q D1 +D2 +D3,r ?

Remark 3.7. Using similar methods as in the proofs of [3, Propositions 1.8 and 1.10],
one may show that Conjecture 3.6 holds whenever p ∈ {1,∞} or q ∈ {1,∞}. Moreover,
it follows by [27, Theorem 4.4] and a counterpart of [3, equation (1.11)] for iid Weibull
r.v.’s that Conjecture 3.6 holds in the case p = 2 = q.

Now we provide the following lemma yielding the equivalence between (1.6) and the
assertion of Corollary 1.7.

Lemma 3.8. Let X1, X2, . . . , Xk be iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2]

and let ρ1, ρ2 ∈ [1,∞). Then

sup
t∈Bkρ1

∥∥∥ k∑
i=1

tiXi

∥∥∥
ρ2
∼


ρ
1/r
2 , 1 ≤ ρ1 ≤ 2,

ρ
1/r
2 +

√
ρ2k

1/2−1/ρ1 , 2 ≤ ρ1 ≤ r∗,
ρ
1/r
2 k1/r

∗−1/ρ1 +
√
ρ2k

1/2−1/ρ1 , ρ1 ≥ r∗

∼ ρ1/r2 k

(
1
ρ∗1
− 1
r

)
∨0

+
√
ρ2k

(
1
ρ∗1
− 1

2

)
∨0
.

Proof. The Gluskin–Kwapień inequality [16]

∥∥∥ k∑
i=1

tiXi

∥∥∥
ρ2
∼ ρ1/r2 ‖(t∗i )i≤ρ2‖r∗ + ρ

1/2
2 ‖(t∗i )i>ρ2‖2 (3.3)

easily implies that ∥∥∥ k∑
i=1

tiXi

∥∥∥
ρ2
∼ ρ1/r2 ‖t‖r∗ + ρ

1/2
2 ‖t‖2. (3.4)

Indeed, we have

ρ
1/2
2

∥∥(t∗i )i≤ρ2
∥∥
2
≤ ρ1/22

∥∥(t∗i )i≤ρ2
∥∥
r∗
ρ
−1/r∗+1/2
2 = ρ

1/r
2

∥∥(t∗i )i≤ρ2
∥∥
r∗

and, by the inequality of arithmetic and geometric means

ρ
1/r
2 ‖(t∗i )i>ρ2‖r∗ ≤ ρ

1/r
2

∥∥(t∗i )i>ρ2
∥∥2/r∗
2

∥∥(t∗i )i>ρ2
∥∥1−2/r∗
∞

≤ ρ1/r2

∥∥(t∗i )i>ρ2
∥∥2/r∗
2

∥∥(t∗i )i≤ρ2
∥∥1−2/r∗
r∗

ρ
−1/r∗(1−2/r∗)
2

=
(
ρ
1/2
2

∥∥(t∗i )i>ρ2
∥∥
2

)2/r∗(
ρ
1/r
2

∥∥(t∗i )i≤ρ2
∥∥
r∗

)1−2/r∗
≤ ρ1/22

∥∥(t∗i )i>ρ2
∥∥
2

+ ρ
1/r
2

∥∥(t∗i )i≤ρ2
∥∥
r∗
,

so (3.3) implies (3.4).
Therefore, in order to prove the assertion it is enough to observe that

sup
t∈Bkρ1

‖t‖ρ =

{
1, ρ1 ≤ ρ,
k1/ρ−1/ρ1 , ρ1 ≥ ρ.
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Before proving Theorems 3.1 and 3.3 we need to formulate several technical results.
Hölder’s inequality yields the following simple lemma.

Lemma 3.9. Let 1 ≤ ρ1, ρ2 ≤ ∞ and c = (ci) ∈ Rk. Then

sup
t∈Bkρ1

‖(citi)‖ρ2 =


‖c‖∞, ρ1 ≤ ρ2,
‖c‖ρ1ρ2/(ρ1−ρ2), ρ2 < ρ1 <∞,
‖c‖ρ2 , ρ1 =∞.

The next result is a two-sided bound for the `ρ-norms of a weighted sequence of
independent Weibull r.v.’s. Much more general two-sided estimates for the Orlicz norms
of weighted vectors with iid coordinates were obtained in [17]. However, the formula
stated therein is quite involved and not easy to decrypt in the case of `ρ-norms. Therefore,
we give an alternative proof in our special setting, providing a form of the two-sided
estimate which is more handy for the purpose of proving Theorems 3.1 and 3.3.

Proposition 3.10. Let (Xi)i≤k be iid symmetric Weibull r.v.’s with parameter r ∈ [1, 2].
Then for every 1 ≤ ρ ≤ ∞ and every sequence c = (ci)

k
i=1 we have

E
∥∥(ciXi)

k
i=1

∥∥
ρ
∼ ‖(c∗i )i≤eρ‖ϕr + ρ1/r‖(c∗i )i>eρ‖ρ, (3.5)

where ϕr(x) = exp(2− 2x−r) and (c∗i )i≤k is the nonincreasing rearrangement of (|ci|)i≤k.
Remark 3.11. For ρ ≤ 2 we have E‖(ciXi)‖ρ ∼ ‖c‖ρ. It is not hard to deduce this
from (3.5). Alternatively, one may use the Khintchine–Kahane-type inequality
E‖(ciXi)‖ρ ∼ (E‖(ciXi)‖ρρ)1/ρ.

Proof of Proposition 3.10. First we show that for every 1 ≤ l ≤ k,

E
∥∥(ciXi)i≤l

∥∥
∞ ∼ ‖(ci)i≤l‖ϕr . (3.6)

Let t = 21/r‖(ci)i≤l‖ϕr . Then

l∑
i=1

P(|ciXi| ≥ t) =

l∑
i=1

e−2ϕr
(
21/r|ci|/t

)
= e−2.

This and the independence of Xi’s imply

E
∥∥(ciXi)

l
i=1

∥∥
∞ ≥ tP(max

i≤l
|ciXi| ≥ t) & t.

Moreover, for u ≥ 1,

P(max
i≤l
|ciXi| ≥ ut) ≤

l∑
i=1

P(|ciXi| ≥ ut) =

l∑
i=1

e−2ϕr
(
21/r|ci|/(tu)

)
≤

l∑
i=1

e−2u
r

ϕr
(
21/r|ci|/t

)
= e−2u

r

,

where the second inequality follows since (xu)r ≥ xr + ur − 1 for x, u ≥ 1. Thus,
integration by parts yields E‖(ciXi)i≤l‖∞ . t and (3.6) follows.

To establish (3.5) for ρ ∈ [1,∞) we may and will assume that c1 ≥ c2 ≥ . . . ≥ ck ≥ 0.
Then c∗k = ck.

We have by (3.6) applied with l = beρc ∧ k,

E‖(ciXi)i≤eρ‖ρ ∼ E‖(ciXi)i≤eρ‖∞ ∼ ‖(ci)i≤eρ‖ϕr .
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Moreover,

E‖(ciXi)i>eρ‖ρ ≤
(
E‖(ciXi)i>eρ‖ρρ

)1/ρ
= ‖X1‖ρ‖(ci)i>eρ‖ρ ∼ ρ1/r‖(ci)i>eρ‖ρ.

Therefore, the upper bound in (3.5) easily follows.
Now we will show the lower bound. By (3.6) we have

E‖(ciXi)
k
i=1‖ρ ≥ E‖(ciXi)i≤eρ‖∞ ∼ ‖(ci)i≤eρ‖ϕr , (3.7)

so it is enough to show that

E‖(ciXi)
k
i=1‖ρ & ρ1/r‖(ci)i>eρ‖ρ. (3.8)

Observe that

E‖(ciXi)
k
i=1‖ρ = E‖(ci|Xi|)ki=1‖ρ ≥ ‖(ciE|Xi|)ki=1‖ρ = E|X1|‖c‖ρ & ‖c‖ρ.

In particular, (3.8) holds for ρ ≤ 2.
Let C1 be a suitably chosen constant (to be fixed later). In the case when the inequality

ρ1/r‖(ci)i>eρ‖ρ ≤ C1‖(ci)i≤eρ‖ϕr holds, (3.7) yields (3.8). Thus, we may assume that ρ > 2

and ρ1/r‖(ci)i>eρ‖ρ > C1‖(ci)i≤eρ‖ϕr .
The variables Xi have log-concave tails, hence [19, Theorem 1] yields

E‖(ciXi)i>eρ‖ρ ≥
1

C

(
E‖(ciXi)i>eρ‖ρρ

)1/ρ − sup
t∈Bk

ρ∗

∥∥∥∥∑
i>eρ

ticiXi

∥∥∥∥
ρ

.

We have (
E‖(ciXi)i>eρ‖ρρ

)1/ρ ∼ ρ1/r‖(ci)i>eρ‖ρ.
Inequality (3.4) and Lemma 3.9 (applied with ρ1 = ρ∗ ≤ 2 and ρ2 ∈ {2, r∗}) yield

sup
t∈Bn

ρ∗

∥∥∥∥∑
i>eρ

ticiXi

∥∥∥∥
ρ

. (ρ1/r + ρ1/2) max
i>eρ
|ci| ≤ 2ρ1/rcdeρe ≤ 2ρ1/r‖(ci)i≤eρ‖ϕrϕ−1r

( 1

beρc

)
. ‖(ci)i≤eρ‖ϕr .

Therefore,

E‖(ciXi)‖ρ ≥
1

C2
ρ1/r‖(ci)i>eρ‖ρ − C3‖(ci)i≤eρ‖ϕr ≥

( 1

C2
− C3

C1

)
ρ1/r‖(ci)i>eρ‖ρ.

So to get (3.8) and conclude the proof it is enough to choose C1 = 2C2C3.

We shall also use the following lemma which is standard, but we prove it for the sake
of completeness.

Lemma 3.12. Let (Xi)
k
i=1 be iid Weibull r.v.’s with parameter 2. Then for any norm ‖ · ‖

on Rk we have
E‖(Xi)

k
i=1‖ ∼ E‖(gi)ki=1‖.

Moreover, if (Yi)
k
i=1 are iid Weibull r.v.’s with parameter r ∈ [1, 2], then for any norm ‖ · ‖

on Rk we have
E‖(Yi)ki=1‖ & E‖(gi)ki=1‖. (3.9)

Proof. We have P(|gi| ≥ t) ≤ e−t
2/2 = P(|

√
2Xi| ≥ t). Thus we may find such a represen-

tation of Xi’s and gi’s that |gi| ≤ |
√

2Xi| a.s. Let (εi)
k
i=1 be a sequence of iid symmetric ±1

r.v.’s (Rademachers) independent of (Xi)
k
i=1 and (gi)

k
i=1. Then the contraction principle

implies
E‖(gi)ki=1‖ = E‖(εi|gi|)ki=1‖ ≤ E‖(εi|

√
2Xi|)ki=1‖ =

√
2E‖(Xi)

k
i=1‖.
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To justify the opposite inequality observe that there exists c > 0 (one may take
c = 1/

√
2) such that for all t ≥ 0, P(|gi| ≥ t) ≥ ce−t

2

and proceed similarly as in the proof
of Lemma 2.1.

Using the inequality e−t
2/2 ≤ Ce−tr/2 for t ≥ 0 (one may take C =

√
e) and proceeding

in a similar way as above we may prove (3.9).

Proposition 3.10, Remark 3.11 and Lemma 3.12 yield the following bound for `ρ-norms
of a Gaussian sequence.

Corollary 3.13. For every 1 ≤ ρ ≤ ∞ and every sequence c = (ci)i≤k we have

E
∥∥(cigi)

k
i=1

∥∥
ρ
∼ ‖(c∗i )i≤eρ‖ϕ2

+
√
ρ‖(c∗i )i>eρ‖ρ.

In particular, for ρ ≤ 2 we have

E
∥∥(cigi)

k
i=1

∥∥
ρ
∼ ‖c‖ρ.

Remark 3.14. In the case ci = 1 Corollary 3.13 yields the well known bound

E
∥∥(gi)

k
i=1

∥∥
ρ
∼

{
ρ1/2k1/ρ, 1 ≤ ρ ≤ Log k,

(Log k)1/2, ρ ≥ Log k
∼ (ρ ∧ Log k)1/2k1/ρ.

Proof of Theorem 3.1. Chevet’s inequality (1.1), appplied with S = {(aisi) : s ∈ Bmq∗} and
T = {(bjtj) : t ∈ Bnp }, yields

E
∥∥(aibjgi,j)i≤m,j≤n

∥∥
`np→`mq

∼ sup
s∈Bm

q∗

‖(aisi)‖2E‖(bjgj)‖p∗ + sup
t∈Bnp

‖(bjtj)‖2E‖(aigi)‖q.

Lemma 3.9 and Corollary 3.13 yield the assertion.

Proof of Theorem 3.3. Theorem 1.1, appplied with S = {(aisi)mi=1 : s ∈ Bmq∗} and T =

{(bjtj)nj=1 : t ∈ Bnp }, yields

E
∥∥(aibjXi,j)i≤m,j≤n

∥∥
`np→`mq

∼E
∥∥(aibjgi,j)i≤m,j≤n

∥∥
`np→`mq

+ sup
s∈Bm

q∗

‖(aisi)‖r∗E‖(bjXj)‖p∗

+ sup
t∈Bnp

‖(bjtj)‖r∗E‖(aiXi)‖q.

To get the assertion we use Theorem 3.1, Lemma 3.9, Proposition 3.10, and Remark 3.11
together with the following observations:

• for q < r ≤ 2 we have ‖a‖2q∗/(q∗−2) ≥ ‖a‖r∗q∗/(q∗−r∗), and for p∗ < r ≤ 2 we have
‖b‖2p/(p−2) ≥ ‖b‖r∗p/(p−r∗),

• E‖(aiXi)
m
i=1‖q & E‖(aigi)mi=1‖q and E‖(bjXj)

n
j=1‖p∗ & E‖(bjgj)nj=1‖p∗ , which follows

by inequality (3.9).

4 Operator norms of submatrices

In this section we prove Theorem 1.5 about the norms of submatrices. To prove it we
shall use Theorem 1.1 and Corollary 1.2. Thus, we need to estimate

E sup
|I|=k

(∑
i∈I
|Xi|q

)1/q
= E

( k∑
i=1

(X∗i )q
)1/q

,

where (X∗1 , X
∗
2 , . . . , X

∗
m) denotes the non-increasing rearrangement of (|X1|, . . . , |Xm|).

This is done in the next two technical lemmas.
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Lemma 4.1. Let X1, . . . , Xm be iid symmetric Weibull r.v.’s with shape parameter
r ∈ [1, 2]. Then for every q ≥ 1 and 1 ≤ k ≤ m we have

(
E

k∑
i=1

(X∗i )q
)1/q

∼ k1/q
(

Log
(m
k

)
∨ q
)1/r

.

Proof. By, say, [23, Theorem 3.2], we get

E

k∑
i=1

(X∗i )q ∼ kt∗, where t∗ := inf
{
t > 0: E|X1|qI{|X1|q>t} ≤ t

k

m

}
.

Let t1 := (2q + ln(mk ))q/r. Then

E|X1|qI{|X1|q>t1} ≤
∞∑
l=0

e(l+1)qt1P(|X1| > elt
1/q
1 ) = t1

∞∑
l=0

e(l+1)qe−e
lrt

r/q
1

≤ t1eq
∞∑
l=0

elqe−(1+lr)(2q+ln(mk )) ≤ t1e−q
k

m

∞∑
l=0

e−(2r−1)ql < t1
k

m
.

Thus, t1/q∗ ≤ t1/q1 ∼ (Log(mk ) ∨ q)1/r.
Let t2 := logq/r(m/k) and t3 = 1

2E|X1|q = 1
2Γ( qr + 1). We have

E|X1|qI{|X1|q>t2} > t2P(|X1| > t
1/q
2 ) = t2e

−tr/q2 = t2
k

m
,

and

E|X1|qI{|X1|q>t3} = E|X1|q − E|X1|qI{|X1|q≤t3} >
1

2
E|X1|q ≥ t3

k

m
.

Therefore, t1/q∗ ≥ (t2 ∨ t3)1/q ∼ (Log(mk ) ∨ q)1/r.

Lemma 4.2. Let X1, . . . , Xm be iid symmetric Weibull r.v.’s with shape parameter
r ∈ [1, 2]. Then for q ≥ 1, 1 ≤ k ≤ m we have

E
( k∑
i=1

(X∗i )q
)1/q

∼

{
Log1/rm q ≥ Log k

k1/q
(
Log

(
m
k

)
∨ q
)1/r

q < Log k
∼ k1/q

(
Log

(m
k

)
∨ (q ∧ Log k)

)1/r
.

Proof. If q ≥ Log k, then

E
( k∑
i=1

(X∗i )q
)1/q

∼ Emax
i≤m
|Xi| ∼ Log1/rm,

where the last (standard) bound follows e.g. by Lemma 4.1 applied with k = q = 1.
If q ∈ [1, 2] then Khinchine-Kahane-type inequality (cf., [22, Corollary 1.4]) and

Lemma 4.1 yield

E
( k∑
i=1

(X∗i )q
)1/q

∼
(
E

k∑
i=1

(X∗i )q
)1/q

∼ k1/q Log1/r
(m
k

)
.

From now on assume that 2 ≤ q ≤ Log k. By Lemma 4.1

E
( k∑
i=1

(X∗i )q
)1/q

≤
(
E

k∑
i=1

(X∗i )q
)1/q

∼ k1/q
(

Log
(m
k

)
∨ q
)1/r

.
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Variables Xi have log-concave tails, so by [19, Theorem 1],

E
( k∑
i=1

(X∗i )q
)1/q

= E sup
|I|=k

sup
s∈BI

q∗

∑
i∈I

siXi

≥ 1

C1

∥∥∥ sup
|I|=k

sup
s∈BI

q∗

∑
i∈I

siXi

∥∥∥
q
− sup
|I|=k

sup
s∈BI

q∗

∥∥∥∑
i∈I

siXi

∥∥∥
q
.

Since q∗ ≤ 2 ≤ r∗, (3.4) implies that for any I ⊂ [m] and any s ∈ BIq∗ we have,∥∥∥∑
i∈I

siXi

∥∥∥
q
. q1/r‖s‖r∗ + q1/2‖s‖2 ≤ q1/r + q1/2 ≤ 2q1/r.

This together with Lemma 4.1 yields

E
( k∑
i=1

(X∗i )q
)1/q

≥ 1

C1C2
k1/q

(
Log

(m
k

)
∨ q
)1/r
−C3q

1/r.

Thus if k ≥ (2C1C2C3)q we get E(
∑k
i=1(X∗i )q)1/q ≥ 1

2C1C2
k1/q(Log(mk ) ∨ q)1/r. Otherwise

k ≤ (2C1C2C3)q, so k1/q ∼ 1 and E(
∑k
i=1(X∗i )q)1/q ≥ (E(X∗1 )q)1/q ∼ (Logm ∨ q)1/r.

Proof of Theorem 1.5. We use Theorem 1.1 and Corollary 1.2 with

S =
⋃
I

BIq∗, T =
⋃
J

BJp ,

where BIq∗ is the unit ball in the space `Iq∗ , and the sums run over, respectively, all sets
I ⊂ [m] and J ⊂ [n] such that |I| = k and |J | = l. We only need to estimate the quantities
on the right-hand side of the two-sided bounds from Theorem 1.1 and Corollary 1.2. We
have for ρ ∈ {2, r∗},

sup
s∈S
‖s‖ρ = k(1/q−1/ρ

∗)∨0, sup
t∈T
‖t‖ρ = l(1/p

∗−1/ρ∗)∨0.

Lemmas 4.2 and 3.12 yield

E sup
s∈S

m∑
i=1

siXi = E
( k∑
i=1

(X∗i )q
)1/q

∼ k1/q
(

Log
(m
k

)
∨ (q ∧ Log k)

)1/r
,

E sup
s∈S

m∑
i=1

sigi = E
( k∑
i=1

(g∗i )q
)1/q

∼ k1/q
(

Log
(m
k

)
∨ (q ∧ Log k)

)1/2
.

Similarily,

E sup
t∈T

n∑
i=1

tiXi = E
( l∑
i=1

(X∗i )p
∗
)1/p∗

∼ l1/p
∗
(

Log
(n
l

)
∨ (p∗ ∧ Log l)

)1/r
,

E sup
t∈T

n∑
i=1

tigi = E
( l∑
i=1

(g∗i )p
∗
)1/p∗

∼ l1/p
∗
(

Log
(n
l

)
∨ (p∗ ∧ Log l)

)1/2
.
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