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Abstract

In the following thesis we are investigating random multilinear forms, which are called random
chaoses, defined by

S = E a’il,‘.‘,’idX’il"'X’idv
i1,..050g

where d € N, X1,...,X,, are independent random variables, and a;, ... ;, € F', where (F,[-||) is a
Banach space. We want to derive two-sided bounds of ||S||,, := (E[|S [|”)!/P under some conditions
about the structure of (a;,.....i,)iy,....i, and the distribution of (X1, Xo,...).

The first part of the thesis concerns the case when F' =R (the real case). In the first chapter
we assume that the random variables X1, Xs,... are nonnegative and their moments do not grow
"too fast". In the second chapter we consider the symmetric random variables satisfying the same
moment condition.

The second part is dedicated to vector-valued chaoses. We derive certain upper bounds which
turn out to be two-sided in a special class of Banach spaces (which includes L, spaces). In the
third and fourth chapters we analyze the case when the random variables X1, Xo,... have Gaussian
distribution and d =2 or d > 2 respectively. In the fifth chapter we study variables with log-concave
tails and d = 2.

AMS 2000 subject classifications: Primary: 60E15. Secondary: 60B11.

Keywords: random chaoses, random quadratic forms, two-sided estimates for tails and moments,
logarithmically concave tails, suprema of Gaussian processes, metric entropy.

Rafal Meller
Warsaw, January 2019
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Streszczenie

Niniejsza rozprawa poswiecona jest losowym formom wieloliniowym, zwanym chaosami losowymi,
ktore sa zdefiniowane jako

S = § , Qiy,.oigXiy - Xig,
11,.000lg

gdzie d € N, X1,..., X, sg niezaleznymi zmiennymi losowymi natomiast a;, ..., sa wspolczyn-
nikami z przestrzeni Banacha (F,|-||). Naszym celem jest znalezienie dwustronnych oszacowan
momentéw catkowych zmiennej S okreslonych jako ||, := (E|S |P)1/P. Bedziemy przy tym za-
klada¢ pewne warunki o strukturze wspélczynnikéw (a;, . ; d)ilv---:i oraz o rozktadzie zmiennych
losowych (X1, Xo,...).

W pierwszej czesci pracy rozwazamy przypadek gdy F' =R (przypadek rzeczywisty). W pier-
wszym rozdziale zakladamy, ze zmienne losowe X1, X5,... sa nieujemne oraz, ze momenty tych
zmiennych nie rosna "za szybko". W drugim rozdziale rozwazamy symetryczne zmienne losowe,
ktore spelniajg ten sam warunek na wzrost momentow.

Druga czeéé pracy poswiecona jest przypadkowi chaoséow losowych o wartosciach wektorowych.
Wyprowadzamy gérne oszacowania na momenty, ktére mozna odwrécié¢ w pewnej klasie przestrzeni
Banacha (zawierajacej przestrzenie Ly). Trzeci i czwarty rozdzial po$wiecony jest przypadkowi,
gdy zmienne X1, Xo,... maja rozklad normalny oraz, gdy odpowiednio d =2 i d > 2. W ostatnim
rozdziale omowiony jest przypadek zmiennych losowych o logarytmicznie wklestych ogonach oraz
d=2.

d

Klasyfikacja tematyczna. 60E15; 60B11.

Stowa kluczowe. Chaosy losowe, losowe formy kwadratowe, dwustronne oszacowania momentéw
i ogonéw, logarytmicznie wkleste ogony, suprema procesow gaussowskich, entropia metryczna.

Rafal Meller
Warszawa, Styczen 2019
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Chapter 0
Introduction

0.1 Formulation of the problem.

Assume that X1,Xs,... are independent random variables and a;,, .., € F, where (F,| - ) is a
Banach space. Then we will call

S= > ai, i, Xi - Xiy
11,.-50q

a random (undecoupled) chaos of order d € N. We say that S is symmetric if r.v’s X1, X, ...
are symmetric. We define p-th moment of S by |||, = (E |S|IP)1/P. We aim at finding two-sided
bounds for [|S]|,,, so to find a "simpler" expression H which depends on p, (ai,...,iz)i,...,i; and the
distribution of X7, Xs,... such that

1t

C@)H<|S], < Cd)H, (0.1)

where C(d) (resp. C) is a constant which depends only on d (resp. is a numerical constant) and
differs at each occurrence (if (0.1) holds we will write S ~% H for short).

For d =1 the problem is well understood. For d > 1 it may be guessed the form of H by the
decoupling argument (see below) and iteration. The induction type arguments usually enable to
show in an easy way the lower bound in (0.1). The upper bound is typically much harder to establish.

In order to derive (0.1) some conditions about the distribution of (X7, Xs,...) must be imposed
and usually we add some conditions about the structure of (aily-n’id)il ,...vig- For example we will con-
sider X; ~N(0,1) (even in this case there are still open problems). In this instance we write g1, ...,gn
instead of X1,...,X,,. Another possibility is to assume that Xi,..., X, are symmetric random vari-
ables with log-concave tails (LCT for short), i.e for any i the function t — —InP(|X;| > t) € [0, 0]
is convex on [0,00). This class is interesting, since it contains many important distributions such
as Rademacher, normal and exponential.

We usually assume about the structure of (ail,...,id)il,...,id that (observe the first condition does
not reduce the generality)

o (aj,..i,) is symmetric, i.e a;,, . i, = Wi (1 seeevin(a) for all permutations 7 of [d] := {1,...,d},

o (a;,..i,) is tetrahedral, i.e iy, =14; for k # 1, k,l < d implies a;,,...;, = 0.
The reason for these conditions is that they enable the decoupling method [7,8,14], a basic tool in
this area.

Theorem 0.1.1 (Kwapien decoupling theorem). Let S be a chaos of order d and (a;,,...i,)iy,....ig4
be symmetric and tetrahedral. Take



r_ ) vl d
S= E Qiyyeonyig Xy - Xig
115050

where (Xik)ign, k=1,...d are independent copies of (X;)i<n. Then for any p>1
d l

So instead of bounding [|S]|, it is enough to bound [[S’|,,. The latter object has a reacher
structure which allows us for inductive-type reasoning. Indeed, assume that

> iy i X XD~ H(d, (as, i) p)-
11,.000lg p

By conditioning we obtain

. . 1 ... yd yd+1 ~a . . d+1
Z Wiy ,..yigpr Xiy XidXid+1 H | d, Za‘llv-uﬂdJ—lXidJrl D

U1, ld 41 td+1

p p

By concentration of measure-type arguments the problem of estimating the latter expression can
be reduced (often) to the problem of bounding HH d,>> XLy p)’

id+1 Sld+1 N g
expressed as an expectation of suprema of stochastic processes. For this reason the problem of
estimating ||.S]| p 1s deeply connected with the problem of estimating the expectation of suprema
of some stochastic processes. The modern approach of dealing with the latter is based on chaining
methods which are ubiquitous in the second part of the thesis.

Tail estimates from moments bounds can be deduced in an easy way. Assume that [|S||, ~ h(p)
for any p > 1. Then Chebyshev’s inequality yields

Qi ,.. which can be
1

P(IS| > Ch(p) < (L) e (0.2)
=TI =\Cnpy ) = '

Surprisingly inequality (0.2) can be reversed if h(2p) < Ch(p) or equivalently if [|S[|,, < CS]],
(this condition is satisfied if the chaos S is based on random variables with moments growing at
most polynomially, which holds in all of our considerations). By Paley-Zygmund’s inequality we
have

1 1\ 181, 7
P(|S|>C th(p >]P’(S >—|s )><1—> P | >eCP,
(IS] (p)) 1512 5 1Sl 5 15T,

Observe that for d =1, S =3 a;X; is just a linear combination of random variables, and thus
many classical bounds on moments and tails can be applied (such as Khintchine, Rosenthal, Bern-
stein, Hoeffding, Prokhorov and Bennett inequalities to name a few). The situation is more sophis-
ticated if two-sided estimates are considered. Moreover, for d > 2 (observe that for d =2 we have
S = Zij a;;X;X;) the classical inequalities cannot be applied, since the summands are no longer
independent (even in the decoupled case).

We would like to end this section by the following comment. The field of studying chaoses is quite
technical, and obtained formulas are not easy to grasp. After spending some time on the problems
connected with random chaoses the notation becomes quite natural, but for someone who sees it
for the first time it can be quite overwhelming.



0.2 Significance and earlier results

Chaoses appear in many branches of modern probability, e.g. as approximations of multiple stochas-
tic integrals, elements of Fourier expansions in harmonic analysis on the discrete cube (when the
underlying variables X;’s are independent Rademachers), in subgraph counting problems for ran-
dom graphs (in this case X;’s are zero-one random variables), in statistical physics or in statistics.
For instance, recently the Hanson-Wright type inequality (i.e estimates for quadratic forms in sub-
gaussian random variables) attracted attention of many statisticians (the relatively recent paper
[28] has more than 250 citations in the google scholar database).

The case of d =1 and real coefficients can be considered closed due to results of Latala [15].
Assuming that the r.v’s X1,...,X,, are symmetric (and nothing more) Latala [15] proved that

. X;|?
|ZX ~1nf{t>0: Zm@‘ut’ )Sp}, (0.3)
K3 P 1

(the result holds also under the assumption that P(Xy,...,X, > 0) =1). The point of the above
formula is that in many cases the function ¢t — InE|1+¢X;|” can be estimated in a simple way.

The case of coefficients from a Banach space (F, ||-||) is solved under the assumption that moments
of X1,...,X,, grow at most polynomially [21], so in quite satisfying generality. Namely, it is shown
in [21] that in this case

[

[

‘Zw(ai)Xi

+ sup
1 LPEF*
lell.=1

)

p

where 3 is such that X1, Xo,... satisfy (0.5). The term [|3°¢(a;)X;|, can be bounded by [15] or
Theorem 2.3.1.

The case d > 2 was much less understood. In particular all results mentioned below (except the
last one in this subsection) involve only real-valued chaoses.

For arbitrary d, two-sided estimates were known in the following cases:

e Gaussian chaoses [16],
e Chaoses based on nonnegative r.v’s with LCT and nonnegative a;,,...4,’s [19],
e Chaoses based on symmetric r.v’s with logarithmically convex tails [13].

Lochowski [26] derived (generalizing the earlier result [3]) also the two-sided bound for arbitrary d
in the real case for chaoses based on symmetric random variables with LCT. However, his bounds
involve suprema of some stochastic processes indexed by sets which depend on p. Such expressions
are in general very hard to estimate.

In the symmetric real-valued case for small d, two-sided estimates were known in the following
cases:

e d=2, and chaoses based on symmetric r.v’s with LCT [17],
e d =3, and chaoses based on symmetric r.v’s with LCT [1]

In the case of d > 1 and vector-valued chaoses only result concerning the Gaussian chaoses was
known (cf. Subsection 0.3.3). However, this bound involves quantity (the expectation of suprema
of norms evaluated on a Gaussian vector) which is hard to deal with.
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0.3 Overview of the thesis

The following dissertation consists of five chapters containing results from the research conducted
at the Mathematical Institute of University of Warsaw from February 2016 to December 2018.
The chapters are based mainly (except for the fifth chapter) on published or submitted articles as
follows:

e Chapter 1 R. Meller, Two-sided moment estimates for a class of nonnegative chaoses, Statistics
& Probability Letters 119 (2016), 213-219;

e Chapter 2 R. Meller, Tail and moment estimates for a class of random chaoses of order two, to
appear in Studia Mathematica (2018);

e Chapter 3 R. Adamczak, R. Latala, R. Meller, Hanson-Wright inequality in Banach spaces,
submitted;

e Chapter 4 R. Adamczak, R. Latala, R. Meller, Moments of Gaussian chaoses in Banach spaces,
in preparation.

The fifth chapter contains observations of the author of this thesis concerning chaoses based on
symmetric r.v’s with LCT and with values in L, spaces. This doctoral dissertation uses many
results contained in various publications. For the convenience of the reader most of the quatoed
results are gathered in the Appendix (Chapter 6).

We will now briefly discuss the main results presented in the thesis. Since in all of them we
assume conditions which enable the decoupling method (with a small exception in the third and
fourth chapter) we will limit ourself mostly to the decoupled case.

0.3.1 Two-sided moment estimates for a class of nonnegative chaoses

Assume that for any 41,...,iq we have a;, . ;, >0, IP(V@ng >0)=1, and for any 4, j, ]EXij =1and

ij has LCT. We define Nij (t) = —lnIP’(XZ-j > t) € [0,00]. Lochowski and Latala [19] showed that

d
/ d J
18], ~sup D aiyig [J1+0]), (0.4)
[ANTIR %) Jj=1
where the supremum is taken over vectors v!,...,v% € R? such that for any j =1,2,...,d

> N/ (w])<p.
i
In particular for d =1 they obtained that
|zaixg ~sup{zai<1+u3>|2N3<v3>Sp}.
i » i i

FLochowski showed in his PHD thesis that chaoses based on i.i.d zero-one random variables satisfy
(0.4) with a small correction. Namely he showed that




d
1. g, 1
Cld) M= =)sup 3 aiy, gy [[(aroi) <[197]],
01,eeyig k=1
1 d
< Cdm’()sup Y- ail,...,idl}ll(a+vfk>»
21y-+052d =

where a = IP’(Xg =1) (in the above formula we have (a+vfk) instead of (1 +vfk) since the r.v’s
(X Z )ij are not normalized). He also showed that the constant in the upper bound must depend on o.
If P(X =1) =1—P(X =0) = o then for any p > 1, we have || X ||, <a~*/?|X||,,. This justified the
question whether (0.4) holds (with a constant depending on () for nonnegative variables satisfying

ng (0.5)

<57
2p

p

We give a positive answer which is the main result of the first chapter.

Theorem 0.3.1. Let (X]);<pn j<a be independent nonnegative random variables satisfying (0.5)
and IEXiJ = 1. Then for any nonnegative coefficients (ai17~-~7id)i17---7id§n we have

d
4 .
HS/HPN B sup Z aih._.’idH(l—FUgj),
i1 st j=1
where the supremum is taken over vl,... v¢ € R? such that for any j =1,2,...,d

> N/ (v]) <p.

It is a simple fact that moments of a symmetric r.v. X with LCT satisfy (0.5) with 8 =2, so
Theorem 0.3.1 generalizes [19]. Moreover, (0.5) arises naturally in the paper of Latala and Strzelecka
[21] as a sufficient condition (and even necessary in the i.i.d case) for comparison of weak and strong
moments of the random variable sup;cpcgn > t;X;. Lastly it is shown in Chapter 1 (see Remark
1.2.2 therein) that if InP(|X| > Ktx) <t*P(|X| > ) for any ¢,z > 1 and some constants K, «, then
the random variable X satisfies (0.5) with 8 = B(K,«). Thus this condition can be verified in many
examples by an easy computation. _

The crucial idea in the proof of Theorem 0.3.1 was that any random variable X7 which satisfies
(0.5) is "almost" a product of [Ing] independent variables with log-concave tails. Informally

~ Mmg)
X}~ [ v¢ k), (0.6)
k=1

where (Yzj(k))wk are independent nonnegative r.v’s with LCT. Thus

d [Inp]

1’1, =11 D aniaXi, X5 =|| D0 @] I Ya®)|
11,000ylg 11,.0000q

=1 k=1
p p

where the latter is chaos based on r.v’s with LCT and the result from [19] can be applied.



6

0.3.2 Tail and moment estimates for a class of random chaoses of
order two

We restrict our attention to the case d =2 so that S’ = Eij ainilXJZ. We assume that for any 1, 7,
E(X})?= IEJ(X?)2 =1, the bound (0.5) holds and XZ-I,XJ2 are symmetric (in particular a;; can be

negative). We define
. t2 for [t| <1
Nil(t) = 1 o ‘ | = )
—InP(|X;'| > |¢]) for |t|>1

Nf(t) is defined analogously. We denote

(@il x1 x2, = sup 4 Daijziy; | SN (@) <p. Yo RF ) <py, (0.7)
J

iJ %

I(@i)ll x1 p = sup {Zaiwi
i

ZNE(%)SP} (@)l 2 =sup § Dy ‘ D Ny <p
’ ’ (0.8)

The main result of the chapter is the following theorem.

Theorem 0.3.2. Under the above assumptions for any p > 1 we have

>0 XPXF |~ (el x2 0+ ,/Z“?j + ,/Z“?j : (0.9)
g P J X1p ‘ X2,p

The above theorem generalizes Latala’s result [17]. It was a surprise that in both cases (chaoses
based on r.v’s with LCT and chaoses based on r.v’s satisfying (0.5)) the moments can be estimated
in the same way (cf. [17, Theorem 1]). The proof of Theorem 0.3.2 is based on three ideas (listed
in chronological order as they were invented).

1. Use the decomposition (0.6) (in the symmetric case we decompose r.v’s into a product of
symmetric r.v’s with LCT).

2. Introduce a family of technical norms and establish the moment estimates in the case d =1,
namely show that [|3, aiX}Hp ~B l[(ai)ll x1 -

3. Reduce (0.9) to the case where (ij)j have LCT.

Contrary to the nonnegative case the first idea is not enough. After using our decomposition we

obtain
[n 3] [n 5]

S apXixXZ| = ai; [ Xtk [ X2(R)| = HSQECHP.

ij » ij k=1 k=1 »
The main problem is that there is no counterpart of [19] in the symmetric case. The bounds in the
general symmetric LCT case are known only for chaoses of order d < 3, while if 3> e? then Sl is
a chaos of order at least 4. However, S/, has a simple coefficient structure (support is concentrated
on the generalized diagonal) and this property plays a fundamental role in the proof of (0.9).

The chapter naturally falls into two parts. In the first part we study the case of d = 1. It would be
expected that Latala’s result (0.3) can be applied directly, but this is not this case (at least we did
not manage to do it). Instead a direct tedious proof is presented. In the second part of the chapter,
firstly we develop some decomposition lemmas concerning processes based on the symmetric r.v’s
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satisfying (0.5) (which in our opinion are an independent interest). Then by applying few ideas and
invoking results obtained in [1] we are able to show Theorem 0.3.2.

0.3.3 Hanson-Wright inequality in Banach spaces

This chapter describe an attempt to find two-sided estimates for moments of vector-valued Gaussian
chaoses of order 2. In this instance S’ =}, a;;9ig; and a;; € F', where (F, || - [|) is a Banach space.
Such bounds were known in the literature in various contexts, even for arbitrary degree of the
Gaussian chaos cf. [3, 5,22, 24]. However, they involve quantities which are hard to work with
(expectations of the suprema of norms evaluated on Gaussian vectors). In particular case d =2 it
was known that for any p > 1,

> aijgigi| ~E(D aiigigi|+VPE sup |1 aijxig;
i i
p

lz]l2<1 ij

+p sup Zaijxiyj . (0.10)
lzll2<1,|lyll2<1 ij

The estimation of the problematic term Esup”xhgl HEU aija:ing by quantities, which in many
situations can be handled more easily, is the crucial result from the third chapter.

Proposition 0.3.3. In the above setting for any p > 1, we have

E sup || agwigi|| <p 2B\ ajgid;| +E|D aigis| | + sup B> aiwig;
lzll2<1 "5 ij ij lz]l2<1 ij

+ sup Zaijxij +pt/? sup Zaijxiyj . (0.11)
lzll2<1|%; lzll2<1,llyll2<1 |75

Unfortunately, (0.11) is to weak to provide a complete description of moments of a vector-valued
Gaussian chaoses of order 2, because it is not true that in any Banach space (F,|-||)

1
Zaijgw} > aE Zaijgij
ij ij

p

The reason for appearance of the term E Zij aijGij

’ in (0.11) is the lackness of proper entropy

estimates of certain sets in the Hilbert Schmidt norm. Moreover, it can be shown that in general
such estimates cannot exist. But if

E Zaijgij <aE Zaijgig; for any matrix (a;;);; with values in F, (0.12)
i i

where « is a constant which depends only on the Banach space F, (0.11) is enough to obtain
two-sided bounds which are the main result of the third chapter.

Theorem 0.3.4. Let (a;;)i; be a matriz with values in the Banach space (F,|-||). Then for any
p=>1



Zaijgig;‘ §C< Zaz]gzg] +E Zaz]gu +\/]3 sup E Zamngﬂ
ij

llzl2<1
p

B (Sl S} 019
lzll2< lzll2<1,[lyll2 <1755

Additionally if (0.12) holds then

Zaijgig} ~% Zamgzg] +\/Z>) sup E Zaungj
ij v [lz|l2<1

+./p sup HZa”xUH—!—p sup Za”x,y] . (0.14)

llzll2< llzll2<1, Hy\|2<1 i

It is an easy exercise to show that (0.12) holds (with « ~ ¢) in the Ly spaces. Moreover, in the
case of L, spaces the non deterministic expressions can be replaced by deterministic ones. We also
expect that (0.14) is true in an arbitrary Banach space (with the constant independent on the
geometry of the space) but we are unable to show this. However, we managed to show (0.14) up to
a Inp factor (see Theorem 3.1.3 in the third chapter).

By standard arguments (0.13) yields the following Hanson-Wright type inequality in the Banach
space (observe that in the assertion an undecoupled chaos occurs). In the below statement d;;
stands for the Kronecker delta.

Theorem 0.3.5. Let X1, Xo,... be independent zero-mean a—subgaussian random variables and
(aij)ij be a symmetric matriz with values in a normed space (F,|-||). Then for

t> COé2 Zam g@gj —(5@] +E Zaugz]

i#]
we have
P X; X, —E(X; X > < LI, > ¢
%:Cbij( X —E(X; X;))|| =t | <2exp —gmln AU a2V () (0.15)
where
U= sup E Zal]xlgj sup Za”xm ,
lzll2<1 i (i) ll2<1||7%;

V= Za”x,y]

||E||2<1 Hy\|2<1 ij

It is easy to check that in the case F' =R Theorem 0.3.5 implies the classical Hanson-Wright
bound (see Remark 3.1.8 in the third chapter).



0.3.4 Moments of Gaussian chaoses in Banach spaces

In this chapter we discuss moments of vector valued Gaussian chaoses of order bigger than 2 and
Lg-valued exponential chaoses of an arbitrary order. The latter is deduced from the Gaussian case.
The exponential random variable is "almost" a product of two standard Gaussian variables thus
any exponential chaos of order d can be approximated by a Gaussian one of order 2d. There are
two reasons why we decide to divide our results concerning vector valued Gaussian chaoses. First,
we wanted to make the case (probably the most interesting one) d = 2 transparent. Secondly, the
proofs of upper bounds for chaoses of orders d =2 and d > 2 differ significantly.

The main idea (which arises from (0.11)) is to introduce Gaussian variables indexed by a group
of indexes instead of singletons. For example, our main result Theorem 4.2.1 takes for d = 3 the fol-
lowing form (we decided to quote the particular case of Theorem 4.2.1 in order to avoid introducing
a new notation in the introduction).

Theorem 0.3.6. Assume that (a;;i)ijk s a symmetric matriz with values in a normed space
(Fy|I)ID- Then for any p > 1, we have

—1 1.2 3 1.2 3 1 2
c Zaijkgi 959k <E Zaijkgi 959%|| T E Zaijkgijgk +E Zaijkgijk
ijk » ijk ijk ijk

+p1/2< S ST I |
lz]l2<1 ijk lz]l2<1 ijk

+ sup E Zaijkgﬂjk + sup Zaijkﬂfijk
llzll2<1 ijk llz|l2<1 ijk

+p sup K Zaz’jkgﬂjyk + sup Zaijkxz’jyk
lll2:llyll2<1 |55k lzll2llyllz<1 || 57

+p3/2 sup Zaijkxiyjzk . (0.16)
lzll2,llyll2,lzll2<1 || 75%

It is worth emphasizing that the bound obtained in Theorem 4.2.1 (so also (0.16)) holds in
an arbitrary Banach space with a constant dependent only on the order of chaos (in particular
independent of the geometry of the Banach space). Unfortunately, as for the case d =2 discussed
above there is no chance in reversing it in general. However, it can be done (for any d) if (0.12)
holds, so in particular (as we mentioned above) in L, spaces (in which case all non deterministic
expressions can be replaced by deterministic ones). It is a content of Theorem 4.2.1 and Corollary
4.2.8 which for d = 3 takes the following form.

Theorem 0.3.7. Assume that (0.12) holds in the normed space (F,|-||) and let (a;ji)ijr be a
symmetric matriz with values in F'. Then for any p > 1, we have
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1.2 3 1.2 3

E Qijk9; 959k ~*E E Qijk9; 959k
ijk ijk

P

1/2 12
+p!/ sup E E aijk9; 950k||+ sup E E 0;jLGiTjk| + sup E AijkTijk
lzll2<1 ijk llzll2<1 ijk lzll2<1 ijk

+p[ s B agrgimiye|+ osup (1D aikmiue
lell2.lvllz<t  ||557 lell2:lullz<1 || 57

3/2
+p sup Zaijkxiyjzk
lzll2:llyll2llzl2<1 || 555

Moreover, using methods from [2] we were able to generalize our result concerning decoupled
chaoses, to any polynomial in Gaussian variables with coefficients from the normed space (F,||-||)
(which in particular includes the case of undecoupled chaoses i.e, S =3 a;,,....i;9i1,....i,)- Our proof
of the main results uses techniques introduced in [16]. Notably the heart of the proof is an estimation
of the expectation of the supremum of a certain Gaussian process, namely the estimation of

2 d |l ._
E  sup Z iy, ig 9 Tiy T4 || 2= Fa(U),
(z2,...,2d)eU i1, sig

where U C (Bg)dfl. Unfortunately, the proof is very technical and there is a simple reason behind
it. Observe that for canonical Gaussian processes we have

G(T) :=Esu tigi = Esu ti+vi)g; = G(T +v),
( ) teg; i9i teg;( i z)gz ( )

where T'C R™ and v € R™. Thus the functional G is translation invariant. This is not the case
concerning the functional Fj; resulting in technical problems in the chaining argument. In particular

for d =2 the functional F> takes the form F»(U) =Esup, HZU aijgi%;
Fy(U+v)=Fy(U).

, and it is not true that

0.3.5 Moments estimates for some types of chaos in Banach spaces

We follow the notation used in Subsection 0.3.2, but we assume this time that Xl1 , X22, .. .,X12,X22, e
are symmetric, independent r.v’s with LCT and (a;;);; is a matrix with values in the Banach space
(F,[I-]l)- We want to estimate the moments of a vector-valued chaos S' =37, ainilij. While
proving the results described in Subsection 0.3.3 it was clear that by modification of the proof of
the entropy estimates, the entropy estimates needed in the aforementioned case can be proved.
However, it was also clear that the equivalent of the [1, Theorem 7.2] is needed. Without going
into details we would like to decompose a "big" set into a sum of "not too many" sets which are
"small". By "small" set we mean that a supremum of a certain Gaussian process indexed by this set
is "small". The problem is that in the vector case the "big" set has a worse structure than in the
real case. Unfortunately, we did not manage to derive an equivalent of [1, Theorem 7.2]. Our main
idea is that a simpler decomposition can be used under the assumption that the r.v’s X2, X2, ...
are subgaussian. As a result we obtain the following upper bound on moments of S’ (with the
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additional subgaussianity assumption) with values in a general Banach space. Before we state it we
recall the norms [|-| x1 y2 ,, [l x1 ., Il x2 , defined in (0.7) and (0.8).

Theorem 0.3.8. Syppose that Xll,X21,..., X12,X22,... are symmetric and independent 1.v’s with
LCT such that IE(X;)2 =1 for j=1,2, i > 1. Assume also that X?,X2,... are a-subgausian. Let
(aij)ij be a matriz with values in the Banach space (F,|-||). Then for any p > 1, we have

c! Za”X}X? <E ZGZ]XSX? +al| E Zaijgij +E Zaijgié'j
(%) %) ] %)
p

+sup{ E Zaijm%X? |ZN11(le)§p
i i

+supq E Zainilaﬁ |ZN]2(a:j2)§p
ij J

+ sup 1> olai)? + sup (e(aij))ijll x1 x2,,  (0.17)
pEF* i . pEF*
llell . <1 INx2p el <1

where (F*,||||,) s the dual space to (F,|-||).

As in the Gaussian case, this bound turns out to be two-sided in the case of Ly-values chaoses. The
crucial property of L, space, which is used is that for any chaos S’ based on the variables with LCT

we have E ||S’(t)||Lq(T) ~4 H /E\S’(t)PHL . (observe that the latter expression is computable).
q

Theorem 0.3.9. Let X{,X3,..., X?,X3,... be as in Theorem 0.3.8 and (a;j);j be a matriz with
values in Ly(T,dp). Then for any p > 1, we have

ZainilX? ~DOR Zain}Xf +sup< E Zaijx}X; | ZNil(x%)gp
ij » ij L, ij Ly i
+sup( E Zain}m? | ZNJQ(:E?)Sp (0.18)
ij Lq J
+ su (aif)? + sup |[(p(aij))ill (0.19)
p P A5 % P\Gij))ijll x1 x2 5o
$eLg i | velg
llell <1 TRXZp el <1

where (L, [-]l,) = (Lg~, ||~HLq*) is the dual space to Ly(T,dp).

Without quoting the result, we will only mention that in the case of the Hilbert space Lo(T,du)
the assumption about subgaussanity can be dropped.

In this chapter we have applied most of the techniques used and developed in previous chapters.
For this reason it is a good summary of this PHD dissertation.
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Chapter 1

Two-sided moment estimates for a class of
nonnegative chaoses

In this Chapter we study homogeneous tetrahedral chaoses of order d € N, i.e. random variables of
the form
S = Z ail,...,idXil"'Xida
1<iy, . ig<n

where (ai1,»--7id) is a multi-indexed symmetric array of real numbers such that a;, .. ;, =0 if
i = im for some m # 1, m,l < d. We derive two-sided bounds for [|S|, under the assumption that
the coefficients (a;,,...;,) are nonnegative and (X;) are independent, nonnegative and satisfy the
following moment condition for some k € N,

1Xill,, < 2% |1 X3]l, for every p>1. (1.1)

As we mentioned in the introduction, the main idea is that if a r.v. X; satisfy (1.1) then it is
comparable with a product of k i.i.d. variables with logarithmically concave tails. In this way
the problem reduces to the result of Latala and Lochowski [19] which gives two-sided bounds for
moments of nonnegative chaoses generated by r.v’s with logarithmically concave tails.

1.1 Notation and main results

We set ||Y]|, = (E[Y|P)1/? for areal r.v. Y and p > 1, log(x) =logy(z) and In stands for the natural
logarithm. By C,tg (sometimes C(k,d),to(k,d)) we denote constants that may depend on k,d and
may vary from line to line. We write A ~*¢ B if A-C(k,d) > B and B-C(k,d) > A.

Let {Xi(l)},...,{Xi(d)} be independent r.v’s. We set

NO(#) = -mP(x" > ).

(3

We say that X i(T) has logarithmically concave tails if the function IV, i(r) is convex. We put

Bi = {v eR% | SN (w) Sp}

i=1

and

H(am_’id)np:sup Z iy i ﬁ (1+v§:>) | (vzm) e B{"

1§i1,...,id§n r=1

The main result of this chapter is the following theorem.

15
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Theorem 1.1.1. Let (Xi(T))rgd,iSn be independent nonnegative random variables satisfying (1.1)

and IEXi(T) = 1. Then for any nonnegative coefficients (ail,--.,id)h,---,idén we obtain

1

C(k d H Aiqy.yi HpS HsalSC(k’d)H(a'Ll:

1id)||p’

where i @
[g— . . N
S = g azlwﬂdXi1 Xid .
1<dy,...,ig<n

Theorem 1.1.1 yields the following two-sided bounds for tails of random chaoses.

Theorem 1.1.2. Under the assumptions of Theorem 1.1.1 there exist constants
0 < c(k,d),C(k,d) < co depending only on k and d such that for any p > 1 we have

]P’(S’ > C(k,d) yy<ai1,‘,,,id>\|p) <e P

and
P (8" 2 clhd) |[(@ir,...i)],,) = min(e(k,d),e 7).

Proof. Theorem 1.1.1 and Chebyshev’s inequality yield
P(8' 2 Clh,d)||(ai,...i0),) SP((S') > PE(S'Y) <eP.
Now observe that Theorem 1.1.1 and inequality (1.3) below imply that

157[l,, < C (k. @) || -

Theorem 1.1.1, the Paley—Zygmund inequality (see Corollary 6.1) and the above inequality give

, . . 151, \" . . i
]P’(S zc(k,d)||(ai1,,,,,id)y|p) >P((S)P > ek, d)B(S')P) > c(k,d) | = > min(c(k, d),eP).
15712,

O
Now we present two-sided bounds for decoupled chaoses. We define in this case N;(t) =
—In P(X, > t),
{UER | ZN o5 <p}
and

H(ailw.,id)H;zsup Z iy, iy ﬁ (1+UZ(:)) | ( (r)) € B,

1<i,...,ig<n r=1

Theorem 1.1.3. Let (X;)i<n be nonnegative independent r.v’s satisfying (1.1) and EX; = 1. Then
for any symmetric array of nonnegative coefficients (ail,...,id)ihm,idﬁn such that

aiy,...iy = 0 if iy = iy for some m #1, m,1 <d (1.2)

we get )
oD @iy, i), < US1, < Clhd) [[(aiy,. )]

where S = Zlgil,..i,z’dgn iy ... igXiy - Xiy. Moreover,
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!/ —
P(S2Chd)|(@ir,.i))) <77,

P (s > e(k, d) |\(ai1,,,,,id)u;) > min(c(k, d),eP).

Proof. Let S" = Zail,...,idXi(ll) e Xi(:) be the decoupled version of S. By Theorem 6.6 moments
and tails of S and S’ are comparable up to constants which depend only on d. Hence Theorem 1.1.3
follows by Theorems 1.1.1 and 1.1.2. a

1.2 Preliminaries

In this section let us study properties of nonnegative r.v’s satisfying the condition (1.1). We will
assume normalization EX =1 and define N(¢) = —InP(X > ).

Lemma 1.2.1. There exists a constant C = C(k) such that for any © > 1, and t > 1 we have
N(Ctx) > t%N(I). C = 8k may be taken.

Observe that Lemma 1.2.1 implies that
H(ai1,---7id)||2p < C(k,d) H(aih--»,id)Hp' (1.3)

Proof of Lemma 1.2.1. Our purpose is to show that

1
P(X > Ctx) <P(X > )" fort>1, 2> 1. (1.4)

It is enough to prove the assertion for x < I 2”°° because for = > Xl ” , (1.4) holds if C > 2 .

In that case z = || X|| o for some ¢ >1 (since [ X||; =1). From the Paley—Zygmunt inequality (see
Corollary 6.1) and (1.1)

2q
1 1\ [ IX,
P(X>z)=P(X?1> —EX?)>(1-——
24 24 1 X1]2q
2 2q
1 1 1

Let A= [+log(t)]. By (1.1) we get [ X424 < kA | X1|,- Hence, Chebyshev’s inequality yields

Ct Ct gkA+1\ 92
P(X = Ctz) ZP(X 2 2||Xq> §P<X Z SRATT |X”q2“> = < Ct >

We have 24 > % and 2kA < ok (% log()+1) — 4ok o4 if C = 811 then

1 qt% 1 2qt%

The assertion follows by (1.5) and (1.6) O

In fact, the statement of Lemma 1.2.1 may be also reversed.

Remark 1.2.2. Let X be a nonnegative random variable, EX =1 and there exist constants C,3 >0
such that N(Ctx) > tPN(x) for t,2 > 1. Then, there exists K = K(C,3) such that
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[ Xlp, < KHXHP for p> 1.

Proof. In this proof K means a constant which may depend on C, 8 and varies from line to line.
Integration by parts yields

X |

Eloe

oo o0
_ / 2pt2p—16_N(2Ct)dt§ ||X||12)p+/ 2pt2p_1€_N(20t)dt
0 | X

lp

NEIXI) ()

oo —
<X+ [ e ()

X1l
1
Let a = N(2[|X[[,)? /[ X]|,, substituting y = at into (1.7) we get
2

X P 2 1 oo B
E|l—| <|X|??+— 2y~ Le™Y" dy.
’20 < IXI,"+ —55 e dy

Thus
2C [ [ s\
|\X||2p SQC”XHp*'j (/0 2pyPP~le Y dy)

1
2C (2p _ 2p 1/2p pB
_ e < = :
2C||XHP+ 5 (ﬂp(ﬂ)> 72C||X||p+K - (1.8)

By Chebyshev’s inequality N (2[|X[[,) > pIn2 and the assertion follows by (1.8). O

Now, we state the crucial technical lemma.

Lemma 1.2.3. There exist C,tg which depend on k, a probability space with a version of X and
nonnegative i.i.d. m.v’s Y1,..., Yy with the following properties

(i) C(X +t9) > Y1 Y,

(i) C(Y1-+ Y +t0) > X,

(iii) Yi,...,Yx have log-concave tails,

(iv) H(t) < N(t*) < H(Ct) for t > to, where H(t) = —InP(Y; > t),
(v) & <EY; <C.

Proof. Let M(t) = N(t*). By Lemma 1.2.1 there exists C' (depending on k) such that M(C\t) >
AM(t) for all A >1, t > 1. By Lemma 6.2 (applied with ¢ty = 1) there exists a convex nondecreasing
function H and constants C = C'(k),tg = to(k) > 0 such that

H(t) < M(t) < H(Ct) for t >t
H(t)=0 for t <tg (1.9)

Let Y; be nonnegative i.i.d, r.v’s such that P(Y; > t) = e~ #®) then (iii) and (iv) hold.
Now, we verify (i) and (ii). For ¢ > max{1,to} we obtain

k k 1 1
P (HYZ > t) > TIP (Vi th) = e7hHER) > cmhMER)  mhN )
=1 =1

> N _p (X > Ckkt) : (1.10)

where the last inequality comes from Lemma 1.2.1. Furthermore,
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k k 1 1
IP’(HYI>C’%> Z (Y, > CtF) = ke H(COF) < ge=MF) — pe=N (), (1.11)
=1 =1

By Chebyshev’s mequahty 1= EX >eP(X >e)=e!"N() 50 N(e) > 1 and by Lemma 1.2.1 we
get for ¢t > 1, N(Cte) ztkN( ) > t%. Thus

Ink—N(t) < %N(t) for t > eC'max(1,2Ink)*. (1.12)

Lemma 1.2.1 also gives N(t) > N( ) for t > 2kC, so from (1.12) and (1.11)

(Hyl>ck> ~Nizig) = ED(X22ZC> (1.13)
Inequalities (1.10) and (1.13) implies (i) and (ii). To show (v) observe that
(EY)* =EY; - Y, < C(EX +to) = C(1+t0)
an by (1.9)

EY; >t >0

1.3 Proof of Theorem 1.1.1

Let X,Lm7 r <d,i <n satisfy the assumptions of Theorem 1.1.1. By Lemma 1.2.3 we may assume
(enlarging if necessary the probability space) that there exist independent r.v’s Yi(,lr), [<k,r<d,i<
n such that conditions (i)-(v) of Lemma 1.2.3 hold (for Xi(r) and Yi(;) instead of X and Y}). Let
HZ.(T) (x):=—InP (Yi(;) > x) (observe that this function does not depend on ).

Let us start with the following Proposition.

Fact 1.3.1. Foranyp>1,

Z ai, .. deX(r) k.d Z ai, .. ldHH Z(:)

1<it,.. ig<n » 1<in,..,ig<n r=1i=1

P
Proof. Lemma 1.2.3 (ii) yields
d
Z Qiy,...pig HXZ(:) <c? Z Qiy,.. ﬂdHH( (T)+t)
1<y, yig<n r=1 1<it,yig<n r=11=1
P P
d k
cot ¥ | Y w0

er€{0,1} |[1<it,ig<n r=11=1

r=1,...,d p

(1.14)
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We have EY;P > %, so by Jensen’s inequality for any ¢ € {0, 1}d we get,

Z Qigs.sig H H z(ri) 2 Z Qiy,... i HH YZ(TT:) r((EY; T)))l Er

ip,l
1<1,...,ig<n r=1l=1 p 1<1,..,g<n r=11=1 P

d k
> ﬁ Z Ajy,..nig H H ((Yi(rfg)sr(to)l—gr)

1<i1,..,g<n r=11=1
(1.15)

The lower estimate in Proposition 1.3.1 follows by (1.14) and (1.15). The proof of the upper
bound is analogous. O

So to prove Theorem 1.1.1 we need to estimate HZaZl, g HT 1 Hl Y T)

. For this purpose
we will apply the following result of Latala and Lochowski.

Theorem 1.3.2 ([19, Theorem 2.1]). Let {Z§1)}7...,{Z§d)} be independent nonnegative r.v’s with
logarithmically concave tails and Mi(r) (t)=—In (]P’ (ZZ-(T) > t)) Let assume that

1=inf{t>0: M) (t)>1}. Then
d

%sup Z Qiy ... iq H(1+b§:)) | (bzm> € ngr)

1<iy,..,ig<n r=1

d
< > a..zl..z?

d
1<i1,.ig<n »

d
< Csup Z Qiy,... g H(1+bz(-:)) | <bET)> € T;lgr) )
1<iy,...,ig<n r=1
where T( " = {bGR” P 1M(T)( bi) gp},
To use the above result we need to normalize variables Yi(lr). Let

) =inf{t>0 : H@#)>1}, r<d, i<k

Lemma 1.2.3 (v) gives tgr) < eIEIYi(;) <eC and by (1.9) tgr) >to >0, thus
1< oma). (1.16)
Clk,d) — " — ’

Theorem 1.3.2 applied to variables Yl(lr) = Yl(;ﬂ) /tz(-r) together with (1.16) gives

r=11=1

Py LTI
p

~k.,d SUp Z Qi ,,dHH(l—i—v(T)) (vf?) D,(:p, =1,..d},

r=11=1
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where
Dy = {(vi’l)KkaER”k : ZH (vi1) < p for alll<k}

Lemma 1.2.3 (iv) yields

sup Z @iy, ’deH(l—i—v(T’)) <(T)>€D,(;2), =1,..d

r=1[l=1
g Z ,ZdHH(Hv@) () € BY) r=1d =iy, i)},
r=1l=1

where

Béf;z{(vi,l)Kn;KkER”k : ZN(T)( 1) <p for alll<k}
=1

To finish the proof of Theorem 1.1.1 we need to show that

(@i eoi) e p ~ @il - (1.17)

First we will show this holds for d =1 that is

k

SHP{ZbiH(1+ai,l) | Y Ni(afy) <pforalll < k} K SUP{Zbi(1+wi) | > Ni(wi) Sp}-
% =1 % % %

(1.18)

We have

k
Sup{ZbZ'H(l—i-ai,l) | ZNi(af’l) <pforalll< k}
I=1 i

%

k
< Z sup{Zbi Ha?l ZNi(aﬁl) <pforalll< k}
£,€{0,1} i 1=1 i
I=1...k

So to establish the upper bound in (1.18) it is enough to prove

SHP{Zb e 1 D Nitak, <pfora11l<k}<0 sup{Zb (1+w;) |ZN w; <p}
=1 [

7

or equivalently (after permuting indexes) that for any 0 < kg <k,

bup{Zb Ha” | ZN a;iy) <p foralll < ]4;0} <C( )sup{Zbi(l +w;) | ZNI(wZ) Sp}.
7 =1 % % % (1.19)
Let us fix sequences (a;;) such that >, Ni(afyl) <p for all ] <ky. Let C be a constant from
Lemma 1.2.1, define
ey I, a;; > 2Ck*

w; = Ckk
0 otherwise.
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For such w; we have Hfil ai; < 2CKk*(1+w;), so to establish (1.19) it is enough to check that
> i Ni(w;) <p. Lemma 1.2.1 yields

ZNZ(“}’) S %ZNZ(Ckk wz) S % Z Ni (max{ai71,...,ai7k0}k0>

i w;#0
1 1 ko
< E;Ni (maX{ai,l,...yai,kO}k) < %;;Ni(aﬁl) <p,

where the third inequality comes from the observation that w; # 0 implies
max{a;1,...,0ik,} > 1.

1
To show the lower bound in (1.18) we fix w; € By, choose a; 1 =aj2=... = a; = wf and observe
that
k Nk
Zbi H(l +ai,l) = Zbi <1 —‘,—wf) > Zbi(l +w;).
i 1=l i i
We showed that (1.18) holds. Now we prove (1.17) for any d. We have

(@ir.....i0)l[},, = sup Zan, ’ZdHH(1+U(r?) (vi’?) B, r<d

r=11=1

=sup< sup Z Qi .. deHH(1+U(T)) (:?)EBIE‘Q | Vi<a—1(v; (7 )EB(T)

r=11=1

~* sup Z Gy, ig H H <1+1}( ?) (1+w§j)) | (w(d)) € Béd)yv'rgdflvfffj) € B;(JI)) )

r=1[=1

where the last equivalence follows by (1.18). Iterating the above procedure d times we obtain (1.17).



Chapter 2

Tail and moment estimates for a class of random
chaoses of order two.

The aim of this chapter is to derive two-sided bounds for moments and tails of real-valued random
quadratic forms (chaoses of order two) >, +@i,jXiX;j under the assumption that for any ¢ and
some « > 1 we have

HX¢||2p <a \|X¢||p for any p > 1. (2.1)

Since any symmetric random variable X with log-concave tails satisfies (2.1) with « = 2, this
generalizes the previous result of Latala [17].

In the proof of main Theorem 2.1.1 below we use the same idea as in the previous chapter.
We replace variables X; by products of independent variables with log-concave tails. However, the
situation is much more difficult to handle than in the nonnegative case, since in the symmetric log-
concave case two-sided moment bounds are known only for chaoses of small order. Instead we first
establish Gluskin-Kwapien-type bounds for moments of linear combinations, decouple quadratic
forms, apply conditionally bounds for d =1 and get to the point of estimating the L,-norms of
suprema of linear combinations of X;’s. Although formulas are similar as in Latala’s paper [17], we
cannot use his approach since our random variables do not satisfy nice dimension-free concentration
inequalities. Instead we use a recent result of Latala and Strzelecka [21] and reduce the question to
finding a right bound on Lj-norm of suprema. To treat this we use some ideas from [19] and [1].

2.1 Notation and main results

Unless otherwise stated, we assume that all vector are from RY (we do not exclude N = co) and
all matrices are real-valued. If v is a deterministic vector then |v||,., r € [1,00], is its [" norm. We
denote by ¢1,92,... independent N'(0,1) random variables and by €1,&2, ... independent symmetric
+1 random variables (Bernoulli sequence). We write [n] for {1,...,n}. If X is a r.v. then [|X]|,:=

(E|X|p)1/p. We say that a r.v. X belongs to the class S(d) if X is symmetric, || X||, =1/e and for
every p > 1 [[X],, < 24 [ X|l, (the constant 1/e is chosen for technical reasons). For a sequence
(X;)i>1 we define the function N;X(t) = —InP(|X;| > |t|) € [0,00] and set

{t2 for |t| <1,

NX(t) = (2.2)

NX(@t) for t| > 1.

Analogously we define N ]Y (1), N ]Y (t). The following three norms will play crucial role in this chapter:
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(@i )l x.yp =P D aijwiy; | D NF (i) <p, D N (y) <py,

(2] i J

1(ai)ll x p = sup {Zaixi

(3

ZNf(xi)Sp}y 1(a;)lly,, = sup Zajyj S N i) <py,

J J
(see Lemma 2.2.1 for the proof, that they are norms).
To shorten notation, we write

mp (@5)) = @) Ly + | [ /D02, [, [Doad, :
K illyp J il x,p
i (a3) = @i )lx ||| /2202 :
’ INXp

By C,c we denote a universal constant which may differ at each occurrence. We also write C(d), ¢(d)
if the constants may depend on the parameter d. We write a ~ b (a ~% b resp.) if b/C <a < Cb
(b/C(d) <a < C(d)b resp.).

Our main result is the following theorem.

Theorem 2.1.1. Assume that (X;),(Y;) are independent random variables from the S(d) class.
Then for any finite matriz (a; ;) and any p > 1,

D ai XiY; | ~tmp((aiy)-
%] »

We postpone the proof of Theorem 2.1.1 till the end of this chapter and now present some
corollaries. The first one shows that property (2.1) is preserved by the variable ZZ i, XY

Corollary 2.1.2. Under the assumptions of Theorem 2.1.1 we have

Y oai i XiYj|| < Cd)|D e X.Y; (2:3)
4,J ,J
p

2p

Proof. Using Lemma 2.2.6 below twice we get

7Y
1(a11) ]l x.y.2, = sup H > ai sy > N (y) < 2p
J 11 X 2p J

<C(d)supy |[[ D aijy; > N (y) <2p
: :

X p J

= C(d)sup (Za”xz> D NF (@) <p gy <CW@)(aiy)lxy,-
7 j ]

Mly2p | *

The above estimate together with Lemma 2.2.6 and Theorem 2.1.1 yields the assertion. O
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Standard arguments show how to get from moment to tail bounds.

Corollary 2.1.3. Under the assumptions of Theorem 2.1.1 we have

P Y ai; XiY;| > Cld)my ((aij)) | <e? (2.4)
ij
and
P> aiiXiY;| > e(d)my ((ai5)) | = e P, (2.5)
ij

Proof. The upper bound (2.4) is an immediate consequence of Chebyshev’s inequality and Theorem
2.1.1. To establish the lower bound we have

1
P D0 XaYs| = cldymy (@) | 2P| D ai; Xi¥y| > 5|13 ai; XY
17]

W4 b7 p

—c(d
> e—c(dp

2p
|
=\ o
o) 2wl
where the first inequality follows by Theorem 2.1.1, the second by the Paley-Zygmund inequality
(cf. Corollary 6.1) and the last one by (2.3). O

We formulate undecoupled versions of Theorem 2.1.1 and Corollary 2.1.3.

Corollary 2.1.4. Let X;,Xo,... be independent r.v’s from the S(d) class and (a; ;) be a finite
matriz such that a; ; =0 and a; j = aj; for all i,5. Then for each p > 1,

D ai X X5~ g ((ai ), (2.6)
1,7 »
P | ai; XiX;| > Cld)ing ((aig)) | <e? (2.7)
irj
and
P ZamXin > c(d)my, ((aiyj)) > e—c(dp, (2.8)
i.j

Proof. Moment estimate (2.6) is an immediate consequence of Theorem 2.1.1 and the Kwapien
decoupling inequalities (Theorem 6.5).

We may derive tail bounds from the moment estimates in the similar way as in the undecoupled
case. Alternatively we may use the more general decoupling result of de la Pena and Montgomery-
Smith (Theorem 6.6) and get (2.7) and (2.8) from (2.4) and (2.5). O

Remark 2.1.5. A simple approximation argument shows that Theorem 2.1.1 and Corollaries 2.1.3,
2.1.4 hold for infinite square summable matrices (a; ;).

We derive some examples from Corollary 2.1.4. Firstly we recover the special case of the Kolesko
and Latala result [13, Example 3].
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Example 2.1.6. Let X1, Xa,... be independent r.v’s with symmetric Weibull distribution with scale

parameter 1 and shape parameter r € (0,1], i.e. for any i P(|X;| > t) = exp(—t") fort > 0. Then for
any p > 1 and any square summable matriz (a; ;) such that a;; =0 and a; ; = aj; for all i,j we

have
E a; ; X; X; Nsz/rspp|ai,j|+p1/r+1/281}p E aij
i » J ! j

tpsupq D | D aiges | | lely=1p+vp [ a; (2.9)
J

i ,J

Proof. By direct computation one may check that [|.X;|,, < 21/7 | Xill, (it may be also checked
that (2.1) holds using Remark 1.2.2). First observe that

@)l xp ~ VP ll0lly + " suplos]. (2.10)
7
Indeed we have that |z|” < 2?2 for |z| > 1 and |z|" > 22 for |z| < 1 so
Z |:CZ‘T < 1} .
i
Obviously sup {3, vizi | 3 |i|” < 1} > sup; |vi|. Since r € (0,1] we have 3, |z]" > (33, |zi[)*/" and

as a result
sup{ E ViT; g |zi]" < 1} zsup\vi|
. K2
2

1wl p ~ VPllolly +p*/" sup {va
%

and (2.10) holds.
Iterating (2.10) we get

i

(@il x xp ~ %" suplai | +p " 2sup [ a2 +psupq | D aigay | |z, =1
I ¢ j J

(2.11)
The inequality (2.9) follows by Corollary 2.1.4, (2.10) and (2.11). O

Next example presents a situation when tails of X; are neither log-concave nor log-convex, so it
cannot be deduced from previous results.

Example 2.1.7. Let X1, Xo,... be i.i.d r.v’s distributed as W1y <g, where R>1 and W be a
symmetric Weibull distribution with scale parameter 1 and shape parameter r € (0,1]. Assume that

(a¢7j)i,j20 is a square summable matriz such that a; ; =0, a; j = aj;. Denote A; = ja?j and
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2 2
@i )R =sup D aijaiys | lzlz <p, 2l < R lyllz <o, Iyl <R
(2]

2
tsupd > aigriyy | lelly <p el < R, lyllz <, Iyl <R
,J

[zl <, 12l <R, llylly <o, llylloe < R

+sup E @i, jTYj
.3

Then
l(ai )l 7orp + /P Zi,j az?,j +p1/TAT for1<p<R",
D aii X X5\~ S @i ) lrrp + Py ;02 +RY iy A for R™ < p < R?,
" P ll(ai, i)l R,rp + /P Eizp/R? (Af)2+REi§p/RT A7 for R* <p,

where (A}) is a nonincreasing rearrangement of (A;).

Proof. W.l.o.g we may assume that A; is nonincreasing. Since [¢t|” < #2 for [t| > 1 and [t|” > ¢? for
[t| <1 we obtain

13 <p, [t:] < R} +SUP{ZAitz’
i

Iteration of the above argument easily yields

[[(Ad)ill xp ~ sup {ZAiti

s M ~ @5 lx - (2.12)
Now we will estimate S; and S5 separately.

1. Obviously Sy = /py/>.; A? for p < R?. Assume that p > R%. By homogeneity and Lemma 2.2.3
below we get

Sl—R{ZAiti Zt?g%, |ti|§1}~R S oaryp Y A

i<p/R? i>p/R?

2. Tt is easy to see that Sy = p'/"A; = p'/7||(4;)||,, for p < R". Assume that p > R". Since
0 <r <1, by homogeneity we have

S5 —R{Z;Aiti zi]tm < %, It;] < 1} < R{;Aiti

Moreover, by picking t1 =... =¢,/gr| =1 and ¢, /rr |41 = ... = tn =0 we obtain

thdé%, ti<1}<2R 3 A

i<p/R"

Se>R Y A
i<p/R"

Since R? > R"™ we have that (recall (2.12))
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€@ i)l Ry + /By 22 AF + P17 Ar for 1<p<R"
iy ((@i,3)) ~ 3 (@i ) rrp+ /Py 20 A7+ R <y e Ai for R" <p < R?
H'(ai,j)mRﬂ‘,p + \/I) Zin/RQ A? + RZ@'S;D/RT A; for R2 <p.
Now it is enough to observe that || X1, ~" 1, X; satisfies (2.1) with o = a(r) (see Remark 1.2.2)

and invoke Corollary 2.1.4.
O

Remark 2.1.8. In the Gaussian and Rademacher case Corollary 2.1.4 implies (see also Examples 1
and 2 in [17])

> aijgigi|| ~pll(ai )z +vBll(ais)l,, (2.13)
@] »

> aigeigi|| ~ @i+ Af+vp > (AD)2, (2.14)
%, » i<p 1>p

where A7 is nonincreasing rearrangement of A; =,/ ja? ;- Neither (2.13) nor (2.14) can be

expressed by a closed formula which do not involves suprema. Thus, there is no hope for any closed
formulas in Examples 2.1.6 and 2.1.7.

The chapter is organized as follows. In the next section we present some technical facts used in
the main proof. In Section 2.3 we establish Gluskin-Kwapien-type bounds for moments of linear
combinations of X;’s. In Section 2.4 we obtain bounds for expected values of suprema and conclude
the proof of Theorem 2.1.1 in Section 2.5.

2.2 Preliminary facts

We begin with three simple technical facts.
Lemma 2.2.1. Assume that T CR™ is bounded and span(T) =R". Then ||z| = sup;cr|>,; ziti]

is @ norm. In particular |[(a:)l x ,, lI(ai;)llx y,, are norms.

Proof. It is clear that || - || is well-defined, homogeneous and satisfies the triangle inequality. Now
observe that [|z|| =0 gives ), x;t; =0 for all ¢ € span(T’) = R", hence =0 and the first part of
the assertion follows. Now let

T = (zy;) JER ZN (x4) <p,ZN (vj)

Observe that 7' spans R" and is bounded since for any r.v X, NX(t) = —InP(|X| > t) — oo as
t — 0o. Analogously we prove that || - || , is a norm. O

Fact 2.2.2. For any p > 1, any set T C R} which fulfills assumptions of Lemma 2.2.1 and any
r.v’s Z1,...,4, we have
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p\ 1/

P
E sup x;Z;| < | Esup x; Z; < 10sup
zeT Z e xzeT Z e xzeT

inZi

%

1<p i<p p

Proof. Consider a norm on R given by

@1,y = sup | Yz
i<p
Let K be the unit ball of the dual norm || ||,. Then K = conv(T'U—T). Let M be a 1/2 net in
K (with respect to || ||,) of cardinality not larger than 5P} (M exists by standard volumetric
arguments). Then for all y € RLP]

Iyl <2 sup > wil.

ue

1<p
Thus
P p
E sup inZi < 2PKE sup ZuiZi
zeT < ueM <

1<p 1sp

Observe that
p\ 1/p p\ 1/p p\ 1/p
E sup ZuiZi < Z E ZuiZi < |5 sup E ZuiZi
ueM i<y ueM |i<p ueM i<y
< Hsup H Tl
xeT Z e P

Lemma 2.2.3. For any p>1 and any a1 > as > ... > ay, > 0, we have

Dot <p |l < 1} <Y ait+p, [ a2
i

i<p i>p

Zaﬁ-\/ﬁ Zaf < sup{Zaiti
i

i<p i>p

N |

Proof. Denote M = sup{zi a;t; | Do t? <p, |t;| < 1}. By choosing t; =1 for ¢ < p and ¢; =0 for
1> p we see that M > ZKpai.

Now let k= |p]+1, A= /ka? + >, a2, t; = \/pay /A for i <k and t; = \/pa;/a for i > k. Then
[t:| <1, > t7 =p and

M=) ait; > pA> \/p [> a2,

i>p

To show the upper bound it is enough to observe that

> aiti <t > ai+ Ity [> a2
i<p i>p
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Now we slightly reformulate the crucial technical lemma from Chapter 1.

Lemma 2.2.4. If X is from the S(d) class then there exists symmetric i.i.d r.v’s X*,..., X% on
the extended probability space and a constant to(d) > 1 with the following properties:

CA)(X|+1)>[X'- X% and C(d)(| X' XY +1) > |X|, (2.15)

X1, X% have log-concave tails, (2.16)

M(t) < N(t) < M(C(d)t) for t > to(d), (2.17)

where M (t) = —1n]P’(|X1| >t),

1

—— <E[X'|<C(d 2.18

&g <EX'I<0@, (2.18)

inf{t>0|M(t)>1}=1. (2.19)
Proof. From Lemma 1.2.3 we know that there exists symmetric i.i.d r.v’s X!,..., X% which satisfy

(2.15)-(2.18) and M (t) =0 for t < to(d) where to(d) > 0 (see formula (1.9)). So
inf{t>0|M(t) > 1} > to(d).
By Chebyshev’s inequality M (3E|X!|) >1n(3) > 1. Combining it with (2.18) yields
inf{t>0|M(t)>1} <3E|X| < C(d).
So we have proved that
0<c(d)<inf{t>0|M()>1} <C(d) < 0.
The variables X;/inf {t > 0| M () > 1} satisfy (2.15)-(2.19). 0

Till the end of the chapter we assign to every X; from the S(d) class the r.v’s X}, ..., X obtained
by Lemma 2.2.4.
Denote for t € R, M;* (t) = —InP (| X}| > |t]) € [0,00] and

~ t2 for [t| <1
M (t) = ’ 2.20
) {MiX(t) for |t| > 1. (2.20)
Observe that convexity of M;X and the normalization condition (2.19) imply
S [t MX(t
MX <) < M) g, >1, (2.21)
u u
and
M (t) = MFX(t) > |t| for [t] > 1. (2.22)
We define the following technical norms (the proof that they are norms is the same as for || - || x y.,,
see Lemma 2.2.1)
lit@i)lllx p,1 = sup {Zam > M¥ () < P} (2.23)
i i

and for d > 1
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d
I(az)xpd—sup{Zal H 1+af)

Lemma 2.2.5. For any p > 1 we have

W]WMEIMfuﬂ<p} (2.24)

d
@)l x p ~“ M(@i)lllx p.a-

Proof. Without loss of generality we can assume that a; are nonnegative. Let to(d) be a constant
from Lemma 2.2.4. We have

}:wanﬁp}
ZNZ‘X(bi) Sp}

ZNX(b)<p} = [+ II+]III.

7

(@)l x,p < sup {Zaibi1{1>b¢20}
A

+SHP{Zaibi1{to(d>d>bi>1}
%

+SUP{ZW’ L >t0(a)1)

The equality N;¥(t) = MlX(t) for |t| <1 implies

I<sup{2a,

Since || X;||, = 1/e, Chebyshev’s inequality yields N;¥(s) > 1 for s > 1. Hence

)< p} <@l p.a-

ZNX Y<p, I|< |p j} <to(d)? sup Zai

11 = sup{ZaZb 1{t0(d)d>b >1}
iel [T1=1p)ier

i€l
<to(d)? [1(@i)lllx p.a-

To see the last inequality it is enough to take in (2.24) z} = 14y and 2?=...=z¢=0. From
(2.17) we obtain

I < sup{Zai( i
i

where to get the last inequality we take z} =... =% =b;.
It remains to show

ZMX <p} <ll(@)ll x p,a>

@)l x p.a < C@)(ai)llx - (2.25)

By an easy computation
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d
1
(1 +C(d)t0(d))d_1 |||(ai)|||X7p,d g Sup {Zaile H (1 +$§1{If>c(d)to(d)})

% k=2

VkZMZX(mf) <p}
ZMf(x})Sp}
ZSHP{Z%Hx Liaksc(aytod) VkZM }

ICld] i kel
(2.26)

< C(d)sup {Z aixill{ogac}SC(d)to(d)}

I1#0

Putting y; =z} /(C(d)to(d)) we see that

sup {Zazl’ Lio<al<c(ayto(a)}

1

)

d)sup {Z azyzl{0<yl<1}

< C(d)sup {Zawil{ogyigl}

ZM (d)yi) <p}

ZN@X(yi) Sp} <C@)|(ai)llx,p, (2:27)

where the first inequality follows by the monotonicity of the functions (]\Zle )i
Now we estimate the second term in (2.26). For a I C [d], I # 0,

SHP{Z%H” Lizksc(ayto(@} VkZM }

kel
<sup{zaz|j| > (af 1{35 >C(d)to(d)} VkZM )<p}
ZM )_p}

kel
C(d)z}) Sp}

Zﬁf (@) Sp} <O@lailx,. (229

<sup{zaz 1{:r >C(d)to(d)}
sup{zaz 1{x >to(d)}

< C(d)sup {Z aixz‘ll{zp(to(d))d}

where to get the fourth inequality we used (2.17). Estimates (2.26)-(2.28) imply (2.25). O

Lemma 2.2.6. There exists C = C(d) such that for any p,u > 1 we have

(@)l x p < Cld)u® [|(ai) x -

Proof. By Lemma 2.2.5 it is enough to show the following inequality

@)l x up,a < u @il x .-

The inequality (2.21) yields
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d k
A~ xh
|||<az>|||xupd<sup{2az L0 v@Mﬁ(@;)q}

d
{Zaz u:c H 1+u1: VkZMX }<U H|(az)mx7p,
k=2

2.3 Moment estimates in the one dimensional case

In this section we will show two-sided bound for moments of linear combinations of r.v’s from the
S(d) class.

Theorem 2.3.1. Let X1, Xo,... be independent, symmetric random variables from the S(d) class.
Then for any p > 1 and any finite sequence (a;) we have

Latala [15] (see Theorem 6.23) derived bounds for moment of } . a; X; in a general case. However
we were not able to deduce Theorem 2.3.1 directly from it. Instead below we present a direct tedious
proof of (2.29).

Since the r.v’s Xq,..., X, are symmetric and independent without loss of the generality we may
assume that a; > 0.

(@)l x - (2.29)

Lemma 2.3.2. We have ||} ; a; Xil|, ~4 HEZ a; szl

sz forp>1.
P

Proof. Let (g;) be a Bernoulli sequence, independent of {XZ-,XJ’?}‘ o eed Using the Jensen
1,j>1,k<

inequality and (2.18) we get

d
S [ X!
A k=1

> ¢(d)

€4

d
e [11XF
k=1

The contraction principle, Lemma 2.2.4 and the triangle inequality yield

d
| X :| 0@ ( +1)
P k=1 P

The reverse bound may be established in an analogous way. a

d
B ] 1XF]
k=1

p | p p

i€q] Xl <C

d
% k=1

p

The intuition behind Lemma 2.3.2 is that it is easier to properly bound HZai Hi:l XfH since
P

we replaced each "big" r.v X; with a product of "smaller" pieces, which are easier to deal with.
Next lemma shows that Theorem 4.1 holds under the additional assumption that the support of
the sum is small.

Lemma 2.3.3. For any p > 1 we have
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i<p k=1

> HXk ~ [ @isolllx pa
p

Proof. We will proceed by an induction on d. For d =1 lemma holds by the Gluskin-Kwapien bound
6.22. Assume d > 2 and the assertion holds for 1,2,...,d — 1. First we establish the lower bound for

Hzigp a; szl Xk " We have

zaznxk S IIEE x|

i<p = i<p = Xp,d—1 P
207 ZalHXk -+ sup Zal 1H 1+IIJ X' ngdfleiX(l‘f)<
i<p = i<p i<p

p

Vi=1,..,d—1 ZM{X@?) SP}
[

N 1
szl’_._7dZMf((If) Sp}) > @ |||(ai)H|X,p,d7

Y

%d) <SUP{Z%$} H(1+xf)
+sup{Zai 21 1:[ 1+a:

where the first inequality follows by Jensen’s inequality and the induction assumption, the second
by (2.18) and the third by the induction assumption.
Now we prove the upper bound. Using the right-continuity of MzX we have

PO () 2 0 = (1412 (007) " 0) et for e 0.

Therefore there exists nonnegative i.i.d r.v’s &i,...,&, with the density e_tl{t>0} such that
MX(|X3|) < &. Since Y P & has the I'(p,1) distribution we obtain

SomX(xdp| <|[>&| <cq forq=p.
i<p q i<p q

Since MlX is convex, the above inequality implies for any ¢ > 1,

tp
p( X (B >>p <P (DM (X)) = Ctp | < (@)~ |3 aE (X
i<p i<p i<p tp
<etP, (2.30)

From (2.30)
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“

=P

el

> sup{m(ai(l “rfEi))iSpH‘X’p’d_l}

(“'4(d>
1<% .
<Pl x p,d—1

‘ Ct
i<p X,p,d—1

<P ZMX<Xd|> xd  Zp| <P ZMX<Xd|>>p <e P,
{i->1} Ct

1<p i<p

where the supremum in the second line is taken over all x1,...,xp, such that ), NlX (z;) <p.
Integration by parts gives

(a:x?) <C’H‘ ai),; ’H . 2.31
HH i<p Xopd_1 ( )’Lgp X,p.d ( )
By the induction assumption and (2.31),
d

sofls] <cufess) ]| [ <cofors,,,

i<p k=1 ||, =PIX p,d—1]], P
that concludes the proof of the induction step.

O

Remark 2.3.4. Observe that in the proof of the lower bound in Lemma 2.3.3 we have not used the
condition 7 < p.

The idea of the following lemma is taken from [19].

Lemma 2.3.5. Let p > 1. Define

T= {v eR" Z]\Zfz‘x(vz) <p, and Vi<p 5| >1 orv; = 0} (2.32)
%
oo
U= {v eR” ‘ M (v) <13, ie (2, 2l+1p]} N{v €R™ | V<o v; =0} NT, (2.33)
=1
oo
V= {v cR" ‘ MX () > 13 orv; =0, i€ (2lp,2l+1p]} (2.34)

N
Il
—

ﬂ{v eR" ’viggp MZX(UZ-) >1 orwv; :0}ﬁT.

If (a;) is a nonincreasing nonnegative sequence then

d—1
E  sup > a; [[afIX{| < C@)l@illx pa- (2.35)
=1

zl,..xd=1leU i

d—1
E sup Yo ai [T 51X < @@l x pa- (2.36)
k=1

zl,.,zd-2eT, zd-leV ™

As we will see (in the next lemma) the main difficulty in proving Theorem 2.3.1 is the proper
estimation of
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d—1
E sup ZaiHmﬂXid\.
zl..zd=leT i k=1

The key properties of sets U,V are that U,V C T C U+V and that we can prove (2.35), (2.36) by
some combinatorial arguments. The main difficulty in Lemma 2.3.5 is to figure how to decompose
set T' (which was done in [19]).

Proof. We begin with (2.35). For abbreviation, we define

in < 3 ’Vl%—‘ , ;i € {0,[3}}.

Using the fact that the sequence (a;) is nonnegative and (2.22) we obtain

Z) = {xER”

d—1 00 P
1 1
@E sup ZaiHaﬁf xd <@ZE sup Z CLZH.’L‘
k:gi]f.e..l,]dq vkl =1 k:gilstd i=2lp1 k=1
- 9l+1,
< Zl?’(dmesup Z a;T; {1 in <p, z;=0Vux; € [1,l3]
=1 i=2lp+1 i
00 2l+1p
d)Zl?’(d_2)]Esup Z a;T; rEZ p. (2.37)
=1 i=2lp4+1
Using Lemma 6.16
2l+1p
Esup Z a;T; de T EZ;
i=2lp+1
2l+1), 2l +1),
< Esup Z a;T; Xid -C Z a;T; rE€Z »+CI13 HJ Aglp i1
i=2lp+1 i=2lp+1 4
l
§C’<p+1n {UGRQP vEZl}DZ a21p+1+0(l +p)ag, g < Clp+1* )asiy, - (2.38)

The last inequality follows by the simple estimate

[p/1%]
2! 2lpe
()=(tm) <o

Combining (2.37) and (2.38) we obtain

/ a2
)Zl Pagly, g < Z 3d Z>p o

NI (2.39)
i>p

To finish the proof of (2.35) it is enough to observe that by Lemma 2.2.3

E sup Zal H T

zkeU, k=1,..
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2
> ot <p, Vilti| < 1} <ai)llx p.a-

(3

VP
5 Za% <sup Zaiti
1>p [

Now we show (2.36). Let
p
J= {1 CN ] 1] < p, Vien |[IN[2p+1,21+1p)| < 73} (2.40)

(in particular J contains any subset of [2p] of cardinality not greater than p). Applying the in-
equality (') < ((en)/m)™, we get an estimate of the cardinality of J

)

" C2lp Lp/l3J > 3
\71<2 ] <> <crJeeyt <ce. (2.41)
=1

Lp/1?] it
Take any I € J. We obtain (see Lemma 2.3.3)
E||@xfier | <C@l@ierlixpa (2.42)

Using the definition of V, (2.41) and (2.42)

d—1
Esup{zai TL X0 [ Vcaa 30X ) <, 201 € v}
I3 k=1 7

p\ /P
< (Z (Em(ain)ielH‘X,p’d_l) ) < C(@sup ll(@ierllx p.a < C@I@x 0

Ieg

Lemma 2.3.6. For any d € N the following holds

(e x¢)

¢ )u SC@ON@Nx 0 (2.43)

Proof. Without loss of the generality we may assume that the sequence (a;) is nonincreasing and
recall that in this section a; are nonnegative. We proceed by an induction on d. If d = 2 then Corol-
lary 6.18 (with G; j = a;1(;—;,) implies the assertion. Assume that (2.43) holds for any 2,3,...,d—1.
Obviously,

d—1

et ., <] et T4t
w i k=2

Veca SN ) <p}
7

d—1
+Esup{zaixg1{|z3>1}H(1+x§)xﬁ vkgd_IZMiX(xf)@} =81 +Sy. (2.44)
A k=2 7

We have
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S1 <Esup{2a, 1Xd ZMX )<p}
+ Z Esup{ZalH:E X Vo<k<d— 1ZMX }

Ic([d—1\{1}) A kel
I#£0
d—1
<2/ ?Esup {ZW? [T+ah) X | Yockca D M (af) < p} <C(d) (@)l x p.a-
7 k=3 9
(2.45)
where the last inequality follows by the induction assumption.
Now we bound Ss. Denote
. {x (o) R | SN gp}.
i
Since a; are nonnegative,
SQSQd]Esup{Zai 11 XEZ}
i =
d—1
§2dEsup{ZaiH$?1{x§>l} XEZ}
7 k=1
4-2¢ Z Esup{Zal XEZ} (2.46)
I¢[d—1] i

1#0

We can bound the second term in (2.46) by using the induction assumption. Inequalities (2.44)-
(2.46) imply (2.43), provided

d—1
Esup {Zai H xF1
i k=1

Let T,U,V be the sets defined in (2.32)-(2.34). Since T'C U +V we have
d—1
Esup{Zai X € Z}
% k=1
<E sup Zalnxk|Xd|+ Z E sup sup ZaznwlﬂXd

X € Z} <C(d) (@)l x pa- (2.47)

zl,. . ,2d-leU ™ 1C[d—1] ieU, ielz*eV, i¢l
I;ﬁ@
d—1 d—1
<E sup Zai H ¥ X3+ (2d71 - 1) E sup Zai H a1 X4 (2.48)
zl,...,zd-1cU i k=1 zl,...,xd=2¢T, zd—1cV i k=1

In the last inequality we used the symmetry and inclusions U,V C T'. Now (2.47) follows by (2.48),
(2.35) and (2.36). O

Lemma 2.3.7. We have
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‘ > ai H XE ~ @)l pa- (2.49)
i
Proof. We prove (2.49) by an induction. In case of d =1 it follows by Gluskin-Kwapieni bound 6.22.
Assume (2.49) hold for any 1,2,...,d—1. The lower bound of HZZ a; HZ:lek
2.3.4.
Now we prove
<0l H [|cacxsy]|

p

follows by Remark
p

< C(d) @)l x p,a-

Zi:aZ HXk

Induction assumptions imply

2

S

X,p,d—1 HX,p,dfl

d) sup

d—1
Zal [T +a)x
k=2

Vica—1) M) <pp, (2:50)
» i
where in the second inequality we used Theorem 6.25 (if Z is symmetric random variable with

log-concave tail then [|Z]|y, <2|Z|, for p > 1) . The Gluskin-Kwapieri estimate (i.e the first step
of the induction) gives

d—1
sup | Cosel [T+t |Vecas DIX @) <90 < CI@lx e (250
k=2 » i
The assertion follows by (2.50), Lemma 2.3.6 and (2.51). O

Theorem 2.3.1 follows by Lemmas 2.3.2, 2.3.7 and 2.2.5.
Observe that Lemma 2.2.6 and (2.29) imply that moments of ). a;X; cannot grow too quickly,
namely

2.4 Estimates for suprema of processes

for p > 1. (2.52)

p

2p

The essential difficulty with proving Theorem 2.1.1 is to properly bound Esup,, GTZ ca; ;7Y in
two cases:

1. 7= {:v ER™ | S, X () §p} C /By +pBY,
) . .

We start with two lemmas which are responsible for solving the second case. The rest of the section
is devoted for developing some decomposition lemmas. They will be used to handle the first case.

Firstly, we show that Theorem 2.1.1 holds under additional assumption that the support of the
sum is small.

Lemma 2.4.1. For any p>1, and set I C [n], |I| <p,
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Z az,]X Y < C(d) H(ai’])iGI,j X,Y,p*
i€l,j
Proof. We have
p\ 1/p
Z a;; X;Yj| <C(d)|E_ sup Z a; i Xiy;
iclj > N w)<p|iel,
p\ 1/p
<C(d) _ sup E| D aijXiy
>N wi<e \ ierj
p\ 1/p
<C(d) sup E Z ai i Xiy; < C(d)|(ai,j)ier,;l
>N (w<p icl,j

(2.53)

X,Y,p?

where the first inequality follows by a conditional application of Theorem 2.3.1, the second one by

Fact 2.2.2 and the last one by Theorem 2.3.1.

O

From now till the end of this section we assume (without loss of generality) the following condition

the functions i — E a%’], j— E a?’j are nonincreasing.
J i

Lemma 2.4.2 (cf. Lemma 2.3.6). Let T,U,V be the sets defined in (2.32)-(2.34). Then

S1:=E sup E al]lI'TY<C() E a?j »
zl,..,zle€U’; A 7 .
IY,p

52 — ) sup Zam H Z; Y < C H(ald) J”X ,Y,p©

zl,. . zd-leT zdeV

Proof. We begin with (2.55). By the symmetry of M;¥,

d
S1=E sup ZHzf Zai’ij §iE Sup Z H Zaw

alzdeU ™ L2y J I=1 @ €U21 <i<2ltlpk=1

So by (2.22)

(2.54)

(2.55)

(2.56)
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S’lgiEsup Z Hm Zam ', ...zt ez

=1 2Ap<i<2ltlpk=1
4\ 1/4
oo oo
3d 3d, 3/4
NI 3 DR ED S CL BT ol e
1=1 I7l=p icl | j 1=1 I1l=p el \ j
1c@lp2i+ip) 1Y 1c@ip2tip) \" N
4\ 1/4
oo
3d, 3/4
S PPHEL D | XY )
=1 2lp<i<2ltlp \ J
where
2l+1p
Zp={zeR” Z lzi| <p, 1< |z <Bora;=0,,
i=2lp+1

and the third inequality follows by the Hdélder inequality. Now using the Jensen inequality and
(2.52)

4\ 1/4 4\ 1/4
oo oo
3d,3/4 3,,3/4
> R > > aisY; Z / > [y
=1 2lp<i<2itlp \ J =1 2lp<i<2i+lp|| J 4
4\ 1/4
o0
ccwSEpi| S [ Say
=1 2lp<i<2iHip|| J 2
o\ 1/4
o0
d, 3/4
SLCD B Sl D DI DI
=1 2lp<i<2ltip \ J
(2.57)
Denote B= _[>",-, a? .. Since i — > a - is nonincreasing we have that
Jj=21

Zad_ — f0r2>p

Using the above estimate in (2.57) gives

2\ 1/4 1/4

[eS) o0 B4
D D SR OoZ A B I Dl B o

2lp<i<2ltlp \ J =1 i>2lp

By (2.54) and Lemma 2.2.3 we have
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ngsup Z Za%jti Zt?ﬁp, [ti| <15 < Zai]‘
i J %

2
S; < C(d) /Zam .
! J Y,p

Now we bound S3. Let J be defined by (2.40) and let I € J be arbitrary. Using conditionally
(2.29), Lemma 2.2.5 and the Jensen inequality

J Y.p

As a consequence

E sup ZH Za”Y <E sup ZH Zai,jY]
J

el adteTadeV ey k=1 j el ad€T ey k=1
1/p
<SCd)Ey |Ex| ) ai;XY; <CO@d)| D aiXiY;
i€l,j iel,j
P
By Lemma 2.4.1
Z aij XiYj|| < C(d)|[(aij)ier,; X,Yp-
iel,j
So we conclude that
E Sup Z H Zaz iYi| < C(d) ||(aw)1€[7] HX Yp = <C(d) ||<ai,j)i7jllx,y,p- (2.58)

ol @l leT eV ey =1

By (2.41) and (2.58)

p\ 1/p

Sy < C(d) Z E sup ZH ZamY]
J

Ieg a:l,.. d— 1€deevl€fk 1

<C(d) sup (@i j)ier sl x vy, < C(d)(ai;)ijlxy,-

O

As it was announced earlier, we proceed with the study of decomposition lemmas. It is well know
that (see Lemma 6.10) if 7 = (J,- T} then

]EsupZtlgZ §maX]E sup thgl—i—C\/log ) sup

k<m teTy s, teT

Z i — Si)gi

2
We will generalize this formula to any variables from the S(d) class.

Corollary 2.4.3. For any p > 1 we have
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ZtiXi

B te

> C(d) (E sup
T

P (sup +sup||<ti>|x,p>> <e?.
teT teT

Proof. Tt is a simple consequence of Theorem 6.25, (2.29) and Chebyshev’s inequality. a

ZtiXi
K2

Lemma 2.4.4. Let T =], T}, m > 8. Then
Esup t; X; < C(d) | maxE sup t; X;+ sup |[(t; —si)q 0 .
Ytk <l (,@ o S0 6
Proof. We choose any s € T. Since EX; =0 we have

Esup » t,X; =Emaxsup » (¢ —s;)X; <Emax sup
teT; o kémteTkZi: Lo k<mieTy,

Z(ti —5i)X;

%

Let us denote

M = max[E sup
k<m teTy,

Z(ti —54) Xl

Corollary 2.4.3 and the union bound yield for u > 1,

> (ti—si) X,

i

P [ max sup
kgmtETk

> C(d) [ M+ ||(t: —si)i||X7uln(m)}> < me—unim) < gl-u,
Lemma 2.2.6 implies [|(t; — $i)ill x y1n(m) < C(d)ud||(t; — $i)ill x in(m)- Hence

P (igg Z(ti —5i)X;

i
Integration by parts gives

D (ti—si) X,

%

> C(d)

M +u® sup ”(ti_si)inx,ln(m)]> <4t
s, teT

Esup
teT

< C(d) <M+ sup | (¢; _Si)iHX,ln(m))
eT

s,t

=C(d) (mI?XIE sup (t; —si)X;

teTy

+ sup ”(ti_si)i”X,ln(m)>
eT

i s,t

So to finish the proof it is enough to show that

Esupyeq, [22,(t — i) Xil
< E sup t; X;+ sup |[(t; — Si)s . 2.59
o i S sy 5

Let z € T;,. We have
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E tseuili Z

(ti —si)X;| <E sup Z(tz‘*zi)Xi +E

teTy

D (2= s0) X

7

> (zi—si)X;

%

% 7

< E sup ti —2i) X; |+
teT, Z(z z) 7

A 2

<Esup > (ti—2)Xi |+ C(d) | (ti = 50)ill x 1n(um)

The last inequality is true since (we recall In(m) > In(8) > 2)

’Z(zisi)Xi Z(Zz'*si)Xz‘

i i
Let us also notice that

<
2

< C(d) [|(ts = s3)ill x 1 (m) -
In(m)

E sup Z(ti —2) X

teTy

= Emax (sup Z(tz — zl)Xz> , (sup Z(tZ —2) X
+

i teTy i teTy i

<E SUPZ(ti_Zi)Xi +E SuPZ(ti_Zi>Xi
teTy i + teTy, i

= 2E sup Z(tifzi)Xi = 2E sup Z(tifzi)Xi,
teTy i + teTy i

(2.60)

where in the second equality we used that X; are symmetric and in the last one that z € T}. The

above together with (2.60) imply (2.59).

O

The next Theorem (together with Lemma 2.4.4) allows us to pass from the bounds on expec-
tations of suprema of Gaussian processes developed in [1] (Theorem 6.19) to empirical processes
involving general random variables with bounded fourth moments (in particular all random vari-

ables from the S(d) class).

Theorem 2.4.5. Let p>1 and T C By +/pB1. There is a decomposition T = Ui\il T;, N <eCr

such that for every Il < N and z € R™ the following holds:

1/4 1/4

s 2 A 2
E sup E a; 29525 < C E a; jz; g a;
i7j

w11 irj

Proof. Let a(x) = \/ZJ 2]2 > ai,jxi)Q. By the Cauchy-Schwarz inequality,

1/4

@) < [ Szta?; | ),
5,7

where
1/4

(X, ai mi)’
B(x) = =L
zj: > a?,j

(2.61)

(2.62)

Let £ = (£;);, where &; are i.i.d symmetric exponential r.v’s with the density e~1*!/2. We have
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1/4

E8(E) < (B8(6)Y) " < [ Yol

So by using Corollary 6.9 with, \/p instead of p, e =1/,/p and pn(z,y) = B(z —y) we can decompose
T into UZJ\LITZ in such a way that N <exp(Cp) and

1/4

Vi<n sup ﬁ(m—f)<\cfV Za?yj . (2.63)

z,x€T] i,

By Lemma 6.19 we obtain

2
ap Sousnirs < | [t o Z(Z )
eTlij z,zeT] j

1/4 1/4 1/4
2
< [2atF v sw |} alE | Ble- Z% I DBLE I
1,7 CL‘,ZIZGTl ,] ’L,]
where in the last inequality we used the Cauchy-Schwarz inequality and (2.63). a

Fact 2.4.6. For any symmetric set T C \/pB3 +pBT, we have

S(T)<C(d) | sup (Zaz ]xz> + Za?’j ,
' j

z€T . > iy,
where S(T) :==Esup,ep_; ;i jT:Yj.
Proof. Obviously,
<ESIEJI%ZZawsz +EsupZZamle =:51(T)+ S2(T). (2.64)
TS i<y i j>p

By Fact 2.2.2 and Theorem 2.3.1 we have

S1(T) < C'sup z:a”xZ < C(d) sup (Za”@) . (2.65)

zeT . zeT .
w p Y.p
Now we bound S3(T"). By Theorem 2.4.5 we may decompose T into T = UZJ\LITZ in such a way
that N <exp(Cp) and (2.61) holds for T;/,/p instead of T; and (a; j)i>1,j>p instead of (a; ;)i ;-

Using Lemmas 2.4.4 and 2.2.6 we get

SC(((];)) max x[E sup ZZ‘“J%Y +sup <Zai7jxi> . (2.66)
' J

= €T .
Lazp Yo

By the symmetry of Y;’s, Jensen’s inequality and the contraction principle
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E sup ZZai’jxin =E sup ZZai7jxi€j|}/}| < \/?E sup ZZamxigﬂYjL

zeT) i j>p zeTy i j>p z€T/\/P i j>p

Theorem 2.4.5 states that last term in the above formula does not exceed

1/4 1/4 1/4
CVPE(D D alY) Y D> oai;|  <C@yp (Y Y i EY)
i j>p i j>p i j2p
<C(d)yp, [ a2, (2.67)
i J>p

In the last inequality we used ||Yj|, < 2¢(|Y;||, = 2¢/e. From Lemma 2.2.3 and (2.54)
VP 2
S 2o2oek S swq Y > ait |t <p i<ty < 1| Y ad . (2.68)
i j>p J % 7 i ; -

The assertion follows by (2.64)-(2.68). O

2.5 Proof of Theorem 2.1.1

We are ready to prove the main theorem of this chapter. We begin with the lower bound.
Repeated application of (2.29) gives

Yoai XVl = e(d)|aigllx - (2.69)
5]
P

Symmetry of Ys, Jensen’s inequality, (2.52) with p = 1, normalization | X;[l, =1/e and (2.29)
imply

ZamX,- Zaivai

%

D aiiXaYs| =|D]Y;
i j

p

> D YiEx
p g p

2
1 1
=@ %:Yj Ex (;““Xi> 2 5 (Zfﬁy)j . (2.70)

%
p P

In the same way we show

1
Zam—Xin Z Td) Za?’j . (271)
i,J » J X.p
Inequalities (2.69)-(2.71) gives the lower bound in Theorem 2.1.1.

Now we establish the upper bound. To this end we observe that Theorems 2.3.1 and 6.25 and
Lemma 2.2.5 yield
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|X,Y,p ’

> ai XY\ <c@) | E||| D aisY; + (@i )i
1,7 » 7

11X p,d

is bounded by the following Proposition.
X,p,d

whereas EH‘(Z a; ;Y )

Proposition 2.5.1. For any d > 1 we have

Efl [ Y a,v; < C(d) <ai,j>||x,y,p+H [ a2, L @)
7 i

illlx,p,d INy,p

Proof. Since the functions MZX (t) are symmetric and 1+2 <2 +x1(,>1) we have

d
E Zai,ij = Esup Zx}H (1+2F) ZamY Vk<dZM
J i k=2

il X p,d

<291 Esup Zx} Zai,jyj ZMzX(wzl)<
i i

+ 3 Esupd S TTob oy [ S| | Voer S0 <
j 7

IC[d) i kel
Since {z € R" | 3, M (x;) <p} C /PBY +pB7T (recall (2.22)) Fact 2.4.6 implies
Esup Zx Za” ZMX
—%Esup ;.’E};az]}/j ;sz(le) <
< sup <Zai’j$%> ZMX )<poy+ > a2,
i j

Y,p INyp

<) | a)lxy,+ \ﬁ
' 7 Y.,p
If I C [d] then

Esup ZHm 1{\zk|>1} ZawY VkeIZM

i kel

< Esup ZHI l{lxk‘>1} ZawY Vkele =:5,

i k=1
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where in the inequality we choose :1:1C = xfo for any k ¢ I and some kg € I.

Let T,U,V be the sets defined in (2.32)-(2.34). Then T'C U+ V. So we have that

d

d
s<B s STATab{+TE s s S[[d|Sey
zl,.2deU ™ 21 j 1Cld) zieU for i€l i€V for i¢l ; 14 j

140

d d
<E sup ZHmf Zaij —|—(2d—1>E sup ZHa:f Zai,ij . (2.73)
J J

zl,. . zdeU ™ 21 al, . zd=leTadeV ™ 2

The last inequality follows by the symmetry and the inclusions U,V C T. Observe that (2.55) implies

d
E swp > [« av|<c@l|| [> a2, )
R A S ‘ illy,

P

whereas (2.56) implies

d

k
E sup > T8> ai V3| <C@ll(@)l x.y,-
zl,. L zd-leTxdeV ™ 21 j



Part 11
Vector case






Chapter 3
Hanson-Wright inequality in Banach Spaces.

3.1 Introduction and main results

The Hanson-Wright inequality gives an upper bound for tails of real quadratic forms in independent
subgaussian random variables. Recall that a random variable X is called a-subgaussian if for every
t>0, P(|X|>t) < 2exp(—t?/2a?). The Hanson-Wright inequality states that for any sequence of
independent mean zero a-subgaussian random variables X1,..., X,, and any symmetric real-valued
matrix A = (a;j);, j<n one has

n
1 t2 t
P a;i (X X —B(X, X)) >t <2eXp<—min{ ) }) 3.1
i;1 ZJ( 142 ( 1 J)) O 044||A||HS QQHAHOD ( )

where in the whole chapter we use the letter C' to denote universal constants which may differ at
each occurrence. Estimate (3.1) was essentially established in [10] in the symmetric and in [33] in
the mean zero case (in fact in both papers the operator norm of A was replaced by the operator
norm of (|a;;|), which in general could be much bigger, proofs of (3.1) may be found in [4] and
[28)).

The Hanson-Wright inequality has found numerous applications in high-dimensional probability
and statistics, as well as in random matrix theory (see e.g., [32]). However in many problems one
faces the need to analyze not a single quadratic form but a supremum of a collection of them or
equivalently a norm of a quadratic form with coefficients in a Banach space. While in the literature
there are inequalities addressing this problem (see ineq. (3.3) below), they are usually expressed in
terms of quantities which themselves are troublesome to analyze. The main objective of this chapter
is to provide estimates on vector-valued quadratic forms which can be applied more easily and are
of optimal form.

The main step in modern proofs of the Hanson-Wright inequality is to get a bound similar to
(3.1) in the Gaussian case. The extension to general subgaussian variables is then obtained with use
of the by now standard tools of probability in Banach spaces, such as decoupling, symmetrization
and the contraction principle. Via Chebyshev’s inequality to obtain a tail estimate it is enough
to bound appropriately the moments of quadratic forms in the case when X; = g; are standard
Gaussian N(0,1) random variables. One may in fact show that (cf. [16,17])

p\ 1/p
n

E| Y aij(gigi —6ij) ~ pl|Allop + vl Al s, (3.2)
i,j=1

where d;; is the Kronecker delta, and ~ stands for a comparison up to universal multiplicative
constants.

51
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Following the same line of arguments, in order to extend the Hanson-Wright bound to the Banach
space setting we first estimate moments of centered vector-valued Gaussian quadratic forms, i.e.
quantities

p\ 1/p
n n
> aij(gigi—6ij)|| = [E|| D aij(gig; — i) . p=1,
i,j=1 » i,5=1

where A = (a;;); j<n is a symmetric matrix with values in a normed space (F,| ||). We note that
(as mentioned above) there exist two-sided estimates for the moments of Gaussian quadratic forms
with vector-valued coefficients. To the best of our knowledge they were obtained first in [5] and
then they were reproved in various context by several authors (see e.g., [3,22,24]). They state that
for p > 1,

> aij(gi9; = 6i)|| ~E (Y aij(gig; — 0i) ||+ vPE sup || aiwig;
ij v ij lz|l2<1 ij

+p sup > aijuiy| - (3:3)
lzll2<Lllylla<1]|";

Unfortunately the second term on the right hand side of (3.3) is usually difficult to estimate.
The main effort in this chapter will be to replace it by quantities which even if still involve expected
values of Banach space valued random variables in many situations can be handled more easily.
More precisely, we will obtain inequalities in which additional suprema over Euclidean spheres are
placed outside the expectations, which reduces the complexity of the involved stochastic processes.
As one of the consequences we will derive two-sided bounds in L, spaces involving only purely
deterministic quantities.

Our first observation is a simple lower bound

Proposition 3.1.1. Let (a;;); j<n be a symmetric matriz with values in a normed space (F,||-||).
Then for any p > 1 we have

1
> aij(gig; — 6ij) >25(E > aij(gigj —6ij)|| +vP sup E[D aizig
ij . ij l=ll2<1 )iz

—|— sup E aijTij|| +Dp sup E AijTiY;j .
\|<x”>||2<1 i lellz<1,llyll2<1 ||

This motivates the following conjecture.

Conjecture 3.1.2. Under the assumptions of Proposition 3.1.1 we have

Zaij(gigjffsij) §C< Zaz] gzgj*(sz]) JF\/Z»? sup E Zam Tigj
ij

lz]l2<1
P i#j

—|— sup E Qi T || +p sup E 5Ty .
H(z”)||2<1 r lzll2<1, lyll2<1 ||

We are able to show that the conjectured estimate holds up to logarithmic factors.
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Theorem 3.1.3. Let (a;j)i j<n be a symmetric matriz with values in a normed space (F,|-||).
Then for any p > 1 the following two estimates hold

Zaij(gigj_éij) ln 619 Zam gzg] z]) +\/i) sup E Zazszg]
0 ) llz]|2<1 i)

+y/p sup Zaw% +pln(ep) sup Zaijxiyj ) (3.4)
H(fvu)||2<1 i lzll2<1,llyll2<1 {755

and

> aij(gig; —6ij) SC<E > aij(gigj—6ij)||+vP sup E[> aiwigs

lello<1 ||

p

+y/pln(ep)  sup Za”x” +p sup Za” Tiyj ) (3.5)

I@ipll2<1 || 5 Iy =

One of the main reasons behind the appearance of additional logarithmic factors is lack of good
Sudakov-type estimates for Gaussian quadratic forms. Such bounds hold for linear forms and as a
result we may show the following ((gi,;)i,j<n below denote as usual i.i.d. N'(0,1) random variables).

Theorem 3.1.4. Under the assumptions of Theorem 3.1.83 we have
> aijlgig; —6i)|| <C <E > aij(gig; —6i))|| +E || aijgis
j » j i#£]

+\/]3 sup E Zaz]l‘zg] + sup Zaz]xu
lallo<1 || bt —

+p Zazszyg > . (36)

lela<blula<1 >

In particular we know that Conjecture 3.1.2 holds in Banach spaces, in which Gaussian quadratic
forms dominate in mean Gaussian linear forms, i.e. in Banach spaces (F, || ||) for which there exists
a constant A < oo such for any finite symmetric matrix (a;;); j<n with values in ' one has

E|Y aijgi|| < AE (D aijgig5)| - (3.7)
i#£] i#£]
It is easy to check (see Proposition 3.2.1 below) that such property holds for L,-spaces with A\ =
Ar) < Cr.

Remark 3.1.5. For non-centered Gaussian quadratic forms S=3",.a;;g:g; one has [|S|, ~ [[ES| +
IS —ES||p, so Proposition 3.1.1 yields
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lz]l2<1 i#j

E ai;9i95 > — < g ai59i95 +\/]3 sup E E A;52595
ij
p

+vp  sup Zaijxij +p sup Zaz‘jxiyj )
ij

(i) ll2<1||73; lz|l2<1,|lyll2<1

and Theorem 3.1.4 implies

> aijgigi|| <C < Za”g@gj +E| > aijgi| +vP swp E||} aizig;
ij

<
» ] lzll2<1 )iz

+ sup Za”x” +p sup Zaijmiyj ) .
H(Iz])\|2<1 ij lzlla<L.llyll2<1 |75
Proposition 3.1.1 and Theorem 3.1.4 may be expressed in terms of tails.

Theorem 3.1.6. Let (a;5);i j<n be a symmetric matriz with values in a normed space (F,|-||).
Then for any t >0,

1 NG
P Zam (9ig; — 635)|| > t+ = IE Za” (9i95 — 6s5) >Cexp<—Cm1n{U2,V}>,

ij

where

U= sup E Zawngj sup Za”xm , (3.8)
lzllz<1 |52 l[(@i)ll2<1 {55

V= Za”x,y] . (3.9)

||93||2<1 Hy\|2<1 ij

Moreover, for t > C(E|3_,; aij(9ig; — 0ij) || + El| 22, 2, aizgij||) we have

I
P Zam (gsg; —dsz)|| >t <2exp(—cm1n{U2,V}>.

As a corollary we get a Hanson-Wright-type inequality for Banach space valued quadratic forms
in general independent subgaussian random variables.

Theorem 3.1.7. Let X1,Xas,..., X, be independent mean zero a-subgaussian random variables.
Then for any symmetric matriz (aij); j<n with values in a normed space (F,| -||) and t >

Ca®(E|| 2,5 aij(9i95 — 0i) | + Bl X1z @i 9i51l) we have

1 . t2 t
where U and V' are as in Theorem 3.1.6.

Remark 3.1.8. It is not hard to check that in the case F'=R we have U ~ ||(a;;)|lus and V =
l(aij)|lop. Moreover,
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B> aij(9ig; —0i) | +E||D_ aijoi; || <2ll(aij)|us,
ij i#]

so the right hand side of (3.10) is at least 1 for ¢ < C"(E[|3_,; aij(9i9; — 0i5) || + Ell 22,2, aijgi5l)
and sufficiently large C. Hence (3.10) holds for any ¢ > 0 in the real case and is equivalent to the
Hanson-Wright bound.

Remark 3.1.9. Proposition 3.4.2 below shows that we may replace in all estimates above the term
SUDP||z|lo<1 E| Ei;éj aijrig; | by SUP||z|l,<1 E Zij aijrig;ll-

The organization of the chapter is as follows. In the next section we discuss a few corollaries of
Theorems 3.1.4 and 3.1.7. In Section 3.3 we prove Proposition 3.1.1 and show that it is enough to
bound separately moments of diagonal and off-diagonal parts of chaoses. In Section 3.4 we reduce
Theorems 3.1.3 and 3.1.4 to the problem of estimating means of suprema of certain Gaussian
processes. In Section 3.5 we show how to bound expectations of such suprema — the main new
ingredient are entropy bounds presented in Corollary 3.5.3 (derived via volumetric-type arguments).
Unfortunately our entropy bounds are too weak to use the Dudley integral bound. Instead, we
present a technical chaining argument (of similar type as in [16]). In the last section we conclude
the proofs of main Theorems.

3.2 Consequences and extensions

3.2.1 L,-spaces

We start with showing that L, spaces for r < oo, satisfy (3.7) with A = Cr, so Theorem 3.1.4 implies
Conjecture 3.1.2 for L, spaces (and as a consequence the Hanson-Wright inequality). Moreover, in
this case one may express all parameters without any expectations as is shown in the proposition
below.

Proposition 3.2.1. For any symmetric matriz (a;;); j<n with values in L, = L. (X, ), 1 <r < o0
and x1,...,z, € R we have

1
G a2l <E| aggi|| <CVF| D k| (3.11)
1] L, i L, iJ L,

2 2
1
C Z Zaija:i <E Zaijxigj < C\/?j Z (Zawa%) , (3.12)
J J ij L J i
Lr " Ly
1
07\/; Zafj S E Zaij(gigj —(Sij) S Cr Zafj . (313)
ij ij \/ ij
Ly, Ly Ly
Proof. For any a;’s in L, the Gaussian concentration yields
r 1/r
E|> aigi| < [E|D_aig <CVIE||Y aigi
7 L, 7 L, 7 L,

Since
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1/r

r 1/r
= (/X]E zi:ai(x)gz‘ du(%))

1/r
:(/X Egu(;a%@))”zdu(m) “i| 3]

Ly

E

S i
1

r
L

estimates (3.11),(3.12) follow easily. The proof of (3.13) is analogous. It is enough to observe that
from Theorem 6.3

™ 1/1”
B> aijlgig;—8i)| < | E||D_ aij(gig5 —6i5) <CrE|> aij(gigj — 6ij)
ij L ij L ij L
and (3.2) imples for any z € X,
r\ 1/r
ﬁ 2 <I|E g g — O <C 2
C Zaij(x) > Zaw ()(9ig; — dij) sor Zaij(x)'
ij ij ij

a

The above proposition, together with Proposition 3.1.1 and Theorems 3.1.4 and 3.1.7 imme-
diately yield the following corollaries (in particular they imply that Conjecture 3.1.2 holds in L,
spaces with r-dependent constants)

Corollary 3.2.2. For any symmetric matriz (a;j);; with values in L, and p > 1 we have

2

D_aiglgig —du)|| ~"| D oadll +vp sw (D | D e
ij v ij L, lz]l2<1 j itj

Ly

+vp  sup Y aijwi|| +p  sup > aijTiy;
liplz<t || lela<lyla<t || %5
L, Ly

The implicit constants in the estimates for moments can be taken to be equal to Cr in the upper
bound and r—/2/C in the lower bound.

Corollary 3.2.3. Let X1,Xo,...,X,, be independent mean zero a-subgaussian random variables.
Then for any symmetric finite matriz (a;j); j<n with values in L, = L.(X,u), 1 <7 < oo and

t> Ca’r| > i afjHLT we have

1 2 t
Ly

where



57

2
U= sup E E Q%4 + sup E ;5 Tij ,
< ) . - < .
lallo<1 ||\ 57\ 2 leapla<t |5 .
,
™
V= sup E a,-jziyj
lzll2<1,llyll2<1|| 55 L

3.2.2 Spaces of type 2

Recall that a normed space F' is of type 2 with constant A if for every positive integer n and
Vi,...,0n € F,

E

n n
D wviE| <A D Nl
=1 =1

where €1,e9,... is a sequence of independent Rademacher variables.
By standard symmetrization inequalities one easily obtains that if F' is of type two with constant

A then for any independent random variables X,
<2 D llai|2EX
i

and if EX; =0, then decoupling arguments combined with symmetrization and Khintchine-Kahane
inequalities give

E

> (X7 -EX?)

(2

E|Y ai; XiX;|| < CN > |lay||PEXZEX?.
i#j 1#j
Therefore, Theorem 3.1.7 gives immediately the following

Corollary 3.2.4. Let X1, Xo,..., X, be independent mean zero a-subgaussian random variables and
let F' be a normed space of type two constant X. Then for any symmetric finite matriz (a;;); j<n

with values in F and t > C\2a? > i llaijl|* we have

I t2 t
where
2
U=\ sup Z H Zaijxi + sup Zaijxij 5 V= sup Zaijxiyj
lzll2<1 j i#j H(%’j)“QSl ij lzll2<1,[lyll2<1 ij

Remark 3.2.5. We note that from Theorem 3.1.7 one can also derive similar inequalities for suprema
of quadratic forms over VC-type classes of functions appearing e.g., in the analysis of randomized
U-processes (cf. e.g., [7, Chapter 5.4]).



58

3.2.3 Random vectors with dependencies

Let us assume that X = (X3,...,X,,) is an image of a standard Gaussian vector in R™ under an

a-Lipschitz map. In particular, by the celebrated Caffarelli contraction principle [6], this is true
if X has density of the form eV, where V2V > a~2Id. As observed by Ledoux and Oleszkiewicz
[23, Corollary 1], by combining the well known comparison result due to Pisier [27] with a stochastic
domination-type argument, one gets that for any smooth function f: R™ — F and any p > 1,

Hf(X)_Ef(X)HPS%”<vf(X)vG>”pv (3.16)

where here and subsequently G, is a standard Gaussian vector in R™ independent of X and for
a€ F™ beR"™ we denote (a,b) = 1" ; a;b;. This inequality together with Theorem 3.1.4 allow us to
implement a simple argument from [2] and obtain inequalities for quadratic forms and more general
F-valued functions of the random vector X. Below, we will denote the second partial derivatives
of f by 0;;f. For the sake of brevity, we will focus on moment estimates, clearly tail bounds follow
from them by an application of the Chebyshev inequality.

Corollary 3.2.6. Let X be an «-Lipschitz image of a standard Gaussian vector in R™ and let
f: R™ = F be a function with bounded derivatives of order two. Assume moreover that EV f(X)=0.
Then for any p > 2,

1£(X) =Ef(X)]lp <Ca® sup (E Zaz‘jf(z)(gigj—5ij) +E | 0 f(2)gi

ZeRn i#

++p sup E Z@ijf(z)xigj ++p sup Z@ijf(z)mij

lz]l2<1 i#j H(-TZJ)H2S1 ij

+p sup Z@ijf(z)a:iyj ) ) (3.17)

lzll2<Lllylla<1|| 75
In particular if X is of mean zero, then

> ay(XiX; —E(X;X;))| <Co? (E > aij(gig; —0i) | +E||D_ aijgij
ij

ij » 1#]

++p sup E Zaijxigj +4/p sup Zaijxij
lzll2<1 i#j ||(35ij)H231 ij

+p sup Zaijwz‘yj ) (3.18)
lzll2<1[lylla<1 |75

and the inequality (3.10) is satisfied.

Proof. Let Gy, = (91,---,9n), G, = (g},..-,95,) be independent standard Gaussian vectors in R"™,
independent of X. By an iterated application of (3.16) (the second time conditionally on G,,) we
have
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p
E|f(X)—Ef(X)[|P < CPaPE|(Vf(X),Gn)||P < C*Pa*’E E i f(X)gig;
ij
p
< C*a*PE E 0i; f(X)(gig5 —0ij)||
i

where the last inequality follows by Theorem 6.4. To finish the proof of (3.17) it is now enough to
apply Theorem 3.1.4 conditionally on X and replace the expectation in X by the supremum over
z e R™.

The inequality (3.18) follows by a direct application of (3.17). a

3.3 Lower bounds

In this part we show Proposition 3.1.1 and the lower bound in Theorem 3.1.6. We start with a
simple lemma.

Lemma 3.3.1. Let W =32, ,;aij9:9;lp + 157, aii(g? —1)||p. Then for any p>1,

1
§W < szaij(gigj —0i5)|| <W.
p

Proof. Let (g;); be a sequence of i.i.d. symmetric £1 r.v’s independent of (g;);. We have by sym-
metry of ¢g; and Jensen’s inequality,

> aij(9ig; — 6ij) > aij(eigigigi —6i)|| = ||Be Y aij(eic;gigs — 0is)
ij ij

p p J P

= Zan’(gf -1)

To conclude we use the triangle inequality in L, and get

p

Zau’(gf —-1)

<2(> " aij(gig; — 6ij)
P i

> aigigs|| <||D_aii(gigi—dip)| +
i#] j »

p p

Adding the inequalities above yields the first estimate of the lemma. The second one follows
trivially from the triangle inequality. a

Proof of Proposition 8.1.1. Obviously

> aij(gigj —6i)|| =E|aij(gig; —0i)|-
ij i
p

Moreover, denoting by || - ||« the norm in the dual of F', we have
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> aij(gigi—6i)|| = sup || laiz)(gigs — i)
ij » [lpll« <1 ij »

1
ZC<\/I3 sup ||(¢(aiz))ijllas +p sup ||(80(az'j))z’j||op>
lpll« <1 loll«<1

1
=C VP sup Zaz’jéﬂij tp sup Zaijfz'yj )
l(@ss)ll2<1 1755 lzll2<L[lyll2<1||755

where in the second inequality we used (3.2).
Lemma 3.3.1 and the decoupling Theorem of Kwapieni 6.5 (see also Theorem 6.6) yield

1 1
Zaij (9i95 —di)|| = 3 Zaijgigj > ° Zaz’jgz‘g} ) (3.19)
ij » i#j » i#] p

where (g}); denotes an independent copy of (g;);-
For any finite sequence (b;); in (F,||-]|) we have

b
’Zbigi > sup S eig| = swp @il lorly> 2 sup | Sabi] . (320
i p lel=1{ p  lellxst llzll2<1)|7
Thus, by (3.19) and the Fubini Theorem, we get
p p
> aij(gig; —dij) Z% sup (1Y aijzig) Z% sup E | aijaig;
ij » lzll2<1 i#£j » lzll2<1 i#£j
O

3.4 Reduction to a bound on the supremum of a Gaussian process

In this section we will reduce the upper estimates of Theorems 3.1.3 and 3.1.4 to an estimate
on expected value of a supremum of a certain Gaussian process. The arguments in this part of
the chapter are well-known, we present them for the sake of completeness. In particular we will
demonstrate the upper bounds given in (3.3).

The first lemma shows that we may easily bound the diagonal terms.

Lemma 3.4.1. For p>1 we have

| Zaii(gz‘z -1)

<C|E|D aijlgigi —0i)||+vp  suwp || aijxi
p ij H("Eij)”2§1 ij

+p sup E i TiY;
lzll2<1,|lyll2<1 ij

Proof. Let X; be a sequence of i.i.d. standard symmetric exponential r.v’s. A simple argument (cf.
proof of Lemma 9.5 in [1]) shows that
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> aii(gl—1) > aiigigi > aiXi|| (3.21)
i i » i »
the latter quantity can be bounded by Theorem 6.24, thus
| 2 1) 2-1)|| +p sup Z:a”zZ +psupHa”||
1 llzll2<1
E Zaij(gigj dij)||[++p sup Zaijl‘ij +p sup Zawxzy] ,
ij l(@i)ll2<1 |75 llzll2<1, ||y||2<1 i

where in the last inequality we used Lemma 3.3.1. a

The next proposition implies that in all our main results the term sup,,<1 Ell>2;.; ai;zig;||
can be replaced by supj,,<1 Bl >2;; aijzig;ll-

Proposition 3.4.2. Under the assumption of Proposition 3.1.1 we have for p > 1,

Vo sup E
lzll2<1

g Ai;T594

<C Zaz] gij — 1] + sup Zamxz]
H(ng)”2<1 i

+p sup E P
lzll2<1,[lyll2<1 ij

Proof. Applying (3.20) conditionally on (g;); and Jensen’s inequality yield

Zanngz Zaungz < CH Zallglgz < CH Zau - 1 ‘

where in the last line we used (3.21). The assertion follows by Lemma 3.4.1.

Vo sup E
llzll2<1

<E,/p sup
llzll2<1

)

For the off-diagonal terms we use first the concentration approach.

Proposition 3.4.3. For p > 1 we have

> aijgigi| <C ( > aijgig| +VPE sup (> aiwig||+p  sup > aijziy; )

. <1||:_..: < <
1#£] » 1#£] lzll2< i#j lzll2< 1”1!“2 T

Proof. Let
A= {z cR"™: ZaijZiZj <4E Zaijgigj , sup Zawx zj|| <4E sup Zaijxigj }
i#] i#j lzlle<1||iz; lell2<1 |32

Then ~,,(A) > % by the Chebyshev inequality. Gaussian concentration gives v, (A-+tBY) > 1—
e‘t2/2 for ¢ > 0. It is easy to check that for 2 € A+tBjy we have
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Zaijzizj < 4S(t),

i#]

where
S(t)=E Zaijgigj +2tE sup Zaijxigj +12 sup Zaijxiyj
i lzlla=<1] 5 lzll2<1.llyll2<1 || 527
So
P Zaijgigj >48(t) | < e /2 fort>0.

i#]

Integrating by parts we get || Zi;éj ai;j9i9illp < CS(\/p) for p > 1, which ends the proof. O

Observe that for any symmetric matrix the Kwapien decoupling Theorem 6.5 yields

E Zaz’jgigj ~E Zaijgig;‘

i#j i

Moreover introducing decoupled chaos enables us to release the assumptions of the symmetry of
the matrix and zero diagonal.

Taking into account the above observations, Conjecture 3.1.2 reduces to the statement that for
any p > 1 and any finite matrix (a;;) in (F,|-||) we have

1
E sup Zaijgixj SC’(E Zaijgig} + sup E Zaijgixj
l2ll2<1|| 5 VP |G lzlla<1 |5

+ sup Zaijxij +vp sup Zaijxiyj > (3.22)

H(%‘J‘)HZSl ij lz|l2<1,|lyll2<1 ij

Let us rewrite (3.22) in another language. We may assume that F =R for some finite m and
aij = (aijk)k<m- Let T'= Bp+ be the unit ball in the dual space F**. Then (3.22) takes the following
form.

Conjecture 3.4.4. Let p > 1. Then for any triple indeved matriz (a;jk)i j<n,k<m and bounded
nonempty set T'C R™ we have

1
E sup a;ik9iity| < C| —=Esup aijkgidite
Hmmgz”’j ﬂﬂﬂzwlj

ijk ijk
9\ 1/2
+ sup Esup Zaijkgimjtk + sup Z (Z%’jk%)
[lzll2<1  teT ijk te ij k
9\ 1/2
+p sup Z Zaijxjtk . (3.23)
lzll2<1,teT i ik

Obviously it is enough to show this for finite sets T'.
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3.5 Estimating suprema of Gaussian processes

To estimate the supremum of a centered Gaussian process (Gy),cy one needs to study the distance
on V given by d(v,v') := (E|G, — Gy|?)*/2 (cf. [30]). In the case of the Gaussian process from
Conjecture 3.4.4 this distance is defined on By x T C R™ x R™ by the formula

o\ 1/2

da((w,t), (2", t)) o= [ D | D aiulajte —5th) =as(zot—a' ot),
i\ jk

where 2 ®t = (z;t);x € R™ and a4 is a norm on R™ given by

o\ 1/2

aa(y) = Z Zaijkyjk )
i ik

(as in Conjecture 3.4.4 in this section we do not assume that the matrix (a;jx)qj% is symmetric or
that it has 0 on the generalized diagonal).
Let
B((z,t),da,r) ={(@',t') eR"XT: aslz@t—a'ot')<r}

be the closed ball in d4 with center at (z,t) and radius 7.
Observe that

o\ 1/2

lzllo<1teT \ 75

diam(B3y xT,d ) ~ sup Z Zaijkafjtk
ik

Now we try to estimate entropy numbers N(BY xT,d4,¢) for € > 0 (recall that N(S,p,e) is the
smallest number of closed balls with the diameter ¢ in metric p that cover set S). To this end we
first introduce some notation. For a nonempty bounded set S in R™ let

Ba,s(z) :=Esup Zaijkgixjtk , T€E€R™

tesS ijk

Observe that $4 s is a norm on R™. Moreover, by the classical Sudakov minoration (cf. Theorem
6.7) for any € R™ there exists a set S, . C S of cardinality at most exp(Ce~2) such that

Vies Jves,. aa(z@(t—1')) <efas(z).

For a finite set S C R™ and € > 0 define a measure p. g on R™ x S in the following way

pes(©@i= [ 3 by (o)

tESm,E

where 7, ¢ is the distribution of the vector eG,, (recall that G, is the standard Gaussian vector
in R™). Since S is finite, we can choose sets S, . in such a way that there are no problems with
measurability.

To bound N(BF xT,da,e) we need two lemmas.

Lemma 3.5.1. [16, Lemma 1] For any norms ai,as on R", y € BY and e >0,
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Tne(x: a1(z—y) <4eBay(Gr), az(z) <4eEao(Gr)+aa(y)) > %exp(—5_2/2).

Lemma 3.5.2. For any finite set S in R™, any (z,t) € By x S and € >0 we have

1
pe,s (B ((w,t),da,r(€))) > iexp(—€_2/2),
where
r(e) =r(A,S,z,t,e) = 4€2E5A’5(Gn) +efa,s(x) +4eEaqs(Gn ®1).
Proof. Let

U= {x’ eR™: ﬁAys(.Z‘/) <4eEfa,5(Gn) —|—ﬁA75(l‘),OzA((x—$/) ®t) <4eEaa (G, ®t)}.

For any 2/ € U there exists t' € S; . such that ax(2'® (t—1')) <efa,s(2’). By the triangle in-
equality
ap(z@t—2' @t) <as((zr—2")@t)+as(x’ @ (t—t)) <r(e).

Thus, by Lemma 3.5.1, p1. s (B ((z,t),da,7(€))) > Vn,e(U) > 3 exp(—e2/2). O

Having Lemma 3.5.2 we can estimate the entropy numbers by a version of the usual volumetric
argument.

Corollary 3.5.3. For anye >0, U C BY and S C R™,

N (U x S,da,82°EB4.5(Gr)+2e sup Ba,s(x) +8esupEas (G, ®t)) < exp(Ce™?) (3.24)
zeU tesS

and for any 6 > 0,

\/lnN(U x S,da,0) < C<(5—1 (sup 5A75(x)+sup]EaA(Gn®t)> +5_1/2(EBA’S(Gn))1/2).
zelU tes

Proof. Let r =4?EB 4 5(Gpn)+esup,ey Ba,s(x)+4esup,ec g Eaa(Gy@t) and N =N (U x S,d 4, 2r).
Then there exist points (z;,¢;)]Y, in U x S such that da((zi,;),(x;,t;)) > 2r. To show (3.24) we
consider two cases.

If € > 2 then

2r>4sup fas(z) >4 sup E Zaijkgitjxk
xeU (z,t)eUxS ik

o\ 1/2

2
=44/— sup E g aijrtjTy > diam(U x S,d4)
™
ik

(z,t)eUxS i

so N =1<exp(Ce?).

If € < 2, note that the balls B((x;,t;),da,r) are disjoint and, by Lemma 3.5.2, each of these
balls has p. 5 measure at least %exp(—5*2/2) > exp(—5¢2). On the other hand we obviously have
pe s(R™ x S) < exp(Ce™2). Comparing the upper and lower bounds on p. g(R™ x ) gives (3.24)
in this case.

The second estimate from the assertion is an obvious consequence of the first one. a

Remark 3.5.4. The classical Dudley’s bound on suprema of Gaussian processes (see Corollary 6.14)
gives
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diam(B3 XT,d 4)
E sup Zaijkgimjtk < C/ \/lnN(Bg xT,da,06)do.
lz|l2<1,teT ijk 0

Observe that

diam(By xT,d4)
/ 5~V 2(EB A r(Gn))/2d6 = 2, [dinm (B x T.d A)EB A ()

0

1
< —EﬂA’T(Gn)—&-\/ﬁdiam(Bg xT,dy)
VP
appears on the right hand side of (3.23). Unfortunately the other term in the estimate of

\/lnN (BY xT,d4,0) is not integrable. The remaining part of the proof is devoted to improve
on Dudley’s bound.

We will now continue along the lines of [16]. We will need in particular to partition the set T
into smaller pieces T} such that sup, ser, Eaa(Gn @ (t —1')) is small on each piece. To this end we
apply the following Sudakov-type estimate for chaoses, derived by Talagrand ([31] or [30, Section
8.2]).

Theorem 3.5.5. Let A be a subset of n by n real valued matrices and da, doo be distances associated
to the Hilbert-Schmidt and operator norms respectively. Then

€1n1/4N(A,d2,€) < CE sup Zaijgig; fore>0
acA i

and

clnl/? N(A,ds,e) < CE sup Zaijgig; fore> C\/diam(A, doo )E sup Zaijgigg-.
acA ij a€A"

To make the notation more compact let for T C R™ and V C R™ x R™,

5A(T) :=Epa,1(Gn) =Esup Zaijkgig;’t’f ’
LeT |5k
Fu(V):=E sup Zaijkgixjtk
(z,t)eV ik
M= s S et
lzlle<Lllyll2<1,t,t'€T |

Ay(V):=diam(V,dy) = sup aslr@t—a' @t).
(z,t),(z’ ,t')eV

Corollary 3.5.6. Let T be a subset of R™. Then for any r > 0 there exists a decomposition
Tr-T= Ufil T; such that, N < e€" and

sup Eax (G (t—t')) < min{r1/4sA(T),r1/25A(T) +C\/sA(T)AA’OO(T)} .
t,t'eT;

Proof. We use Theorem 3.5.5 with A= {(>_, asjrtr)ij: t €T —T}. It is enough to observe that
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E sup Zbijgig; =5A(T—T)<254(T), diam(A,deo)=244,(T)
beA i

and

Eas(G,@t—t') < (Zaijk(tk _t;c)>
k

yllgs

On the other hand the dual Sudakov minoration (cf. Theorem 6.8) yields the following

Corollary 3.5.7. Let U be a subset of By. Then for any r > 0 there exists a decomposition U =
UN., U; such that N < e€" and

sup Bar(z—a') <r 1/ 2s,(T).

z,x'€eU;

Putting the above two corollaries together with Corollary 3.5.3 we get the following decomposi-
tion of subsets B3 x T

Corollary 3.5.8. Let V C R" x R™ be such that V-V C BY x (T —T). Then for r > 1 we may
find a decomposition V = Uf\il((xl,tz) +V;) such that N < e€™ and for each 1 <i <N,

i) (xi,t;) eV, V;i=V; CV -V, V;CBy x(T-T),

i) Sup (5 ¢)ev, Ba,1(x) < =125 ,(T),

ii1) Sup (5 pyev; Baa(Gn ®1t) < min {7’_1/4SA(T)77"_1/2SA(T) +C\ /sA(T)AApo(T)},

i) Aa(Vi) < min{r‘3/4sA(T),r_1sA(T) 12, /sA(T)AA,OO(T)}.

Proof. The assertion is invariant under translations of the set V' thus we may assume that (0,0) € V

and so VCV -V C B} x (T'—T). By Corollaries 3.5.6 and 3.5.7 we may decompose BY = vazll U,
T-T= vajl T; in such a way that N1, Ny < e¢” and

sup far(z—a') <r V2s,(T),
z,x' €eU;

sup Eaa (G, (t—t')) < min{r_1/4sA(T),r_1/2sA(T) —i—Cq/sA(T)AA,OO(T)}.

t,t'eT;

Let Vi; :==V N (U; x Tj). If V5 # 0 we take any point (z;5,yi;) € Vi; and using Corollary 3.5.3 with
e =7r"12/C we decompose

N3
Vij = (x45,9i5) = U Vijk
k=1

in such a way that N3 < e©" and

z'eU; y’ETj

< min{r_3/4sA(T),r_1sA(T) +7"_1/2\/5A(T)AA7OO(T)} .

The final decomposition is obtained by relabeling of the decomposition V = Uijk((xijayij) +Vijk)-
O

1 _ _ _
Ax(Viji) < C(?‘ Ysa(T) +r=Y2 sup Bar(a’ —zij)+r~ Y2 sup EaA(Gn®(y/yij))>



67
Remark 3.5.9. We may also use a trivial bound in iii):

sup Eaa(Gp®t) < sup Eas(Gp,@(t—t')) <2supEas (G, ®1t),
(z,t)eV; tt'eT teT

this will lead to the following bound in iv):

Aa(Vi) <7 tsa(T) +r 2 supEaa(Gn @1).
teT

Remark 3.5.10. By using Sudakov minoration (cf. Theorem 6.7) instead of Theorem 3.5.5 we may
decompose the set T = vajl T;, N <exp(Cr) in such a way that

Vien sup Eay(Gnp @ (t—t')) S”_l/QESUPZaijkgijtk-

t,t'eT; teT ijk

This will lead to the following bounds in iii) and iv):

sup Eaa(Gn®t) < r_1/2EsupZaijkgijtk
(z,t)eV; teT ijk

Ax(Vy)<rt ESUpZaiijijtk +54(T)

teT g

Lemma 3.5.11. Let V be a subset of BY x (T'—T). Then for any (y,s) € R™ x R™ we have
Fa(V+(y,s)) < Fa(V) +2Ba,1(y) + CEaa(Gn ®3s).

Proof. We have

FaA(V+(y,s)) < Fsa(V)+E sup Zaijkgiyjtk—i—E sup Zaijkgixjsk.

(z,t)eV ik (z,t)eV ik
Obviously,
E sup Zaijkgiyjtk <E sup Zaijkgiyj(tk_t;c) <2Ba71(y).
(z,t)eV ijk tt'eT ik
Moreover,
2\ /2 o\ 1/2
E sup Zaijkgﬂjsk < | E sup Zaijkgﬂjsk = Z (Z aijk3k>
(@) eV v€By |k ij \ k
= (Eaa(Gp ®5)2)/? < CEan(Gp®s),

where in the second inequality we used Theorem 6.3. a

Proposition 3.5.12. For any nonempty finite set T in R™ and p > 1 we have
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" In(ep)
C s u T
Fa(By xT) < < 7 A(T)+Hst2pSlBA,T()

+supEas (G, ®t)+1n(ep)\/pAa(By x T)) , (3.25)
teT

7 (T)+ sup Bar(x)

1
FaBYxT)<C| —sa
lzlla<1

+1In(ep)supEas (G ®1t) +/pAa(BY x T)) . (3.26)
teT

1 1
FA(BExT)<C| —sa(T)+ —Esup » ajirgiitc + sup Bar(z
( 2 ) <\/§ ( ) \/ﬁ tETZ ijkYiglk ,T()

lzll2<1

+supEas(Gr®t)+/pAs(By X T)) . (3.27)
teT
Proof. First we prove (3.25) Let g € N be such that 20~ < p < 20, Define

Ag:=AA(BY xT), Ag:= sup Bar(z)+supEas(G, 1),
wEB;L teT
Ay =273 A3 s (1), Ay =274 p Vs (),

> 1.
and for 1 <1 <lp,

A =27 s 4 (1) +2712p7 Y2 s A(T) A oo (T),
Ap =272V 25 \(T) + C[s4(T) Ao (T).

Let for { =0,1,... and m=1,2,...

c(l,m):= sup{FA(V): V-VCByx(T-T),#V <m,
Aa(V) < Azy( Sl;p (Bar(x) +Eaa(G@t)) <24}
z,t) eV

Obviously ¢(l,1) = 0. We will show that for m > 1 and I > 0 we have

e(l,m) gc(l+17m—1)+C(2l/2\/ﬁAl+A~l). (3.28)

To this end take any set V as in the definition of ¢(I,m) and apply to it Corollary 3.5.8 with r = 2!1p
to obtain decomposition V' = Uf\il((ml’tl) +V;). We may obviously assume that all V; have smaller
cardinality than V. Conditions i)-iv) from Corollary 3.5.8 easily imply that Fa(V;) <c(l+1,m—1).

Lemma 6.10 yields

i

Fy(V)=Fy (U((.ﬁcwtl)-l-‘/z)) <Cv lnNAA(V)-I—m?XFA((xi,ti) +Vi).



69

Estimate (3.28) follows since

VInNAA(V) <0212 /pA,

and for each ¢ by Lemma 3.5.11 we have (recall that (z;,t;) € V)
Fa((zi,ti)+ Vi) < Fa(V) +2Ba,17(i) + CEaa(Gr®t;) < c(l+1,m—1)+ CA,.

Hence

c(0,m) < C (Zglﬂfz\l +ZA1>

=0

~ 1
<C <\/23A0 + Ao+ %s,qm +1oy/54(T)Ap 00 (T) +2‘l°/4p—1/45A(T)) .

Since Ingp < lg <Ilnop+1 and \/s4(T)AA,00(T ST +\[AAOO( ) and clearly
Apoo(T) < Ap(By xT) we get for all m > 1,

c(0,m) <C <1n(ep) A(T)+ sup Bar(x)+supEas(Gp®t)+In(ep)/pAa(By x T)) .
VP lzll2<1 teT

To conclude the proof of (3.25) it is enough to observe that

1
Fyu(By xT)=2Fy4 (B;L X T) < 2 sup ¢(0,m).
2 m>1

The proofs of (3.26) and (3.27) are the same as the proof of (3.25). The only difference is that
for 1 <1<y we change the definitions of 4;, A; and we use Remarks 3.5.9 and 3.5.10 respectively.
In the first case we take

A= 2_lp_lsA(T) + 2_l/2p_1/2 supEa (G, ®1)
teT
Ap:=2712p7 125 ,(T) +supEas (G, @ 1),
teT

while in the second

Ap=2""p71 | 54 (T)—I—IEsupZamkg”tk

teT ijk

A =2712p 12 | 5 4(T) +Esupzaijkgijtk
teT i,
O

Remark 3.5.13. Note that the proof of Proposition 3.5.12 gives in fact the following estimate for
any set U C By xT. For any p > 1,

1
Fa(U) < C| —sa(T Esup » a;ikxgijtx + sup Sa +supEay (G, @t)+/pAs(U) .
() (ﬁ()\/ﬁ Z]k]kumuzq 7(2)+supEas (Gn ®1) + yPAAD)

Indeed, as in the proof above one can reduce the problem to the case of U C %Bg x T and then it
is enough to set Ag = A4(U) and add the condition V C U to the definition of ¢(I,m).
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3.6 Proofs of main results

Proof of Theorems 3.1.3 and 3.1.4. By Lemmas 3.3.1, 3.4.1 and Proposition 3.4.3 we need only

to establish (3.4)-(3.6) with || Zij ai;(9ig; — 6i5)||p replaced by VPESUp |4, <1 I Z#j ai;gi;||. We
may assume that F'=R"™ and a;; =0, so taking for 7" the unit ball in the dual space F* we have

Zaijgixj = SUPZ kil l-
i# T

Then, using the notation introduced in Section 3.5,

E sup Zaijgixj :FA(BSXT), E Zaijgixj :,BA’T(I),
lz]l2<1 i£j ij

sup Zaija:ij = sup(Ea? (Gn ©1))/? ~ supEas (G @),
(i) l2<1 || 755 teT teT

sup Zaijxiyj ~ Ap(By xT),
lzll2<1,[lylla<1 |75

E|> aijgij|| =Esup Y aijrgijtr and E| " aijgigs|| ~ sa(T),
i#] ek i#]
where the last estimate follows by decoupling. We conclude the proof invoking Proposition 3.5.12.
O

Proof of Theorem 8.1.6. Let S = ||Z” ai;j(gig; — 0ij)||. By the Paley-Zygmund inequality (see
Corollary 6.1 ) and comparison of moments of Gaussian quadratic forms (see Theorem 6.3) we
have for p > 1,

1 mu 1 1\? (ES?)? _ o,

So, to prove the lower bound on tails of S it is enough to use Proposition 3.1.1 and substitute
p=1+Cmin{t?/U?t/V}.

To derive the upper bound we use Theorem 3.1.4, estimate P(S > e||S||,) < e™P for p > 1 and
make an analogous substitution.

O
Proof of Theorem 3.1.7. Recall that for r > 0 the 1,-norm of a random variable Y is defined as
: YI\"
1Yy, =inf {a > 0: Bexp ((51)) <2} (3.29)
a

(formally for r < 1 this is a quasi-norm, but it is customary to use the name ,-norm for all r).
By [2, Lemma 5.4] if k is a positive integer and Y7,...,Y;, are symmetric random variables such
that HYsz/k < M, then
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n

ZaiYi

=1

< CyM

P

: (3.30)

p

n
Zaigil " Gik

=1

where g1 are i.i.d. standard Gaussian variables (we remark that the lemma in [2] is stated only for
F =R but its proof, based on contraction principle, works in any normed space).

To prove the theorem we will again establish a moment bound and then combine it with Cheby-
shev’s inequality. Similarly as in the Gaussian setting we will treat the diagonal and off-diagonal
part separately. Let €1,...,&, be a sequence of i.i.d. Rademacher variables independent of X;’s. For
p>1 we have

where in the first inequality we used symmetrization and in the second one (3.30) together with
the observation ||g;X? ||y, < Ca? (which can be easily proved by integration by parts).
Now by Lemma 6.13 (see also proof of [1, Lemma 9.5]),

/ 2
‘ E 4i39i9; E a;i€i9;
i i

< Ca?

)

p

> ai(X}-EX?)
i

<2
p

E : 2
a“‘&?iXi
%

Z aii9i;
i

p

<C

)

p

Zau‘(gg -1)

<2C
p

p

and thus

> ai(XP-EX?)

K2

(3.31)

< Ca?
p

Zam’ (91‘2 —-1)

p

The estimate of the off-diagonal part is analogous, the only additional ingredient is decoupling. De-
noting (X/)"_; an independent copy of the sequence (X;)"_; and by (;)"_,, (¢})7 (resp. (gi)14,
(g/), ) independent sequences of Rademacher (resp. standard Gaussian) random variables, we

have

Zainin ~ Zaininl‘ ~ ZaijgiXi5;X§‘ < Ca? Zaijgig} ~a? Zaijgigj .
i#] » i#] » i#] » i#j p i#] »
(3.32)

where in the first and last inequality we used decoupling, the second one follows from iterated
conditional application of symmetrization inequalities and the third one from iterated conditional
application of (3.30) (note that by integration by parts we have ||e; X;|y, < Ca).

Combining inequalities (3.31) and (3.32) with Lemma 3.3.1 we obtain

Y ai(XiX; —EXi X;) || <Ca? (> aij(gig; —dij)
ij » ij v

To finish the proof of the theorem it is now enough to invoke moment estimates of Theorem 3.1.4
and use Chebyshev’s inequality in L. a






Chapter 4
Moments of Gaussian chaoses in Banach spaces

4.1 Introduction

In this chapter we study Gaussian chaoses of order d € N, i.e. random variables of the form

S= E Qiq,..iq9i1 " Gigs

1<iy,...,ig<n

where (a;,,....i;)iy,...iy 15 @ multi-indexed symmetric array with values in a Banach space (F,||-|).

We establish upper bounds for moments, which for some classes of Banach spaces, including
L, spaces, can be reversed (up to constants depending only on d and the Banach space, but not
on n or a;,,..;,). As a corollary we are able to deduce moment and tail bounds for homogeneous
polynomials in i.i.d. symmetric exponential random variables and arbitrary polynomials in Gaussian
random variables.

In the sequel we will consider mainly decoupled chaoses S’ = > Q... ig gil1 ~~-gldd7 where

115--050q
(95)1&61\! are independent A'(0,1) variables - under some natural assumptions, moments and tails
of S,5" are comparable with constants depending only on d (cf. Theorems 6.5, 6.6).

For d =1 and any p > 1 the Gaussian concentration yields easily

p\ 1/p
|Zaigi = (E > aigi > ~E|D> aig
i » i i

> aigi| +vp sup | aiw
i

r€BY -
where F™* is the dual space and ~ stands for a comparison up to universal multiplicative constants.

> olai)g;

7

+ sup
PEF*, o<1

p

~E

)

1

We recall that, for chaoses of order 2 it can be shown that

> aiigigi| ~E|Y aigigy||+ vPE sup | D asgias||+ || aijzig;
.3 1,5 4,7

- z€BY
» i,
+p sup Zaijmiyj . (4.1)
z,y€BY i

If d > 2 then Gaussian concentration yields

73
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Z ai1,...,idgz‘11 ...g;id N Z p*/?Esup Z iy, ig H xgj H ggj , (4.2)
115e0s8q » JC[d] T1yensig JjeJ JEAN\J
where the supremum is taken over z',...,z" from the Euclidean unit sphere and ~, stands for
comparison up to constants depending only on the parameter a. The above formula (so in particular
(4.1)) gives the precise dependence on p, but unfortunately involves suprema of certain stochastic
processes, which are hard to estimate. Assume that d =2 and we are interested in the upper bound

only. Then the problematic term EsuszB; (HZKJ aijgisch + Hziq‘ aij:z:igj’ ), can be replaced

by quantities that can be handled more easily (cf. Chapter 3). Namely for any p > 1 we have (cf.
Theorems 3.1.4, 6.5, 6.6)

CHDY aijeids|| <E|D aij0i)|+E|D aijgi;
2] P ,J 4]

1/2 2 : 2 :
52 ] 16332 ,J

+p sup E aijTiy;
w,yEBgL i,j

As we mentioned in the previous chapter this upper bound turns out to be two-sided in a certain
class of Banach spaces containing L, spaces. This motivates the question of obtaining similar results
for arbitrary d. We give an answer to it in Theorem 4.2.1. We rely on the techniques developed
in [16]. In particular the heart of the proof is estimation of the expectation of the supremum of a
certain Gaussian process.

The chapter is organized as follows. In the next section we set up the notation and formulate
the main results including the pivotal upper bound (4.5) for moments of Gaussian chaoses in
arbitrary Banach space. In Section 4.3 we reformulate (4.5) in an equivalent way and derive the
entropy bounds. In Section 4.4 we use these entropy bounds to estimate expectation of supremum
of a certain Gaussian process. In Section 4.5 we prove the bound (4.5) and then we deduce the
remaining claims from it.

4.2 Notation and main results

We write [n] for the set {1,...,n}. Throughout the chapter C' will denote an absolute constant which
may differ at each occurrence. Accordingly C'(«) stands for constants depending on the parameter
a. By A we typically denote a finite multi-indexed matrix (ai,,....i;)1<i;,...,iy<n Of order d with
values in a normed space (F,| - ||). If i= (i1,...,iq) € [n]¢ and I C [d], then we define iy := (i;) er.

If U is a finite set then |U]| stands for its cardinality and by P(U) we denote a family of (un-
ordered) partitions of U into nonempty, pairwise disjoint sets. Note that if U = () then P(U) consists
only of the empty partition 0.

With a slight abuse of notation we write (P,P’) € P(U) if PUP’ € P(U) and PNP’' = 0.

Let P={I,...,Ix}, P'={J1,...,Jm} be such that (P,P’) € P(|d]) . Then we define
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[Allp p=sup{ E Z ai, .. ’Zde”THglJ ‘Vr<k2( ”T) <1y, (4.3)
r=1

ZH
2
ll4]lp :=sup{ E Z oIl T o ek > (08,) <1p ()
= el (P iy

We do not exclude the situation that P’ or P is an empty partition. In the first case || A 5, » = ||| A[|p
is defined in non-probabilistic terms. In particular for d =3 we have

HA||®,{1,2,3} = |||AH|{1,2,3} = sup Hzaijkl“ijk: )

2
1,7,k ngl

ANl 1.0y 13330 = B|| D @ijngiigi|
ijok

HAH = H|A||| 2} {3} = sup ik GiTiYk||
ween =Mllene =g, e Ej:k JRGiT;

||A||{{1}7{2},{3}},(2) =[[Aflp =E Zaijkgig}gg/ )
ijk

||A||{{1}{3}}{{2}}:|||A|||{2}fzsup E Zaukgzl’ygz ,

ijgl J&

HA||(2),{{1},{2,3}} = |||A|||{1},{2,3} = Sup Zaz]kxzyﬂc
znglz ik Yj 5<1|| ijk
The main result is the following moment estimate of the variable S’.

Theorem 4.2.1. Assume that A= (a;,,...;i,)i;,....iy S @ finite matriz with values in a normed space
(F,|I-ID- Then for any p > 1,

) Y Y PPPNAN < || Y0 il el <@ Y0 PP Al
ST ¥

JC[d|PeP(J) » (P,P)eP([d])
(4.5)

The lower bound in (4.5) motivates the following conjecture (we leave it to the reader to verify
that in general Banach spaces it is impossible to reverse the upper bound even if d = 2).

Conjecture 4.2.2. Under the assumption of Theorem 4.2.1 we have

d
> iy iggh | <C@ > D P2 A|p. (4.6)
11,-0s8q

» JCd|PeP(J)
Remark 4.2.3. Unfortunately we are able to show (4.6) only for d = 2 and with an additional factor
Inp (cf. Chapter 3). It is likely that by a modification of our proof one can show (4.6) for arbitrary
d with an additional factor (Inp)©(®).
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By a standard application of Chebyshev’s inequality, Theorem 4.2.1 can be expressed in term of
tails.

Theorem 4.2.4. Under the assumptions of Theorem 4.2.1 the following two inequalities hold. For
any t> C(d) Z'P’E'P([d]) ||A||7)l7{®}

2/|P]
1
P @ ol gl >t <2exp | ——— min T ;
X aniath ol 2t] <200 c<d><p,pf>epqdn(HAHPIJ
Lrnsid |P|>0 ’

and for any t >0,

1 d -1 1 d
P Z Wiy ,..oiigiy * ig|| 2 C(d)E Z Qiy,..ia9iy " Gig|| Tt
} i 115--050g

. \2/IP)
> e —C(d) min min — .
2 Gy P | ~¢W@, min  puin <|||A|||7,)

In view of (4.2) and [16] it is clear that to prove Theorem 4.2.1 one needs to estimate suprema
of some Gaussian processes. The next statement is the key element of the proof of the upper bound
in (4.5).

Theorem 4.2.5. Under the assumptions of Theorem 4.2.1 we have for any p > 1

d
|Pl+1—d
E sup Yo aiagn [[eb || <C@ Y T Alpp. (AT
(22, xh)e(B)1 |1y iy k=2 (P,P")EP([d])

We postpone proofs of the above results till Section 4.5 and discuss now some of their conse-
quences.

4.2.1 Two-sided estimates in special classes of Banach spaces

We will start by introducing a class of normed spaces for which the estimate (4.5) is two-sided. To
this end we restrict our attention to normed spaces (F,|| - ||) which satisfy the following condition:
there exists a constant K = K (F') such that for any n € N and any matrix (b; j); j<n with values
in F,

B> bijgis|| < KE||> bijgigj||- (4.8)
4, i,j

Remark 4.2.6. By considering n =1 it is easy to see that K > /m/2 > 1.
A simple inductive argument and (4.8) yield that for any d,n € N and any F-valued matrix

(bil,---yid)ihm,idﬁnv
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will < KR , (4.9)

d
Zbigill iy
i

where we recall that i = (iy,...,iq) € [n]?. It turns out that under the condition (4.8) our bound
(4.5) is actually two-sided.

Proposition 4.2.7. Assume that (F,| - ||) satisfies (4.8) and (P,P') € P([d]). Then

1Apr p < KIUPT=1P0) 4.

Proof. Let P' = (J1,...,Jx), P = (I1,...,1). The proof is by induction on r = [{l : |J;| > 2}|.
If » =1 then conditional application of (4.9) implies the assertion. Assume that the statement
holds for » > 1 and |{l : |J;| > 2}| =r+ 1. Without loss of generality |J1| > 2. Combining Fubini’s
Theorem with (4.9) we obtain

| Al pr p = sup E(G* G™RG!

| Vr<m2( z,) <

.

Zal H Zfrgwl ng
i

m k
2 m / . 2
< KM=t sup QBG-GB S g TTar, TT 603 TTok, || | Yrem Do (a7,) <1

i or=1 jeJy =2 i,

< KIUP1=1P1) 45,

where G! = (gél Jig,» G =((¢ ){J )jesi,iy, and in the last inequality we used the induction assump-
!
tion. a

The following is an obvious consequence of Proposition 4.2.7 and Theoerems 4.2.1, 4.2.4.

Corollary 4.2.8. For any normed space (F,||-||) satisfying (4.8) and any p > 1, we have

N7 iy iggh gl SC@ESTEST ST PP AR,
SR ¥

» JCld) PeP([J])

and for t > C(d)KE |y asgl -+ g .

2/|P|
E 1 t
]P . . 1 e d >t < K2—2d . . '
i1yesig Fitadi " i SF ]SO < C(d) w;émchn[d]PePH(lJ) A2

Thanks to infinite divisibility of Gaussian variables, the above corollary can be in fact generalized
to arbitrary polynomials in Gaussian variables.

Theorem 4.2.9. Let (F,|||) be a Banach space. If G is a standard Gaussian vector in R™ and
f:R™ — F is a polynomial of degree D, then for all p > 2,

IH@)-E@lp > CD)H(BIFG) -E/@) I+ 3 S Y p T IEVG)IIp)

1<d<D0£JC[d] PEP(J)
(4.10)

and for all t >0,
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P(14(G)~EA(@)] = C(D) EINE) ~EL@)+1) > opresn (- Oy (). (411)

where

t )2/|7’\

oo . .
ny(t) =, min , min i (H|IEVd REeE

Moreover, if F satisfies (4.8), then for allp>1,

I1(@) ~Ef(@)l, < CDKP(BIA@ -EF@I+ Y Y Y »TIEV(@Ir)
1<d<Dp#JC[d] PEP(J)
(4.12)
and for all t > C(D)KP~'E|F(G) —Ef(G)],
P(I£(G)~EF(G)] > 1)) < 2exp (—C(D) " K2 2Pry (1)), (4.13)

4.2.2 L, spaces

It turns out that L, spaces satisfy (4.8) and as a result estimate (4.5) is two-sided. Moreover, as
is shown in Lemma 4.2.11 below, in this case one may express all the parameters without any
expectations. For the sake of brevity, we will focus on moment estimates, clearly tail bounds follow
from them by standard arguments (cf. the proof of Theorem 4.2.4).

Proposition 4.2.10. Space Ly(X,p) satisfies (4.8) with K = Cqg.
Proof. Observe that (4.8) reads as

q 1/q q 1/q
(/ me gzy du x)) <KE (/ me gzg] d/"(z)) )

where (b;j)i; is a matrix with values in Ly (X,dp). Jensen’s inequality and Fubini’s theorem imply

q 1/q q 1/q
(/ sz] gzg dp x)) (/ sz] gz] dp x))

q/2 /4

<C0yVi /X S @) | dule)
i,

On the other hand Theorem 6.3 yields
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q 1/q q 1/q

CqE / Zbu gzg] dp(z) / Zbu gzg] dp(z)
a/2 1/a

sova| [ Sw@ ] |
1,7

where in the last inequality we used Corollary 6.21. a

For a multi-indexed matrix A of order d with values in Ly(X,p) and J C [d], P = (I1,...,I}) €
P([J]) we define

2

k
Az =sup g || 35 (Dai [T, | ek (:vl}r)z =1

Z[d]\J iJ r=1 I ilr
q

For J =[d] and P € P(J) we obviously have |HA|||7L,‘1 = || A]lp- The following lemma asserts that for
general J the corresponding two norms are comparable.

Lemma 4.2.11. For any J C [d] and P = (I1,...,I;;) € P(J) and any multi-indexed matriz A of
order d with values in Lqy(X,dp) we have

L 1-d4|J] L d—|J|
Cd)~lq = [lAllp" < llAllp < C(d)g 2

Proof. By Jensen’s inequality and Corollary 6.21 we get

q 1/q
k
_ 2
Al <sup? | [ B Saw [T a [, ] ww)] | Veck (e, ) <1
jE[NT =1 i1,
2
k 2
<C(a) > (2all=r, REDCHIES
apng \ ts r=l1 L, iy
On the other hand Theorem 6.3 and Corollary 6.21 yield
1/q
_ 11-d 2
Il > @) 1" s (] Yase) T o, TT, [ Vrn 3 (k) <1
i JElANT =1 Lg ir,.
2
_q l=d+lJ]| b r 2
>0(d) ' sup > a]]a, [ Vesr D2 (o) <1
i[d]\] iJ r=1 I i[r
q

O

Theorem 4.2.12. Let A= (ai,,....i;)i1,...,iy D€ a matriz with values in Ly(X,p). Then for any p>1
we have
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@l Y X Tl < X it

JC[d)PeP(1J])
m
)g*/2~ IZ ST Al
JCd)PEP(J])

Proof. This is an obvious consequence of Theorem 4.2.1, Propositions 4.2.7, 4.2.10 and Lemma
4.2.11. a

Using Theorem 4.2.9 we can generalize the above result to general polynomials

Theorem 4.2.13. Let G be standard Gaussian vector in R™ and f: R™ — Ly(X,p) a polynomial
of degree D. Then for p > 1, we have

- )Z g2 S ST PR RV @R < 1 £(G) —EF(G)

d=0 p£JC[d) PeP([J]])

¢P- 1qu/2 Z Z v eV @)k
d=1

d]PeP([J

4.2.3 Exponential variables

Theorem 4.2.12 together with Lemma 6.13 allows us to obtain inequalities for chaoses based on the
i.i.d standard symmetric exponential random variables (i.e., variables with density 27 Lexp(—|z]/2))
which are denoted by (F )z jen below. Similar as in the previous Section we concentrate only on
the moment estimates.

Proposition 4.2.14. Let A = (a;,,...i )i1,...,iy be a matriz with values in Lqy(X, ). Then for any
p>1, ¢ > 2 we have

d
] Sl
i r=1

One can take C~1(d)q"/?=% in the lower bound and C(d)g>**~" in the upper bound.

~d I|4|P L
> > P Emaian il

p IC[d] JCdI\IP([d\(IUJ))

Example 4.2.15. If d =2 then Proposition 4.2.14 reads as
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)

g Qi ;T

12 2 2
g aijE; 5| ~%p H;%,X”WJHLQ'FPS/ (maX sup g a; jT; +max sup

r€BY - J r€BY
J Lq
a:gleaén E a”xzyJH +max /E aJ +max /E aJ
Lq Lg
2 2
1/2
+p/ (sup E E Qi jTj + sup E (g am-xl) )
n n
€8 i F; r€B; ; i
Lq

q

+ Zaij

i Lg

Proof of Proposition 4.2.14. Lemma 6.13 implies

d
§ r d § :
’ aj H Eir ~ azl, ,i24 H gzr ) (4]‘4)
i r=1 p
iy, igg = a/ila---vid]‘{ilzidJrla~~7id:i2d}'

D 115--05824
Let A= (Qiy,.ying)itsnying- Theorem 4.2.12 and (4.14) yields

d
2SS P A < ZI_[E

JC[2d] PeP([J])

where

AU PN

p JC[2d]PeP([J])

(4.15)

Observe that ;- jog ZPEP([J})p H|A|||7, can be expressed in terms of the matrix A by using
a different language. Consider a finite sequence M = (J,I1,...,I}) of subsets of [d], such that
JULU...UI,=1d], I1,...,I; # 0 and each number m € [d] belongs to at most two of the sets
J,I1,...,I;. Denote the family of all such sequences by M([d]). For M = (J,I1,...,I}) set M| =k+1
and

2

L 2
whmand | (S Salls, || 1w () <0
’iJ d]\J r=1 I iIr
q

where we do not exclude that J = . By an easy verification

SO pFAE Y P ke (4.16)

JC[2d] PEP([J]) MeM([d])

It is enough to prove that

Z pE (ke Z , (4.17)
eM( Me

([d])
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where

k
C= {M(J,Il,...,fk) e M([d)) | Jn <U IT> =0,

r=1

Vem<eIm NI #0= (I = |Im| =1, I, = Im)}.

Indeed assume that (4.17) holds and choose M = (J,I1,...,I) € C.
Let I ={i | 3pcm<k {i} =1Ir = L, }. Then JNI =0 and we have

2\ 4/2
L, \4
(x1)" =suw [ S Sansa Tviat, I1 o, dn(a) |
X\ iy \ige rel r<k
I.NI=0
Vi<r<k Z(SUZTF <L Y (W) <t
7,']70 i
2\ 4/2
= maxsup / Z Zailwwid H xlr[r du(x) | V1§r§k2(xzrh)2§1
" X iJ iJC\I T‘Sk ilr
I-NI=0
L a Lg\4
:H}L,?X(m(ail7~-~7id)ile|H{}ZT,;1,.012@}) ::H}L,?X(H‘(aiunnid)he|H7Dq) ) (4.18)

where in the second equality we used the fact that (yi z} )i, € BY' together with convexity and
homogeneity of the norm

q/2 1/q

. _ 2
1o )i ceny /X Zf

By combining the above with (4.15)-(4.17) we conclude the assertion.
The proof is completed by showing that

Z p‘Mgl q<C Zp 2 _/\;ll

MeM([d]) MecC

(the second inequality in (4.17) is trivial), which will be done in two steps. Let us fix M =
(J.I1,..., I) € M([d]).

1. Assume first that J N (U, I;) # 0.
Without loss of the generality 1 € JN1I;. Denote I; = I; \ {1} and for any matrix (m%{)l ; such
that 2111 (951111)2 <1, set (b?l)il =0 (x} )?);, € BY. Observe that for any f1,...,fn €

REAVEN st
L1(X, dp) the function

qa/2
[0,+00)" 20— /X (fo(w)vi> dp(z)
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is convex (recall that g > 2). Therefore we have

2 Q/2
Lo\ 1 x’l u
I
(<A>/\/qt> — sup / Zb?l Zailw-»aidib,lnxz \V1<r<kz T, )° <
X i : 11 =9 " T
J ije r= iy
2 q/2
I
gr%?xsup /X Z Zailw’ L Hx”r dp(z) | V1§r§k2(ﬂvar)2§1
i.]\{l} ijc r=2 i,
. 2 q/2
grr%:%llxsup / Z Zail,.‘.,idyifl nglr du(z) |
X \ingy \ive r=2

S, <1, Vi Y0, <1

111 i,

If Iy # 0 let M' = (J\{1},{1},{1},11,I5,...,I};), otherwise set M’ = (J\{1},{1},{1},I2,...,I};).
By the same argument as was used for the second equality of (4.18) we obtain that the right-
hand side above equals (A)ji/q(,7 which gives

(AN <Ak,

Observe that I I / I
pIMI=D/2 ke < pUMI=1/2 gy Ea < (IMI1=1)/2 gy Ea

By iterating this argument we obtain that p(IMI=1)/2 <A>§/ql < pIM”I=1)/2 <A>/qut” for some
M= (J"1{,....I]l)) such that J" N (U, I})) = 0.

. Assume that for some r,m <k I, NI, #0 and |I.| > 2 or |I,,| > 2.
Without loss of the generality 1 € Iy NIz and |I1] > 2. Clearly,

ol p2 K 2\ 42
Lg\1? ”1 ;U”2
(<A>M) =sup X Z Zai1,~--7idbllcl1 bi, i H Liy, du(z) |
i ; i1
(¥ 1jc r=3

Vier<k Y (@}, )? <19,

i1,

where (bil)il ::( Zill\{l}(xllll )Q)il’ (Cil)il ::( Z (351212)2)“ S Bg Since

1o\ {1}

zl \? z?
3 3
Vi, <b11> <1, Z <l)12> <1
{1 ‘t i\ {1 ‘
1\{1} 2\{1}
we obtain similarly as in step 1,

p(IMI=1)/2 <A>ﬁ/ql < pIMI=1)/2 <A>i/q1/ < pIMI=1)/2 <A>Lq

M/
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where M’ = (Ja{l}a{]-}vll \ {1}712 \ {1}7137“~7Ik) if -[2 \ {1} 7é @ and M’ = (Jv{l}a{]-}afl \
{1}, Is,...,1I}) otherwise. An iteration of this argument shows that indeed one can assume that
M satisfies the implication I, NI # 0 = (|I;| = |Im| =1, I = Iin).

Combining Steps 1 and 2 we obtain that for any M € M([d]) there exists M’ € C such that
pIMI=1)/2 (A}qu[ < p(IM'1=1)/2 (A}qul, which yields (4.17). O

4.3 Reformulation of Theorem 4.2.5 and entropy estimates

Let us rewrite Theorem 4.2.5 in a different language. We may assume that F'=R"™ for some finite
mand a;, ... i, = (ai,.. 7ld7id+1)id+15m~ For this reason i € [n]? x [m] from now on. Let T'= Bp= be
the unit ball in the dual space F*.

In this setup we have

E sup
(z2,...,zd)e(By)d-1

k l
T s
|Alprp=supq Esupd ai [] a7, T, tiars
teT i r=1 Ts:l °

sup bupz:algZl H katde

(x2,.. d)E(B")d 1teT

2
Vg_lkZ(’Eg;) =1,
i

d
k
19i1 H Lig
k=2

where P = (11,...,Ik),73, = (Jl,...,Jl), (7)/,7)) S P([d])
To make the notation more compact we define

se(A)=" Y |Alpp
(P,PHeP([d])
|Pl=k
To prove Theorem 4.2.5 it suffices to show the following.

Theorem 4.3.1. For any p > 1 we have
d d k+1—d
E sup Zaigil H wf tig, < C’(d)Zp T sk (A). (4.19)
(a2,..,xd t)€(By )= xT 5 k=2 k=0

To estimate the supremum of a centered Gaussian process (G )yecy one needs to study the
distance on V given by d(v,v’) := (E|Gy — Gy [2)1/? (cf. [30]). In the case of the Gaussian process
from (4.19) this distance is defined on (B5)4~! x T C R"(d 1) % R™ by the formula

pA(('TQP"’xdvt)v(yQa"'vydat/»

d d
= Z Z Qig,esig s (Hylktldﬂ foktquq)

11 \%2,--50d41 2

(@) )

d 1o .
where (®k:2 g:k> Rt = (:1:222 "'xzc‘ldtid+1)i2~--,u+1 S R" ™ and a4 is a norm on ]R" ™ given by

1/2
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o (x) := Z Z I STV I (4.21)

i \I[d+1\{1}

Now we try to estimate entropy numbers N (U, pa,¢) for € >0 and U C (BF)?~! x T (recall that
N(S,p,¢€) is the minimal number of closed balls with the diameter € in metric ¢ that cover set S ). To
this end we first introduce some notation. From now on G, = (g1,...,9,) and G%, = (43, . .., g5,) stand

for independent standard Gaussian vectors in R™. For e >0, U = {(2?,...,2%t)c U} C (]R")d_1 xT
we set

Wi(ae):=) " > WY (a), (4.22)

k=1 IC{2,..d}:[I|=k
where ;
WY (a) = sup Ea%((@( (1—17(k))+G*17(k ))) ®t>.
JeU =

(z2,...,xd+1 ¢ E—2

We define a norm ﬁfl on R*"™ by

Paly Eigza‘g“yw\{l} la+1 (4.23)
Following (4.22) we denote
d—1
VdU(ﬂﬁc:) = 25k+1 Z VIU(ﬂ)a (424)
k=0 1c{2,....d}y:|I|=k

where

VP(B):=  sup  EBY <® ( (1-17(k )+Gk11(k))> :

(z2,...,2d,t) €U k=2

In particular

d
ViBe)ze Vi (B)=e- sup B4 <®x’“> (4.25)
2

(z2,...,xd t)eU

Observe that by the classical Sudakov minoration (Theorem 6.7), for any (z¥) € R™, k=2,...,d
there exists T®$;C . such that |T®$k < exp(Ce~?) and

d
Vier3ver ok, aA <®$ ®(t ) <eBd <®$k) .
k=2

We define a measure M?,T on R@=D7 » T by the formula

Mg,T(C) = /R(dfl)n Z 10((m27"'7'Td7t))d’Y(d—l)n,E((xk)kIQ,...,d)7

teT ok e

where 7, ¢ is the distribution of tG,, =t(g1,...,9n).
To bound N(U,pa,e) for e >0 and U C (B)?~! x T we need two lemmas.
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Lemma 4.3.2. [16, Lemma 2| For any z= (z!,...,2%) € (B®)?, norm o on R™ and e > 0 we
have

Ydn,e (Ba/(:z:,r(e,o/))) > 2_dexp(—ds_2/2),

where

Ba/(a:,r(s,o/)):{y:( yh) e (R™) d |« <®x —®y ) <r(e,d }
and

d d
r(s,a’):ZEk Z Eo/ <® (mk(l—lkej)—i—lekE[)) )
Icld): |1|=k

k=1 k=1

Lemma 4.3.3. For any (z,t) = (22,...,2%t) € (Bg‘)d*1 xT and e >0 we have
ugT (B ((:c,t),pA,Wi(w’t)}(a,&) + Vj(w’t)}(ﬁ,Se))) >C %exp (—C(d)572) .
Proof. Fix (x,t) € (Bg)d*1 x T, e >0 and consider

U:{(yQ,..., 4y ¢ (R™) ((@x éyk>®t>+sﬂi<éxk—éyk>

k=2 k=2

< Wj(x7t)} (a,4e) + Vd{(x’t)} (B,4¢) } )

For any (y2,... 7yd) € U there exists t’ € T® ok e such that

d d
4 (@ure-n) <t (@),
k=2

k=2

By the triangle inequality,
d d
o (®xk®t—®yk®t')
d d
((@xk —®yk> ®t> +af <®yk ®(t—t’)>
k=2

k=2

d d d d d
<ot ((@M ®yk> ®t> ol <®xk_®yk> et (@M)
k=2 k=2 k=2 k=2
< Wi a,de) +2v 0D (5,4e) < WD (. 80) + VI (5,8¢),
where in the third inequality we used (4.25). Thus,

i (B (068) 04, WO 0,80) + VI (8,89)) ) 2 a1y e (U) = Cexp(~C(d)e2),

where the last inequality follows from Lemma 4.3.2 applied to the norm afl4 —i—sﬁff‘.

Corollary 4.3.4. For any ¢,6 >0 and U C (BY)?~' x T we have



N (Uspa, W (0,8)+ Vi (B.2) ) < exp(Cld)=?) (4:26)
and
1 1
k k+1
d—1 L d—1 N
log N (U, pa,0) < C(d) Yo Wl sE+Y | Y vPB)y | s
k=1 \ 1c{2,...,d} k=0 \ 1c{2,...,d}
|I|=k |I|=k
(4.27)

Proof. Tt suffices to show (4.26), since it easily implies (4.27). Consider first ¢ < 8. Obviously,
WY (a,e) + V.Y (B,e) > sup(x’t)eU(Wj(x’t)}(a,a) +Vd{(x’t)}(,8,5)). Therefore, by Lemma 4.3.3 (ap-
plied with €/16) we have for any (x,t) € U,

ul e (B (0,04 W8 (0,/2)+ VI (8,2/2)) ) = €~ exp (~C(d)e™2). (4.28)

Suppose that there exist (x1,t1),...,(xn,tn) € U such that pa((xs,t:),(xj,t5)) > Wg(oz,a) +
VY (B,e) > 2WY (a,e/2) +2V.V (B,e/2) for i # j. Then the sets

B ((xist:), po W (02/2) + Vi (B.2/2)) i=1,2....N

are disjoint, so by (4.28), we obtain N < C%exp(C(d)e~?) < exp(C(d)e~2).
If £ > 8 then

W (o.e)+Vi(Be)>8 sup E
(z2,...,2d,t)eU

d
k
> aigi, [T ok tiays
i k=2

o\ 1/2
128 = k
=\, S Z ‘ Z a; H T3 tigyy > diam (U, pa) .
(1' yeeer® ,t)GU 11 125--45td 41 k=2
So, N(U,pa, WY (a,e) + VY (B,e)) =1 < exp(e72). 0

Remark 4.3.5. The classical Dudley’s bound on suprema of Gaussian processes (see Corollary 6.14)
gives

d A
E sup Zaigh foktid-‘rl §C’/ \/logN((Bg)dfl xT,pa,d)ds,
($2,...,$d,t)€(Bg)d71XT i k=2 0

where A is equal to diameter of the set (Bgl)d_1 x T in the metric p4. Unfortunately the entropy
bound derived in Corollary 4.3.4 involve a non integrable term ¢ ~!. The remaining part of the proof
of Theorem 4.3.1 is devoted to improve on Dudley’s bound.

For x,y € (R™)4~! we define (note that d.4 is a norm on (R™)4~1 = R(@=1)n)
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d
(2 dyy._ o
aa((z=,...,z%) .—Z Z Zalmij
I=2(P,PHEP(d\{GD) || PP
|Pl=d—2

SN SN ) S 5 SENED DI it

J=2PeP([d\{j}.d-2) || i p,p I=23#k=1PeP([d\{j.k},d=2) || & {k},P

Proposition 4.3.6. For any d+1>4, >0 and U C (B})? ' xT,

d—2

N U7pA7ZEd_k5k(A)+5 sup dA((zQa"wmd)) < eXp(C(d)€_2).
k=0 (1‘2,.‘.,$d,t)€U

Proof. Since U C (B%)?~! x T, Jensen’s inequality yields for I C {2,...,d},

d
WY (a) = sup Ead ((@ (gck(l —1[(]€))+Gk1](k))> ®t>

(z2,...,.zd,t) U

k=2
2
< , Sup EZ Z aingfk H xfktidJrl
(@%,...,z%,t) €U i1 \dgsnigrn kel ke[d\(IU{1})
2
— k 4.
2 Sugt U Z ) Z i H xiktld“
@%@ OU \iyi 0y \ifapanauqy)  kElNIU{1})
< WAllg 1oy, trysmeran (rupipy < Sa—(ri(A). (4.29)

By estimating a little more accurately in the second inequality in (4.29) we obtain for 2 < j <d,

2
U l k
CACEIE D SO S D ol B ST | T

(z2,...,m 7t)eU2§l§d(y FEREEY) )E(Bg) - ’il,ij i[cH»l]\{l,j} 2<k<d

I#j k#3,l

d
< sup Z Z Zaixél . (4.30)
(x27‘..,xd7t)€Ul:2 PeP([d\{I}) || @ 0P

|P|l=d—2 ’

Observe that (4.30) is not true for d+1 =3 (cf. Remark 4.3.7). The definition of V} and the
inclusion U C (B%)4~1 x T yield

VI (8) <IAllgqay iy ey, (iaymeran oy < sa-jf-1(A) for I £0 (4.31)

and
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d
VY (B) < sup sup Esup > aigi, 2 yF ¢
0 (ﬂ,...,xd,t)eU;(y2,...,yd)e(Bg)d*1 teTZ i9i1 44, 2<1;[<d i Vi1
kAL
d
< sup Z Zaixél . (4.32)
(a:2,...,:rd,t)€Ul:2 s
J {1}, {{k}: ke[d\{1,1}}
Inequalities (4.29)-(4.32) imply that
Wi (ae) +V{ (B.e)
d—1 d—1 d
= Zak Z WIU(aH—z:ek+1 Z VP (B)+e ZWg}—i—V@U(ﬁ)
k=2 Ic{2,..d}:|I|=k k=1 1c{2,....d}:|I|1=k j=2
d—2 d
<C(d) (Z sd_ksk(A)> +C(d)e sup Z Z Zaizél
k=0 (=22 OEV | 1=2 (ppep(an ) | i PP
|P|>d—2
So the assertion is a simple consequence of Corollary 4.3.4. a

Remark 4.3.7. Proposition 4.3.6 is not true for d+1 = 3. The problem arises in (4.30) - for d =2
there are too few indexes for existence of a dependency on (22,... ,xd), since two indexes appear in
the first summation and one is reserved for dependency on t. This is the main reason why proofs
for chaoses of order d =2 (cf. Chapter 3) have a different nature than for higher order chaoses.

4.4 Proof of Theorem 4.3.1

We will prove Theorem 4.3.1 by induction on d+ 1 so by the order of the matrix A. To this end we
need to amplify the induction thesis. For U C (R")? we define

d+1
Fa(U)=E sup Z Qi ... ige 9it Ha:fk
(w27"'vzd+1)€U’i1,...,id+1 k=2
Theorem 4.4.1. For any U C (Bg)d_l xT and any p>1
g, k+1—d
Fa(U) <C(d) (x/ﬁAA(U)Jer 2 Sk(A)> ; (4.33)
k=0
where
Au(U) = sup pa((@?,.., 2% 1), (y%,....y"t') = diam(A4, pa).

(@2,...2%,t),(y2,....yd,t" eU

Clearly it is enough to prove Theorem 4.4.1 for finite sets U. Observe that

Aa((B3)" ™1 xT) < 2|\ All gy 5. jeqany = 25a(A),
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thus Theorem 4.4.1 implies Theorem 4.3.1. We will prove (4.33) by induction on d+ 1, but first
we will show several consequences of the theorem. In the next three lemmas, we shall assume that
Theorem 4.4.1 (and thus also Theorem 4.2.5 ) holds for all matrices of order smaller than d+ 1.

Lemma 4.4.2. Letp>1,1>0 and d+1>4. Then

d—1
o k+i-d
N((Bg)d Lpa2ty pe Sk:(A)> < exp(C(d)2%'p),
k=0

where p4 is the related distance with the &a norm.

Proof. Note that .4 is a norm on (R™)%~! and that

Eéa (GQ,...,Gd)zd: 3 E|> aigy,

I=2(P, P )eP([d\{5}) i PP
|P|=d—2
Up to a permutation of the indexes we have two possibilities

or

B HZ’L] aigi]' @7{{1’2}’{{1}; 3<i<d, 1#5}} (434)

o |2

E aig’ij
i

i; 0195 1y {{1y2<i<d, 1#5}

. In this case
0,{{1,2},{{1}: 3<i<d, I#j}}

First assume that HZZ] aigi; oo = HZ@J aigi;

Zaigij = Zbil,...,idgil
g 0.4{1.2),{{1}: 3<i<d, 15}y |1 ™ 0.{{2}.....{d—1}}
for an appropriately chosen matrix B =b;, ... ;, (we treat a pair of indices {1,2} as a single index and

renumerate the indices in such a way that j,{1,2} and d+ 1 would become 1,2 and d respectively).
Clearly,

> IBlprp= Y. lAlpp< D Alpp=sk(A), (4.35)
(P, P)eP([d—1]) (P, P)eC (P, P)eP([d])
|P|=k |P|=k |P|=Fk

where C C P([d]) is the set of partitions which do not separate 1 and 2.
Thus, Theorem 4.3.1 applied to the matrix B of order d yields

E Zaigij =E Zbil,...,idgil

4 0,{{1,2}.{{1}: 3<I<d, I£j}} “ 0,4{2},....{d—1}}
d—1
|Pl+2-d k+2-d
<C(d) Z p 2 ||B\|7>/,7>§C(d)zp 7 s(A). (4.36)
(P!, P)eP([d—1]) k=0

and observe that

Now assume that HZ% 4193 ({1 A{12<i<d, 1#5}

PP ”ZZ&' 4igi;
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_ Ly
k Zaigij =& leBn s2u<];;<d I£j o fggzalg“g” H Titigp
i zte , 250d, 1
{1}, {{1):2<1<d, 17} : ’ 2stsd, 179
— Loy
=E sup sup Zalgl] H LMy gy
T EB” 2<i<d, l#£jmeM 2<1<d, l7éj
=E sup sup Z diy,....i091 H T, My,

eleBY, 2<I<d—1me My, iy

where D = (d;,,...q,)i
satisfies

1,...,ig 15 an appropriately chosen matrix of order d, the set M C R" ® R™

EsuprZ jgit; = sup Zbl jm; ; for any matrix (b; j)i<n, j<m.,
teT = m
i3 i,j

and M corresponds to M under a natural identification of R™ @ R™ with R™™. Applying Theorem
4.3.1 to the matrix D of order d gives

]E Zaigij :]E sup sup Z th ﬂdgll Hmllmld

ij (1), {{1}:2<1<d, 1]} @'€By, 25isd—lmeMiy, .
\7’|+2 d |79H~2 d
< C(d) > P ||DH p<C@d) > p [Allpr p
(P, P)eP([d—1]) (P, P)EP([d])
d-1
k+2—d
=C(d)) p 7 sk(A), (4.37)
k=0

where ||D||§\;}773 is defined in the same manner as [|A[|p, » but the supremum is taken over the set

M instead of T. The second inequality in (4.37) can be justified analogously as (4.35). Combining
(4.34),(4.36), (4.37) and the dual Sudakov ineuqality (cf. Theorem 6.8 and note that (B%)4~1 C

Vd— lBg(d_l)) we obtain

N ((B" ,pA,eZp’”% “si(4 > <N ((B5)*",pa, C(d) "eBaA(G,....G"))
< exp(C(d)e2).
It is now enough to choose ¢ = (,/p2!) 1. O
From now on for U C (R™)% we denote

aa(U) = sup aA ((:102,...,xd)).
(z2,...,24,t)€EU

Lemma 4.4.3. Suppose that d+1>4, y= (y?,...,y%) € (B} L and U C (B})4~1 xT. Then for
any p>1 and 1 >0, we can find a decomposition

N
U=JUj, N <exp(C(d)2%'p)
j=1

such that for each j < N,
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FA((y,O)+Uj)<FA(Uj)+C(d)( Ay +aaU)+2- lzp’“*é % 51 (A) ) (4.38)
and
=2, 4
Ap(Uy) <27p7 2a(U) 4272 "p 7 si(A). (4.39)

Proof. Fix y € (BR)4~! and U C (B})% ! x T. For x = (22,...,2%t),%x = (#2,...,2%,t') € (R")4,
Sc (R and I C {2,...,d} we define

2
v CAN k ] ~J
pi (X’X) T Z Z aiHyik tid+1 H ajgj_t;d+l H ajgj ’
i1 12,..,0q+1 k€T 2<j<d 2<j<d
J¢I J¢I
A%1(8) = sup{pA (x,%) : x,f{GS}
and
N - ]
F‘X (S) = Sup Zalg’bl Hylk H xgj tid-}—l'
(9521 Srd eSSy kel 2<j<d
J¢I
If I ={2,...,d} then for S C (B})% 1 x T we have
( d—1 )
FYiZed ) <Esup aig Y < sup Esup ai9; x) yd t;
A tETZ ‘”H wiae S (a2,....zd-1)e(By)d—2 teTZ . jl;IQ b ) et
=D awd, <aa(y). (4.40)
d {1h{{k} © k=2,....d-1}

If I #(,{2,...,d} then Theorem 4.4.1 applied to the matrix

Zai H ylkk

i kel .
R € Hd+1)\1

of order d— |I|+1 < d+1 gives for any S C (B})4 1 x T and ¢ > 1,

d—|I|—
k41— d+m
FYIS) <cd—|1)) | ¢/22%7(S) Z q sp(A(y, 1))

For any 2 < k <d, y* € B} thus s;(A(y,I)) < St 7|(A) for k<d—[I| =1 and sq_|7j—1(A(y,I)) <
G4 (y). Hence,

FY1(9) §C(d—|1|)< 12 A% ( +Zq’“+é “ s (A) ) (4.41)
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By the triangle inequality,

Fa((yP- oy 0)+S) = Fa(s) < > FYI(S).
0#£IC{2,...,d}

Combining (4.40) and (4.41) we obtain for S C (B})?~! xT and ¢ > 1,

FA((y27"'>yd70)+S)

d—2
<FAS)+CA) [aay)+ > ql/QAgf(sHZq’”%’dsk(A) . (4.42)
0AIC{2,...,d} k=0

Fix I #{2,...,d}, |I| < d—2 (we do not exclude I = {)). Taking supremum over y € (B%)4~1 we
conclude that

sup &A(y,l)({mk} cke{2,...,d}\I) < sup aa((22,...,x%).
(z2,...,2d,t) €U (z2,...,29 )€U

Recall also that sy (A(y,I)) < syt (7)(A), thus we may apply 247! —d times Proposition 4.3.6

with € = 27!p~1/2 and find a decomposition U = U;V:ll Uj, N1 < exp(C(d)2%'p) such that for each
jand I C{2,...,d} with |I| <d—2,

d—2
AU <27V 2aa (U)+2720 3 p T sy (). (4.43)
k=0

If |[I| = d — 2 then the distance pi’l’l corresponds to a norm 0‘,24(y,1) on R™” given by

2

iy (X) = Z Z aixi{j,dH}Hyfk ,

i1 1255 d 41 kel

where j is defined by the condition {1, j} = [d]\ I (cf. (4.20) and (4.21)). Recall the definitions (4.22),
(4.23) and (4.24) and note that (denoting by U the projection of U onto the j-th and (d+ 1)-th
coordinate)

Wy (0 n()se)=e swp BN | D gt [[ul

(z2,...,xd,t)EU i1 12550 d 41 kel

2

<e sup Z Zai H yfktidﬂ <ed(y). (4.44)

(127..‘,xd,t)EU il,ij ir kel

where we again used that y* € By, U C (B})4~! x T
We also have

Vi (Ba.ry) = Eflelgzaigill g5 iy, [ [ v, < sa-a(A)
i kel

and
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VI(82, )= E 4 <
Phon) =, o, B ot T <)
Thus
(5A(y 0:€) < ed(y) +e%s4-2(A).

Taking e = 2~~1p=1/2 and combining the above estimate with (4.44) and Corollary 4.3.4 (ap-
plied d — 1 times) we obtain a partition U = U;le U; with Np < exp(C(d)2%'p) and

AUy <27 p 7 aa(y) +27 2 Lsa_a(A) (4.45)

for any I C {2,...,d} with |[I|=d—2 and j < N».

Intersecting this partition with the partition into the sets U] given by (4.43), we obtain a partition
U= vazl U; with N < N1 Ny < exp(C(d)Zle) and such that for every ¢ < N there exist j < N7 and
1 < Ny such that U; C U]/- nu;.

Inequality (4.38) follows by (4.42) with ¢ = 2%'p, (4.43) and (4.45). Observe that (4.39) follows
by (4.43) for I =. O

Lemma 4.4.4. Suppose that U is a finite subset of (B})?~1 x T, with |U| >2 and U ~U C
(BRI~ x (T —T). Then for any p > 1 there exist finite sets U; C (BM)9™ ' x T and (y;,t;) € U,
1=1,...,N such that
(i) 2< N < exp(C(d)2%p),
(i) U=UL((5:0)+ V), Ui=U) cU=U, U< 011,
k—
(i) Aa(U;) <272 5205 -0b ¥ “si(4)

k+1 d

(iv) aa(Ui) <27 0 2gp sk(A),

(
N —I—d—1 1-d
(v) Fa((y::0)+Us) < Fa(Us) +C(d) (4 () +27 15 s0(4)).

Proof. By Lemma 4.4.2 we get

Ny

(BQ U B’L7 N < exp(o(d)Qzlp)v

=1

where the diameter of the sets B; in the norm & satisfies
it SN
diam(B;,d4) < 27 Zp 2 sp(A).

k=0

Let U; =UN(B; xT). Selecting arbitrary (y;,t;) € U; (we can assume that these sets are
nonempty) and using Lemma 4.4.3 we decompose U; — (y;,0) into U;le U;j in such a way that

N2 < exp(C(d)2%'p),

Fa((y;,0)+Uij) < Fa(Uij) +C(d) (dA (yi) +éa (Ui —(y;,0)) +2~

< FA(Uij) + C(d) (@A (yz) + diam(Bi, dA) + 9-! Zkaréid Sk(A)>
k=0

d—1
< Fa(Uj)+C(d) (aA (U)+27! Zp’”%dsk(A))
k=0
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and

d—2 d—1
k—d k—d
Ax(Uij) <27 Paa (Ui = (y;,0)+272 Y p77 sp(A) <272 77 si(A).
k=0 k=0

We take the decomposition U =J; ;((y;,0) +Ui;). We have N = N1 N < exp(C(d)2%p). Without

loss of generality we can assume N > 2 and |U; ;| < |U|—1. Obviously, U;; —U;; CU; —U; CU-U

and 4 (Uij) < éa (U; — (y;,0)) <27 Zi;épk%id si(A). A relabeling of the obtained decomposi-

tion concludes the proof. a

Proof of Theorem 4.4.1. In the case of d+1 =23 Theorem 4.4.1 is proved in Chapter 3 (see Remark
3.5.13). Assuming (4.33) to hold for all matrices of order {3,4}, ...,d}, we will prove it for matrices of
order d+1>4. Let U C (R™)? and let us put Ag=A4(U), Ag=aa (BR)4 " xT) < C(d)sq—1(A),

d—1 d—1
k—d A~ k+1—d
Ay =222 E p 2 sp(A4), 4;:= 21—t E P = si(A) for 1 > 1.
k=0 k=0

Suppose first that U C (5(B%)4~1) x T and define
cy(rld):= sup{FA(S): Sc(BYNYIxT, S—ScU-U, |S|<r, As(S)< A, éaa(S) < Al}

Note that any subset S C U satisfies A4(S) < Ag and da (S) < Ag, therefore,
cy(r,0) >sup{Fa(S): ScU, |S|<r}. (4.46)

We will now show that for r > 2,

d—1
cu(rl) <ep(r—1,1+1) +C(d) (A, +2lypA 2ty p’“+%‘dsk(,4)> . (4.47)
k=0
Indeed, let us take S C (B5)9~1 x T as in the definition of cy(r,1). Then by Lemma 4.4.4 we may

find a decomposition S = Ui]\il((yi,()) +S;) satistying (i) — (v) with U, U; replaced by S, S;. Hence,
by Lemma 6.10 we have

Fu(9) < C\/logNAA(S)—i—m?xFA((yi,O)—|—Si)

d—1
< C(d) <aA (5)+2'y/pA+27t Y pk*édsk(A)> +max Fa (S5). (4.48)
k=0

We have A4 (S;) < Apy1, Ga(Si) <A1, Si—8; € S—SCU-U and |S;| <|S|—1<r—1, thus
max; Fa(S;) <cy(r—1,1+1) and (4.48) yields (4.47). Since ¢y (1,1) =0, (4.47) yields

o

d—1
cu(r,0)<C(d)y (Al 42l /pA +27 Zp’“*%*d sk(A)> :
k=0

=0 =

For U C (3(B5)?1) x T, we have by (4.46)
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d—1
Fa(U) =sup{Fa(8): S CT,|S| < 0o} < supcy (r,0) < C(d) <\/[7AA(U) n Zp’“*%dsk(A)> .
" k=0

Finally, if U C (B3)4"1 x T, then U’ = {(y/2,t): (y,t) € U} C (3(B})? 1) x T and A, (U’) =
2174 A 4(U), hence,

d—1
Fa(U) =27"'Fa(U") < C(d) (\/MA(U) - Zp“%dsk(A)) :
k=0

4.5 Proofs of main results

We return to the notation used Section 4.2. In particular i € [n]? in this section (instead of [n]¢ x [m]
as we had in the two previous sections).

4.5.1 Proofs of Theorems 4.2.1 and 4.2.}

Proof of Theorem 4.2.1. We start with the lower bound. Fix J C [d], P € P([d]\ J) and observe
that

1/p
d , ) d p
VAYFY VAYFY
Salls] = (= ap el (Ca )
i k=1 » pEF i k=1
lell<1
p\ 1/p
1P| .
>0 d) | EW9Ep 5 S 0 [T o
IS Ll
>0 Hd)p T E J —CNd)p 2| A
> (d)p Zangij = (d)p 2 | Allp,
iJ jEJ .
Yang llip

where F'* is the dual space and in the second inequality we used Theorem 6.27.

The upper bound will be proved by an induction on d. For d+1 = 3 it is showed in Theorem 3.1.4
(see Theorem 6.4). Suppose that d+1 > 4 and the estimate holds for matrices of order {2,3,...,d}.
By the induction assumption, we have

d
‘ Zai H szk
k=1

i
Since ||| p is a norm Lemma 6.20 yields

SO S |7 - (4.49)

p (P,P)EP([d-1]) propll)
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> aigiy <CE||> aigi, +CVPlAllp pugay - (4.50)
73/773 p td 73/773

Choose P = (I...,It), P’ = (J1,...,Jm) and denote J = JP'. By the definition of ||A|p/ p we
have

m
o s 50 S o Tt [0S ()) =
' PP =1 in;
k d
=sup Z ax” AR ’VJ 1. ’fZ( (J)> =15, (4.51)
ta)\ g iy
where G! = (giJl)iJl and || - ||| is & norm on A given by

lltai, )i I =E | Y ai, HglJl
iy

Theorem 4.2.5 implies that

I\ J

< C(k) > = =C(k)

(R, R)EP([d\J]) (R, R)EP

<ck) Y

(R, R)eP([d])

i
IR|—

p
([d\T)

2
Esup Z awn 11 gZd ‘Vj_l,,.7k2(x§i;) =1
ir;

where [[|Af|r/ = is defined as [|Al|, » but under the expectation occurs the norm [ - |-
The above and (4.51) yield

[R|-k
E Zaigid < C(k) Z p 7 |Algx- (4.52)
iq

PP (R, R)eP([d])

Since |P| = k the proof follows from (4.49),(4.50) and (4.52)
O

Proof of Theorem 4.2.4. Let S = HZaigill ~~gidd . Chebyshev’s inequality and Theorem 4.2.1 yield

P(S>cCd) > pPI2|Alpp ] <e? (4.53)
(P,P))EP((d])

It is enough to substitute ¢t = C(d) Z(p,P’)ep([d})p|P|/2 |Al|p+ p and observe that
IPI=1
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1 2/IP|
> — min .
~ C(d) (pP )EP(4) <I|A||7>/ )

On the other hand by the Paley-Zygmund inequality (cf. Corollary 6.1) we get for p > 2,

—1 P/ 1 1\ (BS?)? | o
P(S>C7d) Y, > pPPAllp | 2 P(SP> S ESP ) > (1-; Eom 2¢O
JE[d] PEP(J)

where in the last inequality we used Theorem 6.3. The inequality follows by the same argument as
for the upper bound. a

4.5.2 Proof of Theorem 4.2.9

Theorem 4.2.9 will be a corollary to our main results on decoupled homogeneous chaos and the
following general statement.

Proposition 4.5.1. Let F' be a Banach space and let f: R™ — F be a polynomial of degree D.

Then forp>1,
1£(G)~EF@), ~DZH Z a0
i1

Zdl

where the d-indexed F-valued matrices Ag = (a;, .. ﬂd)n, Lig<n are defined as Aq = EVFf(Q).

Indeed, using the above proposition reduces (4.10) of Theorem 4.2.9 to the lower estimate given
in Theorem 4.2.1, while (4.12) is reduced to Corollary 4.2.8. The tail bounds (4.11) and (4.13) can
be then obtained by Chebyshev’s and Paley-Zygmund inequalities as in the proof of Theorem 4.2.4.

The overall strategy of the proof of Proposition 4.5.1 is similar to the one used in [2] to obtain the
real valued case of Theorem 4.2.9. It relies on a reduction of inequalities for general polynomials of
degree D to estimates for decoupled chaoses of degree d =1,..., D. To this end we will approximate
general polynomials by tetrahedral ones and split the latter into homogeneous parts of different
degrees, which via decoupling inequalities are comparable with their decoupled counterparts. The
splitting may at first appear crude but it turns out that up to constants depending on D one can in
fact invert the triangle inequality, which is formalized in the following result due to Kwapien (see
[14, Lemma 2]).

Theorem 4.5.2. If X = (X1,...,X,) where X; are independent symmetric random variables, @
18 a multivariate tetrahedral polynomial of degree D with coefficients in a Banach space E and Qg
is its homogeneous part of degree d, then for any symmetric convex function ®: E — Ry and any
de{0,1,...,D},

E®(Qa(X)) <EP(C4Q(X)).

It will be convenient to have the polynomial f represented as a combination of multivariate
Hermite polynomials:

f T1,. Z Z adhdl $1 hdn(l‘n), (4.54)
d= OdGAn

where
Z{dZ(dl,...,dn)Z vke[n] dy, >0 and d1+~~-+dn=d}
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and h,(z) = (—1)’“6”‘32/2ddgﬂ—mme_g‘/j/2 is the m~th Hermite polynomial. In what follows, we will use
the following notation. For a set I, by IE we will denote the set of all one-to-one sequences of length
k with values in I. For an F-valued d-indexed matrix A = (a;,....i;)i1,....iq<n and x € R™ we will

denote
(A,x) = E Qiy,.oyigli,... ig-
11,.-50g

Let (Wt)ep0,1) be a standard Brownian motion. Consider standard Gaussian random variables
g =W and, for any positive integer NV,

958 =VN(W, —W%), j=1,...,N.

N

For any d > 0, we have the following representation of hg(g) = hq(W1) as a multiple stochastic
integral (see [12, Example 7.12 and Theorem 3.21]),

1 rty to
hd(g):d!/ / / AWy, - AWy, dWy,.
0 JO 0

Approximating the multiple stochastic integral leads to

. —d/2 . —d/2
ha(g)=d! lim N / ' > 9NN = Jim N 2N g N giaN,  (455)
1<j1<<ja<N jE[N]E

where the limit is in L?(2) (see [12, Theorem 7.3. and formula (7.9)]) and actually the convergence
holds in any L? (see [12, Theorem 3.50]).

Now, consider n independent copies (Wt(i))te[o,l] of the Brownian motion (i =1,...,n) together

with the corresponding Gaussian random variables: ¢(*) = Wl(i) and, for N > 1,
g = VN —w@), =1, N
N

Let also

n, - 1 1 2 2 n n o %
G( N) *(gi])\fvag](\f,)jva gg’])\]w"vg](\f,)j\fa D) gi}v»7gj(\f7)]\f)*(g](J)V)(’LJ)E[n]X[N]

be a Gaussian vector with n x N coordinates. We identify here the set [nN] with [n] x [N] via the
bijection (i,5) > (i — 1) N 4 j. We will also identify the sets ([n] x [N])¢ and [n]? x [N]¢ in a natural
way. For d > 0 and d € A}, let

Ia={ie N Vg #i {1}) =d},

and define a d-indexed matrix B((iN) of n? blocks each of size N as follows: for i € [n]¢ and j € [N]¢,

(By"
0 otherwise.

| [BEGEENTAR e g and (i) = ((i1,51)s - (fasda)) € (0] % [N]),
Proof of Proposition 4.5.1. Assume that f is of the form (4.54), By [2, Lemma 4.3], for any p > 0,

N .
(BE (@MY N2 by (9M)- -, (9)in LP(2),
which together with the triangle inequality implies that
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ngansz > aaBS” (V)| < @) -Er@),

d=1 deAn

for any p > 0, where G = (¢™),...,¢(™) and we interpret multiplication of an element of F and a
real valued d indexed matrix in a natural way. Thus, by Theorem 4.5.2 and the triangle inequality
we obtain

Ch ! lim ZH< BéN)’(G(n’N))®d>Hp

N— o0
— dGA"

<|F(G)=Ef(G)lp

<Cp lim ZH< adB N) (G(”’N))®d>Hp.

N—o0
d=1 deAy;

Denote by G - GnN.D) independent copies of G(N). By decoupling inequalities we
have

€32 aaBE (G D g (D aaBY,G N D g oV (4.56)
deAn p dean p

(recall that the matrices B((iN) have zeros on generalized diagonals and so do their linear combina-

tions).
To finish the proof it is therefore enough to show that for any d < D,

1 N n n 1
Jim {32 aaBg?.60N @ 0 GONDY| = GA0GH © - Gally (457
deAy

where G1,...,Gp are independent copies of G.
Fix d > 1. For any d € Ay define a symmetric d-indexed matrix (ba);cp,,ja a8

)i | i Hic
! 0 otherwise.

and a symmetric d-indexed matrix (B((jN))(i,j)e([n]x[N])d as
(B((iN))(w) = N"%2(bq); forallie[n]?and j e [N].
Using the convolution properties of Gaussian distributions one easily obtains

[{ 3 aaB™, o0 ... gy H — (> aaa)iepesGre-- ®Gd>Hp (4.58)
dean deAn

On the other hand, for any d € A7}, the matrices B((iN) and B((iN) differ at no more than |I4]-
|(IN]4\ [N]4)| entries. Thus
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|aa (B =BV, N D g o N
p

<p¥laall- (B - BY,c N D g o V)|

=p?|laql|- \/IIdI(W)QNd(Nd_ (N]i!d)!) 0

as N — oo, where in the inequality we used Theorem 6.3.
Together with the triangle inequality and (4.58) this gives

tim (> adBfiN),G("val)®---®G("’N’d)>HP=H< > aalba)iepuesGr @ @Ga) .
deAn

N—o0

deAy d ’
(4.59)
Finally, we have
EVIf(G)=d! Y aa(ba)epme- (4.60)

deAn

Indeed, using the identity on Hermite polynomials, %hk(x) = khg_1(x) (k > 1), we obtain

E-<4hy.(g) = k1), for k,0 >0, and thus, for any d,{ < D and d € A?,
dx l

(Evdhdl (g hq, (g(")))i =d!(bq)ilg—; for each i€ [n]?.

Now (4.60) follows by linearity. Combining it with (4.59) yields (4.57) and ends the proof. O






Chapter 5

Moments estimates for some types of chaos in the
Banach spaces

The purpose of this chapter is to investigate moments of random quadratic forms (chaoses of order
two) S=>", 20 Xi X under the assumption that for any X7, X5,... are independent symmetric
r.v’s with LCT and that (a;;)i; is a matrix with values in a Banach space (F,|-||). By standard
arguments (discussed in the introduction and previous chapters) one may deduce from moments
estimates, bounds on tails P(||S|| > ¢), ¢t > 0.

In the sequel we will only consider decoupled chaoses S’ = Zi]— a;; X;Y;, where X1,Xo,...,
Y1,Ys, ... are symmetric independent r.v’s with LCT - under some natural assumptions, moments
and tails of S,S’ (in the particular case when Y7,Y3,... is an independent copy of X1, X5,...) are
comparable with numerical constants (see Theorems 6.5, 6.6).

Our main result, Theorem 5.1.3 presents two-sided bound of ||S’[|,, in the case when (a;;); is a
matrix with values in L, space, under additional assumption that r.v’s Y7,Ys,... are subgaussian.
It is an attempt to generalize Latala’s result [17] (he studied moments of S’ in the case F =
R). Theorem 5.1.3 extends also moments bounds for Gaussian chaoses with values in L, spaces
presented in the Chapter 3. We suspect that our estimates hold in L, spaces without the additional
subgaussanity assumption but we are able to show it only in the case ¢ =2 (cf. Theorem 5.1.6).

One may also ask what are two-sided bounds on moments of S’ in arbitrary Banach space, or
more precisely is it possible to reverse the inequality (5.9). We suspect a positive answer here,
however we think that this is a difficult problem. However, we provide upper bounds for moments
of |5 p in an arbitrary Banach space (Theorem 5.1.5 below). The usefulness of this inequality lies
in the fact that it can be reversed in a certain class of a Banach spaces (including L, spaces).

We use ideas introduced in [1] and Chapter 3. First we generalize Proposition 3.5.12 (estimation
of suprema of the Gaussian processes) to the more general sets. Then following Chapter 3 we try
to decompose a "big" set U x T' C (B% +,/pB7') x R™ into a sum of "not to many" sets 7 which are
"small". By small we mean that Esup,cq, Yz is small, where (Yi)ter, is a stochastic process based
on symmetric, independent r.v’s with LCT. We were unable to find an equivalent of [1, Corollary
7.3] (what would give such decomposition), but we noticed that under the additional subgaussanity
assumption one can use a different decomposition.

The chapter is organized as follows. In Section 5.1 we present the notation and formulate the
main results. In Section 5.2 we reduce the problem of bounding moments to the problem of bounding
expectation of suprema of a stochastic process, formulate the problems in an equivalent way and
we prove the moments bounds in the Hilbert space. In Section 5.3 we prove crucial bounds on
expectations of suprema of a Gaussian process. In section 5.4 we present proofs of the main results.

5.1 Notation and main results

Let (X;)4,(Y;); be independent, symmetric random variables with LCT. We define the functions
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N (t) = =InP(|X;] > [t]) € [0,00], M (t) = —InP(|Y;] > [¢]) € [0,00]

(observe that N7, M ]Y are convex). We assume that r.v’s are normalized in such a way that
inf{tzo, Nf‘(t)zl}:inf{tzo, Mf(t)zl}:l. (5.1)
We set

G (1) = t? for |t| <1 1 () t2 for |t| <1
PN for ) >17 7 T MY (t) for [t >17

Observe that convexity of N7, M ]Y and the normalization condition (5.1) imply that

NX@t) =N @t)>t, M) (t)=M(t)>t fort>1, (5.2)
1/e <EX7,EY} <1+4/e<3, EX}EY}<1+64/e. (5.3)

The first formula is clear, to prove the second it is enough to observe that
oo
1/e<P(|X?>1)<EX? < 1+/ 2ve dr <1+4/e<3
1

(we prove the bounds for EX} analogously).
Let (ai;)i; be R valued matrix and (a;); € R™. The following three norms will play crucial role
in this chapter:

I (aij)ij [ X.Y.p — Sup A TiY5 f%‘ (zi) <p, Mj (y]) <p s (5.4)
[REYY
J

1] %

<ai>||X,,,sup{Zaizi ZNﬂxos;)}, @)l =008 S azus | S0 () <o
i % J J

(5.5)

Since N;X(t/u) < NX(t)/u for u>1 (it follows form the convexity of N;X and the normalization
condition (5.1)) we have that

1(@i)ill x 2p < Cll(@i)ill x (5.6)
and the same holds for ||(a;);lly,,- The inequality (5.6) has far-reaching consequences.

Fact 5.1.1. Assume that X1,Xo,..., Y1,Y2,... are symmetric r.v’s with LCT, for any i,j a;j € F,
where (F,||-||) is a Banach space. Then for any p > 1,

Zainin <C Zainin .
iJ 2 ij
1Y p

Proof. Let aq,as,... € F. From Theorem 6.24 below and (5.6) it follows that

=
%

+ sup H(@(ai))i”X,Qp
pEB*(F)

SE[> aix;
2p

+ sup  lo((ai)illx, S
pEB*(F)

ZaiXi
i

p
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Conditionally using twice (5.7), first time to a Banach space (F°°,||-||), where |[|(a;):l] =
1> aiXil5, and then to (F\[|-[|) we conclude that

1
2% 1/2p P /p

Zainin S EY EX Zainin 5 Zainin
— . p —
O
Let
BY = {x R YR (@) <p}, BY —dyer s SN () <p
i J
be the unit balls in the dual norms to the [|-||x ,,|[ly,, so that
lallx, = s Saimi, @)y, = suwp S au;.
:L‘EB:g( i Yy BZ); j
Observe that (5.2) implies that
B;\,B) C/pBy +pBY. (5.8)

In this chapter by (g;),(&;) we denote independent random variables with standard Gaussian
and exponential distribution (i.e the distribution with the density 1/2exp(—|z|/2)). Here and sub-
sequently G, stands for (¢1,...,9,) and E,, for (£1,...,&,). For a random vector X with values in
a Banach space (F, || - ||) we set [ X[, = (E [ X|”)1/P. By EX,EY we mean integration with respect
to X1,Xao,... and Y7,Ys,... respectively.

We say that a sequence of r.v’s X1,Xs,... is subgaussian with constant v if Xi,Xs,... are
independent and for any i EX; =0, P(|X;| > t) < 2exp(—t2/(2+?)).

In this chapter write a <b (resp. a S b) if a < Cb (resp. a < C(a)b). If (F,]||-||) is a Banach space
then (F™*,||-||,) stands for its dual space and B*(F) ={p € F*: ||¢|/, <1} for the unit ball in the
dual space.

Our first observation is a simple lower bound.

Proposition 5.1.2. Assume that X1,Xo,... and Y1,Ya,... are independent random variables with
LCT such that (5.1) holds. Let (a;;)i; be an F-valued matriz, where (F,|-||) is a Banach space.
Then for any p > 1 we have

> _aiXaYj|| 2 E|Y ai; XiYj|+ sup E Zausz + sup B> ai; Xy
i ij xEB yEB ij

+ sup > elaig)? + sup |le(ai)llxy,- (5.9)
PEB*(F) P i pEB*(F)
? P

We are able to reverse the inequality (5.9) in L, spaces under additional subgaussian assumption
on (Y;);-

p

Theorem 5.1.3. Assume that X1,Xs,... and Y1,Ys,... are independent random variables with
LCT such that (5.1) holds. Assume also that the sequence Y1,Yo, ... is subgaussian with constant ~y.
Let (a;5)ij be an F-valued matriz, where F' = Ly(T,dp). Then for any p > 1 we have
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Zainin ~TTRE Zainin + supXIE Zaijxin + supyE Zainiyj
ij » ij L, “€P |l L, YSP |l

v osw ||| o] |+ s lel)ilcy, (6.0
pEB*(Lq) j [ p€EB*(Lq)
1 7p

Remark 5.1.4. The formula (5.10) can by simplified, but we intended to present it in a way which
leads itself to generalizations. By standard arguments (cf. Proposition 3.2.1, Fact 5.1.1) it can be
showed that

2
E Zainin ~4 Za?j , sup E Zaij:vin ~% sup Z(Zaijml) ,
ij Ly \/ ij L, i

acEBg .TEBI‘i(

Lq

ij J
Lg L,
2
sup E E a;; Xiy;||  ~7 sup E g ai;Y;
yEBZSJ/ ij yEB},’ i j
Lq
Lq

The upper bound in (5.10) is a consequence of the following inequality.

Theorem 5.1.5. Let (F,||||) be an arbitrary Banach space and (a;j):; an F-valued matriz. Assume
that (X;)s,(Y;); are symmetric r.v’s with LCT such that (5.1) holds. Additionally assume that Y;
are subgaussian with constant v. Then for any p > 1 we have

Zainin S]E Zainin +v | E Zaijgij +E Zaijgifj + sup E Zaijxin
ij , ij ij ij e€BY || 4

+ sup B ai; Xiy; |+ sup > elaij)? + sup |lo(ai)lxy,- (5.11)
yeBY i pEB*(F) i ) pEB*(F)
K3

X.p

In the Hilbert spaces the assumption about the subgaussianity can be relaxed.

Theorem 5.1.6. Assume that X1,Xo,... and Y1,Ys,... are independent random wvariables with
LCT such that (5.1) holds. Let (a;;)i; be an F' =-valued matriz, where (F,||-||) is a Hilbert space.
Then for any p > 1 we have

Zainin ~ E Zainin + sup E Zaijxiyj + sup E Zainiyj
ij ij 2€B |4 veBy ||'ij

+ sup > elaij)? + sup [leai)lxy,- (5.12)
pEB*(F) ;i i pEB*(F)
1 P

p
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5.2 Reduction to a bound on the supremum of a certain stochastic
process

We begin with reducing Theorem 5.1.5 and the upper estimates in Theorem 5.1.6 to an estimate
on expected value of a supremum of a certain stochastic process.

Lemma 5.2.1. Under the assumption of Theorem 5.1.6 with "Hilbert space” replaced by "Banach
space” we have

Zainin SE Zainin + sup E Zainiyj +E sup Zaijxin
ij ij veBy |4 z€BY || 45
P

+ sup l(e(ais))ijllx v,
PEB*(F)

Proof. By conditionally applying Theorem 6.24 we obtain

PEB*(F)

Y aiiXiYj|| S |EY | ai XYyl +|| sup |[{ D elai)Y;
4 p g P J X p p

Since Yy — EX HZ” ainiyj

is a norm by again applying Theorem 6.24 we get

]EX ZG’UXZY} S/E Z(ZUXZY} + sup E Zainiyj
ij » ij yeBY ||7j

Again Theorem 6.24 yield

sup > elai;)Y; SE sup |y aiaYi|+ sup [(e(aig)igllxy, -
pEB*(F) ; ‘ zeBX |55 pEB*(F)
X p p

O

So in order to prove Theorem 5.1.5 and the upper bound in Theorem 5.1.6 it is convenient to
establish upper bounds on Esup,c BX HZU a;j ;Y H To this end we reformulate the language we
use. Observe that it suffices to show Theorems 5.1.3-5.1.6 when we sum up after i,j < n. We may
also assume that F' =R™ so that a;; = (aijx)k<m and ||z| =sup;er ;< tixi where T'C R™ is
the unit ball in the dual space. In this language (5.11) becomes

i<m
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SUPZaiijintk S Esupzaiijintk +7 Esupzaijkgijtk +E5upzaijk9i5jtk
teT teT T T

ijk ijk teT" ik teT ik

+ sup ]EsupZa,-jkxintk—F sup EsupZaiijiyjtk

p

zeBX €Ty yeBY teT oy
2
+sup Z Zaijktk +sup Zaijktk
teT 5 A teT A i
'3 X’p J X7Y7p
(5.13)

We are now in a position to show Theorem 5.1.6.

Proof of Theorem 5.1.6. The lower bound follows by Proposition 5.1.2. We will prove the upper
bound. W.l.o.g (changing (a;;);; if necessary) we may assume that the unit ball in the dual space
is T =B ={x € R™: |jz|, < 1}. Using the language introduced above the upper bound in (5.12)
becomes

sup E a;;x X Yjt|| SE sup g a;;xX;Yjt + sup E sup E a2 Yy
te By oy R T v€BY tEBY Y

+ sup E sup Zaiijiyjtk—i— sup
teBI*

2 ()

yeB) tEBy ijk 2 j
i1l X,p
+ sup Zaijktk . (5.14)
te B A |
WX, Y,p

Applying Lemma 5.2.1, to show (5.14) it is enough to prove that

E sup Zaijkxintk < E sup Zaiijintk—&— sup E sup Zaijkxintk

te€ B, x€ B ik te B ijk zeBX teBY iik
2
-‘rtzl]lglf:n Z (Z aijktk> +t21§2n <Z aijktk> . (5.15)
2 j k illxp 2 k il x,v,p

Since Bj‘;< C /pB3 +pBY7 (recall (5.8)) we take the decomposition (p‘l/QB;() X By = Ul]\il((zl,sl) +
T7) obtained from Corollary 6.12 with Z; = Y;. Applying Lemma 6.11 (recall (5.6)) yields

E sup Zaijkxintk < vpmaxE sup Zaijkxintk
z€BX te By ik ! (z,t)€(2l,sH)+Ty ik

+ sup Zaijkxiyjtk. (5.16)

teBY € B ,yeBY i

Because EY; =0 and EYj4 < C (recall (5.3) and Corollary 6.12) we conclude
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E sup ZaijkzintkgE sup Zaijk:vintk

(z,t)€ (2! s)+T 5 (@.)€T ;5
+E sup Zaijkxi}/jsﬁc+E sup Zaijkzéthk
(z,t)eTy ijk (z,t)eT, ijk
<pl/2 Za?jk—i-E sup Zaijka:insgc—FE sup Zaijkzéthk. (5.17)
ijk (@) €Tt 5% (z)€Tt 45k

Using Jensen’s inequality, (5.3) and Fact 5.1.1 with F' =15" and p =1 we obtain

Za?jk < CE sup E a;jpXiYjty. (5.18)
P teBI T
J (%)

Corollary 6.12 assures, that (2!, s!) € (p™1/2B.X) x BY* so that T; C 2(p~1/2B.X) x 2B}*. Applying
Corollary 6.18 we get

E sup Zaijkxi}’jsi SQ]fl/2 sup E sup Zaijkxintk

(z,t)ETy ijk te By zeng( ijk

2
<cp'/? sup Y agrmiyite+  sup > [y (Z aijktk> i

teBY' e B yeBY ik teBY', z€BX j

2
= Cp_1/2 sup <Z aijktk> + sup Z <Z aijktk> . (519)
k

te By

illx,v,p ° §oNFk illx.p
Finally, since z! € p=1/ QB;(
E sup Zaijkzll-thk <p Y2 sup E sup Zaijkxintk. (5.20)
(x,t)€T, 5y weB tEBY
Formulas (5.16)-(5.20) imply (5.15). O

5.3 Expectation of suprema of a certain Gaussian processes

The main result of this section is Proposition 5.3.8 in which we estimate the expectation of the
supremum of a Gaussian process (G (4 1)) (z,t)ev, Where V C Bl)f X T and G4 ¢y = 355 Gigh9iTity-
To estimate such quantity one needs to study the distance on B;( x T given by

da((z,t),(2",1')) = (E|G(w,t) 7G(m’,t’)|2)1/2 =au(z@t—a’t),

where x @t = (2 - tr) j<n,k<m € R™" and a4 is a norm on R™™ defined by the formula

2
n n

aal@)p) =D |1 aijrri

i=1 \j=1k=1
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We use the scheme introduced in Chapter 3. In order to proceed we need some entropy estimates
(recall that N(S,p,e) is the smallest number of closed balls with the diameter ¢ in metric p that
cover the set S). The crucial idea is to consider measure p, ., which is the distribution of of
e(Gn+ Ey), € >0 (we recall E, is the exponential vector in R™).

Let S C R™. By the classical Sudakov minoration (cf. Theorem 6.7) for any x € R™ there exists
a set Sy . C S of cardinality at most exp(Ce~2) such that

VsesIsres,.. aa(r®(s—s')) <eEsup Zaijkgixjsk =:e04 s(x).

seS ijk

Observe that 84, g(x) is a norm. We define the following measure on R™ x S:
fle,s(C) = Z 62,4 (C)dfin,e.
R €Sy,
To bound N(U,d4,¢), for U C B}‘;{ x T we need two lemmas.
Lemma 5.3.1. For any ¢,p >0, norms ai,az on R" and y € B +,/pBy we have
fine (z: a1(v—y) < CeEai(E,), as(z) < CRas(Ep)+as(y)) > 1/4exp (—e 2/2—/pet).

Proof. Since for any norm « on R™ we have Ea(G,,) < 3Ea(E,) (cf. [1, Lemma 5.6]), the assertion
is a simple consequence of [1, Lemma 5.3]. O

Lemma 5.3.2. For any finite set S CR™, p>0, (x,t) € (By +./pBT) x S and ¢ > 0 we have

fe,s(B((,1),da,r(€)) 2 exp(—e /2~ e,

where
B((z,t),da,r(e)) ={(2',t) ER"x S: as(zxt—2'@t") <r(e)}

and
7(e) = C (e*EBa,s(En) +eBa,s(x) +eBaa(E, ®1)).

Proof. Let us fix (x,t) € B x S and € > 0. Set
U={2' €eR": Bas(z") <CeEBa s(En)+Bas(x), as((z' —z)®t) < CeEau(E, @1)}.
For any 2 € U there exists t’ € S}, _ such that a4 (' ® (t—t')) <eB4, s(2). By the triangle inequality
aslzet—2' @t") <aa((z—2")@t)+aa(z’ @ (t—1")) <r(e).

Thus, by Lemma 5.3.1, fic s (B((2,t),da,7(€))) > pin,e(U) > 1/4exp(—e—2/2— /pe ).

O
Corollary 5.3.3. For any p,e >0, U C By +,/pB7, and S € R™
N <U x S,da,e*EBA s(Ep)+esup fas(x)+esupBaa(Ey, ®t)> <dexp(Ce™?+Cy/pet).
zeU tesS
(5.21)

Proof. Let r = e2EB4 s(Ep) +esup,cy Bas(x) +esupiegEaa(E, ®t) and N = N(U x S,da,r).
Then there exist points (z;,t;); in U x S such that da((zi,t;),(x;,t;)) > r. Note that the balls
B((x,ti),da,r/2) are disjoint and, by Lemma 5.3.2, each of these balls has fi. ¢ measure at least
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1/4exp(—Ce=2/2— C\/pe~1). On the other hand we obviously have fi. s(R™ x S) < exp(Ce™2)
what implies N < 4exp(Ce™2+C/pe ). O

Similarly as in Chapter 3 we need to decompose By +,/pBf and T into smaller pieces By +
VvPBY =U; Ui, T =J; T in such a way that sup, /ey, Ba,r(x—2'), sup; yer, Eaa(E,® (t—1t))
is small on each piece. To make the notation more compact let for T'C R™ and V C R™ x R™,

sA(T) :=Esup a;ik9iitk| +Esup a;ikgi€itk|,
sup| > aijigi sup| > aijigi€;

ijk ijk
Fq(V):=E sup Zaijkgixjtk,
(z,t)eV ik
Ap(V) :=diam(V,dy) = sup aslr@t—a' @t).

(z,t), (2! ") eV
An obvious consequence of the classic Sudakov minoration (cf. Theorem 6.7) is the following

statement.

Lemma 5.3.4. For any p > 1 there exists decomposition T —T = Uf\;l T; such that N < exp(Cp)
and for any i < N,

2
1 1
sup Eoy (En®(t-1)) < sup aiji(tr—t,) | < —Esup> aingijte < —sa(T).
tHET " tHET; ; ; ? * VD ter— """ VP

Lemma 5.3.5. For any p > 1 there exists decomposition of By +./pBf = Uf;l U; such that N <
exp(Cp) and for any i <N,

1 1
sup fBar(z—2') < *Esup’ a; 'kg'g'tk‘ < —sa(T).
2,2/ €U; D terT Z I \/13

Proof. 1t is enough to use Corollary 6.9 with ¢ = p_l/z/C and the norm « — B4 7 ().
O

Lemma 5.3.6. Let V be a subset of (B3 +./pBY)x (T'=T) and (x,t) € R™ x R™. Then there
exists a decomposition V = UiV:1 V; such that N < exp(C2%p) and for any i < N

Fa(Vi+(2,t)) < Fa(Vi)+Bar(z)+CEays(E, @1)

and

An(Vi) < —

< %5 sup (5A7T(y)+E04A(En®5))~

1
J’,i
2l\/15(y78)6V

Proof. Corollary 6.9 with e = p~2/2 and a = a4 and Corollary 5.3.3 with e = 27 !p~1/2 yield de-
composition V = UigN Vi, N < exp(Cp2?) such that

A(T)

C
sup aal(y; —y) ®t) < —Eaa(E, ®t), (5.22)
W sHevi N

AaVi) < g 5a(T) sup (Ba,r(y) +Eaa(En©3)).

1
_|_7
2l\/iﬁ(y,S)GV

Since E} ;. giwjtk =0 we have
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FA(‘/'L+(:Cat))§FA(‘/i)+BA,T( )+E sup Zawkgzy]tk

(y7s)€‘/7, Z]k

From Lemma 6.17 and (5.22) we obtain

2
E sup ZazjkgzyjtkN Z(Z%jk%) +vp sup aa((y; —y;) ®t)
ij \ k

(y:5)EVi 4% (y,8),(y',s")€V;

< CEaA(En ®t),

where in the last line we used (5.7) with p=1and F = ”2 and (5.22). The assertion easily follows.
O

Corollary 5.3.7. Let V C (By +/pBY") x (T'=T) be such that V -V C (By 4 /pBY") x (T =T).
Then there exists decomposition V = vazl((xi,ti) +V;) such that N < exp(C2%p) and for each
i<N

i) (xi,t;) €V, Vi=V;CV -V, V;C(B §+\[B") (T-1),

i) sup(y syev; (Ba,r(y) + Eaa(Ep ®s)) < f (1),
iii) Aa(Vi) < 2%JSA(T)

ZU) FA(VZ + (l‘l,tl)) < FA( z) -‘rﬁA’T(CUi) + CEaA(En ®ti).

Proof. By Lemmas 5.3.4 and 5.3.5 we can find decompositions B + /pBf" = Uivzll Uiy, T—-T =
vajl T; such that Ny, Na < exp(C22!p) and

sup fBar(r—2')< sa(T), sup Eaa(E,x(s—s5")) <

1 1
z,x' €U, ' o 2l\/§ s,s'€T; o 21\/17j

Let Vi; =V N (U; xTj). If Vij #0 we take any point (z;,t;;) € Vi; and using Lemma 5.3.6 we
decompose

SA(T).

Vij xzw U U ‘/z]k

in such a way that N3 < exp(C22'p),

Fao(Viji + (xij.tij)) < Fa(Vijr) + Bar(xi) + CEaq (B, ®t55)

and
1
AaVijr) < ggpsa(M)+g— | sup - Bar(y)+ sup  Eas(E.®s)
VP \(y.5)€Vijn (¥,5)EViji

1 1

< gsaM)+s—=| sup Bar(y—y)+ sup Eaa(E,®(s—s))
22lp \f(y,y’EUi s,s'€T; "
1

NQTSA(T)

The final decomposition is obtained by relabeling of the decomposition V=, ((ij. ti;) + Vijk)
O

Proposition 5.3.8. For any p > 1 any nonempty T C R™ and W C (BY 4 /pBY") x (T —T) we
have
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1
FaW) S —=sa(T)+ sup PBar(z)+ sup Eaa(E,@t)+/pAs(W).
N/ (z,£)EW (z,t)EW

Proof. W.lo.g we may assume that W is finite and W C 1/2((B% + /pB7') x T'). We define

Ag = As (W), Ay:= sup Bar(xz)+ sup Eaa(E,®t)
(z,t)eW (z,t)eW

Ap=2"2p7 s  (T), Ap:=2""p"254(T) forl=1,2,....
Let for [=0,1... and k=1,2,...

c(Lk) :=sup{Fa(V): V C(By +pB)x(T'=T), V-V CW-W, |V|<E,

Ap(V) <A, ( SI;P (Ba,r(z) +Eaa(E, ®t) < CA}.
z,t)eV

Obviously ¢(I,1) = 0. We will show that for £ > 1 and [ > 0 we have
c(l.k) el +1k=1)+C (2'/pA+ A)). (5.23)

To this end take any set V as in the definition of ¢(I,k) and apply to it Corollary 5.3.7 to obtain
decomposition V = Ufil((xi,ti) + V). Conditions ) —iv) from Corollary 5.3.7 easily imply that

) < —~1).
%%(F(Vz)_c(l—&-l,k 1)

Lemma 6.10 yields

N
Fa(V)=Fa (U (Vi+ (%‘Ji))) <CVlogNAA(V) +max F(V; + (2i,8:))-

i=1

Since N < exp(C22p) (cf. Corollary 5.3.7) from the definition of ¢(I,k) we obtain

ViegNAL(V) < C2'\/pA
and for each i by Corollary 5.3.7 we have (recall that (x;,t;) € V)
F(Vi+(2i,t)) < F(Vi) + Bar(xi) + CEaa(Bn @ t;) < Fa(Vi) + CA,.

So we have proved (5.23). It implies that for any k& we have

k) S (2’“/2\/13Ak +Cjk)
k=0
1
S—=s5a(T)+ sup far(z)+ sup Eas(E,®t)+/pAa(W)
N/ (z,0)EW (z,t)EW

As a result

1
F(W) <supc(0,k) S —sa(T)+ sup far(z)+ sup Eaa(E,®@t)+/pAs(W).
k VP (z,t)EW (z,t)EW



114

5.4 Proofs of the main results

We begin with the proof of the simple lower bound.

Proof of Proposition 5.1.2. Using Theorem 6.26 we obtain

Y aiXiY| = sup | o(ai)X,Y;
ij
p

p

+ sup Zg@(aij)Q

2 s ||ela);,

pEB*(F) XYop peB*(F) F; )
N X,p
Jensen’s inequality and Theorem 6.22 yield
p\ 1/p
Zainin > [EY sup EX Zgo(aij)Xin pe sup Zcp(aij)xin
7 ) ©EB*(F) i pEB*(F),zeBY ; v

> sup E Zaija:in
ZGBg( ij

Analogously HZU a;; X;Y; H = supycpy E HZU ai; Xiy; H To finish the proof it is enough to observe
) P

o[ 005],  [ 0
O

Now we prove Theorem 5.1.5 and then we will deduce from it Theorem 5.1.3. As w mentioned,
there is a problem when one wants to prove moments bounds in L, spaces. The reason is the lack of
a counterpart of Corollary 6.12 and we have not been able to derive it. However, with an additional
assumption about subgaussianity it is enough to use the decomposition obtained in Corollary 5.3.7

Proof of Theorem 5.1.5. We will prove inequality (5.13) equivalent to (5.11). Let us take the decom-
position from Corollary 5.3.7 with [ =1 so that (pfl/QBf) xT = Ui\il((ml,tl) +T;), N <exp(Cp)
and T satisfies ) —iv) (recall the inclusion (5.8)). From Lemma 6.11 we obtain

E sup ZaiijinSk §p1/2maXE sup Zaijkzinsk
(2,8)EBX xT 7x b (zs)e@ht)+T n

+sup Zaijkziyjsk |'s ET,ZNI'X(%) <p ZMJY(ZJJ‘) <Cp

ijk 7 J
(z)
k

. (5.24)

§p1/2max]E sup Zaijkzinsk—&—sup
S
X,Y,p

b (zs)eh )+ 5k €T

where in the last inequality we used (5.6). By the triangle inequality
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l
E sup Zaijkzinsk <E sup ZaijkzinSk +E sup Zaijkosinsk
(z,8)€(xh tH)+Ty ik (z,8)ET; ik (z,8)€T; ik

+E sup Zaijkzintfc. (5.25)
(z,8)€T; ijk

Corollary 5.3.7 ensures that (x!,t!) € (pfl/QBgf) x T so

E sup ZaijkxéYjsk §p_1/2 sup EsupZaijkzinsk. (5.26)
(2,8)€Ty ijk ZEBgf seT ijk

Since, T; C 2((p_1/23§ x T')) Corollary 6.18 yields

E sup Zczijkzintgc §2p_1/zsupIE sup Zaijkzinsk

(2,5)€T; ijk seT ZeBg( ijk

2
<p 2| sup (Z%jk%) +sup Z(Zaiik3k> . (5.27)
A illxy, *< 7ONK illxp

Random variables Y7,...,Y,, are subgaussian with constant v so Theorem 6.15 (it is easy to check
that processes (3,1 @ijk2iYjsk)(z,0)er, and (32,5 @ijk2ig5Sk) (z,s)eT; Satisfy its assumptions)

E sup ZaiijinSkSCVE sup Zaijkzigjsk.
(z,8)€T; ik (z,8)€T] ik

Using Proposition 5.3.8 and the properties i) —iv) of Corollary 5.3.7 we obtain

E sup > agrwigite Sp /2 ]Esupzaijkgingk+Esugzaijkgij5k
S

(z,t)€T; ijk s€T ijk € ijk
+ sup Bas(z)+ sup EBaa(E,@s)+p 2Ax(T) Sp~Psa(T). (5.28)
(z,8)€T (z,8)€T;
The assertion follows from (5.24)-(5.28). O

Proof of Theorem 5.1.3. Tt is enough to prove the upper bound (the lower bound follows from
Proposition 5.1.2). Observe that it is a consequence of Theorem 5.1.5 provided

E Zaijgij +E Zaijg,-gj < C(q)E Zainin . (5.29)
q

L Lyq Ly
By iteration of Fact 5.1.1 (and using it in the second inequality for ¢ < 2), Fubini’s Theorem,

Jensen’s inequality and (5.3) we get
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q \ M4 q

>C(q)~ | E| Y aiXiY;
ij

Lq

5 1/q
>C(q)~* /S E (Zaij(s)xiyj) du(s) | >Clg)~?
i

Lq

Jensen’s inequality, Fubini’s Theorem and iteration of Fact 5.1.1 yield

q 1/q
< (/SE du(8)>

q/2

9 1/q
<C(q) E | aij(s)g:i€; dp(s) <C(q)
s >

. <C(q) H\/ >ij a?j

E

> aijgi€;
ij

> aij(s)gi€;
ij

Lq

2
Z @ij
ij

. what ends the proof of (5.29).
q
O

Lq

Analogously we show that E HZU a;;9ij




Chapter 6
Appendix

Here we gather results from previous work used in this dissertation. As always C' (resp. C(«)) stands
for a numerical constant (resp. constant that depends only on some parameter «) which may differ
at each occurrence. We use the notation a ~ b (resp. a ~“ b) to denote that Cla<b<Ca (resp.
C(a) ta<b< C(a)a). We apply the convention that whenever X1, Xs,... and Y1,Ys,... are random
variables, then NX (t) = —InP(|X;| > t), M} (t) = —InP(|Y;| > 1),

NX (1) = t2 for |¢t| <1 XY () = t2 for |t| <1
P INK () for ) >17 P MY (t) for [t >1]

”(ai)inxm_sup{zaixi | ZNiX(ai)Sp}v ||(ai)i|Y7p_sup{Zaiyi | ZMiY(ai)Sp},
% 7 % %

GX Y
1(ai;)ijll 5y, = sup E aijTiyj | E Ni*(ai) <p, E M;j (y;) <p

where (a;); € R™ and (a;j)i; is a real-valued matrix.

Corollary 6.1 (Paley-Zygmund’s inequality [7, Corollary 3.3.2]). Let X be a nonnegative random
variable. Then, for all0 < A <1,

EX)?
P(X > AEX) > (1- )\)2%.
Lemma 6.2. [20, Lemma 3.5] Let a nondecreasing function f:Ry — Ry satisfy
FOA) 2 Af(1), for A=1, T >0,

where tg > 0 is a constant. Then there is a convex function g : R4 — Ry such that
g(t) < f(t) < g(c?t), fort> Cto,

and g(t) =0 fort € [0,ctp].

Theorem 6.3 (Hypercontractivity of Gaussian chaoses). Let

S=a+y angn+ ) Giyindndintot D Qi Gigs
i1 i150e0y0q

11,12

be a non-homogeneous Gaussian chaos of order d with values in a Banach space (F,|-||). Then for
any 1 <p < q< oo, we have
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/2
q\1/q q p\1/p
(E[15]1) <C<d>(p) (E[5]7)"”.

Proof. Tt is an immediate consequence of [7, Theorem 3.2.10] and Holder’s inequality. a

In the below statement §;; stands for the Kronecker delta.

Theorem 6.4 ([3, Theorem 2.2] for m = 2). Let (a;;)ij be a symmetric matriz with values in a
Banach space (F,||-||). Then for any t >0, we have

_ 1
2~ lp NG > _aijlgigi =8| 2t | <P {>_aijgigi| >t
ij ij

<P | V2|> aij(gig; — )| =t |,
i

where g;, g, are i.i.d. N'(0,1) variables.

Theorem 6.5 (Kwapiefi decoupling bounds [14, Theorem 2]). Let (F,||-||) be a Banach space and
(X;)i§d7j§n7 (X;)j<n are independent symmetric random variables such that

Vien X}, X7, X8, X5 are iiid.

Assume that array (a;,,...iy)i;,....iq With values in F is tetrahedral (i, =1, for k#1, k,l <n implies
iy ,....ig = 0) and symmetric (a;, .. i, = Qi (1yeesin(a) for all permutations m of [d]). Then for any
convex function ¢ : F — R

1
E¢ o Z a X} X | <E¢ Z a; Xy oo Xiy
11,--50g 015-0050d

<E¢|C Z a X} - X7
[AUTIR %)
Theorem 6.6 (de la Penia and Montgomery-Smith decoupling bounds [8, Theorem 1]). Under

the condition stated in 6.5, but without the assumption that the r.v’s are symmetric, we have for
any t >0,

1
P SooaXi XA zCt] <P YD aXi e X|[ >t

015058d i15ee0s8d

t
<CP(|| > X} X7 > =

11,..0g

We recall that the entropy number N(S,p,¢) is the smallest number of closed balls with the
diameter € in metric p that cover the set S

Theorem 6.7 (Sudakov minoration [29]). For any set T CR™ and & > 0 we have

e/ InN(T,da,e) < C’IEsupZtigi,

teT i

where do s the Euclidean distance.
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Theorem 6.8 (Dual Sudakov minoration [24, formula (3.15)]). Let « be a norm on R™ and po be
a distance on R™ defined by po(z,y) = a(x—y) for x,y € R™. Then for any € >0 we have

ey/InN(BY, pa,e) < CEa(Gy).

Corollary 6.9 (Corollary 5.7 from [1] with d =1). Let &1,...,&y be i.i.d random variables with the
density 1/2exp(—|t]), @ be a norm on R™ and p, be a distance on R™ defined by po(x,y) = a(z—1y).
Then for any p>0, T C B} +pB7}, ¢ € (0,1],

N(T,pa,CeEa(€1,...,En)) <exp (e 2+pet).

Lemma 6.10. [16, Lemma 3] Let (G¢)ier be a centered Gaussian process and T =\J;"1 T;, m > 1.

Then
EsupG; < maxEsup Gy +C+/In(m) sup /E(Gy— Gy )2.
teT I<Sm  teTy t,t'eT
Lemma 6.11. [1, Lemma 5.10] Let X1,...,X,, be independent, symmetric r.v’s with log-concave

tails which fulfill the normalization condition
Vicn inf{t >0: NX(t) > 1} =1. (6.1)

Then for any sets T1,..., T CR™ we have

E sup Ztin’ <C maxEsupZtiXiJr sup Htft'HX Cln(k)
el IF - <k tet; < 1 ik v
eUl:l T, @ % t,t 6Ul:1 T;

Corollary 6.12. [1, Corollary 7.3] Let (aiji)ijr be a real-valued matriz and Zy,...,Z, be inde-
pendent mean zero r.v’s. Then for any p>1 and T C (B3 +/pBY) x (B3 + /pBY') there exists a

decomposition T = Uiil((xl,yl) +T;) such that N <exp(Cp), (z,y;) €T and for every I,
C

E sup Zaz‘jkzizjyk <— Za?jkmaX”Zi“4'
(=) €T} 5%, p ijk !

Lemma 6.13. [1, Lemma 9.5] Let Yé(l) be independent standard symmetric exponential variables

(variables with density 1/2exp(—|t|)) and Y;-(Q) = g2, v = gig., where gi, g, are i.i.d. N(0,1)

7

variables and €; — i.i.d. Rademacher variables independent of (Y1), (Y2)), (Y®)). Then for any
Banach space (F,||-||) and any vectors vi,...,vy, € F the quantities

S vy

are comparable up to universal multiplicative factors.

E ) j:172737

Corollary 6.14 (Dudley’s bound [7, Corollary 5.1.6]). Let (Gt)ter, be a centered Gaussian process
and let dg(s,t) = \/E(Gy — Gs)?, s,t € T. Then we have

diam(7T,d¢g)
Esup|Gy| < C/ VIn(N(T,dg,e))de.
teT 0

Theorem 6.15. [24, Theorem 12.16] Let (G¢)rer be a centered Gaussian process and (Yi)ier be
a process such that
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Vt,t’eTHY;t*Y%’HwQ <SYNGe=Gully  (cf (3.29)).

Then

EsupY; < CyEsupGy.
teT teT

Lemma 6.16. [19, Lemma 3.2] Assume that nonnegative r.v’s X1,..., X, have LCT and satisfy
the normalization condition (6.1). Let T be a finite subset of (Ry)™. Then for any p > 1 we have

(tl’?%f)ETmax (Zth C'Ztl7 >

Lemma 6.17. [1, Lemma 6.3] For any real-valued matriz (a;j)ij, p>1 and T C By +,/pBy we

have
2
EbupZa”xlg] <C /Za”—k\f bup Z (Za” - )
zeT x'eT :

ij

p+ln\T|) ax  maxt;.
1y 7tn eTr 1

p

Corollary 6.18. [17, Corollary 3] Assume that X1,...,Xy and Y1,...,Yy satisfy the assumptions
of Lemma 6.11. Then for any p > 1 and any real-valued matriz (a;;)i; we have

<Zaini> <C H(aij)Hx,y,p‘*‘ \/ﬁ
i illyp ‘ illy,

D

Lemma 6.19. [1, Lemma 6.3] For any real-valued matriz (a;j):j, any T C By +pBy and p > 1,

2
IEsuI%Zaszgj <C /Za” +p- 51/1p Z (Zaij(x,- —xé))
€ eT . .
% % AN

Lemma 6.20. [16, Lemma 4] Let G be a Gaussian variable in a normed space (F,|| - ||). Then for
any p>2
1
¢ | 16l +vp sup Elp(G)] [ <[IGll, <|Gll,+CVp sup Elp(G)],
peF* peEF*
el <1 el <1

where (F*,||||,) is the dual space to (F,|-||).
Corollary 6.21. Assume that for any i1,...,iq, ai,,...;; € R. Then for allp>1

1 9 1 d d2
01500504 T1,0e0ylg D

Proof. Tt is an easy consequence of [16, Theorem 1] a

Theorem 6.22 was formulated in [9] in a slightly different manner. The below formulation can
be found for instance in [17] (Theorem 2 therein).

Theorem 6.22 (Gluskin-Kwapien estimate). Under the assumption of Lemma 6.11 for any p >
1, a1,...an, € R, we have
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Zaz

Theorem 6.23 (Latala bound on Ly-norms of linear forms [15]). Let X1,Xo,... be independent
nonnegative random variables or independent symmetric random variables. Then

X \?
~i : = < .
i inf{t>0 Zln(E(l—i—t))p
2 K2

Theorem 6.24. [18, Theorem 1] Let aq,...,an € F' where (F,||-||) is a Banach space. Assume that
X1,..., Xy, fulfill the assumption of Lemma 6.11. Then for any p > 1 we have

| ZaiX
i

Theorem 6.25. [21, Theorem 1.1] Assume that X1,...,X, are independent r.v’s such that

~lai)llx -

~E sup [[(¢(a:))ill x -

pEB*(F)

ViVp>1 | Xilla, < af| X[, for some a > 0.

Then for any non empty set T C R™ and p > 1 we have

sup
teT

Zt X Zt X; Zt,

Theorem 6.26. [17, Theorem 1] Let (a;5)i; be a real-valued matriz and X1,...,Xn, Y1,...,Yn, be
independent r.v’s which satisfy the assumptions of Lemma 6.11. Then for any p > 1 we have

> aiXaYi | ~ai)islx vy, + ,/Z“?j + ,/Z“?j :
ij » J il x p ¢ illy,

P

<C Esup
teT

+sup
teT

In the statement below we use the notation introduced in Section 4.2

Theorem 6.27. [16, Theorem 1] For any real-valued matriz (a;, ... i )i;,....iq and p> 2, we have

<1

i =1 PeP((a)
p
P

d k
ZangZJj ~d Z pl P12 gup Zai]:[xglj | H(xflk)“k )
i =1

=15 dE






References

1]

Radostaw Adamczak and Rafat Latata, Tail and moment estimates for chaoses generated by symmetric
random variables with logarithmically concave tails, Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012),
no. 4, 1103-1136.

Radostaw Adamczak and Pawel Wolff, Concentration inequalities for mon-Lipschitz functions with bounded
derivatives of higher order, Probab. Theory Related Fields 162 (2015), no. 3-4, 531-586.

Miguel A. Arcones and Evarist Giné, On decoupling, series expansions, and tail behavior of chaos processes,
J. Theoret. Probab. 6 (1993), no. 1, 101-122.

Franck Barthe and Emanuel Milman, Transference principles for log-Sobolev and spectral-gap with applica-
tions to conservative spin systems, Comm. Math. Phys. 323 (2013), no. 2, 575-625.

Christer Borell, On the Taylor series of a Wiener polynomial, Seminar Notes on multiple stochastic integra-
tion, polynomial chaos and their integration, Case Western Reserve Univ., Cleveland, (1984).

Luis A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities,
Comm. Math. Phys. 214 (2000), no. 3, 547-563.

Victor H. de la Pefia and Evarist Giné, Decoupling, Probability and its Applications (New York), Springer-
Verlag, New York, 1999. From dependence to independence; Randomly stopped processes. U-statistics and
processes. Martingales and beyond.

Victor H. de la Pefia and S. J. Montgomery-Smith, Decoupling inequalities for the tail probabilities of multi-
variate U-statistics, Ann. Probab. 23 (1995), no. 2, 806-816.

E. D. Gluskin and S. Kwapien, Tail and moment estimates for sums of independent random variables with
logarithmically concave tails, Studia Math. 114 (1995), no. 3, 303-309.

D. L. Hanson and F. T. Wright, A bound on tail probabilities for quadratic forms in independent random
variables, Ann. Math. Statist. 42 (1971), 1079-1083.

P. Hitczenko, S. J. Montgomery-Smith, and K. Oleszkiewicz, Moment inequalities for sums of certain inde-
pendent symmetric random variables, Studia Math. 123 (1997), no. 1, 15-42.

Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University
Press, Cambridge, 1997.

Konrad Kolesko and Rafal Latata, Moment estimates for chaoses generated by symmetric random variables
with logarithmically convex tails, Statist. Probab. Lett. 107 (2015), 210-214.

Stanistaw Kwapieni, Decoupling inequalities for polynomial chaos, Ann. Probab. 15 (1987), no. 3, 1062-1071.
Rafat Latata, Estimation of moments of sums of independent real random variables, Ann. Probab. 25 (1997),
no. 3, 1502-1513.

Rafal Latala, Estimates of moments and tails of Gaussian chaoses, Ann. Probab. 34 (2006), no. 6, 2315-2331.
Rafal Latala, Tail and moment estimates for some types of chaos, Studia Math. 135 (1999), no. 1, 39-53.
Rafat Latata, Tail and moment estimates for sums of independent random vectors with logarithmically concave
tails, Studia Math. 118 (1996), no. 3, 301-304.

Rafat Latata and Rafat Lochowski, Moment and tail estimates for multidimensional chaos generated by
positive random variables with logarithmically concave tails, Stochastic inequalities and applications, Progr.
Probab., vol. 56, Birkh&user, Basel, 2003, pp. 77-92.

Rafal Latata and Tomasz Tkocz, A note on suprema of canonical processes based on random variables with
regular moments, Electron. J. Probab. 20 (2015), no. 36, 17.

Rafal Latala and Marta Strzelecka, Comparison of weak and strong moments for vectors with independent
coordinates, Mathematika 64 (2018), no. 1, 211-229.

Michel Ledoux, A note on large deviations for Wiener chaos, Séminaire de Probabilités, XXIV, 1988/89,
Lecture Notes in Math., vol. 1426, Springer, Berlin, 1990, pp. 1-14.

Michel Ledoux and Krzysztof Oleszkiewicz, On measure concentration of vector-valued maps, Bull. Pol. Acad.
Sci. Math. 55 (2007), no. 3, 261-278.

123



124
[24]
[25]

[26]

[27]
[28]
[29]

[30]

Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991.
Rafat M. Lochowski, Oszacowania momentéw i ogondéw wieloliniowych form losowych, PHD dissertation in
Polish, Warsaw 2004.

Rafat M. Lochowski, Moment and tail estimates for multidimensional chaoses generated by symmetric random
variables with logarithmically concave tails, Approximation and probability, Banach Center Publ., vol. 72,
Polish Acad. Sci. Inst. Math., Warsaw, 2006, pp. 161-176.

Gilles Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna,
1985), Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 167-241.

Mark Rudelson and Roman Vershynin, Hanson- Wright inequality and sub-Gaussian concentration, Electron.
Commun. Probab. 18 (2013), no. 82, 9. pp.

V. N. Sudakov, Gauss and Cauchy measures and e-entropy, Dokl. Akad. Nauk SSSR 185 (1969), 51-53
(Russian).

Michel Talagrand, Upper and lower bounds for stochastic processes, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 60, Springer, Heidelberg, 2014. Modern
methods and classical problems.

Michel Talagrand, Sudakov-type minoration for Gaussian chaos processes, Israel J. Math. 79 (1992), no. 2-3,
207-224.

Roman Vershynin, High-dimensional probability, Cambridge Series in Statistical and Probabilistic Mathe-
matics, vol. 47, Cambridge University Press, Cambridge, 2018.

F. T. Wright, A bound on tail probabilities for quadratic forms in independent random wvariables whose
distributions are not necessarily symmetric, Ann. Probability 1 (1973), no. 6, 1068-1070.



