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Abstract

This dissertation is devoted to estimates of moments of norms of random vectors.
It consists of four main results.

In the first part we show that for p ≥ 1 and r ≥ 1 the p-th moment of the
`r-norm of a log-concave random vector is comparable to the sum of the first
moment and the weak p-th moment up to a constant proportional to r. This
extends the previous result of Paouris concerning Euclidean norms.

The second main result states that for p ≥ 1, the p-th moments of suprema of
linear combinations of independent centered random variables are comparable with
the sum of the first moment and the weak p-th moment provided that the 2q-th
and q-th integral moments of these variables are comparable for all q ≥ 2. The
latter condition turns out to be necessary in the i.i.d. case.

In the next part we show that every symmetric random variable with log-
concave tails satisfies the convex infimum convolution inequality with an optimal
cost function (up to scaling). As a result, we obtain nearly optimal comparison
of weak and strong moments for symmetric random vectors having independent
coordinates with log-concave tails.

The last main result is an estimate of E‖X‖`p′→`q for p, q ≥ 2, where X is a
random matrix, which entries are of the form aijYij, where Y has i.i.d. isotropic
log-concave rows. This generalises the result of Guédon, Hinrichs, Litvak, and
Prochno for Gaussian matrices with independent entries. Our estimate is optimal
up to logarithmic factors.

2010 Mathematics Subject Classification. Primary: 60E15. Secondary:
26A51, 26B25.

Keywords and phrases: log-concave vectors, comparison of weak and strong
moments, infimum convolution, norms of random matrices.



Streszczenie

Ta rozprawa poświęcona jest oszacowaniom momentów norm wektorów losowych.
Składa się ona z czterech głównych wyników.

W pierwszej części pokazujemy, że dla p ≥ 1 i r ≥ 1, p-ty moment normy `r
log-wklęsłego wektora losowego jest porównywalny z sumą pierwszego momentu
i słabego p-tego momentu, z dokładnością do stałej proporcjonalnej do r. Jest to
uogólnienie uzyskanego wcześniej przez Paourisa oszacowania dla norm euklideso-
wych.

Drugi główny wynik orzeka, że dla p ≥ 1, p-ty moment supremów liniowych
kombinacji niezależnych scentrowanych zmiennych losowych jest porównywalny
z sumą pierwszego momentu i słabego p-tego momentu, o ile 2q-te i q-te momenty
całkowe tych zmiennych są porównywalne dla każdego q ≥ 2. Ten drugi warunek
okazuje się być konieczny w przypadku wektorów o współrzędnych niezależnych o
jednakowych rozkładach.

W kolejnej części wykazujemy, że każda symetryczna zmienna losowa o log-
wklęsłych ogonach spełnia wypukłą nierówność splotu infimum z optymalną (z do-
kładnością do skalowania) funkcją kosztu. Jako wniosek otrzymujemy niemal
optymalne porównywanie słabych i silnych momentów dla symetrycznych wektorów
losowych o niezależnych współrzędnych o log-wklęsłych ogonach.

Ostatnim głównym wynikiem jest oszacowanie E‖X‖`p′→`q dla p, q ≥ 2 i macie-
rzy losowej X, której wyrazy mają postać aijYij, gdzie Y jest macierzą o niezależ-
nych wierszach o tym samym izotropowym i log-wklęsłym rozkładzie. Uogólnia to
wynik Guédona, Hinrichsa, Litvaka i Prochny dla macierzy gaussowskich o nieza-
leżnych wyrazach. Nasze oszacowanie jest optymalne z dokładnością do czynników
logarytmicznych z wymiaru.

Klasyfikacja tematyczna. 60E15; 26A51, 26B25.
Słowa kluczowe: wektory log-wklęsłe, porównywanie słabych i silnych mo-

mentów, splot infimum, normy macierzy losowych.
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Chapter 1

Introduction

This dissertation is devoted to estimates of norms of some natural classes of random
vectors in Rn. Dimension-free bounds are of most interest, since they may be
generalised to infinite-dimensional spaces. However, if the dependence on the
dimension is mild (especially if an estimate depends only on the logarithm of
the dimension), a bound is useful too and gives us a better understanding of the
behaviour of the class of random vectors we investigate. Let us describe three types
of estimates we are dealing with in this thesis.

In convex geometry the class of log-concave vectors is often investigated. One
of the classical theorems concerning this class is the Paouris inequality from [29],
which gives estimates of the standard Euclidean norm of any isotropic log-concave
random vector, and in a version from [1] also of arbitrary log-concave vector (or,
equivalently, it provides estimates for any Euclidean norm). It is natural to ask if
this result can be generalised to other norms or any wider class of vectors. In the
first part of this dissertation we partially answer this question.

Our first main result says that an analogue of the Paouris inequality holds for
the `r-norm of any log-concave vector, with a constant depending linearly on r. This
comes from the joint work with Rafał Latała [22], which is presented in Sections
2.1.1 and 2.2. If the constant in such an estimate depended linearly on rγ (instead
of r), this would imply a non-asymptotic bound for any norm, with a constant
Cnγ (an estimate with the constant C

√
n may be gained easily). Moreover, if the

dependence of r was lost, then the bound with a universal constant would hold.
However, our bound with a constant Cr yields strong corollaries too (see Section
2.1.1) – among others we use it in Chapter 4 to obtain almost optimal estimates
for log-concave random matrices.

The second main result comes from another joint work with Rafał Latała [23]
and is presented in details and proved in Sections 2.1.2 and 2.3. We characterise
all centred random variables X1, for which every vector X = (X1, . . . , Xn) with
i.i.d. coordinates satisfies the generalisation of Paouris inequality for any norm in
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Rn. The equivalent condition may be expressed easily in the language of growth of
integral moments of Xi. Moreover, we provide the same estimate for any X with
independent coordinates satisfying the same moments growth condition.

Another important inequality in high dimensional probability is the infimum
convolution inequality and the convex infimum convolution inequality (convex ICI
for short). They appear naturally in the research connected to the concentration
of measure and the theory of optimal transport. Their concentration counterparts
gives some estimates for norms of vectors, as may be seen in the second part of this
dissertation in the case of convex ICI with optimal cost function, which implies
a strong enough concentration to provide a Paouris inequality-like estimate. Our
third main result, based on the joint work with Michał Strzelecki and Tomasz
Tkocz [35], is that vectors with independent coordinates with log-concave tails
satisfy the convex ICI with the optimal cost function (i.e. in a sense the optimal
possible convex ICI). The content of [35] may be found in Chapter 3.

A special type of norms are operator norms of matrices (an m× n-dimensional
vector may be treated as an m× n matrix). We are interested in estimating the
expected value of the operator norm from `np to `mq of certain random matrices.
Most results concerning this quantity deal with the spectral norm only (i.e. the
operator norm from `n2 to `m2 ). Moreover, in the vast majority of known results one
has to assume the independence of entries of the matrix. Chapter 4, which is part
of a work in progress [34] by the author, provides an estimate, which is optimal
up to logarithmic factors and is valid for weighted matrices with i.i.d. isotropic
log-concave rows. In particular, we do not require the entries of the matrix to be
independent. To obtain the results from Chapter 4 we use theorems from the first
three chapters of this thesis.

1.1 Notation

By C we denote universal constants. If a constant C depends on a parameter α, we
express it as C(α). The value of C,C(α) may differ at each occurrence. Whenever
we want to fix the value of an absolute constant we use letters C1, C2, . . .. We may
always assume that Ci ≥ 1.

For a random variable X we denote by ‖X‖p the p-th integral norm of X, i.e.
the quantity (E|X|p)1/p. For a vector x ∈ Rn (in particular for a random vector
X) and r ≥ 1, by ‖x‖r we denote the `r-norm of x, i.e. ‖x‖r := (

∑n
i=1 |xi|r)1/r.

For r = 2 we shall also write | · | instead of ‖ · ‖2. It will be always clear from the
context, what ‖X‖q means for a random object X, so the double meaning of ‖ · ‖q
will not lead to any misunderstanding. For an m×n matrix A by ‖A‖p,q we denote
its norm from `np to `mq .

For a given norm ‖ · ‖, B‖·‖ denotes the unit ball in this norm and ‖ · ‖∗ denotes
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the dual norm of ‖ · ‖. Recall that the space dual to (Rn, ‖ · ‖) is isomorphic to
(Rn, ‖·‖∗) (we may identify a functional ϕ ∈ (Rn, ‖·‖)∗ with a vector y ∈ (Rn, ‖·‖∗)
via the scalar product, such that for any x ∈ Rn we have ϕ(y) = 〈y, x〉).

For p ∈ [1,∞], Bn
p denotes the (closed) unit ball in the norm ‖ · ‖p in Rn. We

will usually denote the Hölder conjugate of p by p′ (with the convention ∞′ = 1
and 1′ = ∞), i.e. p′ satisfies 1 = 1

p
+ 1

p′
. If E is a normed linear space, then by

‖ · ‖E we denote the norm on E, and by BE we denote the closed unit ball in this
norm.

By |I| we denote the cardinality of a finite set I. For an n-dimensional random
vector Z and a ∈ Rn we write aZ for the vector (aiZi)i. Observe that E‖aZ‖2

2 =∑
i a

2
iEZ2

i .
The symbol ∼ denotes either equal distributions of two random variables or

the comparability of two positive quantities (i.e. a ∼ b if there exist an absolute
constant C such that aC−1 ≤ b ≤ Ca).

For a given sequence (xi)
n
i=1 of real numbers we denote by (x∗i )

n
i=1 the non-

increasing rearrangement of the sequence (|xi|)ni=1.

1.2 Preliminaries
We say that K ⊂ Rn is a convex body if K is convex, compact and has nonempty
interior.

A measure µ on a locally convex linear space F is called logarithmically concave
(log-concave in short) if for any compact nonempty sets K,L ⊂ F and λ ∈ [0, 1],

µ(λK + (1− λ)L) ≥ µ(K)λµ(L)1−λ.

A random vector with values in F is called log-concave if its distribution is log-
arithmically concave. The class of log-concave measures is closed under linear
transformations, convolutions and weak limits. By the result of Borell [5] a d-
dimensional vector with a full dimensional support is log-concave if and only if
it has a log-concave density, i.e. a density of the form e−h, where h is a convex
function with values in (−∞,∞].

We say that a vector X in Rn is isotropic if CovX = Id (recall that CovX is
the n× n matrix with entries Cov(Xi, Xj)). If X is a log-concave random vector
in Rn with full dimensional support, then there exists a linear transformation T
such that Cov(TX) = Id – then we say that TX is an isotropic position of X.

The class of log-concave measures is a natural generalization of uniform measures
over convex bodies (these measures are log-concave, since they have log-concave
densities). Moreover, any log-concave measure can be obtained as a weak limit
of projections of uniform measures over (higher dimensional) convex bodies (see
e.g. [2]). On the other hand, Ball (in [3]) introduced bodies Kp(f) associated
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with a measurable function f such that f(0) > 0 (we skip the definition and the
details, since we will not need them in further chapters). For a convex body K we
know that Kp(1K) = K for all p > 0. Moreover for a log-concave function f the
body Kp(f) is convex and Kn+2(f) has the isotropic constant comparable with the
isotropic constant of f (i.e. the quantity Lf := (f(EX))1/n(det Cov(X))1/2n, where
X has the density f). In particular it suffices to estimate the isotropic constant for
convex bodies in order to investigate the isotropic constant conjecture1. Other links
between log-concave measures and convex bodies are described in [2], and other
results and conjectures about log-concave measures are discussed in the recently
published monograph [6].

We say that a random vector X is unconditional if it has the same distribution
as ηX for every η ∈ {−1, 1}n or equivalently, if X has the same distribution as
εX, where εi are i.i.d. symmetric Bernoulli random variables (i.e. P(εi = 1) =
P(εi = −1) = 1

2
). Similarly we say that a subset T of Rn is unconditional, if it is

symmetric with respect to all coordinates axes, i.e. t ∈ T if and only if ηt ∈ T for
every η ∈ {−1, 1}n. We also say that a norm ‖ · ‖ on Rn is unconditional, if its
unit ball is unconditional or equivalently if ‖x‖ = ‖ηx‖ for every x ∈ Rn and every
η ∈ {−1, 1}n.

Note that the unconditionality is a much stronger property than the isotropicity
in a sense that there may not exist any linear transformation of a given random
vector X that makes it unconditional, even if X has a full dimensional support.

We will also consider random variables with log-concave tails, i.e. variables X
for which the function

t 7→ N(t) := − lnP(|X| ≥ t), t ≥ 0,

is convex. Note that the definition of log-concavity implies that log-concave variables
have log-concave tails2.

Let us recall a few basic facts about log-concave vectors and vectors with
log-concave tails.
Definition 1.1. We say that a random variable Z is α-regular (for α ≥ 1) if

‖Z‖q ≤ α
q

p
‖Z‖p for all q ≥ p ≥ 2.

Then we also say that the moments of Z grow α-regularly.
Remark 1.2. If X is a symmetric random variable with log-concave tails, then its
moments grow 1-regularly (this classical fact follows for instance from Proposition
5.5 from [13] and the proof of Proposition 3.8 from [26]).

1The isotropic constant conjecture states that the isotropic constant of any log-concave isotropic
vector is bounded by an absolute constant.

2Moreover, the class of variables with log-concave tails is strictly larger than the class of
log-concave random variables.
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The above remark implies that a log-concave symmetric random variable Z is
1-regular. Thus if Z is a log-concave centred (i.e. EZ = 0) random variable and Z ′
is its independent copy, then for q ≥ p ≥ 2 we have

‖Z‖q = ‖Z − EZ ′‖q ≤ ‖Z − Z ′‖q ≤
q

p
‖Z − Z ′‖p ≤ 2

q

p
‖Z‖p

so Z is 2-regular. Moreover, if Z is an arbitrary log-concave random variable, we
have

‖Z‖q ≤ ‖Z − EZ ′‖q + E|Z ′| ≤ (q + 1)‖Z‖2,

so we get by Chebyshev’s inequality P(|Z| ≥ e(p+ 1)‖Z‖2) ≤ e−p for p ≥ 2. Thus

P(‖Z‖ ≥ t) ≤ exp
(

2− t

2e‖Z‖2

)
for t > 0. (1.1)

It is easy to see that the definition of log-concavity implies that if an n-
dimensional symmetric random vector X is log-concave, then for any t ∈ Rn the
variable 〈t,X〉 is also log-concave and symmetric, so it is also 1− regular.

Moreover, if f : Rn → R is a seminorm,

(Ef(Z)p)1/p ≤ C1
p

q
(Ef(Z)q)1/q (1.2)

for p ≥ q ≥ 1 (see [6, Theorem 2.4.6]).
If K is a convex body in Rn, X is a log-concave vector in Rn such that

P(X ∈ K) > 0, and A := {X ∈ K} then the vector Y defined by

P(Y ∈ B) =
P(A ∩ {X ∈ B})

P(A)
=

P(X ∈ B ∩K)

P(X ∈ K)
,

is log-concave. It follows immediately by the definition of log-concavity. We say
that Y is distributed as X conditioned on K.

We will also need the inequality (n
k
)k ≤

(
n
k

)
≤ ( en

k
)k, valid for 1 ≤ k ≤ n.

For a non-decreasing function g : R → R we define its generalized inverse
g−1 : R → (−∞,∞] by a formula g−1(y) := inf{x : g(x) ≥ y}. Note that if g is
continuous, then g(g−1(y)) = y for all y ∈ g(R).

Let us make a remark which will be used multiple times in next chapters.
Remark 1.3. Let us justify that for any nonempty set T and any random vector X
we have

lim
p→∞

sup
t∈T
‖〈t,X〉‖p = sup

t∈T
ess sup |〈t,X〉|. (1.3)

If moreover we can control the growth of integral moments of 〈t,X〉 (for example
if ‖〈t,X〉‖2p ≤ α‖〈t,X〉‖p for every p ≥ p0 and t ∈ T ), then p 7→ supt∈T ‖〈t,X〉‖p
is continuous for p ≥ p0.

7



Indeed, by Hölder inequality we get

E|〈t,X〉|p+ε ≤
(
E|〈t,X〉|p

) p−ε
p
(
E|〈t,X〉|2p

) ε
p ≤ α2ε‖〈t,X〉‖p+εp ,

so supt∈T ‖〈t,X〉‖p+ε ≤ α2ε/p supt∈T ‖〈t,X〉‖p ≤ α2ε/p supt∈T ‖〈t,X〉‖p+ε for p ≥
p0.

In order to prove (1.3) recall that limp→∞ ‖〈t,X〉‖p = ess sup |〈t,X〉|. In the
case supt∈T ess sup |〈t,X〉| =: A < ∞ take t(i) ∈ T such that ess sup |〈t(i), X〉| ≥
A − 1/i and then pi such that ‖〈t(i), X〉‖pi ≥ ess sup |〈t(i), X〉| − 1/i. Then A ≥
supt∈T ‖〈t,X〉‖pi ≥ A− 2/i. In the case when A =∞ we proceed similarilly.
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Chapter 2

Comparison of weak and strong
moments

One of the fundamental properties of log-concave vectors is the Paouris inequality
[29] (see also [1] for a shorter proof). It states that for a log-concave vector X in
Rn,

(E‖X‖p2)1/p ≤ C2

(
(E‖X‖2

2)1/2 + σX(p)
)

for p ≥ 1, (2.1)

where

σX(p) := sup
‖t‖2≤1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

is the Euclidean weak p−th moment of X. We call the quantity (E‖X‖p2)1/p the
p-th strong moment of X (with respect to the Euclidean norm).

It is natural to ask whether inequality (2.1) may be generalized to non-Euclidean
norms. In [19] Latała formulated and discussed the following conjecture.

Conjecture 2.1. There exists a universal constant C such that for any log-concave
vector X with values in a finite dimensional normed space (F, ‖ ‖),

(E‖X‖p)1/p ≤ C
(
E‖X‖+ sup

ϕ∈F ∗,‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
)

for p ≥ 1. (2.2)

Note that a reverse inequality with the constant 1
2
always holds, since by the

Jensen inequality

(E‖X‖p)1/p ≥ max
{
E‖X‖, sup

ϕ∈F ∗,‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p
}
.

Therefore we may think that the conjecture above states that weak and strong
moments of norms of log-concave vectors are comparable. For a given normed
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space (F, ‖ ‖) by a weak p-th (for p ≥ 1) moment we mean

σ‖·‖,X(p) := sup
ϕ∈F ∗,‖ϕ‖∗≤1

(
Eϕ(X)p

)1/p
.

Today we only know that Conjecture 2.1 holds in some special cases, and we
do not know any possible counterexample. In [19, Section 3] Latała proved that
for n-dimensional spaces F inequality (2.2) is true with an additional factor log n
in front of E‖X‖ if we assume additionally that X is unconditional . He also
proved there that we can skip log n if (Rn, ‖ · ‖) has nontrivial cotype q. In this
case C depends on q and the cotype constant T ∗q , and we still have to assume
that X is unconditional. Moreover, [19, Corollary 2.4] states that (2.2) holds
with a universal constant for log-concave vectors X with independent coordinates.
Of course, Conjecture 2.1 is true for norms on Rn, the unit balls of which are
ellipsoids, since the Paouris inequality (2.1) holds and the linear transformation of
a log-concave vector is a log-concave vector. This was observed in [1, Section 3] –
the authors proved the theorem without the unnceccesary assumption that X is in
the isotropic position, which appeared in the original work of Paouris.

There are two links between Conjecture 2.1 and other problems in convex and
high dimensional probability. Latała proved in [21] that for all vectors X satisfying
Sudakov Minoration Principle with constant κ the comparison of weak and strong
moments holds for every norm on Rd up to a factor ln(ed/p)/κ at E‖X‖. Moreover,
due to Latała and Wojtaszczyk (see [26]) the optimal concentration (or equivalently
the convolution inequality with optimal cost function) of the distribution of X
implies (2.2). As Strzelecki, Tkocz, and the author noticed in [35], inequality (2.2)
follows even by a weaker convex infimum convolution inequality with optimal cost
function. We postpone further details and definitions to Chapter 3.

It is also interesting to find more general assumptions than log-concavity under
which (2.2) holds in some special cases. Latała and Tkocz proved in [24, Theorem
2.3] that for vectors with independent coordinates we may indeed assume less then
the log-concavity for (2.2) to hold. This weaker assumption is the α-regularity
of growth of moments of coordinates of X1 (then the constant C depends on
α). However, in the case of dependent coordinates the α-regularity of growth of
moments of 〈t,X〉 (for all t ∈ Rn) does not imply (2.2) even for the Euclidean
norm as the example below shows.

Example 2.2. Let g be a standard Gaussian random variable and let G be a standard
n-dimensional Gaussian vector independent of g. Consider X := gG. For every
t ∈ Rn we have 〈t, G〉 ∼ |t|G1, so ‖〈t,X〉‖p = ‖g‖p · ‖〈t, G〉‖p = |t| · ‖g‖2

p ∼ p|t|.

1In the next section we will see the weaker condition sufficient and – in a sense – necessary for
the comparison of moments to hold in the case of independent coordinates.
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This means that the moments of 〈t,X〉 grow C-regularly. On the other hand(
E|X|p

)1/p
= ‖g‖p

(
E|G|p

)1/p ≥
√
n‖g‖p ∼

√
np for p ≥ 2,

and
σX(p) = sup

t∈Bn2
‖〈t, G〉‖p‖g‖p ∼ p,

hence (2.2) cannot hold forX = gG with any constant independent of the dimension
n.

In the next section we present new results related to the comparison of weak
and strong moments obtained by Latała and the author in [22] and [23]. Further
parts of this chapter contain the proofs and some additional observations.

2.1 Main results

2.1.1 Comparison of moments for `r-norms

Our first main result states that Conjecture 2.1 holds for spaces which may be
isometrically embedded in `r for some r ≥ 1. This result, as well as its consequences
comes from [22].

Theorem 2.3. Let X be a log-concave vector with values in a normed space (F, ‖ ‖)
which may be isometrically embedded in `r for some r ∈ [1,∞). Then for p ≥ 1,

(E‖X‖p)1/p ≤ Cr

(
E‖X‖+ sup

ϕ∈F ∗,‖ϕ‖∗≤1

(E|ϕ(X)|p)1/p

)
.

This theorem implies the following deviation inequality for ‖X‖.

Corollary 2.4. Let X and F be as above. Then

P(‖X‖ ≥ 2eCrtE‖X‖) ≤ exp
(
−σ−1
‖·‖,X(tE‖X‖)

)
for t ≥ 1.

We may take C as in Theorem 2.3.

Proof of Corollary 2.4. We will use Remark 1.3. In the case when tE‖X‖ ≥
sup‖u‖∗≤1 ess sup |〈u,X〉| both sides of the estimate are equal to 0. If tE‖X‖ <
sup‖u‖∗≤1 ess sup |〈u,X〉|, then take p := σ−1

‖·‖,X(tE‖X‖). By Chebyshev’s inequality
and Theorem 2.3 we obtain

P(‖X‖ ≥ 2eCrtE‖X‖) ≤ E‖X‖p

(2eCrtE‖X‖)p
≤
(

1 + t

2t

)p
e−p ≤ e−p.

11



Since log-concavity is preserved under linear transformations and, by the Hahn-
Banach theorem, any linear functional on a subspace of `r is a restriction of
a functional on the whole `r with the same norm, it is enough to prove Theorem
2.3 for F = `r. An easy approximation argument shows that we may consider finite
dimensional spaces `nr . To simplify the notation for an n-dimensional vector X and
p ≥ 1 we write

σr,X(p) := sup
‖t‖r′≤1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

.

We will prove the following equivalent version of Theorem2.3. A constant C is
the same in both theorems.

Theorem 2.5. Let X be a finite dimensional log-concave vector and r ∈ [1,∞).
Then

(E‖X‖pr)1/p ≤ Cr (E‖X‖r + σr,X(p)) for p ≥ 1.

To show the above theorem we follow the approach from [20] and establish the
following cut version of the above inequality.

Theorem 2.6. Suppose that r ∈ [1,∞) and X is a log-concave n-dimensional
random vector. Let

di := (EX2
i )1/2, d :=

(
n∑
i=1

dri

)1/r

. (2.3)

Then for p ≥ r,

E

(
n∑
i=1

|Xi|r1{|Xi|≥tdi}

)p/r

≤ (C3rσr,X(p))p for t ≥ C4r log

(
d

σr,X(p)

)
. (2.4)

Let us show how Theorem 2.6 implies Theorem 2.5.

Proof of Theorem 2.5. Since by (1.2) we have (E‖X‖pr)1/p ≤ C1pE‖X‖r, we may
assume that p ≥ r. Let di and d be as in Theorem 2.6. Then

d = ‖(EX2
i )

1/2
i ‖r ≤ 2C1‖(E|Xi|)i‖r ≤ 2C1E‖X‖r.

In particular, if d ≥ sup‖t‖∗≤1 ess sup
∣∣∑n

i=1 tiXi

∣∣, then
(E‖X‖pr)1/p =

(
E sup
‖t‖∗≤1

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ d ≤ 2C1E‖X‖r.

12



If otherwise d < sup‖t‖∗≤1 ess sup
∣∣∑n

i=1 tiXi

∣∣, set
p̃ := inf{q ≥ p : σr,X(q) ≥ d} ≥ p.

Theorem 2.6 applied with p̃ instead of p and t = 0, and Remark 1.3 yield

(E‖X‖pr)1/p ≤ (E‖X‖p̃r)1/p̃ ≤ C3rσr,X(p̃) = C3rmax{d, σr,X(p)}
≤ Cr(E‖X‖r + σr,X(p)).

Remark 2.7. Any finite dimensional space embeds isometrically in `∞, so to show
Conjecture 2.1 it is enough to establish Theorem 2.3 (with a universal constant in
place of Cr) for r =∞. Such an estimate holds for isotropic log-concave vectors
(see [21, Corollary 3.8]). However a linear image of an isotropic vector does not have
to be isotropic, so to establish the conjecture we need to consider either isotropic
vectors and an arbitrary norm or vectors with a general covariance structure and
the standard `∞-norm.
Remark 2.8. An n-dimensional space embeds isometrically in `N∞, where N ∼ en.
Moreover, in RN we have e−1‖ · ‖logN ≤ ‖ · ‖∞ ≤ ‖ · ‖logN . Therefore Theorem 2.5
implies (2.2) with C ∼ logN ∼ n. If Theorem 2.5 held with Crγ instead of Cr,
then (2.2) would hold with C ∼ nγ, what is unknown for any γ < 1

2
.

2.1.2 Comparison of moments in the independent case

Let us now present results obtained in [23]. We may look at the comparison
of moments in a slightly different way than the one presented before. For an
n-dimensional random vector X instead of taking the moments of norms of X we
may considering the moments of supt∈T

∣∣∑n
i=1 tiXi

∣∣ – if T is a unit ball of the dual
norm of ‖ · ‖, then this quantity coincides with ‖X‖. This approach will be useful
in the proof of our second main result concerning the comparison of weak and
strong moments, which generalises the aforementioned result of [24, Theorem 2.3]
for vectors with independent regular coordinates.

Theorem 2.9. Let X1, . . . , Xn be independent mean zero random variables with
finite moments such that

‖Xi‖2p ≤ α‖Xi‖p for every p ≥ 2 and i = 1, . . . , n, (2.5)

where α is a finite positive constant. Then for every p ≥ 1 and every nonempty set
T ⊂ Rn we have(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ C(α)

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
, (2.6)

where C(α) is a constant which depends only on α.
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It turns out that Theorem 2.9 may be reversed in the i.i.d. case (see the theorem
below). Therefore one cannot weaken assumption (2.5) in Theorem 2.9.

Theorem 2.10. Let X1, X2, . . . be i.i.d. random variables. Assume that there
exists a constant L such that for every p ≥ 1, every n and every nonempty set
T ⊂ Rn we have(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ L

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
. (2.7)

Then
‖X1‖2p ≤ α(L)‖X1‖p for p ≥ 2, (2.8)

where α(L) is a constant which depends only on L ≥ 1.

It will be clear from the proof of Theorem 2.10 that it suffices to assume (2.7)
for T = {±ej : j ∈ {1, . . . , n}} only, where {e1, . . . , en} is the canonical basis of
Rn.

The comparison of weak and strong moments (2.6) yields also a deviation
inequality for supt∈T |

∑n
i=1 tiXi|.

Corollary 2.11. Assume X1, X2, . . . satisfy the assumptions of Theorem 2.9. Then
for any u ≥ 0 and any nonempty set T in Rn,

P
(

sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣ ≥ C1(α)

[
u+ E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣]) ≤ C2(α) sup
t∈T

P
(∣∣∣ n∑

i=1

tiXi

∣∣∣ ≥ u

)
,

(2.9)
where constants C1(α) and C2(α) depend only on the constant α in (2.5).

Another consequence of Theorem 2.10 is the following Khintchine-Kahane type
inequality.

Corollary 2.12. Assume Xi, 1 ≤ i ≤ n satisfy the assumptions of Theorem 2.9.
Then for any p ≥ q ≥ 2 and any nonempty set T in Rn we have,(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ C(α)

(
p

q

)max{1/2,log2 α}(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣q)1/q

where a constant C(α) depends only on the constant α in (2.5).

The rest of this subsection will be dedicated to present a bunch of remarks
related to the above results.

Remark 2.13. Exponent max{1/2, log2 α} in Corollary 2.12 is optimal.
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Indeed, since ‖g‖p ∼
√
p/e as p→∞ one cannot go below 1/2 by the central

limit theorem.
To see that log2 α term cannot be improved it is enough to consider α >

√
2.

Let r = 1/ log2 α ∈ (0, 2) and let X be a symmetric random variable given
by P(|X| ≥ t) = e−t

r (with 2 > r > 0), i.e. X = |E|1/r sgn E , where E has the
symmetric exponential distribution. By Stirling’s formula Γ(x+1) = (x

e
)x
√

2πxef(x)

with f(x) ∈ (0, 1/12) for x ≥ 1, so for p ≥ 2,

‖X‖2p

‖X‖p
=

Γ
(

2p
r

+ 1
)1/(2p)

Γ
(
p
r

+ 1
)1/p

≤ 21/r

(
r

πp

)1/(4p)

e1/(24p) ≤ 21/r = α.

Moreover, ‖X‖p ∼ ( p
er

)1/r for p→∞, so the assertion of Corollary 2.12 cannot
hold with any exponent better than log2 α.

Remark 2.14. If the variables Xi are symmetric then the term E supt∈T |
∑n

i=1 tiXi|
in (2.6) may be replaced by E supt∈T

∑n
i=1 tiXi.

Proof. Let s be any point in T . Then T ⊂ T − T + s, so by the triangle inequality(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤
(
E sup
t∈T−T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

+

(
E
∣∣∣ n∑
i=1

siXi

∣∣∣p)1/p

.

Estimate (2.6) applied to the set T − T yields(
E sup
t∈T−T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ C(α)

[
E sup
t∈T−T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T−T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
.

The set T − T is symmetric, so

E sup
t∈T−T

∣∣∣ n∑
i=1

tiXi

∣∣∣ = E sup
t∈T−T

n∑
i=1

tiXi ≤ 2E sup
t∈T

n∑
i=1

tiXi,

where the last estimate follows, since (Xi)
n
i=1 and (−Xi)

n
i=1 are equally distributed.

Moreover,

sup
t∈T−T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ 2 sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

,

what finishes the proof of the remark.

Remark 2.15. If the variables Xi are not centred then (2.6) holds provided that
the assumption (2.5) is replaced by

‖Xi − EXi‖2p ≤ α‖Xi − EXi‖p for p ≥ 2 and i = 1, . . . , n.
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Proof. We have(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤
(
E sup

t∈T

∣∣∣ n∑
i=1

ti(Xi − EXi)
∣∣∣p)1/p

+ sup
t∈T

∣∣∣ n∑
i=1

tiEXi

∣∣∣.
Theorem 2.9 applied to centred variables Xi − EXi, i = 1, . . . , n, yields

(
E sup

t∈T

∣∣∣ n∑
i=1

ti(Xi − EXi)
∣∣∣p)1/p

≤ C(α)

[
E sup

t∈T

∣∣∣ n∑
i=1

ti(Xi − EXi)
∣∣∣+ sup

t∈T

(
E
∣∣∣ n∑
i=1

ti(Xi − EXi)
∣∣∣p)1/p

]
.

To conclude it is enough to observe that

E sup
t∈T

∣∣∣ n∑
i=1

ti(Xi − EXi)
∣∣∣ ≤ E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

∣∣∣ n∑
i=1

tiEXi

∣∣∣,
sup
t∈T

(
E
∣∣∣ n∑
i=1

ti(Xi − EXi)
∣∣∣p)1/p

≤ sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

+ sup
t∈T

∣∣∣ n∑
i=1

tiEXi

∣∣∣,
and

sup
t∈T

∣∣∣ n∑
i=1

tiEXi

∣∣∣ ≤ E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣.
2.2 Proof in the case of `r-norm

By (1.2) for any log-concave vector X and any r,

σr,X(λp) ≤ C1λσr,X(p) for λ ≥ 1, p ≥ 2.

As in Corollary 2.4, the Paouris inequality (2.1) together with Chebyshev’s
inequality imply

P
(
‖X‖2 ≥ eC2

(
(E‖X‖2

2)1/2 + σX(p)
))
≤ e−p for p ≥ 1. (2.10)

We will always assume, without loss of generality, that di defined in Theorem 2.6
are non-zero.

The next proposition generalizes Proposition 4 from [20].
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Proposition 2.16. Let X, r, di, and d be as in Theorem 2.6 and A := {X ∈ K},
where K is a convex set in Rn satisfying 0 < P(A) ≤ 1/e. Then
(i) for every t ≥ r,

n∑
i=1

E|Xi|r1A∩{Xi≥tdi} ≤ C5
rP(A)

(
rrσrr,X(− log(P(A))) + (dt)re−t/C6

)
. (2.11)

(ii) for every t > 0, u ≥ 1,

∞∑
k=0

2kr
n∑
i=1

dri1{P(A∩{Xi≥2ktdi})≥e−uP(A)}

≤ (C7u)r

tr
(
σrr,X(− log(P(A))) + dr1{t≤uC8}

)
. (2.12)

Proof. Let Y be a random vector defined by

P(Y ∈ B) =
P(A ∩ {X ∈ B})

P(A)
=

P(X ∈ B ∩K)

P(X ∈ K)
,

i.e. Y is distributed as X conditioned on A. Clearly, for every measurable set B
one has P(X ∈ B) ≥ P(A)P(Y ∈ B). Recall that Y is log-concave.

To simplify the notation set

pA := − logP(A) and ci := (EY 2
i )1/2, i = 1, . . . , n.

Let
I = I(v) := {i ≤ n : EY 2

i ≥ v2d2
i },

where v is an absolute constant to be chosen later. Let us also fix a sequence
(ai)i≤n.

Put S =
∑

i∈I |ai|c
−1
i Y 2

i . Observe that S = ‖((|ai|/ci)1/2Yi)i∈I‖2
2, hence by

the log-concavity of Y and (1.2), ES2 ≤ (2C1)
4(ES)2, and the Paley-Zygmund

inequality yields

P

(∑
i∈I

|ai|c−1
i Y 2

i ≥
1

2

∑
i∈I

|ai|ci

)
= P

(
S ≥ 1

2
ES
)
≥ 1

4

(ES)2

ES2
≥ 1

(2
√

2C1)4
.

(2.13)
We have EY 4

i ≤ (2C1ci)
4, so by Chebyshev’s inequality we get

P

(∑
i∈I

|ai|c−3
i Y 4

i ≥ (2C1)4s
∑
i∈I

|ai|ci

)
≤ 1

s
for s > 0. (2.14)
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Combining (2.13) and (2.14) we conclude that there exist constants C9 and c ∈ (0, 1)
such that

P

(∑
i∈I

|ai|c−1
i Y 2

i ≥
1

2

∑
i∈I

|ai|ci,
∑
i∈I

|ai|c−3
i Y 4

i ≤ C9

∑
i∈I

|ai|ci

)
≥ c

and therefore

P

(∑
i∈I

|ai|c−1
i X2

i ≥
1

2

∑
i∈I

|ai|ci,
∑
i∈I

|ai|c−3
i X4

i ≤ C9

∑
i∈I

|ai|ci

)
≥ cP(A) ≥ e−C10pA .

Let X̃ be the vector (|ai|1/2c−1/2
i Xi)i∈I conditioned on the set

B :=

{∑
i∈I

|ai|c−3
i X4

i ≤ C9

∑
i∈I

|ai|ci

}
.

Then

P

(
‖X̃‖2

2 ≥
1

2

∑
i∈I

|ai|ci

)
≥ 1

P(B)
e−C10pA ≥ e−C10pA . (2.15)

The random vector X̃ is log-concave and by the Markov inequality we have
P(B) ≥ 1/2 if v is a sufficiently large universal constant (since EX4

i ≤ Cd4
i ≤ Cv−4c4

i

for i ∈ I). Thus

E‖X̃‖2
2 =

1

P(B)
E

(∑
i∈I

|ai|c−1
i X2

i 1B

)
≤ 2

∑
i∈I

|ai|c−1
i d2

i ≤ 2v−2
∑
i∈I

|ai|ci. (2.16)

Now we will estimate σX̃(p). To this end fix t ∈ RI with |t| ≤ 1. Let α, s > 0
be numbers to be chosen later and

Jα := {i ∈ I : |ti|(|ai|ci)−1/2 ≤ α}.

We have ∥∥∥∥∥∑
i∈Jα

tiX̃i

∥∥∥∥∥
p

≤ P(B)−1/p

∥∥∥∥∥∑
i∈Jα

ti(|ai|ci)−1/2|ai|Xi

∥∥∥∥∥
p

≤ 2ασ1,aX(p).

Moreover∥∥∥∥∥∑
i/∈Jα

tiX̃i1{|X̃i|≤s(|ai|ci)1/2}

∥∥∥∥∥
p

≤
∑
i/∈Jα

s|ti|(|ai|ci)1/2 = s
∑
i/∈Jα

|ti|2

|ti|(|ai|ci)−1/2

≤ s

α

∑
i∈I

t2i ≤
s

α
.
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Observe that by the definition of the set B and the vector X̃ we have∑
i∈I

(|ai|ci)−1X̃4
i ≤ C9

∑
i∈I

|ai|ci.

Thus∥∥∥∥∥∑
i/∈Jα

tiX̃i1{|X̃i|>s(|ai|ci)1/2}

∥∥∥∥∥
p

≤

∥∥∥∥∥∥
(∑

i∈I

X̃2
i 1{|X̃i|>s(|ai|ci)1/2}

)1/2
∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥1

s

(∑
i∈I

(|ai|ci)−1X̃4
i

)1/2
∥∥∥∥∥∥
p

≤ 1

s

(
C9

∑
i∈I

|ai|ci

)1/2

.

Combining the above estimates we obtain∥∥∥∥∥∑
i∈I

tiX̃i

∥∥∥∥∥
p

≤ 2ασ1,aX(p) +
s

α
+

1

s

(
C10

∑
i∈I

|ai|ci

)1/2

.

Taking the supremum over t and optimizing over α > 0 we get

σX̃(p) ≤ 4(sσ1,aX(p))1/2 +
1

s

(
C9

∑
i∈I

|ai|ci

)1/2

for s > 0. (2.17)

Paouris’ inequality (2.10) (applied to X̃ instead of X) together with (2.16) and
(2.17) implies that

P

(
‖X̃‖2 ≥ eC2

[(
2v−2

∑
i∈I

|ai|ci
)1/2

+ 4
(
sσ1,aX(C10pA)

)1/2
+

1

s

(
C9

∑
i∈I

|ai|ci
)1/2

])
< e−C10pA .

Comparing the above with (2.15) we get

eC2

[(
2v−2

∑
i∈I

|ai|ci
)1/2

+ 4
(
sσ1,aX(C10pA)

)1/2
+

1

s

(
C9

∑
i∈I

|ai|ci
)1/2

]

≥

(
1

2

∑
i∈I

|ai|ci

)1/2

.

If we choose s and v to be sufficiently large absolute constants we will get∑
i∈I

|ai|(EY 2
i )1/2 =

∑
i∈I

|ai|ci ≤ Cσ1,aX(C10pA) ≤ Cσ1,aX(pA).
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Put ai := (E|Yi|2)(r−1)/21i∈I . If ‖t‖∞ ≤ 1, then (
∑
|tiai|r

′
)1/r′ ≤ ‖a‖r′ . Thus

the previous inequality implies

∑
i∈I

(
E|Yi|2

)r/2 ≤ Cσ1,aX(pA) ≤ C‖a‖r′σr,X(pA) = C

(∑
i∈I

(
E|Yi|2

)r/2)1/r′

σr,X(pA).

This gives ∑
i∈I

(E|Yi|2)r/2 ≤ Crσrr,X(pA).

Since ‖Yi‖r ≤ max{1, C1r/2}‖Yi‖2 we also get

∑
i∈I

E|Yi|r ≤ (Cr)rσrr,X(pA).

To prove (2.11) note that if i /∈ I, then by (1.1) we have P(|Yi| ≥ sdi) ≤ 2e−s/C

for s ≥ 0, hence we get by integrating by parts that for t ≥ r,

E|Yi|r1{Yi≥tdi} ≤ (Ctdi)
re−t/C

and therefore ∑
i/∈I

E|Yi|r1{Yi≥tdi} ≤ (Ctd)re−t/C .

Hence

1

P(A)

n∑
i=1

E|Xi|r1A∩{Xi≥tdi} =
n∑
i=1

E|Yi|r1{Yi≥tdi} ≤ Cr
(
rrσrr,X(− log(P(A))) + (dt)re−t/C

)
.

To show (2.12) note first that for every i the random variable Yi is log-concave,
hence for s ≥ 0 inequality (1.1) implies

P(A ∩ {Xi ≥ s})
P(A)

= P(Yi ≥ s) ≤ exp

(
2− s

2e‖Yi‖2

)
.

Thus, if P(A∩{Xi ≥ 2ktdi}) ≥ e−uP(A) and u ≥ 1, then ‖Yi‖2 ≥ 2ktdi/(2e(u+2)) ≥
2ktdi/(6eu). In particular this cannot happen if i /∈ I, k ≥ 0 and u ≤ t/C8 with C8
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large enough. Therefore
∞∑
k=0

2kr
n∑
i=1

dri1{P(A∩{Xi≥2ktdi})≥e−uP(A)}

≤

(∑
i∈I

+1{t≤uC8}
∑
i/∈I

)
dri

∞∑
k=0

2kr1{(EY 2
i )1/2≥2ktdi/(6eu)}

≤

(∑
i∈I

+1{t≤uC8}
∑
i/∈I

)
dri

(Cu)r

(tdi)r
(EY 2

i )r/2

≤ (Cu)r

tr

(∑
i∈I

(EY 2
i )r/2 + 1{t≤uC8}

∑
i/∈I

dri

)

≤ (Cu)r

tr
(
σrr,X(− log(P(A))) + dr1{t≤uC8}

)
.

We will also use the following combinatorial lemma (Lemma 11 in [18]).

Lemma 2.17. Let l0 ≥ l1 ≥ . . . ≥ ls be a fixed sequence of positive integers and

F := {f : {1, 2, . . . , l0} → {0, 1, 2, . . . , s} : ∀1≤i≤s |{r : f(r) ≥ i}| ≤ li} .

Then

|F| ≤
s∏
i=1

(
eli−1

li

)li
.

Proof of Theorem 2.6. Observe that we may assume that t ≥ C4r. Indeed, if
eσr,X(p) ≤ d then by our assumption t ≥ C4r. If eσr,X(p) > d then(

E

(
n∑
i=1

|Xi|r1{|Xi|≥tdi}

)p/r)1/p

≤ C4r

(
n∑
i=1

dri

)1/r

+

E

(
n∑
i=1

|Xi|r1{|Xi|≥max{t,C4r}di}

)p/r
1/p

≤ eC4rσr,X(p) +

E

(
n∑
i=1

|Xi|r1{|Xi|≥max{t,C4r}di}

)p/r
1/p

.

Moreover, the vector −X is also log-concave, has the same values of di and
σr,−X = σr,X . Hence it is enough to show that

E

(
n∑
i=1

Xr
i 1{Xi≥tdi}

)p/r

≤ (Crσr,X(p))p for t ≥ C4rmax

{
1, log

(
d

σr,X(p)

)}
.
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Observe that for l = 1, 2, . . .,

E

(
n∑
i=1

Xr
i 1{Xi≥tdi}

)l

≤ E

(
n∑
i=1

∞∑
k=0

2(k+1)r(tdi)
r1{Xi≥2ktdi}

)l

= (2t)rl
n∑

i1,...,il=1

∞∑
k1,...,kl=0

2(k1+...+kl)rdri1 . . . d
r
il
P(Bi1,k1...,il,kl),

where
Bi1,k1...,il,kl := {Xi1 ≥ 2k1tdi1 , . . . , Xil ≥ 2kltdil}.

Define a positive integer l by

p

r
< l ≤ 2

p

r
and l = 2M for some positive integer M.

Then, by (1.2) we get σr,X(p) ≤ σr,X(rl) ≤ σr,X(2p) ≤ 2C1σr,X(p). Since for any
nonnegative random variable Z we have (EZp/r)r/p ≤ (EZ l)1/l, it is enough to show
that

m(l) ≤
(
Crσr,X(rl)

t

)rl
for t ≥ C4rmax

{
1, log

(
d

σr,X(rl)

)}
, (2.18)

where

m(l) :=
∞∑

k1,...,kl=0

n∑
i1,...,il=1

2(k1+...+kl)rdri1 . . . d
r
il
P(Bi1,k1,...,il,kl).

We divide the sum in m(l) into several parts. Define sets

I0 :=
{

(i1, k1, . . . , il, kl) : P(Bi1,k1,...,il,kl) > e−rl
}
,

and for j = 1, 2, . . .,

Ij :=
{

(i1, k1, . . . , il, kl) : P(Bi1,k1,...,il,kl) ∈ (e−rl2
j

, e−rl2
j−1

]
}
.

Then m(l) =
∑

j≥0mj(l), where

mj(l) :=
∑

(i1,k1,...,il,kl)∈Ij

2(k1+...+kl)rdri1 . . . d
r
il
P(Bi1,k1...,il,kl).

To estimate m0(l) define for 1 ≤ s ≤ l,

PsI0 := {(i1, k1, . . . , is, ks) : (i1, k1, . . . , il, kl) ∈ I0 for some is+1, . . . , kl}.
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We have by (1.1) (since t is assumed to be large)

P(Bi1,k1,...,is,ks) ≤ P(Bi1,k1) ≤ exp(2− 2k1−1t/e) ≤ e−1.

Thus for s = 1, . . . , l − 1,∑
(i1,k1,...,is+1,ks+1)∈Ps+1I0

2(k1+...+ks+1)rdri1 . . . d
r
is+1

P(Bi1,k1,...,is+1,ks+1)

≤
∑

(i1,k1,...,is,ks)∈PsI0

2(k1+...+ks)rdri1 · · · d
r
isF (i1, k1, . . . , is, ks),

where

F (i1, k1, . . . ,is, ks) :=
n∑
i=1

∞∑
k=0

2krdriP(Bi1,k1,...,is,ks ∩ {Xi ≥ 2ktdi})

=
n∑
i=1

∞∑
k=0

2krdri

∞∑
j=k

P(Bi1,k1,...,is,ks ∩ {2jtdi > Xi ≥ 2jtdi})

≤
n∑
i=1

∞∑
j=0

driP(Bi1,k1,...,is,ks ∩ {2jtdi > Xi ≥ 2jtdi})2jr+1

≤
n∑
i=1

E2t−r|Xi|r1Bi1,k1,...,is,ks∩{Xi≥tdi}

≤ 2t−rCr
5P(Bi1,k1,...,is,ks)

(
rrσrr,X(− logP(Bi1,k1,...,is,ks)) + (dt)re−t/C6

)
,

where the last inequality follows by (2.11). Note that for (i1, k1, . . . , is, ks) ∈ PsI0 we
have P(Bi1,k1,...,is,ks) > e−rl. Moreover, by our assumptions on t (if C4 is sufficiently
large with respect to C6),

(dt)re−t/C6 = tre−t/(2C6)dre−t/(2C6) ≤ rrσrr,X(rl).

Therefore ∑
(i1,k1,...,is+1,ks+1)∈Ps+1I0

2(k1+...+ks+1)rdri1 . . . d
r
is+1

P(Bi1,k1,...,is+1,ks+1)

≤ 4t−r(C5rσr,X(rl))r
∑

(i1,k1,...,is,ks)∈PsI0

2(k1+...+ks)rdri1 . . . d
r
isP(Bi1,k1,...,is,ks).

By induction we get

m0(l) =
∑

(i1,k1,...,il,kl)∈I0

2(k1+...+kl)rdri1 · · · d
r
il
P(Bi1,k1,...,il,kl)

≤
(

4C5rσr,X(rl)

t

)r(l−1) ∑
(i1,k1)∈P1I0

2k1rdri1P(Bi1,k1).
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We have ∑
(i1,k1)∈P1I0

2k1rdri1P(Bi1,k1) ≤
n∑

i1=1

dri1

∞∑
k1=0

2k1re2−2k1−1t/e

≤
n∑

i1=1

dri12e
2−t/(2e) ≤

(
Crσr,X(rl)

t

)r
,

where the last two inequalities follow from the assumption that for large enough
C4, t ≥ C4rmax

{
1, log

(
d

σr,X(rl)

)}
. Thus

m0(l) ≤
(
Crσr,X(rl)

t

)rl
.

Now we estimate mj(l) for j > 0. Fix j > 0 and define a positive integer ρ1 by

r2ρ1−1 <
t

C8

≤ r2ρ1 ,

where the constant C8 comes from part (ii) of Proposition 2.16. Now for all
(i1, k1, . . . , il, kl) ∈ Ij define a function fi1,k1,...,il,kl : {1, . . . , `} → {0, 1, . . .} by

fi1,k1,...,il,kl(s) :=

 0 if P(Bi1,k1,...,is,ks )

P(Bi1,k1,...,is−1,ks−1
)
> e−r,

ρ if e−r2ρ < P(Bi1,k1,...,is,ks )

P(Bi1,k1,...,is−1,ks−1
)
≤ e−r2

ρ−1
, ρ ≥ 1.

Note that for every (i1, k1, . . . , il, kl) ∈ Ij one has

1 = P(B∅) ≥ P(Bi1,k1) ≥ P(Bi1,k1,i2,k2) ≥ . . . ≥ P(Bi1,k1,...,il,kl) > exp(−rl2j).

Denote
Fj := {fi1,k1,...,il,kl : (i1, k1, . . . , il, kl) ∈ Ij} .

Then for f = fi1,k1,...,il,kl ∈ Fj and ρ ≥ 1 one has

exp(−r2jl) < P(Bi1,k1,...,il,kl) =
∏̀
s=1

P(Bi1,k1,...,is,ks)

P(Bi1,k1,...,is−1,ks−1)

≤ exp(−r2ρ−1|{s : f(s) ≥ ρ}|).

Hence for every ρ ≥ 1 one has

|{s : f(s) ≥ ρ}| ≤ min{2j+1−ρl, l} =: lρ. (2.19)
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In particular f takes values in {0, 1, . . . , j+1+blog2 lc}. Clearly,
∑

ρ≥1 lρ = (j+2)l
and lρ−1/lρ ≤ 2, so by Lemma 2.17

|Fj| ≤
j+1+blog2 lc∏

ρ=1

(
elρ−1

lρ

)lρ
≤ e2(j+2)l.

Now fix f ∈ Fj and define

Ij(f) := {(i1, k1, . . . , il, kl) : fi1,k1,...,il,kl = f}

and for s ≤ l,

Ij,s(f) := PsIj(f) = {(i1, k1, . . . , is, ks) : fi1,k1,...,il,kl = f for some is+1, ks+1 . . . , il, kl}.

Recall that for s ≥ 1, P(Bi1,k1,...,is,ks) ≤ e−1. Moreover for s ≤ l and any
(i1, k1, . . . , il, kl) ∈ Ij, we get by (1.2) that

σX(− logP(Bi1,k1,...,is,ks)) ≤ σX(− logP(Bi1,k1,...,il,kl)) ≤ σX(rl2j) ≤ C12jσX(rl).

Hence estimate (2.12) applied with u = r2f(s+1) implies for 1 ≤ s ≤ l − 1,∑
(i1,k1,...,is+1,ks+1)∈Ij,s+1(f)

2(k1+...+ks+1)rdri1 . . . d
r
is+1

P(Bi1,k1,...,is+1,ks+1)

≤ g(f(s+ 1))
∑

(i1,k1,...,is,ks)∈Ij,s(f)

2(k1+...+ks)rdri1 . . . d
r
isP(Bi1,k1,...,is,ks),

where

g(ρ) :=


(C1C7r)

rt−r2jrσrr,X(rl) for ρ = 0,
(C1C7r)

rt−r2r(ρ+j)σrr,X(rl) exp(−r2ρ−1) for 1 ≤ ρ < ρ1,
(C1C7r)

rt−r2rρ
(
2rjσrr,X(rl) + dr

)
exp(−r2ρ−1) for ρ ≥ ρ1.

Suppose that (i1, k1) ∈ I1(f) and f(1) = ρ. Then by (1.1) we have

exp(−r2ρ) ≤ P(Xi1 ≥ 2k1tdi1) ≤ exp(2− 2k1−1t/e),

hence 2k1t ≤ er2ρ+3. We may assume without loss of generality that C9 > 8e. Then
ρ ≥ ρ1. Moreover, 2rk1 ≤ (8er)r2rρt−r, hence∑

(i1,k1)∈Ij,1(f)

2rk1dri1P(Bi1,k1) ≤ dr(16er)rt−r2rρ exp(−r2ρ−1) ≤ g(ρ) = g(f(1)),
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since without loss of generality C1C7 ≥ 16e. Thus the induction shows that

mj(f) :=
∑

(i1,k1,...,il,kl)∈Ij(f)

2(k1+...+kl)rdri1 . . . d
r
il
P(Bi1,k1,...,il,kl)

≤
l∏

s=1

g(f(s)) =
∞∏
ρ=0

g(ρ)nρ ,

where nρ := |f−1(ρ)|.
Observe that

e−rl2
j−1 ≥ P(Bi1,k1,...,il,kl) =

l∏
s=1

P(Bi1,k1,...,is,ks)

P(Bi1,k1,...,is−1,ks−1)
≥ e−rl

∏
s : f(s)≥1

e−r2
f(s)

.

Therefore

r
∞∑
ρ=1

nρ2
ρ−1 =

r

2

∑
s : f(s)≥1

2f(s) ≥ r

2
l(2j−1 − 1).

Moreover ∑
ρ≥1

ρnρ ≤ (j + 1)l +
∑
ρ≥j+2

ρlρ = (2j + 5)l.

Thus
∞∏
ρ=0

g(ρ)nρ ≤
(
C1C7r2

jσr,X(rl)

t

)rl
2rl(2j+5)

(
1 +

dr

σr,X(rl)r

)m
exp

(
−rl

2
(2j−1 − 1)

)
,

where m =
∑

ρ≥ρ1 nρ ≤ lρ1 ≤ 2j+1−ρ1l. By the assumption on t we have 1 +

dr/σrr,X(rl) ≤ 2 exp(t/C4) ≤ exp(r2ρ1−4) if C4 is large enough (with respect to C8).
Hence

mj(l) ≤ |Fj|
(√

eC1C72(3j+5)rσr,X(rl)

t

)rl
exp(−rl2j−3).

We get

m(l) =
∞∑
j=0

mj(l) ≤
(
Crσr,X(rl)

t

)rl
+
∞∑
j=1

(
C23jrσr,X(rl)

t

)rl
exp(−rl2j−3).

To finish the proof of (2.18), note that

∞∑
j=1

(
23j
)rl

exp(−rl2j−3) ≤ Crl

∞∑
j=1

exp(−rl2j−4) ≤ Crl.
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2.3 Proofs in the case of independent coordinates
In Subsection 2.3.1 we prove Theorem 2.9 for unconditional sets T only. Using
this result we generalize it to the case of an arbitrary T in Subection 2.3.2. In
Subsection 2.3.3 we prove Corollaries 2.11 and 2.12. Finally, in Subection 2.3.4 we
present the proof of Theorem 2.10.

Throughout this section we will frequently work with a Bernoulli sequence εi of
i.i.d. symmetric random variables taking values ±1. We assume that variables εi
are independent of other random variables.

2.3.1 The case of unconditional sets

In this subsection we show that Theorem 2.9 holds under additional assumptions
that the set T is unconditional and the variables Xi are symmetric. Recall that a set
T in Rn is called unconditional if it is symmetric with respect to the coordinate axes,
i.e. (ηiti)

n
i=1 ∈ T for any t = (ti)

n
i=1 ∈ T and any choice of signs η1, . . . , ηn ∈ {−1, 1}.

Proposition 2.18. Let r ∈ (0, 1) and L ≥ 1. Assume that variables Y1, . . . , Yn are
independent and symmetric and(

E sup
t∈T

∣∣∣ n∑
i=1

tiYi

∣∣∣p)1/p

≤ L

[
E sup

t∈T

n∑
i=1

tiYi + sup
t∈T

(
E
∣∣∣ n∑
i=1

tiYi

∣∣∣p)1/p
]

(2.20)

for all p ≥ 1 and all nonempty unconditional sets T . Then variables Xi :=
|Yi|1/r sgnYi satisfy(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ (2L)1/r

[
E sup

t∈T

n∑
i=1

tiXi + sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]

(2.21)

for all p ≥ 1 and all nonempty unconditional sets T ⊂ Rn.

Proof. Definition of Xi and unconditionality of T yield

sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣ = sup
t∈T

∣∣∣ n∑
i=1

ti|Yi|1/r sgnYi

∣∣∣ = sup
t∈T

n∑
i=1

|ti||Yi|1/r.

Let s = (1− r)−1 and let Bn
s denote the unit ball of `ns . Then 1/s+ r = 1 and by

Hölder’s duality we have

sup
t∈T

∣∣∣ n∑
i=1

|ti||Yi|1/r
∣∣∣r = sup

t∈T
sup
u∈Bns

n∑
i=1

ui|ti|rYi = sup
t∈Tr

n∑
i=1

tiYi,
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where
Tr := {(ui|ti|r)ni=1 : t ∈ T, u ∈ Bn

s }
is unconditional in Rn. Therefore (2.20) applied with p/r and Tr instead of p and
T yields

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p ≤ Lp/r

[
E sup
t∈Tr

tiYi + sup
t∈Tr

(
E
∣∣∣ n∑
i=1

tiYi

∣∣∣p/r)r/p]p/r.
We have

E sup
t∈Tr

n∑
i=1

tiYi = E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣r ≤ (E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣)r.
Moreover,

sup
t∈Tr

(
E
∣∣∣ n∑
i=1

tiYi

∣∣∣p/r)r/p ≤ sup
t∈T

(
E sup
u∈Bns

∣∣∣ n∑
i=1

ui|ti|rYi
∣∣∣p/r)r/p

= sup
t∈T

(
E
∣∣∣ n∑
i=1

|ti||Xi|
∣∣∣p)r/p = sup

t∈T

(
E
∣∣∣ n∑
i=1

ti|Xi|
∣∣∣p)r/p.

Estimates above together with the inequality (a+ b)1/r ≤ 21/r−1(a1/r + b1/r) yield(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ 1

2
(2L)1/r

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

(
E
∣∣∣ n∑
i=1

ti|Xi|
∣∣∣p)1/p

]
.

Hence, in order to prove (2.21) it suffices to show that

sup
t∈T

(
E
∣∣∣ n∑
i=1

ti|Xi|
∣∣∣p)1/p

≤ E sup
t∈T

n∑
i=1

tiXi + 2 sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

. (2.22)

Let (X ′1, . . . , X
′
n) be an independent copy of (X1, . . . , Xn). By the triangle

inequality for the p-th integral norm and Jensen’s inequality we get

sup
t∈T

(
E
∣∣∣ n∑
i=1

ti|Xi|
∣∣∣p)1/p

≤ sup
t∈T

(
E
∣∣∣ n∑
i=1

ti
(
|Xi| − E|X ′i|

)∣∣∣p)1/p

+ sup
t∈T

∣∣∣E n∑
i=1

ti|Xi|
∣∣∣

≤ sup
t∈T

(
E
∣∣∣ n∑
i=1

ti
(
|Xi| − |X ′i|

)∣∣∣p)1/p

+ E sup
t∈T

∣∣∣ n∑
i=1

ti|Xi|
∣∣∣

= sup
t∈T

(
E
∣∣∣ n∑
i=1

ti
(
|Xi| − |X ′i|

)∣∣∣p)1/p

+ E sup
t∈T

n∑
i=1

tiXi,

(2.23)
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where the equation follows by the unconditionality of T .
Since the sequence (|Xi| − |X ′i|)ni=1 has the same distribution as (εi(|Xi| −

|X ′i|))ni=1, for every t ∈ Rn we have(
E
∣∣∣ n∑
i=1

ti(|Xi| − |X ′i|)
∣∣∣p)1/p

=

(
E
∣∣∣ n∑
i=1

tiεi(|Xi| − |X ′i|)
∣∣∣p)1/p

≤
(
E
∣∣∣ n∑
i=1

tiεi|Xi|
∣∣∣p)1/p

+

(
E
∣∣∣ n∑
i=1

tiεi|X ′i|
∣∣∣p)1/p

= 2

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

. (2.24)

Putting (2.23) and (2.24) together we get (2.22), what completes the proof of
(2.21).

Corollary 2.19. Let X1, . . . , Xn be independent symmetric random variables with
finite moments such that

‖Xi‖2p ≤ α‖Xi‖p for p ≥ 2 and i = 1, . . . , n, (2.25)

where α is a finite positive constant. Then for every p ≥ 1 and every nonempty
unconditional set T ⊂ Rn we have(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ C(α)

[
E sup

t∈T

n∑
i=1

tiXi + sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
, (2.26)

where C(α) is a constant, which depends only on α.

Proof. Let us first note, that the assumption (2.25) applied k times yields that

‖Xi‖2kp ≤ αk‖Xi‖p for p ≥ 2.

Therefore

‖Xi‖q ≤ αdlog2( q
p

)e‖Xi‖p ≤ α

(
q

p

)log2 α

‖Xi‖p for q ≥ p ≥ 2.

Let Yi := |Xi|1/ log2 α sgnXi. We may assume without loss of generality that
α ≥ 2. Then Xi = |Yi|1/r sgnYi with r := 1

log2 α
∈ (0, 1), and

‖Yi‖q ≤ 2
q

p
‖Yi‖p for q ≥ p ≥ 2 log2 α. (2.27)
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Take 2 log2 α = q ≥ p ≥ 2. Then by Hölder’s inequality and (2.27) with exponents
p(q−1)
p−1

and q we get

‖Yi‖qq = E|Yi||Yi|q−1 ≤
(
E|Yi|p

) 1
p

(
E|Yi|

p(q−1)
p−1

) p−1
p ≤ ‖Yi‖p‖Yi‖q−1

q

(
2
p(q − 1)

q(p− 1)

)q−1

.

Observe that (
2
p(q − 1)

q(p− 1)

)q−1

≤ 4q−1 ≤ 1

4
α4,

so
‖Yi‖q ≤

1

4
α4‖Yi‖p for 2 log2 α = q ≥ p ≥ 2.

Thus for any value of α we get

‖Yi‖q ≤ max

{
2,

1

2
α4

}
q

p
‖Yi‖p for q ≥ p ≥ 2.

Hence, by [24, Theorem 2.3] the variables Y1, . . . , Yn satisfy (2.20) with a constant
L depending only on α (in fact for arbitrary, not only unconditional sets T ) and
the assertion follows by Proposition 2.18.

2.3.2 Symmetrization argument

We will use the following proposition to prove that we may skip the unconditionality
assumption in Corollary 2.19.

Proposition 2.20. Let (Xi)
n
i=1 be a sequence of independent random variables

with finite second moments and let (εi)
n
i=1 be a Bernoulli sequence independent of

(Xi)
n
i=1. Then for any nonempty T ⊂ Rn and p ≥ 1,

EX sup
t∈T

(
Eε
∣∣∣ n∑
i=1

tiεiXi

∣∣∣p)1/p

≤ C

[
E sup

t∈T

n∑
i=1

tiεiXi + sup
t∈T

(
E
∣∣∣ n∑
i=1

tiεiXi

∣∣∣p)1/p
]
.

(2.28)

Proof. Since this is only a matter of normalization we may and do assume that
EX2

i = 1 for all i. We will frequently use the result of Hitczenko from [15]:∥∥∥∥ n∑
i=1

tiεi

∥∥∥∥
p

∼
∑
i≤p

t∗i +
√
p

√∑
i>p

|t∗i |2.

Recall that (t∗i )
n
i=1 denotes the non-increasing rearrangement of (|ti|)ni=1. Since for

every t ∈ Rn we know that ‖
∑n

i=1 tiεi‖1 ∼ ‖
∑n

i=1 tiεi‖2, it is enough to consider
p ≥ 2 only.
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Let m be such an integer that 2m ≤ p < 2(m+ 1). Then, by the symmetry of
Xi, εi, and the independence of X1, . . . , Xn, ε1, . . . , εn we have∥∥∥∥ n∑

i=1

tiεiXi

∥∥∥∥
p

≥
∥∥∥∥ n∑
i=1

tiεiXi

∥∥∥∥
2m

=

( ∑
i1+...in=m

ci1,...,int
2i1
1 . . . t2inn EX2i1

1 . . .EX2in
n

)1/2m

≥
( ∑
i1+...in=m

ci1,...,int
2i1
1 . . . t2inn

)1/2m

=

( ∑
i1+...in=m

ci1,...,int
2i1
1 . . . t2inn Eε2i1

1 . . .Eε2in
n

)1/2m

=

∥∥∥∥ n∑
i=1

tiεi

∥∥∥∥
2m

,

where
ci1,...,in =

(2i1 + . . .+ 2in)!

(2i1)! . . . (2in)!
.

Therefore to establish (2.28) it is enough to show that

E sup
t∈T

(
Eε
∣∣∣ n∑
i=1

tiεiXi

∣∣∣p)1/p

≤ C

(
E sup

t∈T

n∑
i=1

tiεiXi + pa

)
, (2.29)

where
a :=

1

p
sup
t∈T

(∑
i≤p

t∗i +
√
p
(∑
i>p

|t∗i |2
)1/2

)
.

To this end observe that since∥∥∥∥ n∑
i=1

uiεi

∥∥∥∥
p

≤ C
√
p‖u‖2,

∥∥∥∥ n∑
i=1

uiεi

∥∥∥∥
p

≤ ‖u‖1,

and
∥∥∥∥ n∑
i=1

uiεi

∥∥∥∥
p

=

∥∥∥∥ n∑
i=1

|ui|εi
∥∥∥∥
p

,

we have ∥∥∥∥ n∑
i=1

uiεi

∥∥∥∥
p

≤
n∑
i=1

(|ui| − a)+ + C
√
p

( n∑
i=1

min{u2
i , a

2}
)1/2

.

Thus

EX sup
t∈T

(
Eε
∣∣∣ n∑
i=1

tiεiXi

∣∣∣p)1/p

≤ E sup
t∈T

n∑
i=1

(
|tiXi| − a

)
+

+ C
√
p

(
E sup

t∈T

n∑
i=1

min
{

(tiXi)
2, a2

})1/2

. (2.30)
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To estimate the first term above observe that

E sup
t∈T

n∑
i=1

(
|tiXi| − a

)
+

≤ sup
t∈T

E
n∑
i=1

(
|tiXi| − a

)
+

+ E sup
t∈T

n∑
i=1

((
|tiXi| − a

)
+
− E

(
|tiX ′i| − a

)
+

)
,

where (X ′i)i is a copy of (Xi)i, independent of (εi)i and (Xi)i.
Observe that for any u and i

E
(
|uXi| − a

)
+
≤ |u|E|Xi| ≤ |u|‖Xi‖2 = |u|

and, by the Cauchy-Schwarz inequality and the Markov inequality

E
(
|uXi| − a

)
+
≤ |u|E|Xi|I{|Xi|≥a/|u|} ≤ |u|‖Xi‖2

(
P(|Xi| ≥ a/|u|)

)1/2

≤ |u|‖Xi‖2
2

|u|
a

=
u2

a
.

Hence for any t ∈ T
n∑
i=1

E
(
|tiXi| − a

)
+
≤
∑
i≤p

t∗i +
1

a

∑
i>p

(t∗i )
2 ≤ 2pa.

Moreover, by the Jensen inequality

E sup
t∈T

n∑
i=1

((
|tiXi| − a

)
+
− E

(
|tiX ′i| − a

)
+

)
≤ E sup

t∈T

n∑
i=1

((
|tiXi| − a

)
+
−
(
|tiX ′i| − a

)
+

)
= E sup

t∈T

n∑
i=1

εi

((
|tiXi| − a

)
+
−
(
|tiX ′i| − a

)
+

)
≤ E sup

t∈T

n∑
i=1

εi
(
|tiXi| − a

)
+

+ E sup
t∈T

n∑
i=1

−εi
(
|tiX ′i| − a

)
+
.

= 2E sup
t∈T

n∑
i=1

εi
(
|tiXi| − a

)
+
.

Function x 7→ (|x| − a)+ is 1-Lipschitz, so Talagrand’s comparison theorem for
Bernoulli processes [36, Theorem 2.1] yields

E sup
t∈T

n∑
i=1

εi
(
|tiXi| − a

)
+
≤ E sup

t∈T

n∑
i=1

tiεiXi.
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Therefore

E sup
t∈T

n∑
i=1

(
|tiXi| − a

)
+
≤ 2pa+ 2E sup

t∈T

n∑
i=1

tiεiXi. (2.31)

Now we turn our attention to the other term in (2.30). We have

E sup
t∈T

n∑
i=1

min
{

(tiXi)
2, a2

}
≤ sup

t∈T
E

n∑
i=1

min
{

(tiXi)
2, a2

}
+ E sup

t∈T

n∑
i=1

(
min

{
(tiXi)

2, a2
}
− Emin

{
(tiX

′
i)

2, a2
})
.

We have
n∑
i=1

Emin
{

(tiXi)
2, a2

}
≤

n∑
i=1

min
{
a2, t2iEX2

i

}
≤ pa2 +

∑
i>p

(t∗i )
2 ≤ 2pa2.

Moreover, by the Jensen inequality

E sup
t∈T

n∑
i=1

(
min

{
(tiXi)

2, a2
}
−Emin

{
(tiX

′
i)

2, a2
})

≤ E sup
t∈T

n∑
i=1

(
min

{
(tiXi)

2, a2
}
−min

{
(tiX

′
i)

2, a2
})

= E sup
t∈T

n∑
i=1

εi

(
min

{
(tiXi)

2, a2
}
−min

{
(tiX

′
i)

2, a2
})

≤ 2E sup
t∈T

n∑
i=1

εi min
{

(tiXi)
2, a2

}
.

Function x 7→ min{x2, a2} is 2a-Lipschitz, so using the comparison theorem for
Bernoulli processes again we get

E sup
t∈T

n∑
i=1

εi min
{

(tiXi)
2, a2

}
≤ 2aE sup

t∈T

n∑
i=1

tiεiXi.

Thus

pE sup
t∈T

n∑
i=1

min
{

(tiXi)
2, a2

}
≤ 2p2a2 + 4paE sup

t∈T

n∑
i=1

tiεiXi

≤
(

2pa+ E sup
t∈T

n∑
i=1

tiεiXi

)2

. (2.32)

Estimate (2.29) follows by (2.30)-(2.32).
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Proof of Theorem 2.9. Since it is enough to consider T ∪ (−T ) instead of T , we
may and do assume that the set T is symmetric, i.e. T = −T .

Assume first that the variables Xi are also symmetric. Let ε = (εi)
n
i=1 be a

Bernoulli sequence independent of (Xi)
n
i=1. Weak and strong moments of (εi)

n
i=1

are comparable:(
E sup

s∈S

∣∣∣ n∑
i=1

siεi

∣∣∣p)1/p

≤ C

[
E sup

s∈S

∣∣∣ n∑
i=1

siεi

∣∣∣+ sup
s∈S

(
E
∣∣∣ n∑
i=1

siεi

∣∣∣p)1/p
]

(this follows for example by Corollary 3.4, since εi have log-concave tails) Hence
the symmetry of Xi and inequalities (a+ b)p ≤ 2p(ap + bp), (a+ b)1/p ≤ a1/p + b1/p

yield(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

=

(
EXEε sup

t∈T

∣∣∣ n∑
i=1

tiXiεi

∣∣∣p)1/p

≤ 2C

[(
EX
(
Eε sup

t∈T

∣∣∣ n∑
i=1

tiXiεi

∣∣∣)p)1/p

+

(
EX sup

t∈T
Eε
∣∣∣ n∑
i=1

tiXiεi

∣∣∣p)1/p
]
.

(2.33)

Since T is symmetric, for x ∈ Rn we have

Eε sup
t∈T

∣∣∣ n∑
i=1

tixiεi

∣∣∣ = sup
t∈T1

n∑
i=1

tixi,

where
T1 := {(Eεsi(ε)εi)ni=1 : s : {−1, 1}n → T}

is an unconditional subset of Rn. Estimate (2.26) applied for T1 instead of T yields(
EX
(
Eε sup

t∈T

∣∣∣ n∑
i=1

tiXiεi

∣∣∣)p)1/p

≤ C(α)

[
EXEε sup

t∈T

∣∣∣ n∑
i=1

tiXiεi

∣∣∣+ sup
t∈T1

(
E
∣∣∣∑
i=1

tiXi

∣∣∣p)1/p
]
.

By the symmetry of Xi and T we have

EXEε sup
t∈T

∣∣∣ n∑
i=1

tiXiεi

∣∣∣ = E sup
t∈T

n∑
i=1

tiXi.

Moreover,
T1 ⊂ S(T ) := conv {(ηiti)ni=1 : η ∈ {−1, 1}n, t ∈ T} ,
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hence

sup
t∈T1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ sup
t∈S(T )

(
E
∣∣∣∑
i=1

tiXi

∣∣∣p)1/p

= sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

.

Thus(
EX
(
Eε sup

t∈T

∣∣∣ n∑
i=1

tiXiεi

∣∣∣)p)1/p

≤ C(α)

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+sup
t∈T

(
E
∣∣∣∑
i=1

tiXi

∣∣∣p)1/p
]
.

(2.34)

Let q = p/(p− 1) be the Hölder dual of p. For x ∈ Rn we have(
sup
t∈T

Eε
∣∣∣ n∑
i=1

tixiεi

∣∣∣p)1/p

= sup
t∈T2

n∑
i=1

tixi,

where

T2 = {(Eεtiεih(ε))ni=1 : t ∈ T, h : {−1, 1}n → R,Eε|h(ε)|q ≤ 1}

is an unconditional subset of Rn. Estimate (2.26) applied for T2 instead of T yields(
EX sup

t∈T
Eε
∣∣∣ n∑
i=1

tiXiεi

∣∣∣p)1/p

≤ C(α)

[
EX
(

sup
t∈T

Eε
∣∣∣ n∑
i=1

tiXiεi

∣∣∣p)1/p

+ sup
t∈T2

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
.

Proposition 2.20 and the symmetry of Xi gives

EX
(

sup
t∈T

Eε
∣∣∣ n∑
i=1

tiXiεi

∣∣∣p)1/p

≤ C

[
E sup

t∈T

n∑
i=1

tiXi + sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
.

Since T2 ⊂ S(T ) we have

sup
t∈T2

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ sup
t∈S(T )

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

= sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

.

Thus(
EX sup

t∈T
Eε
∣∣∣ n∑
i=1

tiXiεi

∣∣∣p)1/p

≤ C(α)

[
E sup

t∈T

n∑
i=1

tiXi + sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
.

(2.35)
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Estimate (2.6) follows (for symmetric Xi’s) by (2.33)-(2.35)
In the case when the variables Xi are centred, but not necessarily symmetric let

(X ′1, . . . , X
′
n) be an independent copy of (X1, . . . , Xn). Then Xi−X ′i are symmetric.

The Jensen inequality and the assumption on Xi imply that for any p ≥ 2 we have

‖Xi −X ′i‖2p ≤ 2‖Xi‖2p ≤ 2α‖Xi − EXi‖p ≤ 2α‖Xi −X ′i‖p.

Therefore, Theorem 2.9 applied to (X1 −X ′1, . . . , Xn −X ′n) implies(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

=

(
E sup

t∈T

∣∣∣ n∑
i=1

ti(Xi − EX ′i)
∣∣∣p)1/p

≤
(
E sup

t∈T

∣∣∣ n∑
i=1

ti(Xi −X ′i)
∣∣∣p)1/p

≤ C(2α)

[
E sup

t∈T

∣∣∣ n∑
i=1

ti(Xi −X ′i)
∣∣∣+ sup

t∈T

(
E
∣∣∣ n∑
i=1

ti(Xi −X ′i)
∣∣∣p)1/p

]

≤ 2C(2α)

[
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
,

what finishes the proof in the general case.

Remark 2.21. It follows by the proof of [24, Theorem 2.3] that if (Xi)
n
i=1 is symmetric,

independent and for any i moments of Xi grow β-regularly, then the comparison
of weak and strong moments of suprema of linear combinations of variables Xi

holds with a constant C(β) = Cβ11. Therefore, we may follow the constants in the
proofs above to obtain that Theorem 2.9 holds with C(α) = C log2

2 α.

2.3.3 From comparison of weak and strong moments to com-
parison of weak and strong tails

In this subsection we prove Corollary 2.11 and Corollary 2.12. To this end we need
the following lemma.

Lemma 2.22. Assume X1, X2, . . . satisfy the assumptions of Theorem 2.9. Then
for any t ∈ Rn,∥∥∥∥ n∑

i=1

tiXi

∥∥∥∥
p

≤ C(α)

(
p

q

)max{1/2,log2 α}∥∥∥∥ n∑
i=1

tiXi

∥∥∥∥
q

for p ≥ q ≥ 2. (2.36)

Proof. Let β := max{1/2, log2 α}. It is enough to show that for positive integers
k ≥ l we have ∥∥∥∥ n∑

i=1

tiXi

∥∥∥∥
2k

≤ Cα

(
k

l

)β∥∥∥∥ n∑
i=1

tiXi

∥∥∥∥
2l

.
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A standard symmetrization argument shows that we may assume that the random
variables Xi are symmetric (see the proof of Theorem 2.9 in the non-symmetric
case).

Using the hypercontractivity method [16, Section 3.3], it is enough to show that
for 1 ≤ i ≤ n,∥∥∥∥s+

t

2
√

2eα

(
l

k

)β
Xi

∥∥∥∥
2k

≤
∥∥s+ tXi

∥∥
2l

for all s, t ∈ R.

This reduces to the following claim.

Claim. Suppose that Y is a symmetric random variable such that ‖Y ‖2p ≤ α‖Y ‖p
for some α ≥ 1 and every p ≥ 2. Let k ≥ l be positive integers. Then∥∥1 + σY

∥∥
2k
≤
∥∥1 + Y

∥∥
2l
, where σ :=

1

2
√

2eα

(
l

k

)β
.

To show the claim observe first that (to see this we proceed as in the first part
of proof of Corollary 2.19)

‖Y ‖q ≤ α

(
q

p

)log2 α

‖Y ‖p ≤ α

(
q

p

)β
‖Y ‖p for q ≥ p ≥ 2. (2.37)

Moreover we have

E
∣∣1 + σY

∣∣2k = 1 +
k∑
j=1

(
2k

2j

)
E |σY |2j ≤ 1 +

k∑
j=1

(
ek

j
σ‖Y ‖2j

)2j

≤ 1 +
k∑
i=1

2−i sup
1≤j≤k

(√
2ek

j
σ‖Y ‖2j

)2j

≤ 1 + sup
1≤j≤k

(√
2ek

j
σ‖Y ‖2j

)2j

,

so it is enough to show that

1 +

(
k1−βlβ

2jα
‖Y ‖2j

)2j

≤
∥∥1 + Y

∥∥2k

2l
for j = 1, 2 . . . k. (2.38)

To this end we will use the following deterministic inequality:

(1 + u)p ≥
(

1 +
p

q
u

)q
≥ 1 +

(
p

q
u

)q
for p ≥ q ≥ 1 and u ≥ 0, (2.39)

and a simple lower bound for ‖1 + Y ‖2l
2l:

E|1 + Y |2l = 1 +
l∑

r=1

(
2l

2r

)
E|Y |2r ≥ 1 +

l∑
r=1

(
l

r
‖Y ‖2r

)2r

. (2.40)
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In order to prove the first part of (2.39) note that it is equivalent to the fact that
for all u > 0 a function p 7→ (1 + u

p
)p is non-decreasing. The derivative of this

function is equal to ln(1 + u
p
)− ( p

u
+ 1)−1, what is nonnegative by the inequality

ln(1 + x) ≥ x
1+x

for x > −1.
Assume first that 1 ≤ j ≤ k

l
. Estimate (2.37) applied with p = 2 and q = 2j

yields
k1−βlβ

2jα
‖Y ‖2j ≤

k1−βlβ

j1−β ‖Y ‖2 ≤

√
kl

j
‖Y ‖2,

where the last inequality holds since β ≥ 1
2
and k ≥ jl. Inequalities (2.40) and

(2.39) (applied with p = k/l and q = j) yield

∥∥1 + Y
∥∥2k

2l
≥
(
1 + (l‖Y ‖2)2

)k/l ≥ 1 +

(√
kl

j
‖Y ‖2

)2j

so (2.38) holds for j ≤ k
l
.

If j ≥ k
l
we choose r = djl/ke. Then jl ≤ kr ≤ 2jl. Since 1 ≤ r ≤ l, the

estimate (2.40) gives

∥∥1 + Y
∥∥2k

2l
≥

(
1 +

(
l

r
‖Y ‖2r

)2r
)k/l

≥

(
1 +

(
l

r
‖Y ‖2r

)2r
)j/r

≥ 1 +

(
l

r
‖Y ‖2r

)2j

,

where to get the last two inequalities we used k/l ≥ j/r and j/r ≥ 1. Applying
estimate (2.37) with 2j and 2r instead of p and q we get

k1−βlβ

2jα
‖Y ‖2j ≤

k1−βlβ

2j

(
j

r

)β
‖Y ‖2r ≤

k

2j
‖Y ‖2r ≤

l

r
‖Y ‖2r,

which completes the proof of the claim in the remaining case.

Remark 2.23. It will be clear from the proof below that Theorem 2.5 implies an
analogue of Corollary 2.11 for log-concave random vectors:

P
(

sup
t∈Bn

r′

∣∣∣ n∑
i=1

tiXi

∣∣∣ ≥ rD1

[
u+ E sup

t∈Bn
r′

∣∣∣ n∑
i=1

tiXi

∣∣∣]) ≤ D2 sup
t∈Bn

r′

P
(∣∣∣ n∑

i=1

tiXi

∣∣∣ ≥ u

)
,

(2.41)
for all r ∈ [1,∞), where D1 and D2 are universal constants.

Proof of Corollary 2.11. Let

S := sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣.
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By the Paley-Zygmund inequality and (2.36) we have for t ∈ T and p ≥ 2,

P

(∣∣∣ n∑
i=1

tiXi

∣∣∣ ≥ 1

2

∥∥∥ n∑
i=1

tiXi

∥∥∥
p

)
= P

(∣∣∣ n∑
i=1

tiXi

∣∣∣p ≥ 2−pE
∣∣∣ n∑
i=1

tiXi

∣∣∣p)

≥ (1− 2−p)2

( ∥∥∑n
i=1 tiXi

∥∥
p∥∥∑n

i=1 tiXi

∥∥
2p

)2p

≥ e−C3(α)p.

(2.42)

In order to show (2.9) we consider 3 cases.

Case 1. 2u < supt∈T ‖
∑n

i=1 tiXi‖2. Then by (2.42)

sup
t∈T

P
(∣∣∣ n∑

i=1

tiXi

∣∣∣ ≥ u

)
≥ e−2C3(α)

and (2.9) obviously holds if C2(α) ≥ exp(2C3(α)).
Case 2. supt∈T ‖

∑n
i=1 tiXi‖2 ≤ 2u < supt∈T ‖

∑n
i=1 tiXi‖∞. Let us then define

p := sup

{
q ≥ 2C3(α) : sup

t∈T

∥∥∥ n∑
i=1

tiXi

∥∥∥
q/C3(α)

≤ 2u

}
.

By (2.42) we have

sup
t∈T

P
(∣∣∣ n∑

i=1

tiXi

∣∣∣ ≥ u

)
≥ e−p.

By (2.36) we have supt∈T ‖
∑n

i=1 tiXi‖p ≤ C(α)u, so by Theorem 2.9 and
Chebyshev’s inequality we have

P(S ≥ C1(α)(ES + u)) ≤ P(S ≥ e‖S‖p) ≤ e−p

for C1(α) large enough. Thus (2.9) holds in this case.
Case 3. 2u > supt∈T ‖

∑n
i=1 tiXi‖∞ = ‖S‖∞. Then P(S ≥ 2u) = 0 and (2.9)

holds for any C1(α) ≥ 2.

Proof of Corollary 2.12. The result is an immediate consequence of Theorem 2.9
and inequality (2.36).
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2.3.4 Comparison of weak and strong moments of suprema
implies comparison of moments p and 2p

Proof of Theorem 2.10. We will use the assumption (2.7) for T containing all
vectors of the standard base of Rn and their negatives, i.e. we will use only the
inequality (

E sup
1≤i≤n

|Xi|p
)1/p

≤ L
[
E sup

1≤i≤n
|Xi|+ ‖X1‖p

]
. (2.43)

Fix p ≥ 2 and let n := b(4L)2pc+ 1, A := n1/p‖X1‖p. If A ≥ ‖X1‖2p, then (2.8)
holds with α = (4L)2 + 1. Hence we may and do assume A ≤ ‖X1‖2p.

Obviously

P
(

sup
1≤i≤n

|Xi| ≥ t
)
≤ min

{
1, nP

(
|X1| ≥ t

)}
.

Moreover, if P(|X1| ≥ t) ≤ 1
n
,

P
(

sup
1≤i≤n

|Xi| ≥ t
)

= 1− P
(
|X1| < t

)n
= P

(
|X1| ≥ t

) n−1∑
k=0

P
(
|X1| < t

)k
≥ P

(
|X1| ≥ t

)
· n
(

1− 1

n

)n−1

≥ n

3
P
(
|X1| ≥ t

)
.

Since P(|X1| ≥ A) ≤ 1
n
(which follows by the Markov inequality) and A ≤ ‖X1‖2p,

we have

E sup
1≤i≤n

|Xi|2p ≥ 2p

∫ ∞
A

t2p−1P
(

sup
1≤i≤n

|Xi| ≥ t
)
dt ≥ 2p

∫ ∞
A

t2p−1n

3
P
(
|X1| ≥ t

)
dt

=
n

3
E
(
|X1|2p − A2p

)
+
≥ n

3

(
‖X1‖2p

2p − A2p
)
≥ n

3

(
‖X1‖2p − A

)2p

and

E sup
1≤i≤n

|Xi| ≤ A+

∫ ∞
A

P
(

sup
1≤i≤n

|Xi| ≥ t
)
dt ≤ A+ n

∫ ∞
A

P
(
|X1| ≥ t

)
dt

≤ A+ nE
(
|X1|1{|X1|≥A}

)
≤ A+ n‖X1‖pP

(
|X1| ≥ A

)1− 1
p

≤ A+ n1/p‖X1‖p,

where in the last inequality we used again the fact that P(|X1| ≥ A) ≤ 1
n
.
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Thus our choice of n and A, and (2.43) (applied to 2p instead of p) imply that

2L‖X1‖2p ≤
1

2
n

1
2p‖X1‖2p ≤

1

2
n

1
2pA+

(
E sup

1≤i≤n
|Xi|2p

)1/(2p)

≤ 1

2
n

1
2pA+ L

[
E sup

1≤i≤n
|Xi|+ ‖X1‖2p

]
≤ 1

2
n

1
2pA+ LA+ Ln

1
p‖X1‖p + L‖X1‖2p

≤ ‖X1‖p
(1

2
(4L+ 1)n

1
p + 2Ln

1
p

)
+ L‖X1‖2p

≤
(

4L+
1

2

)(
(4L)2 + 1

)
‖X1‖p + L‖X1‖2p.

Thus
‖X1‖2p ≤

(
4 +

1

2L

)(
16L2 + 1

)
‖X1‖p.

Remark 2.24. It is clear from the proof above that we may take α(L) = CL2 in
Theorem 2.10.
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Chapter 3

Convex infimum convolution
ineqality

Functional inequalities such as the Poincaré, log-Sobolev, or Marton-Talagrand
inequality to name a few, play a crucial role in studying concentration of measure,
an important cornerstone of the local theory of Banach spaces. In this chapter we
focus on another example of such inequalities, the infimum convolution inequality,
introduced by Maurey in [27].

Let X be a random vector with values in Rn and let ϕ : Rn → [0,∞] be
a measurable function. We say that the pair (X,ϕ) satisfies the infimum convolution
inequality (ICI for short) if for every bounded measurable function f : Rn → R,

E ef�ϕ(X) E e−f(X) ≤ 1, (3.1)

where f�ϕ denotes the infimum convolution of f and ϕ defined as f�ϕ(x) =
inf{f(y) + ϕ(x− y) : y ∈ Rn} for x ∈ Rn. The function ϕ is called a cost function
and f is called a test function. We also say that the pair (X,ϕ) satisfies the convex
infimum convolution inequality if (3.1) holds for every convex function f : Rn → R
bounded from below.

Maurey showed that Gaussian and exponential random variables satisfy the
ICI with a quadratic and quadratic-linear cost function respectively. Thanks to
the tensorisation property of the ICI, he recovered the Gaussian concentration
inequality as well as the so-called Talagrand two-level concentration inequality for
the exponential product measure. Moreover, Maurey proved that bounded random
variables satisfy the convex ICI with a quadratic cost function (see also Lemma 3.2
in [33] for an improvement).

Later on, Maurey’s idea was developed further by Latała and Wojtaszczyk
who studied comprehensively the ICI in [26]. By testing with linear functions,
they observed that the optimal cost function is given by the Legendre transform
of the cumulant-generating function (here optimal means largest possible, up to
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a scaling constant, because the larger the cost function is, the better (3.1) gets).
They introduced the notion of optimal infimum convolution inequalities, established
them for log-concave product measures and uniform measures on `p-balls, and put
forward important, challenging and far-reaching conjectures.

The recent works [10] and [9] enable to view the ICI from a different perspective.
In [10] Gozlan, Roberto, Samson, and Tetali introduce weak transport-entropy
inequalities and establish their dual formulations. The dual formulations are
exactly the convex ICIs. In [9] Gozlan, Roberto, Samson, Shu and Tetali investigate
extensively the weak transport cost inequalities on the real line, obtaining a
characterisation for arbitrary cost functions which are convex and quadratic near
zero, thus providing a tool for studying the convex ICI. Around the same time, the
convex ICI for the quadratic-linear cost function was fully understood by Feldheim,
Marsiglietti, and Nayar in [8].

In this chapter, based on [35], we go along Latała and Wojtaszczyk’s line
of research and study the optimal convex ICI. Using the aforementioned novel
tools from [9], we show that product measures with symmetric marginals having
log-concave tails satisfy the optimal convex ICI, which complements Latała and
Wojtaszczyk’s result about log-concave product measures. This has applications to
concentration and moment comparison. We also offer an example showing that the
assumption of log-concave tails cannot be weakened substantially.

3.1 Main results
For a random vector X in Rn we define

Λ∗X(x) := LΛX(x) := sup
y∈Rn
{〈x, y〉 − lnE e〈y,X〉},

which is the Legendre transform of the cumulant-generating function

ΛX(x) := lnE e〈x,X〉, x ∈ Rn.

If X is symmetric and the pair (X,ϕ) satisfies the ICI, then ϕ(x) ≤ Λ∗X(x)
for every x ∈ Rn (see Remark 2.12 in [26]). In other words, Λ∗X is the optimal
cost function ϕ for which the ICI can hold. Since this conclusion is obtained by
testing (3.1) with linear functions, the same holds for the convex ICI. Following
[26] we shall say that X satisfies (convex) IC(β) if the pair (X,Λ∗X(·/β)) satisfies
the (convex) ICI.

We are ready to present our first main result.

Theorem 3.1. There exists a universal constant β ≤ 1680e such that every
symmetric random variable with log-concave tails satisfies convex IC(β).
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The (convex) ICI tensorises and, consequently, the property (convex) IC ten-
sorises: if independent random vectors Xi satisfy (convex) IC(βi), i = 1, . . . , n, then
the vector (X1, . . . , Xn) satisfies (convex) IC(max βi) (see [27] and [26]). Therefore
we have the following corollary.

Corollary 3.2. Let X be a symmetric random vector with values in Rn and
independent coordinates with log-concave tails. Then X satisfies convex IC(β) with
a universal constant β ≤ 1680e.

Note that the class of distributions from Theorem 3.1 is wider than the class of
symmetric log-concave product distributions considered by Latała and Wojtaszczyk
in [26]. Among others, it contains measures which do not have a connected support,
e.g. a symmetric Bernoulli random variable.

Recall that variables with log-concave tails are 1-regular (see Remark 1.2).
However, the assumption of log-concave tails in Theorem 3.1 cannot be replaced
by a weaker one of α-regularity of moments: if X is a symmetric random variable
defined by

P(|X| > t) = 1[0,2)(t) +
∞∑
k=1

e−2k1[2k,2k+1)(t), t ≥ 0, (3.2)

then the moments of X grow α-regularly (for some α <∞), but there is no C > 0
such that the pair (X, x 7→ max{(Cx)2, C|x|}) satisfies the convex ICI. All the more,
X cannot satisfy convex IC(β) with any β <∞ (see Section 3.4 for details). Thus
it seems that the assumptions of Theorem 3.1 are not far from necessary conditions
for the convex ICI to hold with an optimal cost function (random variables with
moments growing regularly are akin to random variables with log-concave tails as
the former can essentially be sandwiched between the latter, see (4.6) in [24]).

Our second main result is an application of Theorem 3.1 to moment comparison
in a manner of the previous chapter.

Theorem 3.3. Let X be a symmetric random vector with values in Rn which
moments grow α-regularly. Suppose moreover that X satisfies convex IC(β). Then
for every norm ‖ · ‖ on Rn and every p ≥ 2 we have(

E
∣∣‖X‖ − E‖X‖∣∣p)1/p

≤ Cαβσ‖·‖,X(p),

where C is a universal constant (one can take C = 4
√

2e < 16).

Immediately we obtain the following corollary stating that the comparison of
weak and strong moments holds with a constant 1 at the first strong moment.
Similar inequalities for Rademacher sums with the emphasis on exact values of
constants have also been studied by Oleszkiewicz (see [28, Theorem 2.1]).

44



Corollary 3.4. Let X be a symmetric random vector with values in Rn and with
independent coordinates which have log-concave tails. Then for every norm ‖ · ‖ on
Rn and every p ≥ 2 we have(

E ‖X‖p
)1/p ≤ E ‖X‖+Dσ‖·‖,X(p), (3.3)

where D is a universal constant (one can take D = 6720
√

2e2 < 70223).

Note also that the constant standing at E ‖X‖ is equal to 1. If we only assume
that the coordinates of X are independent and their moments grow α-regularly,
then (3.3) does not always hold (the example here is a vector with independent
coordinates distributed like in (3.2); see Section 3.4 for details), although by
Theorem 2.9 it holds if we allow the constant at E ‖X‖ to be greater than 1 and to
depend on α. Hence Corollary 3.4 and example (3.2) partially answer the following
question raised in [23]: “For which vectors does the comparison of weak and strong
moments hold with constant 1 at the first strong moment?”

The organization of the rest of this chapter is the following. In Section 3.2
and 3.3 we present the proofs of Theorem 3.1 and Proposition 3.3 respectively. In
Section 3.4 we discuss example (3.2) in details.

3.2 Proof of Theorem 3.1
Our approach is based on a characterization – provided by Gozlan, Roberto,
Samson, Shu, and Tetali in [9] – of measures on the real line which satisfy a weak
transport-entropy inequality. We emphasize that our optimal cost functions need
not be quadratic near the origin, therefore we cannot apply their characterization
as is, but have to first fine-tune the cost functions a bit. We shall also need the
following simple lemma.

Lemma 3.5. If X is a symmetric random variable and EX2 = β−2
1 , then

Λ∗X(x/β1) ≤ x2 for |x| ≤ 1.

Proof. Since X is symmetric, we have

E etX = 1 +
∞∑
k=1

‖X‖2k
2kt

2k

(2k)!
≥ 1 +

∞∑
k=1

‖X‖2k
2 t

2k

(2k)!
= 1 +

∞∑
k=1

β−2k
1 t2k

(2k)!
= cosh(β−1

1 |t|).

Moreover, L
(
ln cosh(·)

)
(|u|) ≤ |u|2 for |u| ≤ 1 (see for example the proof of [26,

Proposition 3.3]). Therefore

Λ∗X(x/β1) = L(ΛX(β1·))(x) ≤ L(ln cosh(·))(x) ≤ x2 for |x| ≤ 1.
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Proof of Theorem 3.1. Note that N(0) = 0 and the function N is non-decreasing.
First we tweak the assumptions and change the assertion to a more straightforward
one.

Step 1 (first reduction). We claim that it suffices to prove the assertion for
random variables for which the function N is strictly increasing on the set where it
is finite1 (or, in other words, N(t) = 0 only for t = 0). Indeed, suppose we have done
this and let nowX be any random variable satisfying the assumptions of the theorem.
Let Xε be a symmetric random variable such that P(|Xε| ≥ t) = exp(−Nε(t)),
where Nε(t) = N(t) ∨ εt. If X and Xε are represented in the standard way by the
inverses of their CDFs on the probability space (0, 1), then |Xε| ≤ |X| a.s. (and
also Xε → X a.s. as ε→ 0+). Hence ΛXε ≤ ΛX and therefore also Λ∗Xε ≥ Λ∗X .

The theorem applied to the random variable Xε and the above inequality imply
that the pair (Xε,Λ

∗
X(·/β)) satisfies the convex ICI. Taking ε → 0+ we get the

assertion for X (in the second integral we just use the fact that the test function f
is bounded from below and thus e−f is bounded from above; for the first integral it
suffices (by the Fatou lemma) to prove the convergence of integrals on any interval
[−M,M ], and on such an interval we have f�Λ∗X(x/β) ≤ f(x) + Λ∗X(0) = f(x),
and thus exp(max[−M,M ] f) is a good majorant).

Step 2 (second reduction). We claim that it suffices to prove the assertion
for random variables such that ΛX < ∞. Indeed, suppose we have done this
and let X be any random variable satisfying the assumptions of the theorem.
Let Nε(t) = N(t) ∨ ε2t2 and let Xε be a symmetric random variable such that
P(|Xε| ≥ t) = exp(−Nε(t)). Then, similarly as in Step 1., ΛXε ≤ ΛY <∞, where
Y is symmetric and P(|Y | ≥ t) = exp(−ε2t2). Thus we can apply the proposition
to Xε and we continue as in Step 1.

Step 3 (scaling). Due to the scaling properties of the Legendre transform, we
can assume that EX2 = β−2

1 , where β1 := 2e (the case where X ≡ 0 is trivial).
Note that then, by Markov’s inequality, e−N(1/2) = P(|X| ≥ 1

2
) ≤ 4EX2 = e−2, so

N(1/2) ≥ 2. (3.4)

Step 4 (reformulation). For x ∈ R let

ϕ(x) :=
(
x21{|x|<1} + (2|x| − 1)1{|x|≥1}

)
∨ Λ∗X(x/(2β1)).

We claim that there exists a universal constant b̃ ≤ 1/420, such that the pair
(X,ϕ(b̃·)) satisfies the convex infimum convolution inequality. Of course the asser-
tion follows immediately from that.

Note that ϕ is convex, increasing on [0,∞) (because Λ∗X(·/(2β1)) is convex and
symmetric and thus non-decreasing on [0,∞)). Crucially, ϕ(x) = x2 for x ∈ [0, 1]

1Recall that N(t) := − lnP(|X| ≥ t) for t ≥ 0.
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(by Lemma 3.5), so the cost function ϕ is quadratic on [−1, 1]. Moreover, by
Lemma 3.5, ϕ−1(3) = 2.

Let U = F−1 ◦ Fν , where F , Fν are the distribution functions of X and the
symmetric exponential measure ν on R, respectively. By [9, Theorem 1.1] we know
that if there exists b > 0 such that for every x, y ∈ R we have

∣∣U(x)− U(y)
∣∣ ≤ 1

b
ϕ−1

(
1 + |x− y|

)
, (3.5)

then the pair (X,ϕ(̃b·)), where b̃ = b
210ϕ−1(2+12)

= b
420

, satisfies the convex ICI. We
will show that (3.5) holds with b = 1.

Step 5 (further reformulation). Let a = inf{t > 0 : N(t) =∞}. We have three
possibilities (recall that N is left-continuous):

• a =∞. Then N is continuous, increasing, and transforms [0,∞] onto [0,∞].
Also, F is increasing and therefore F−1 is the usual inverse of F .

• a < ∞ and N(a) < ∞. Then X has an atom at a. Moreover, N(a) =
limt→a− N(t).

• a <∞ and N(a) =∞ = limt→a− N(t).

Of course, in the first case one can extend N by putting N(a) = ∞, so that all
formulas below make sense.

Note that

F (t) =

{
1
2

exp(−N(|t|)) if t < 0,

1− 1
2

exp(−N+(t)) if t ≥ 0,

where N+(t) denotes the right-sided limit of N at t (which is different from N(t) only
if t = a and X has an atom at a). Hence, F is continuous on the interval (−a, a),
the image of (−a, a) under F is the interval

(
1
2

exp(−N(a)), 1 − 1
2

exp(−N(a))
)
,

and we have F (−a) = 1
2

exp(−N(a)) and F (a) = 1. Since the image of R under
U is equal to the image of (0, 1) under F−1, we conclude that U(R) = (−a, a) if
N(a) =∞ and U(R) = [−a, a] if N(a) <∞. Denote A := U(R).

When N(a) <∞, it suffices to check condition (3.5) for x, y ∈ [−a, a] (otherwise
one can change x, y and decrease the right-hand side while not changing the value
of the left-hand side of (3.5)). Take thus x, y ∈ [−a, a] in a case N(a) < ∞
and arbitrary x, y ∈ R in a case N(a) = ∞. Then N(|x|) sgnx = U−1(x) and
N(|y|) sgn y = U−1(y). Therefore, in order to verify (3.5) we need to check that

|x− y| ≤ ϕ−1
(
1 +

∣∣N(|x|) sgn(x)−N(|y|) sgn(y)
∣∣) for x, y ∈ A. (3.6)
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Since we consider the case when ΛX(t) is finite for every t ∈ R, the Chernoff
inequality applies, so for t ≥ EX = 0 we have

1

2
e−N(t) = P(X ≥ t) ≤ e−Λ∗X(t),

so
N(t) ≥ Λ∗X(t)− ln 2. (3.7)

Note that ϕ(|x − y|) < ∞ for x, y ∈ A, since ϕ(|x − y|) = ∞ would imply
Λ∗X(|x − y|/(2β1)) = ∞, and hence Λ∗X(|x − y|/2) = ∞, and – by (3.7) – also
N(|x − y|/2) = ∞, but for x, y ∈ A we have |x − y|/2 ∈ [0, a) when N(a) = ∞
or |x − y|/2 ∈ [0, a] when N(a) < ∞ and in either case N(|x − y|/2) is finite.
Therefore for every x, y ∈ A we have indeed ϕ(|x− y|) <∞. Since ϕ−1(ϕ(z)) = z
for z such that ϕ(z) <∞ (because ϕ is then continuous and increasing on [0, z]),
the condition (3.6) is implied by

ϕ
(
|x− y|

)
≤ 1 +

∣∣N(|x|) sgnx−N(|y|) sgn y
∣∣ for x, y ∈ A. (3.8)

In the next step we check that this is indeed satisfied.
Step 6 (checking the condition (3.8)). Let x0 = inf{x ≥ 1 : 2x− 1 = Λ∗X( x

2β1
)}

(if x0 =∞ we simply do not have to consider Case 2 below). We consider three
cases. We repeatedly use the fact that uN(t) ≥ N(ut) for u ≤ 1, t ≥ 0, which
follows by the convexity of N and the property N(0) = 0.

Case 1. |x − y| ≤ 1. Then ϕ
(
|x − y|

)
= (x − y)2 ≤ 1, so (3.8) is trivially

satisfied.
Case 2. |x − y| ≥ x0. Then ϕ

(
|x − y|

)
= Λ∗X( 1

2β1
|x − y|) ≤ Λ∗X(|x − y|/2).

Inequality (3.7) implies that in order to prove (3.8) it suffices to show that if x, y
are of the same sign, say x, y ≥ 0, then N

(
|x− y|/2) ≤ |N(x)−N(y)| and if x, y

have different signs, we have N
((
|x|+ |y|

)
/2
)
≤ N(|x|) +N(|y|).

By the convexity of N , for s, t ≥ 0 we have

N
(
(s+ t)/2

)
≤ 1

2
N(s) +

1

2
N(t) ≤ N(s) +N(t)

and

N(s/2) +N(t) ≤ N(s) +N(t) ≤ s

s+ t
N(s+ t) +

t

s+ t
N(s+ t) = N(s+ t).

This finishes the proof of (3.8) in Case 2.
Case 3. 1 ≤ |x − y| ≤ x0. Then ϕ

(
|x − y|

)
= 2|x − y| − 1. Consider two

sub-cases:
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(i) x, y have different signs. Without loss of generality we may assume x ≥ |y| ≥
0 ≥ y. Thus in order to obtain (3.8) it suffices to show that N(x) ≥ 2x+ 2|y|.
Note that 1 ≤ x+ |y| ≤ 2x, so x ≥ 1

2
. Thus

N(x) ≥ N(1/2)2x
(3.4)
≥ 4x ≥ 2x+ 2|y|,

which finishes the proof in case (i).

(ii) x, y have the same sign. Without loss of generality we may assume x ≥ y ≥ 0.
Thus it suffices to show that 2(x− y) ≤ N(x)−N(y). Note that due to the
assumption of Case 3 we have x ≥ x− y ≥ 1 ≥ 1

2
, so by the convexity of N

we have
N(x)−N(y)

x− y
≥
N(1

2
)−N(0)
1
2
− 0

(3.4)
≥ 4 ≥ 2

This ends the examination of case (ii) and the proof of the theorem.

3.3 Comparison of weak and strong moments

The goal of this section is to establish the comparison of weak and strong moments
with respect to any norm ‖ · ‖ for random vectors X with independent coordinates
having log-concave tails (Corollary 3.4). In view of Theorem 3.1 and Remark 1.2,
it is enough to show Theorem 3.3.

Our proof of Theorem 3.3 comprises three steps: first we exploit α-regularity of
moments of X to control the size of its cumulant-generating function ΛX , second
we bound the infimum convolution of the optimal cost function with the convex
test function being the norm ‖ · ‖ properly rescaled, and finally by the property
convex IC(β) we obtain exponential tail bounds which integrated out give the
desired moment inequality.

We start with two lemmas corresponding to the first two steps described above
and then we put everything together.

Lemma 3.6. Let p ≥ 2 and suppose that the moments of a random vector X in
Rn grow α-regularly. If for a vector u ∈ Rn we have ‖〈u,X〉‖p ≤ 1, then

ΛX((2eα)−1pu) ≤ p.

Proof. Let k0 be the smallest integer larger than p. If αe‖〈u,X〉‖p ≤ 1/2, then by
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α-regularity we have

ΛX(pu) ≤ ln
(∑
k≥0

E |〈pu,X〉|k

k!

)
≤ ln

( ∑
0≤k≤p

pk
‖〈u,X〉‖kp

k!
+
∑
k>p

(αk)k
‖〈u,X〉‖kp

k!

)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+
∑
k>p

(
αe‖〈u,X〉‖p

)k)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+ 2(αe‖〈u,X〉‖p)k0
)

≤ ln
( ∑

0≤k≤p

pk‖〈u,X〉‖kp
k!

+
(2αep‖〈u,X〉‖p)k0

k0!

)
≤ ln

( ∑
0≤k≤k0

(2αep‖〈u,X〉‖p)k

k!

)
≤ 2αep‖〈u,X〉‖p ≤ p.

Replace u with (2eα)−1u to get the assertion.

Lemma 3.7. Let ‖ · ‖ be a norm on Rn and let X be a random vector with values
in Rn and moments growing α-regularly. For β > 0, p ≥ 2, and x ∈ Rn we have(

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p,

where a = p(2eαβσ‖·‖,X(p))−1.

Proof. For f(x) = a‖x‖ with positive a being arbitrary for now we bound the
infimum convolution as follows(

Λ∗X(·/β)�f
)
(x) = inf

y
sup
z

{
β−1〈y, z〉 − ΛX(z) + a‖x− y‖

}
= inf

y
sup
u

{
(2eαβ)−1p〈y, u〉 − ΛX((2eα)−1pu) + a‖x− y‖

}
≥ inf

y
sup

u:‖〈u,X〉‖p≤1

{
(2eαβ)−1p〈y, u〉 − p+ a‖x− y‖

}
,

where in the last inequality we have used Lemma 3.6. Choose u = σ‖·‖,X(p)−1v
with ‖v‖∗ ≤ 1 such that 〈y, v〉 = ‖y‖. Then clearly ‖〈u,X〉‖p ≤ 1 and thus

Λ∗X(·/β)�f(x) ≥ inf
y

{
(2eαβσ‖·‖,X(p))−1p‖y‖ − p+ a‖x− y‖

}
.

If we now set a = p(2eαβσ‖·‖,X(p))−1, then by the triangle inequality we obtain the
desired lower bound (

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p.
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Proof of Theorem 3.3. Let f(x) = a‖x‖ with a = p(2eαβσ‖·‖,X(p))−1 as in Lemma
3.7. Testing the property convex IC(β) with f and applying Lemma 3.7 yields

E ea‖X‖ E e−a‖X‖ ≤ ep.

By Jensen’s inequality we obtain that both E ea(‖X‖−E ‖X‖) and E ea(−‖X‖+E ‖X‖) are
bounded above by ep. Thus Markov’s inequality implies the tail bound

P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
≤ 2e−tep ≤ 2e−t/2, t ≥ 2p.

Consequently,

ap E
∣∣‖X‖ − E ‖X‖

∣∣p =

∫ ∞
0

ptp−1P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
dt

≤ (2p)p + 2

∫ ∞
0

ptp−1e−t/2dt = (2p)p + 2 · 2ppΓ(p)

≤ 2(2p)p.

Plugging in the value of a gives the result (we can take C = 4
√

2e < 16).

3.4 An example

Let X be a symmetric random variable defined by P(|X| > t) = T (t), where

T (t) := 1[0,2)(t) +
∞∑
k=1

e−2k1[2k,2k+1)(t), t ≥ 0, (3.9)

or, in other words, let |X| have the distribution

(1− e−2)δ2 +
∞∑
k=2

(
e−2k−1 − e−2k

)
δ2k .

Let us first show that the moments of X grow 3-regularly, but X does not satisfy
IC(β) for any β <∞ (we also prove a slightly stronger statement later).

Let Y be a symmetric exponential random variable. Then Y has log-concave
tails, so the moments of Y grow 1-regularly (see Remark 1.2). Moreover, if X
and Y are constructed in the standard way by the inverses of their CDFs on the
probability space (0, 1), then

|Y | ≤ |X| ≤ 2|Y |+ 2.
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Therefore, for p ≥ q ≥ 2,

‖X‖p ≤ 2‖Y ‖p + 2 ≤ 2
p

q
‖Y ‖q + 2 ≤ 3

p

q
‖X‖q

(we used the fact that |X| ≥ 2 in the last inequality). Thus the moments of X
grow 3-regularly.

On the other hand, for every h > 0 there exists t > 0 such that

P(|X| ≥ t+ h) = P(|X| ≥ t).

Therefore by [8, Theorem 1] there is no constant C such that the pair (X,ϕ(·/C)),
where ϕ(x) = 1

2
x21{|x|≤1} + (|x| − 1/2)1{|x|>1}, satisfies the convex infimum convolu-

tion inequality. But, by symmetry and the 3-regularity of moments of X,

ΛX(s) ≤ ln
(

1 +
∑
k≥1

s2k EX2k

(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3k)2k
(
EX2

)k
(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3e/2)2k
(
EX2

)k)
= ln

(
1 +

∑
k≥1

(
9e2s2 EX2/4

)k)
.

Thus for some A, ε > 0 we have ΛX(s) ≤ As2 for |s| ≤ ε and 2Aε2 ≥ 1. Hence

Λ∗X(t) ≥ sup
|s|≤ε
{st− As2} = 1

4A
t21{|t|≤2Aε} + (ε|t| − Aε2)1{|t|>2Aε}

= 2Aε2ϕ
(
t/(2Aε)

)
≥ ϕ

(
t/(2Aε)

)
.

We conclude that X cannot satisfy IC(β) for any β.

Remark 3.8. Let us also sketch an alternative approach. Take a, c > 0, b ∈ R, and
denote ϕ(x) = min{x2, |x|}, f(x) = fa,b(x) = a(x− b)+ for x ∈ R. One can check
that (

f�ϕ(c·)
)
(x) =


0 if x ≤ b,

c2(x− b)2 if b < x ≤ b+ 1/c,

c(x− b) if x > b+ 1/c,

if a > 2c. It is rather elementary but cumbersome to show that for any c > 0 there
exist a > 0 and b ∈ R such that (3.1) is violated by the test function f . We omit
the details.

In fact, the above example shows that even a slightly stronger statement is true:
for vectors with independent coordinates with α-regular growth of moments the
comparison of weak and strong moments of norms does not hold with the constant
1 at the first strong moment. More precisely, let X1, X2, . . . be independent random
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variables with distribution given by (3.9). We claim that there does not exist any
K <∞ such that(

Emax
i≤n
|Xi|p

)1/p

≤ Emax
i≤n
|Xi|+K sup

‖t‖1≤1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

(3.10)

holds for every p ≥ 2 and n ∈ N (note that we chose the `∞-norm as our norm).
We shall estimate the three expressions appearing in (3.10).

We have

sup
‖t‖1≤1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ sup
‖t‖1≤1

n∑
i=1

|ti|‖Xi‖p = ‖X1‖p (3.11)

(this inequality is in fact an equality). Since the moments of X1 grow 3-regularly,
the last term in (3.10) is bounded by K̃p for some K̃ <∞.

To estimate the remaining two terms we need the following standard fact.

Lemma 3.9. For independent events A1, . . . , An,

(1− e−1)
(

1 ∧
n∑
i=1

P(Ai)
)
≤ P

( n⋃
i=1

Ai

)
≤ 1 ∧

n∑
i=1

P(Ai).

In particular, for i.i.d. non-negative random variables Y1, . . . , Yn,

(1− e−1)

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt ≤ Emax

i≤n
Yi ≤

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt.

Proof. Since one of the inequalities is just a union-bound (and the second part of
the assertion follows from the formula for integration by parts), it suffices to prove
the left-hand side inequality of the first part of the assertion. We have

1− P
( n⋃
i=1

Ai

)
= P

( n⋂
i=1

Aci

)
=

n∏
i=1

P(Aci) =
n∏
i=1

(
1− P(Ai)

)
≤ exp

(
−

n∑
i=1

P(Ai)
)
.

Thus we are done if
∑n

i=1 P(Ai) ≥ 1. If on the other hand
∑n

i=1 P(Ai) < 1, then

P
( n⋃
i=1

Ai

)
≥ 1− exp

(
−

n∑
i=1

P(Ai)
)
≥ (1− e−1)

n∑
i=1

P(Ai)

(we used the convexity of x 7→ ex). This finishes the proof.
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Fix m ≥ 2 and let e2m−1 ≤ n < e2m . Then

1 ∧ nT (t) =

{
1 if 0 < t < 2m,

nT (t) if t ≥ 2m.

By the above lemma,

Emax
i≤n
|Xi| ≤

∫ 2m

0

dt+ n

∫ ∞
2m

T (t)dt = 2m + n

∞∑
j=m

e−2j(2j+1 − 2j)

= 2m + n
∞∑
j=m

e−2j2j ≤ 2m + ne−2m2m
∞∑
j=0

(2e−2m)j = 2m +
ne−2m2m

1− 2e−2m
.

Set θ = θ(m,n) = ne−2m ∈ [e−2m−1
, 1). Then

Emax
i≤n
|Xi| ≤ 2m

(
1 +

θ

1− 2e−2m

)
. (3.12)

Similarly,

Emax
i≤n
|Xi|p ≥ (1− e−1)

∫ ∞
0

1 ∧ T (t1/p)dt

= (1− e−1)
[ ∫ 2mp

0

dt+ n

∫ ∞
2mp

T (t1/p)dt
]

= (1− e−1)
[
2mp + n

∞∑
j=m

e−2j
(
2(j+1)p − 2jp

)]
.

Hence

Emax
i≤n
|Xi|p > (1− e−1)ne−2m

(
2(m+1)p − 2mp

)
= (1− e−1)θ2mp(2p − 1). (3.13)

Putting (3.11), (3.12), and (3.13) together, we see that (3.10) would imply

(1− e−1)1/pθ1/p2m(2p − 1)1/p ≤ 2m
(

1 +
θ

1− 2e−2m

)
+ K̃p

for every p ≥ 2, m ≥ 2, and θ ∈ [e−2m−1
, 1) of the form ne−2m , n ∈ N. Take p = 1/θ

and θ ∼ 1/m to get

(1− e−1)θθθ(21/θ − 1)θ ≤ 1 +
θ

1− 2e−2m
+

K̃

2mθ
.

Since θ → 0 and 2mθ → ∞ as m → ∞ this inequality yields 2 ≤ 1, which is
a contradiction. Hence inequality (3.10) cannot hold for all p ≥ 2 and n ∈ N.

54



Chapter 4

Estimates of norms of log-concave
matrices

A classical result regarding spectra of random matrices is Wigner’s Semicircle Law,
which describes the limit of empirical spectral measures of a random matrix with
independent centred entries with equal variance. Theorems of this type say nothing
about the largest eigenvalue (i.e. the operator norm). However, Seginer proved
in [32] that for a random matrix X with i.i.d. symmetric entries E‖X‖2,2

1 is of
the same order as the expectation of the maximum Euclidean norm of rows and
columns of X. The same holds true for the structured Gaussian matrices (i.e. when
Xij = aijgij and gij are i.i.d. standard Gaussian variables), as was recently shown
in [25], and up to a logarithmic factor for any X with independent centred entries,
see [31]. The advance of the two latest results is that they do not require that the
entries of X are equally distributed.

Another upper bound for E‖X‖2,2 also does not require equal distributions but
only the independence of entries: by [17] we know that

E‖X‖2,2 . max
i

√∑
j

EX2
ij + max

j

√∑
i

EX2
ij + 4

√∑
i,j

EX4
ij.

This bound is dimension free, but in some cases is worse than the one from [31].
Upper bounds for the expectation of other operator norms were investigated

in [4] in the case of independent centred entries bounded by 1. For q ≥ 2 and
m × n matrices the authors proved that E‖X‖2,q . max{m1/q,

√
n}. In [11]

Guédon, Hinrichs, Litvak, and Prochno proved that for a structured Gaussian

1Recall that ‖ · ‖p,q stands for the operator norm from `p to `q.
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matrix X = (aijXij)i≤m,j≤n and p, q ≥ 2,

E‖X‖p′,q ≤ C(p, q)

[(
logm

)1/q
max

1≤i≤m

( n∑
j=1

|aij|p
)1/p

+ max
1≤j≤n

( m∑
i=1

|aij|q
)1/q

+
(
logm

)1/qE max
1≤i≤m
1≤j≤n

|Xij|
]
.

This estimate is optimal up to logarithmic terms (see Remark 4.2 below). Note
that in the case (p, q) 6= (2, 2) moment methods fails in estimating E‖X‖p′,q (as
they give information only on the spectrum of X).

All the mentioned results require the independence of entries of X. In this
chapter we will see how to generalise the main result of [11] to a wide class of
random matrices with independent log-concave rows, following the scheme of proof
of the original theorem from [11]. Our estimate is optimal (for fixed p, q ≥ 2) up to
a factor depending logarithmically on the dimension. Let us stress that we do not
require the rows of X to have independent, but only uncorrelated coordinates (and
to be log-concave). We will use results described in the previous chapters of this
dissertation.

To make the notation more clear, if A = (Aij)i≤m,j≤n is an m× n matrix, we
denote by Ai ∈ Rn its i-th row and by A(j) ∈ Rm we denote its j-th column.

Theorem 4.1. Let m ≥ 2, let Y1, . . . , Ym be i.i.d. isotropic log-concave vectors in
Rn, and let A = (Aij) be an m × n (deterministic) matrix. Consider a random
matrix X with entries Xij = AijYij for i ≤ m, j ≤ n, where Yij is the j’th coordinate
of Yi. Then for every p, q ≥ 2 we have

E‖X‖p′,q (4.1)

≤ C(p, q)
[(

logm
)1/q

max
1≤i≤m

∥∥Ai∥∥p + max
1≤j≤n

∥∥A(j)
∥∥
q

+
(
logm

)1/q+1E max
1≤i≤m
1≤j≤n

|Xij|
]
,

where C(p, q) depends only on p and q.

Remark 4.2. Note that the bound from Theorem 4.1 is optimal up to a constant
depending on p, q and logarithmically on the dimension. Indeed, since Yij is log-
concave we have by (1.2) that E|Yij| ≥ (2C1)

−1
(
EY 2

ij

)1/2
= (2C1)

−1. Hence for
every j ≤ n, (we take u = ej, use the unconditionality of ‖ · ‖q and the Jensen
inequality)

E‖X‖p′,q = E sup
u∈`n

p′

‖Xu‖q ≥ E‖X(j)‖q = E
∥∥(|Yij|Aij)i∥∥q ≥ (2C1)−1‖A(j)‖q.
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Since ‖X‖p′,q = ‖XT‖q′,p, we also get E‖X‖p′,q ≥ (2C1)
−1‖Ai‖p for all i ≤ m.

Moreover, for all i ≤ m and j ≤ n, (we take v = ei and u = ej sgnXij)

‖X‖p′,q = sup
u∈`n

p′

sup
v∈`n

q′

vTXu ≥ |Xij|.

Therefore

E‖X‖p′,q ≥ (4C1 + 1)−1
[

max
1≤i≤m

∥∥Ai∥∥p + max
1≤j≤n

∥∥A(j)
∥∥
q

+ E max
1≤i≤m
1≤j≤n

|Xij|
]
,

what yields the claim.
The next corollary is a version of Theorem 4.1 in the spirit of the aforementioned

results from [32, 25, 31]. It follows directly from (4.1), (1.2), and the Jensen
inequality.

Corollary 4.3. Under the assumptions of Theorem 4.1 we have

E‖X‖p′,q ≤ C(p, q)(logm)1+1/q

(
E max

1≤i≤m

( n∑
j=1

|AijYij|p
)1/p

+E max
1≤j≤n

( m∑
i=1

|AijYij|q
)1/q

)
Remark 4.4. If the rows and columns of Y are isotropic and log-concave (we do
not require independence), and p, q ≥ 1, then

E max
1≤i≤m

( n∑
j=1

|AijYij|p
)1/p

+ E max
1≤j≤n

( m∑
i=1

|AijYij|q
)1/q

≤ C
(
p2 max

1≤i≤m

∥∥Ai∥∥p + q2 max
1≤j≤n

∥∥A(j)
∥∥
q

+ (p+ q) log(m ∨ n)E max
1≤i≤m
1≤j≤n

|AijYij|
)
,

(4.2)

so the bound we used in the proof of Corollary 4.3 (the one which uses the Jensen
inequality) may be reversed up to a logarithmic factor and constants depending on
p, q. Inequality (4.2) follows directly from the following proposition.

Proposition 4.5. Let Z be an m×n random matrix with isotropic and log-concave
rows, let B be a deterministic m× n matrix, and let p ≥ 1. Then

E max
1≤i≤m

( n∑
j=1

|BijZij|p
)1/p

. p2 max
1≤i≤m

( n∑
j=1

|Bij|p
)1/p

+ p log(m ∨ n)E max
1≤i≤m
1≤j≤n

|BijZij|.

The rest of this chapter is organised as follows. Section 4.1 contains generalisa-
tions of Lemmas 3.1 and 3.2 from [11] to the log-concave setting and the proof of
Theorem 4.1. In Section 4.2 we will show how to deduce an analogue of Theorem
4.1 for Gaussian mixtures (see Corollary 4.12) and provide a proof of Proposition
4.5.
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4.1 Proof of Theorem 4.1
In the proof of Theorem 4.1 we will use Theorem 2.1 from [11], which is another
version of results provided before by Guédon–Rudelson in [14], and by Guédon–
Mendelson–Pajor–Tomczak-Jaegerman in [12]. Below we use a slightly different
notation than in [11].

Theorem 4.6 ([11, Theorem 2.1]). Let E be a Banach space with modulus of
convexity of power type 2 with constant λ. Let X1, . . . Xm ∈ E∗ be independent
random vectors, q ≥ 2. Define

u := sup
t∈BE

( m∑
i=1

E
∣∣Xi(t)

∣∣q)1/q

, (4.3)

and
v :=

(
λ8
(
T2(E∗)

)2
logmE max

1≤i≤m
‖Xi‖qE∗

)1/q

, (4.4)

where T2(E∗) is the Rademacher type 2 constant of E∗. Then[
E sup
t∈BE

∣∣∣∣ m∑
i=1

(∣∣Xi(t)
∣∣q − E

∣∣Xi(t)
∣∣q)∣∣∣∣]1/q

≤ C(
√
uv + v) ≤ 2C(u+ v).

The next two lemmas provide estimates on quantities u and v appearing in
Theorem 4.6 in the case E = Bn

p′ .

Lemma 4.7. Assume p, q,X, and Y are as in Theorem 4.1. Then(
E max

1≤i≤m
‖Xi‖qp

)1/q

≤ C(p, q)
[

max
1≤i≤m

‖Ai‖p + logm E max
1≤i≤m
1≤j≤n

|Xij|
]
,

where C(p, q) depends only on p and q.

Lemma 4.8. Assume p, q,X, and Y are as in Theorem 4.1. Then

sup
t∈Bn

p′

( m∑
i=1

E
∣∣〈Xi, t〉

∣∣q)1/q

≤ C1q max
1≤j≤n

∥∥A(j)
∥∥
q
. (4.5)

In the proof of Lemma 4.7 we will also need the following estimate:

Lemma 4.9. Assume that Z is an isotropic log-concave vector in Rm. Then for
all 1 ≤ k ≤ m and all a ∈ Rm we have

E max
1≤i≤m

|aiZi| ≥ D−1
3 max

k≤m

(
a∗k min

i≤m
‖Zi‖log(k+1)

)
,

where D3 is an absolute constant.
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In order to prove Theorem 4.1, we repeat the proof scheme from [11].

Proof of Theorem 4.1. We use Theorem 4.6 for E = `np′ . Then λ ∼ p (see [30,
Theorem 5.3]) and T2(E∗) ∼ √p. Let u and v be given by formulas (4.3) and (4.4).
The triangle inequality, Theorem 4.6, Lemma 4.8, and Lemma 4.7 yield

E‖X‖p′,q ≤
(
E‖X‖qp′,q

)1/q
=

[
E sup
t∈Bn

p′

m∑
i=1

∣∣〈t,Xi〉
∣∣q]1/q

≤
[
E sup
t∈Bn

p′

∣∣∣∣ m∑
i=1

(∣∣〈Xi, t〉
∣∣q − E

∣∣〈Xi, t〉
∣∣q)∣∣∣∣]1/q

+ sup
t∈Bn

p′

(
E

m∑
i=1

∣∣〈t,Xi〉
∣∣q)1/q

≤ C · (u+ v)

≤ C(p, q)
[(

logm
)1/q

max
1≤i≤m

∥∥Ai∥∥p + max
1≤j≤n

∥∥A(j)
∥∥
q

+
(
logm

)1/q+1E max
1≤i≤m
1≤j≤n

|Xij|
]
.

The main contribution of this chapter lies in the proofs of Lemmas 4.7, 4.8, and
4.9.

Proof of Lemma 4.9. We may and do assume that a1 ≥ a2 ≥ . . . ≥ am ≥ 0, i.e.
a∗i = ai for i ≤ m. By [21, Proposition 3.3] we have for all k ≤ m,

E max
1≤i≤k

|aiZi| ≥ C−1 min
1≤i≤k

‖aiZi‖log(k+1) ≥ C−1ak min
1≤i≤m

‖Zi‖log(k+1).

Thus

E max
1≤i≤m

|aiZi| = max
1≤k≤m

E max
1≤i≤k

|aiZi| ≥ C−1 max
1≤k≤m

(
ak min

1≤i≤m
‖Zi‖log(k+1)

)
.

Proof of Lemma 4.7. If m = 1 then the assertion follows by (1.2). From now on
we assume that m ≥ 2.

Since we may approximate Aij by nonzero numbers, we may and do assume
that aij 6= 0 for all i, j. Let D1, D2 be the constants from (2.41) applied with r = p,
let D3 be the constant from Lemma 4.9, and recall that C1 is the constant from
(1.2). We may assume that all these constants are greater than 1.

Note that for any a, b ∈ R we have a = (a− b)+ + a ∧ b. Thus, by the triangle
inequality,(

E max
1≤i≤m

‖Xi‖qp
)1/q

≤
(
E max

1≤i≤m

[(
‖Xi‖p−D1pE‖Xi‖p

)q
1{‖Xi‖p≥D1pE‖Xi‖p}

])1/q

+D1p max
1≤i≤m

E‖Xi‖p.

(4.6)
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Moreover, for every 1 ≤ i ≤ m we have by (1.2) and the isotropicity of Yi, that

E‖Xi‖p ≤
( n∑
j=1

E|Yij|p|Aij|p
)1/p

≤ max
j≤n
‖Yij‖p‖Ai‖p ≤ C1p‖Ai‖p

≤ C1p max
1≤k≤m

‖Ak‖p. (4.7)

Now we pass to the estimation of the fist term of (4.6). Let

B := C2
1D3 log(m+ 1) E max

1≤i≤m
1≤j≤n

|Xij| and σ := ( max
1≤i≤m

σ‖·‖p,Xi(2)) ∨B.

By (2.41) we have

E max
1≤i≤m

[(
‖Xi‖p −D1pE‖Xi‖p

)q
1{‖Xi‖p≥D1pE‖Xi‖p}

]
≤ (2D1peσ)q +

∫ ∞
2D1peσ

quq−1P
(

max
1≤i≤m

(
‖Xi‖p −D1pE‖Xi‖p

)
≥ u

)
du

≤ (2D1peσ)q + (D1p)
q

m∑
i=1

∫ ∞
2eσ

quq−1P
(
‖Xi‖p −D1pE‖Xi‖p ≥ D1pu

)
du

≤ (2D1peσ)q + (D1p)
qD2

m∑
i=1

∫ ∞
2eσ

quq−1 sup
‖t‖p′≤1

P
(∣∣∣ n∑

j=1

tjXij

∣∣∣ ≥ u

)
du.

(4.8)

For u ≥ sup‖t‖p′≤1 ‖
∑n

j=1 tjXij‖∞ the function we integrate vanishes, so from now
on we will consider only i’s for which u < sup‖t‖p′≤1 ‖

∑n
j=1 tjXij‖∞.

Note that if 1 ≤ i ≤ m and sup‖t‖p′≤1 ‖
∑n

j=1 tjXij‖∞ > u ≥ eσ ≥ eσ‖·‖p,Xi(2),
then Remark 1.3 implies that r := r(i) := sup{s ≥ 2 : σ‖·‖p,Xi(s) ≤ u/e} ∈ [2,∞)
and σ‖·‖p,Xi(r) = u/e. Therefore

sup
‖t‖p′≤1

P
(∣∣∣ n∑

j=1

tjXij

∣∣∣ ≥ u

)
≤

sup‖t‖p′≤1 ‖〈t,Xi〉‖rr
ur

= e−r. (4.9)

Now we will estimate r from below. For t ≥ 2 let

ϕ(t) = t min
1≤j≤n

‖Yij‖t.

Since Y ′i s are identically distributed, ϕ does not depend on i. By (1.2), and the
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isotropicity of Y we have

σ‖·‖p,Xi(t) ≤ σXi(t) ≤ C1tmax
|x|≤1

(
E
( n∑
j=1

AijYijxj

)2
)1/2

= C1tmax
|x|≤1

(
E
( n∑
j=1

A2
ijx

2
j

)2
)1/2

= C1t max
1≤j≤n

|Aij| · ‖Yij‖2 ≤ C1ϕ(t) max
1≤j≤n

|Aij|. (4.10)

Since we can permute the rows of A, we may and do assume that

max
1≤j≤n

|A1j| ≥ . . . ≥ max
1≤j≤n

|Amj|.

Let j(i) ≤ n be such an index that |Aij(i)| = max1≤j≤n |Aij|. Lemma 4.9 applied to
Zi = Yij(i) and a non-increasing sequence ai = |Aij(i)| implies

E max
1≤i≤m
1≤j≤n

|Xij| ≥ E max
1≤i≤m

|Aij(i)Yij(i)| ≥ D−1
3

(
log(m+1)

)−1
max

1≤i≤m

(
ϕ
(
log(i+1)

)
|Aij(i)|

)
,

so for all i ≤ m we have

B ≥ C2
1ϕ(log(i+ 1))|Aij(i)| = C2

1ϕ(log(i+ 1)) max
1≤j≤n

|Aij|.

Note that by (1.2) for all r ≥ λ ≥ 2 we have σ‖·‖p,Xi(r/λ) ≥ σ‖·‖p,Xi(r)/(C1λ). Take
λ = σ‖·‖p,Xi(r)/B = u/(Be) ≥ 2. Then by a calculation similar to the one above
we get

u

e
= σ‖·‖p,Xi(r) ≤

C1r

2
max
1≤j≤n

|Aij| ≤ C2
1r max

1≤i≤m
1≤j≤n

|Aij|E|Yij| ≤ C2
1rE max

1≤i≤m
1≤j≤n

|Xij| ≤ Br,

so indeed r ≥ λ ≥ 2.
Therefore for all i ≤ m we have

B

C1

=
1

λC1

σ‖·‖p,Xi(r) ≤ σ‖·‖p,Xi(r/λ)
(4.10)
≤ C1ϕ

( r
λ

)
max
1≤j≤n

|Aij| ≤
Bϕ( r

λ
)

C1ϕ(log(i+ 1))
.

(4.11)
Since the function ϕ is strictly increasing, the previous inequality yields r ≥
λ log(i+ 1). This together with (4.9) implies that (recall that λ = u

Be
≥ 2)

m∑
i=1

sup
‖t‖p′≤1

P
(∣∣∣ n∑

j=1

tjXij

∣∣∣ ≥ u
)
≤

m∑
i=1

(i+1)−
u
eB ≤ 2−

u
eB +

∫ ∞
2

x−
u
eB dx ≤ 3·2−

u
eσ .

(4.12)
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Inequalities (4.8), (4.12), and the Stirling formula yield that(
E
[

max
1≤i≤m

(
‖Xi‖p −D1E‖Xi‖p

)q
1{‖Xi‖p≥D1E‖Xi‖p}

])1/q

≤ CD1D
1/q
2 σpq. (4.13)

Moreover, by (1.2)

max
1≤i≤m

σ‖·‖p,Xi(2) ≤ 2C1 max
1≤i≤m

σ‖·‖p,Xi(1) ≤ 2C1 max
1≤i≤m

E‖Xi‖p,

where the second inequality holds since the weak first moment is bounded above
by the strong first moment. This together with (4.6), (4.7), and (4.13) gives the
assertion.

Proof of Lemma 4.8. Note that if 0 ≤ r ≤ s, then for every x ∈ Rn we have
‖x‖s ≤ ‖x‖r, so we may and do assume p = 2. By (1.2), the isotropicity of Y , and
the Jensen inequality we have

sup
t∈Bn2

( m∑
i=1

E
∣∣〈Xi, t〉

∣∣q)1/q

≤ C1q sup
‖t‖2≤1

( m∑
i=1

(
E
∣∣〈Xi, t〉

∣∣2)q/2)1/q

= C1q sup
‖t‖2=1

( m∑
i=1

( n∑
j=1

A2
ijt

2
j

)q/2)1/q

≤ C1q sup
‖t‖2=1

( m∑
i=1

n∑
j=1

|Aij|qt2j
)1/q

= C1q

(
sup
‖t‖2=1

n∑
j=1

∥∥A(j)
∥∥q
q
t2j

)1/q

= C1q max
1≤j≤n

∥∥A(j)
∥∥
q
.

Remark 4.10. By the same reasoning as in the log-concave case, we may prove
(using Corollary 2.11, [24, Theorem 2.1], and the claim below instead of (2.41),
Lemma 4.9 and the previous estimates on σ‖·‖p′ ,Xi(s), respectively) the following.

Let X be an m × n random matrix with entries Xij = aijYij, where Yij are
independent symmetric random variables such that EY 2

ij = 1. Assume that for any
r ≥ 2 and any 1 ≤ i ≤ m, 1 ≤ j ≤ n we have rγ

β
≤ ‖Yij‖r ≤ βrγ with γ ∈ [1

2
, 1].

Then for every p, q ≥ 2 we have

E‖X‖p′,q
≤ C(p, q, β)

[(
logm

)1/q
max

1≤i≤m

∥∥Ai∥∥p + max
1≤j≤n

∥∥A(j)
∥∥
q

+
(
logm

)1/qE max
1≤i≤m
1≤j≤n

|Xij|
]
.
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where C(p, q, β) depends only on p, q, and β.
As we mentioned, it suffices to prove the claim:∥∥∥∥ n∑

j=1

tjYij

∥∥∥∥
r

≤ Cβrγ
∥∥∥∥ n∑
j=1

tjYij

∥∥∥∥
2

= Cβrγ‖t‖2, (4.14)

where C is an absolute constant, and repeat the proof of Theorem 4.1.

Proof of the claim. It suffices to consider r = 2k, where k is an integer. Let us
denote

ci1,...in :=

(
i1 + . . .+ in

i1

)(
i2 + . . .+ in

i2

)
. . .

(
in
in

)
.

Let G = (Gj)
n
j=1 be the standard n-dimensional Gaussian vector. Recall that

for any t ∈ Rn and r ≥ 1 we have ‖
∑n

j=1 tjGj‖r = ‖t‖2‖G1‖r ∼ ‖t‖2

√
r =√

r‖
∑n

j=1 tjYij‖2.
By the assumptions on Yi and by the fact that γ ≥ 1

2
we get∥∥∥∥ n∑

j=1

tjYij

∥∥∥∥2k

2k

=
∑

j1+...+jn=k

c2j1,...2jnEY
2j1
i1 · · ·EY

2jn
in t2j11 · · · t2jnn

≤ β2k
∑

j1+...+jn=k

c2j1,...2jn(2j1)2j1γ · · · (2jn)2jnγt2j11 · · · t2jnn

≤ (2k)2kγ−kβ2k
∑

j1+...+jn=k

c2j1,...2jn(2j1)j1 · · · (2jn)jnt2j11 · · · t2jnn

≤ (2k)2kγ−k(Cβ)2k
∑

j1+...+jn=k

c2j1,...2jnEG
2j1
1 · · ·EG2jn

n t2j11 · · · t2jnn

= (2k)2kγ−k(Cβ)2k

∥∥∥∥ n∑
j=1

tjGj

∥∥∥∥2k

2k

≤ (2k)2kγ(Cβ)2k

∥∥∥∥ n∑
j=1

tjYij

∥∥∥∥2k

2

,

what finishes the proof of (4.14).

By the claim we get

σ‖·‖p,cYi(q) ≤ Cβqγ sup
s∈Bnp∗

√√√√ n∑
j=1

s2
jc

2
j = Cβqγ max

1≤j≤n
|cj| ≤ Cβ2 min

j≤n
‖Yij‖q max

1≤j≤n
|cj|,

what allows us to obtain a version of (4.11) for ϕ(t) := min1≤i≤m,
1≤j≤n

‖Yij‖t.
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4.2 Estimates of norms of matrices in the case of
Gaussian mixtures

Let us recall the definition from [7], where the significance of Gaussian mixtures is
also described.

Definition 4.11. A random variable X is called a (centred) Gaussian mixture if
there exists a positive random variable r and a standard Gaussian random variable
g, independent of r , such that X has the same distribution as the product rg.

We will work with a matrix (RijAijGij)i≤m,j≤n which entries are Gaussian
mixtures. We additionally assume that a random vector in Rnm

+ which coordinates
are the entries of R = (Rij) is log-concave and isotropic. It will be clear from
the proof, that the corollary below is true also for another type of matrices:
(riAijGij)i≤m,j≤n, where (r1, . . . , rm) is an isotropic log-concave random vector.

Corollary 4.12. Let m,n ≥ 2, and let G = (Gij)i≤m,j≤n be a matrix which entries
are i.i.d. standard Gaussian variables. Let Xij = RijBijGij, where R is a log-
concave and isotropic random matrix independent of G. Then for every p, q ≥ 2 we
have

E‖X‖p′,q ≤ C(p, q)

((
logm

)1/q+1
[

max
1≤i≤m

∥∥Bi

∥∥
p

+ E max
1≤i≤m
1≤j≤n

|Xij|
]

+ log n max
1≤j≤n

∥∥B(j)
∥∥
q

)
.

Proof. Theorem 4.1 applied to Y = G and Aij = RijBij yields

E‖X‖p′,q ≤ C(p, q)
[(

logm
)1/qE max

1≤i≤m

∥∥(BijRij)j
∥∥
p

+ E max
1≤j≤n

∥∥(BijRij)i
∥∥
q

+
(
logm

)1/q+1E max
1≤i≤m
1≤j≤n

|Xij|
]
,

so it suffices to prove that

E max
1≤i≤m

∥∥(BijRij)j
∥∥
p
≤ C(p) logm max

1≤i≤m

∥∥Bi

∥∥
p

(4.15)

and
E max

1≤j≤n

∥∥(BijRij)i
∥∥
q
≤ C(q) log n max

1≤j≤n

∥∥B(j)
∥∥
q
.

By the symmetry of assumptions we need only to show (4.15).
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Note that for any u ≥ 1 we have

E max
1≤i≤m

( n∑
j=1

|Bij|pRp
ij

)1/p

≤
(
E max

1≤i≤m

( n∑
j=1

|Bij|pRp
ij

)u/p)1/u

≤
(
E

m∑
i=1

( n∑
j=1

|Bij|pRp
ij

)u/p)1/u

≤ m1/u max
1≤i≤m

(
E
( n∑
j=1

|Bij|pRp
ij

)u/p)1/u

. (4.16)

Fix i ≤ m. By Theorem 2.5 applied to p = u, r = p, and Xj = BijRij we have

(Cp)−1

(
E
( n∑
j=1

|Bij|pRp
ij

)u/p)1/u

≤ E
( n∑
j=1

|Bij|pRp
ij

)1/p

+ sup
t∈Bn

p′

∥∥∥∥ n∑
j=1

BijRijtj

∥∥∥∥
u

.

(4.17)
Let us use (1.2) and the isotropicity of Ri to estimate the first term in (4.17):

E
( n∑
j=1

|Bij|pRp
ij

)1/p

≤
( n∑
j=1

|Bij|pERp
ij

)1/p

≤ C1p‖Bi‖p. (4.18)

Recall that Bn
p′ ⊂ Bn

2 . We use again (1.2) and the isotropicity of ri to estimate the
second term in (4.17):

sup
t∈Bn

p′

∥∥∥∥ n∑
j=1

BijRijtj

∥∥∥∥
u

≤ C1u sup
t∈Bn2

∥∥∥∥ n∑
j=1

BijRijtj

∥∥∥∥
2

= C1u sup
t∈Bn2

( n∑
j=1

B2
ijt

2
j

)1/2

= C1u max
1≤j≤n

|Bij| ≤ C1u‖Bi‖p. (4.19)

Take u = logm and put together (4.16)-(4.18) to get the assertion.

Remark 4.13. Using [11, Theorem 1.1] instead of Theorem 4.1 in the proof above
yields a slightly better estimate:

E‖X‖p′,q ≤ C(p, q)

[(
logm

)1/q+1
max

1≤i≤m

∥∥Bi

∥∥
p

+ (logm)1/qE max
1≤i≤m
1≤j≤n

|Xij|

+ log n max
1≤j≤n

∥∥B(j)
∥∥
q

]
.

Proof of Proposition 4.5. We begin similarly as in the proof of (4.15), but we only
estimate the second term on the right hand-side of (4.17) in a slightly different
way, using (1.2). Let us repeat the whole proof for the Reader’s convenience.
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For any u ≥ 1 we have

E max
1≤i≤m

( n∑
j=1

|Bij|pZp
ij

)1/p

≤
(
E max

1≤i≤m

( n∑
j=1

|Bij|pRp
ij

)u/p)1/u

≤
(
E

m∑
i=1

( n∑
j=1

|Bij|pZp
ij

)u/p)1/u

≤ m1/u max
1≤i≤m

(
E
( n∑
j=1

|Bij|pZp
ij

)u/p)1/u

. (4.20)

Fix i ≤ m. By Theorem 2.5 applied to p = u, r = p, and Xj = BijZij we have

(Cp)−1

(
E
( n∑
j=1

|Bij|pZp
ij

)u/p)1/u

≤ E
( n∑
j=1

|Bij|pZp
ij

)1/p

+ sup
t∈Bn

p′

∥∥∥∥ n∑
j=1

BijZijtj

∥∥∥∥
u

.

(4.21)
Let us use (1.2) and the isotropicity of Zi to estimate the first term in (4.21):

E
( n∑
j=1

|Bij|pZp
ij

)1/p

≤
( n∑
j=1

|Bij|pEZp
ij

)1/p

≤ C1p‖Bi‖p. (4.22)

Recall that Bn
p′ ⊂ Bn

2 . We use again (1.2) and the isotropicity of ri to estimate the
second term in (4.21):

sup
t∈Bn

p′

∥∥∥∥ n∑
j=1

BijZijtj

∥∥∥∥
u

≤ n1/u sup
t∈Bn

p′

(
E max

1≤j≤n
|tjBijZij|u

)1/u ≤ n1/uC1uE max
1≤j≤n

|BijZij|.

We take u = log(m ∨ n) to get the assertion.
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