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Introduction

We will recall the standard formulation of the central limit theorem with the Lindeberg’s
condition. Let us begin with the definition of the useful notion of a scheme of series.

Definition 1. A scheme of series is an array of random variables of the form (Xn,in)n≥1,
where in → ∞ and Xn,1, Xn,2, . . . , Xn,in are independent for every n. We define s2n =∑in

i=1 Var(Xn,i). We call a scheme of series normalized if EXn,i = 0 and s2n = 1 for all
n, i.

We also need to know how the Lindeberg’s condition is defined.

Definition 2. We say that a scheme of series (Xn,i) satisfies Lindeberg’s condition of order
p ≥ 2, if for every r > 0

Lpn(r) =
1
spn

in∑
i=1

E
(
|Xn,i −EXn,i|p1{|Xn,i−EXn,i|>rsn}

) n→∞−→ 0.

One can show that the Lindeberg’s condition of order p > 2 holds if and only if Lpn =
1
spn

∑in
i=1 E|Xn,i −EXn,i|p

n→∞−→ 0 for p > 2. We can now formulate the central limit theorem.

Theorem 1 (The Lindeberg-Levy Central Limit Theorem). Let (Xn,i) be a normalized
scheme of series. If it satisfies the Lindeberg’s condition of order 2, i.e. for every r > 0

lim
n→∞

in∑
i=1

EX2
n,i1{|Xn,i|>r} = 0,

then
in∑
i=1

Xn,i
d−→ N (0, 1).

If we suppose that there is no element of a row in (Xn,i) that dominates other elements
then the assumptions in this theorem are the most general one can assume i.e. the following
theorem holds.

Theorem 2 (Feller). If (Xn,i) is a normalized scheme of series and
∑in

i=1Xn,i
d−→ N (0, 1)

and moreover
max
i≤in

EX2
n,i

n→∞−→ 0,

then (Xn,i) satisfies the Lindeberg’s condition of order 2.

Proofs of these two theorems can be found in [1]. Since convergence in distribution does not
imply convergence of moments one can ask what are the additional assumptions to Theorem
1 which assure that

∥∥∑in
i=1Xn,i

∥∥
p

=
(
E
∣∣∑in

i=1Xn,i

∣∣p)1/p n→∞−→ ‖g‖p, where g ∼ N (0, 1). The
answer to this question was given by Bernstein in 1939 and can be expressed as the following
theorem.
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Theorem 3 (Bernstein). Let (Xn,i) be a normalized scheme of series such that Xn,i are
asymptotically negligible, i.e. maxi≤in P(|Xn,i| ≥ r)

n→∞−→ 0 for every r > 0 then for p > 2

∥∥∥ in∑
k=1

Xn,i

∥∥∥
p

n→∞−→ γp if and only if Lpn
n→∞−→ 0,

where γp = ‖g‖p for g ∼ N (0, 1).

Remark. In the whole thesis we will denote by γp the p-th absolute moment of a normalized
Gaussian variable which is equal to 21/2(Γ(p+1

2 )/
√
π)1/p.

A proof of Theorem 3 based on characteristic functions is given in [2] and [3]. This
theorem shows that with reasonable assumptions considering variables Xi moments of

∑
Xi

can be approximated by corresponding Gaussian moments. One can ask how good such
approximation can be. In [7] Latała gave precise estimations when Xi have logarithmically
concave tails (i.e. the function t 7→ ln(|Xi| ≥ t) is concave from [0,∞) to [−∞, 0]). This
wide class of random distributions contains, among others, normal distributions N (0, σ2),
scaled Rademacher distributions (i.e. symmetric distributions concentrated in {−a, a}) and
symmetric exponential distributions which have the density function of the form λ

2 exp(−λ|x|)
(λ > 0). The main concept presented in [7] is to try to bound moments by removing summands
with biggest variance, i.e. if X1, X2, . . . , Xn are independent symmetric random variables with
variance 1 and |a1| ≥ |a2| ≥ . . . ≥ |an| then we search for such a constant Cp depending on p
and somehow on the distributions of Xi, for which we can prove that∥∥∥ n∑

i=Cp

aiXi

∥∥∥
p
≤
∥∥∥ n∑
i=1

aiεi

∥∥∥
p
.

From this inequality we almost immediately get the following approximation∣∣∣∥∥∥ n∑
i=1

aiXi

∥∥∥
p
− γp‖a‖2

∣∣∣ ≤ 2Cp‖a‖∞,

whose proof will be seen in this thesis at least twice. This proof is very simple but it uses a
result from [4] which can be stated as the following theorem.

Theorem 4. Let X1, X2, . . . , Xn be independent symmetric random variables with variance
1 and let a1, a2, . . . , an be a sequence of real numbers. Let ϕ(t) be an Orlicz function (i.e.
ϕ : R→ R is an even, convex function which satisfies ϕ(0) = 0) such that ϕ is C2 and ϕ′′(t)
is convex. Then

Eϕ
( n∑
i=1

aiεi

)
≤ Eϕ

( n∑
i=1

aiXi

)
,

where εi are independent Rademacher variables (i.e. P(εi = ±1) = 1/2).

Proof. Let Φb(t) = Eϕ(b+
√
tε) = 1

2(ϕ(b−
√
t) +ϕ(b+

√
t)), b ∈ R. We will prove that Φb(t)

is convex on [0,∞). It is enough to prove that Φ′b(t) is increasing on (0,∞). We have Φ′b(t) =
1

4
√
t
(ϕ′(b+

√
t)−ϕ′(b−

√
t)) and one only needs to show that Ψb(t) = 1

t (ϕ
′(b+ t)−ϕ′(b− t))

is increasing on (0,∞). Thus one must show that Ψ′b(t) ≥ 0 and this is equivalent to showing
that t(ϕ′′(b+ t) + ϕ′′(b− t)) ≥ ϕ′(b+ t)− ϕ′(b− t). We have

ϕ′(b+ t)− ϕ′(b− t) =
∫ t

0
(ϕ′′(b+ s) + ϕ′′(b− s))ds ≤ t(ϕ′′(b+ t) + ϕ′′(b− t)),
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where in the inequality we used the bound ϕ′′(b+ s) + ϕ′′(b− s) ≤ ϕ′′(b+ t) + ϕ′′(b− t) for
0 ≤ s ≤ t, which follows by the convexity of ϕ′′. Let X be a symmetric random variable with
variance 1. We have σX ∼

√
σ2X2ε, where ε is a Rademacher variable independent of X.

Now by Jensen’s inequality we get for any b and σ

Eϕ(b+ σX) = Eϕ(b+
√
σ2X2ε) = EΦb(σ2X2) ≥ Φb(Eσ2X2) = Φb(σ2) = Eϕ(b+ σε).

Thus for every sequence X1, X2, . . . , Xn of independent, symmetric random variables satisfy-
ing EX2

i = 1 we get

Eϕ
( n−1∑
i=1

σiXi + σnXn

)
≥ Eϕ

( n−1∑
i=1

σiXi + σnεn

)
= Eϕ

( n−2∑
i=1

σiXi + σnεn + σn−1Xn−1

)
≥ Eϕ

( n−2∑
i=1

σiXi + σnεn + σn−1εn−1

)
≥ . . . ≥ Eϕ

( n∑
i=1

σiεi

)
.

This theorem applies for ϕ(t) = |t|p when p ≥ 3 and guarantees good estimation of
moments of sums of symmetric random variables from below. The problem left is to give
equally good bounds from above. In this thesis we will generalize results of Latała in case
when 2 ≤ p ≤ 4 and in case when p = 2k for k ∈ N to all symmetric random variables and
will give some estimates for nonsymmetric variables also in the case when p = 2k.
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Chapter 1

Gaussian approximation for
moments of order 2 ≤ p ≤ 4

We will try to imitate and develop proofs and methods used in [7]. We begin with a simple
lemma about characteristic functions of random variables.

Lemma 1.
Let ϕ be a characteristic function of a symmetric distribution with variance 1 and fourth
moment less or equal M . Then for any x,

1− 1
2
x2 ≤ ϕ(x) ≤ 1− 1

2
x2 +

M

4!
x4.

Proof. Let X be a random variable with the characteristic function ϕ. Since X is symmetric
we have ϕ(t) = E cos(tX). To prove the lower estimate it is enough to use the well known
inequality cos(x) ≥ 1 − 1

2x
2. The upper estimate follows by a less popular bound which

we will prove here, namely cos(x) ≤ 1 − 1
2x

2 + 1
4!x

4 = A(x). All functions occurring in
this inequality are even and thus we can assume that x ≥ 0. By Taylor’s theorem we get
cos(x) = A(x) + 1

5! cos(5)(ξ)x5 = A(x) − 1
5! sin(ξ)x5 for some 0 ≤ ξ ≤ x. If x ∈ [0, π] then

sin(ξ) ≥ 0 and the desired estimate holds. If x ∈ [π, 3
2π] then cos(x) ≤ 0. We can calculate the

biggest root of A(x) which is x0 =
√

6 + 2
√

3. Furthermore A(x) x→∞−→ ∞ and thus A(x) ≥ 0
for x ≥ x0. One can easily check that x0 ≤ π and thus our inequality holds on [π, 3

2π]. If
x ∈ [32π,∞) then x4

4! ≥
x2

2 and thus A(x) ≥ 1 ≥ cos(x).

Next lemma is a generalization of Lemma 1 from [7].

Lemma 2.
Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be independent symmetric random variables with vari-
ance 1. Let |a1| ≥ |a2| ≥ . . . ≥ |an|, Mk = EY 4

k /6 <∞ and

m = min
{
i :

i∑
k=1

a2
k ≥ max

k>i
a2
kMk

}
. (1.1)

By ϕ1, ϕ2, . . . , ϕn and ψ1, ψ2, . . . , ψn we denote the characteristic functions of X1, X2, . . . , Xn

and Y1, Y1, . . . , Yn. Then for any t,
n∏
k=1

ϕk(akt) +
1
2

m∑
k=1

a2
kt

2 ≥
n∏

k=m+1

ψk(akt). (1.2)
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Proof. We will consider 4 cases.
Case I |a1t| ≤

√
2 and |akt| ≤

√
2/
√
Mk for k ≥ m+ 1.

Let xk = a2
kt

2/2. By Lemma 1 we can easily get that |ψk(x)| ≤ 1 − x2

2 + Mkx
4

4 ≤ 1 for
0 ≤ x ≤ min{

√
2,
√

2/
√
Mk}. Since ϕk(akt) ≥ 1− a2

kt
2/2 ≥ 0, to establish (1.2) it is enough

to show that
n∏
k=1

(1− xk) +
m∑
k=1

xk ≥
n∏

k=m+1

(1− xk +Mkx
2
k), (1.3)

for 1 ≥ x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 and xk ≤ 1/Mk for k ≥ m+ 1. We will show this inequality
by induction on n. The base case is when n = m + 1, we have then to show the following
inequality

m+1∏
k=1

(1− xk) ≥ 1−
m+1∑
k=1

xk +Mm+1x
2
m+1. (1.4)

From (1.1) we have that Mm+1x
2
m+1 ≤ xm+1

∑m
k=1 xk and thus

m+1∏
k=1

(1− xk) ≥ (1− xm+1)(1−
m∑
k=1

xk) = 1−
m+1∑
k=1

xk + xm+1

m∑
k=1

xk

≥ 1−
m+1∑
k=1

xk +Mm+1x
2
m+1.

Assume (1.3) holds for n ≤ l − 1, we will show that (1.3) holds for n = l.

l∏
k=1

(1− xk) +
m∑
k=1

xk = (1− xl)
[ l−1∏
k=1

(1− xk) +
m∑
k=1

xk

]
+ xl

m∑
k=1

xk

≥ (1− xl)
l−1∏

k=m+1

(1− xk +Mkx
2
k) + xl

m∑
k=1

xk

≥ (1− xl)
l−1∏

k=m+1

(1− xk +Mkx
2
k) +Mlx

2
l

l−1∏
k=m

(1− xk +Mkx
2
k)

=
l∏

k=m+1

(1− xk +Mmx
2
k),

where in the last inequality we used that
∏l−1
k=m(1 − xk + Mkx

2
k) ≤ 1 and that Mlx

2
l ≤

xl
∑m

k=1 xk.
Case II |a1t| ≤

√
2 and there is such k0 ≥ m+ 1 such that |ak0t| ≥

√
2/
√
Mk0 .

We have that xk0 = a2
k0
t2/2 ≥ 1/Mk0 and thus

n∏
k=1

ϕk(akt) +
1
2

m∑
k=1

a2
kt

2 ≥ 1
2

m∑
k=1

a2
kt

2 ≥Mk0a
2
k0t

2/2 ≥ 1 ≥
n∏

k=m+1

ψk(akt).

Case III |a1t| ≥
√

2 and
∏n
k=1 ϕk(akt) < 0.

There is such k0 that ϕk0(ak0t) < 0. Using Lemma 1 we get that |ϕk0(ak0t)| ≤ a2
k0
t2/2− 1 ≤

a2
1t

2/2− 1 and thus
n∏
k=1

ϕk(akt) +
1
2

m∑
k=1

a2
kt

2 ≥
n∏
k=1

ϕk(akt) +
1
2
a2

1t
2 ≥ 1

2
a2

1t
2 − |ϕk0(ak0t)| ≥ 1 ≥

n∏
k=m+1

ψk(akt).

Case IV |a1t| ≥
√

2 and
∏n
k=1 ϕk(akt) ≥ 0. Then (1.2) is obvious.
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Remark 1. The number m from the preceding lemma can be estimated from above as follows

m ≤
⌈

max
1≤k≤n

EY 4
k /6

⌉
.

Proof. Is is enough to use the fact that |a1| ≥ |a2| ≥ . . . ≥ |an|.

Remark 2. If Y1, Y2, . . . , Yn have logarithmically concave tails we have m ≤ 1.

Proof. Let E be a variable with a symmetrical exponential distribution with variance 1. Then
we have

m ≤
⌈

max
1≤k≤n

EY 4
k /6

⌉
≤
⌈
EE4/6

⌉
= 1,

where in the second inequality we used Proposition 1 from [7].

Now we will prove a lemma which corresponds to Lemma 2 from [7] and our proof will
be very similar to that in [7].

Lemma 3. Let |a1| ≥ |a2| ≥ . . . ≥ |an| and X1, X2, . . . , Xn, Y1, Y2, . . . , Yn and m be as in
Lemma 2. Then

E
∣∣∣ n∑
k=1

akXk

∣∣∣p ≥ E
∣∣∣ n∑
k=m+1

akYk

∣∣∣p for 2 ≤ p ≤ 4.

Proof. Let S1 =
∑n

k=1 akXk and S2 =
∑n

k=m+1 akYk. We may of course assume that 2 < p <
4. By Lemma 4.2 of [5] we have for any random variable X with finite fourth moment,

E|X|p = Cp

∫ ∞
0

(
ϕX(t)− 1 +

1
2
t2E|X|2

)
t−p−1,

where ϕX is the characteristic function of X and Cp = − 2
π sin(pπ2 )Γ(p+ 1) > 0. By Lemma

2 we have

ϕS1 − ϕS2 =
n∏
k=1

ϕk(akt)−
n∏

k=m+1

ψk(akt) ≥ −
1
2

m∑
k=1

a2
kt

2

and thus

E|S1|p −E|S2|p = Cp

∫ ∞
0

(
ϕS1 − ϕS2 +

1
2

m∑
k=1

a2
kt

2
)
≥ 0.

The next lemma will be useful in most of the proofs in this thesis.

Lemma 4. Let X1, X2, . . . , Xn be symmetric independent random variables. If p > 1 and
E|Xk|p <∞ for 1 ≤ k ≤ n then

∥∥∥ n∑
k=1

akXk

∥∥∥
p
≤ ‖a‖∞

∥∥∥ n∑
k=1

Xk

∥∥∥
p
.
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Proof. It is enough to prove this inequality for n = 2 and to do this it is sufficient to show
that E|X + b1|p ≤ E|X + b2|p for |b2| ≥ |b1| and X symmetric. Since X ∼ ε|X|, where ε is a
Rademacher variable independent of X, we have

E|X + b|p = E
∣∣ε|X|+ b

∣∣p =
E
∣∣|X|+ b

∣∣p + E
∣∣|X| − b∣∣p

2

and it is enough to prove that for a ≥ 0 the function f(x) = |a+x|p+|a−x|p is non-decreasing
on [0,∞). We have f ′(x) = p(|a+ x|p−1 − |a− x|p−1) ≥ 0 which ends the proof.

Next proposition and corollary give some estimations for moments of sums of independent
random variables.

Proposition 1. Let X1, X2, . . . , Xn be independent symmetric random variables with vari-
ance 1. Let |a1| ≥ |a2| ≥ . . . ≥ |an|, Mk = EX4

k/6 <∞ and

m = min
{
i :

i∑
k=1

a2
k ≥ max

k>i
a2
kMk

}
.

Then

γp

( n∑
k=2

a2
k

)1/2
≤
∥∥∥ n∑
k=1

akXk

∥∥∥
p
≤ γp‖a‖2 + 2m‖a‖∞ for 2 ≤ p ≤ 4. (1.5)

Proof. Let S =
∑n

k=1 akXk. The lower bound follows by Lemma 3 for Yk ∼ N (0, 1) and by
Remark 1. To show the upper bound we use the triangle inequality, Lemma 4 and we apply
Lemma 3 twice

‖S‖p − γp‖a‖2 ≤ ‖S‖p −
∥∥∥ n∑
k=m+1

akXk

∥∥∥
p
≤
∥∥∥ m∑
k=1

akXk

∥∥∥
p
≤ ‖a‖∞

∥∥∥ m∑
k=1

Xk

∥∥∥
p

≤ ‖a‖∞
∥∥∥ 2m∑
k=1

εk

∥∥∥
p
≤ 2m‖a‖∞.

Corollary 1. Let |a1| ≥ |a2| ≥ . . . ≥ |an|, X1, X2, . . . , Xn and m be as in Proposition 1.
Then ∣∣∣∥∥∥ n∑

k=1

akXk

∥∥∥
p
− γp‖a‖2

∣∣∣ ≤ 2m‖a‖∞ for 2 ≤ p ≤ 4.

Proof. The upper bound follows by Proposition 1. To prove the lower bound we use Lemma
3 and the lower bound from Proposition 1

∥∥∥ n∑
k=1

akXk

∥∥∥
p
≥ γp

( n∑
k=2

a2
k

)1/2
≥ γp(‖a‖2 − ‖a‖∞) ≥ γp‖a‖2 − 2‖a‖∞.
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These results allow us to improve some statements from [7]. Corollary 3 from [7] says that
if Xk are independent, symmetric with logarithmically concave tails, EX2

k = 1 and p ≥ 3
then ∣∣∣∥∥∥ n∑

k=1

akXk

∥∥∥
p
− γp‖a‖2

∣∣∣ ≤ p‖a‖∞.
Corollary 2. The estimation above is true for p ≥ 2.

Proof. It is enough to use Corollary 1 and Remark 2.

The same applies to Theorem 2 from [7] which states that if Xk are like above, |a1| ≥
|a2| ≥ . . . ≥ |an| and p ≥ 3 then

max
{
γp

( ∑
k≥dp/2e

a2
k

)1/2
,
∥∥∥∑
k<p

akXk

∥∥∥
p

}
≤
∥∥∥ n∑
k=1

akXk

∥∥∥
p

≤ γp
( ∑
k≥dp/2e

a2
k

)1/2
+
∥∥∥∑
k<p

akXk

∥∥∥
p
.

Corollary 3. The inequalities above hold for p ≥ 2.

Proof. For p = 2 it is obvious. Let 2 < p ≤ 3. We have dp/2e = 2 and the lower bound is a
consequence of Proposition 1. The upper estimate can be obtained as follows∥∥∥ n∑

k=1

akXk

∥∥∥
p
≤
∥∥∥∑
k≤2

akXk

∥∥∥
p

+
∥∥∥∑
k>2

akXk

∥∥∥
p
≤
∥∥∥∑
k<p

akXk

∥∥∥
p

+ γp

( ∑
k≥dp/2e

a2
k

)1/2
,

where the last inequality follows by Lemma 3 for Xk ∼ N (0, 1) and Remark 2.
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Chapter 2

A combinatorial approach to
approximation of moments of order
greater than 4

We will try to use combinatorial methods to give estimations for moments of sums of inde-
pendent random variables where the degree is a natural even number and then to extend
these results to all positive degrees greater than 4.
Notation. We will use the multi-index notation to simplify formulae appearing in our state-
ments. An n-dimensional multi-index α is an n-tuple of non-negative integers (α1, α2, . . . , αn) ∈
Nn

0 . We define standard operations on n-dimensional multi-indices α, β

∗ |α| = α1 + α2 + · · ·+ αn,

∗ sα = (sα1, sα2, . . . , sαn) for s ∈ N0,

∗ α+ β = (α1 + β1, α2 + β2, . . . , αn + βn),

∗ α! = α1!α2! · · ·αn!,

∗ xα = xα1
1 xα2

2 · · ·xαnn for x ∈ Rn.

We also introduce some other helpful functions

∗ pk(α) = (α1, α2, . . . , αk),

∗ s(α) = {i : αi 6= 0},

∗ sing(α) = {i : αi = 1},

∗ doub(α) = {i : αi = 2}.
We call the set sing(α) the set of single indicies of α. We say that an index i is single in a
multi-index α if i ∈ sing(α). For simpler notation we also write α = 0 if αi = 0 for all i.

Such notation is very useful if we want to write the power of a sum in terms of powers of
summands. This is called the multinomial theorem and can be written as follows( n∑

i=1

xn

)k
=
∑
|α|=k

k!
α!
xα.

From now on all appearing multi-indicies will be n-dimensional and by a = (a1, a2, . . . , an)
we denote an n-tuple of real numbers, such that |a1| ≥ |a2| ≥ . . . ≥ |an|. If A is a set we write
|A| to denote the cardinality of A. We begin with the case of symmetric random variables.
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2.1. Moments of natural even order

2.1.1. Symmetric random variables

In this section we will use only one property of symmetric random variables, namely if X is
symmetric and m ∈ N then EX2m+1 = 0.

Lemma 5. Let X1, X2, . . . , Xn be independent symmetric random variables with variance 1
and let C ≥ 1 be such that

EX2l
i ≤ C2l (2l)!

2l
for l, k ∈ N, 2 ≤ l ≤ k, 1 ≤ i ≤ n,

then

E
( n∑
i=dC4(k−1)e+1

aiXi

)2k
≤ (2k)!

2k
∑
|α|=k
|s(α)|=k

a2α. (2.1)

Proof. Let D = dC4(k − 1)e+ 1. We have

E
( n∑
i=D

aiXi

)2k
=

∑
|α|=k

pD−1(α)=0

(2k)!
(2α)!

a2αEX2αD
D EX2αD+1

D+1 · · ·EX2αn
n

≤
∑
|α|=k

pD−1(α)=0

(2k)!
(2α)!

a2α (2αD)!(2αD+1)! · · · (2αn)!
2αD2αD+1 · · · 2αn

C2(k−|sing(α)|)

=
(2k)!

2k
∑
|α|=k

pD−1(α)=0

a2αC2(k−|sing(α)|) ≤ (2k)!
2k

∑
|α|=k

pD−1(α)=0

a2αC4(k−|s(α)|).

The last inequality follows from a simple estimate |sing(α)| ≥ |s(α)|−(|α|−|s(α)|) = 2|s(α)|−
k. Thus it is enough to show ∑

|α|=k
pD−1(α)=0

a2αC4(k−|s(α)|) ≤
∑
|α|=k
|s(α)|=k

a2α,

where we sum over n-dimensional indicies on both sides. If I is a nonempty subset of {D,D+
1, . . . , n} and |I| = i ≤ k then there are exactly

(
k−1
i−1

)
=
(
k−1
k−i
)

multi-indicies α on left-hand

side which satisfy s(α) = I (because
(
k−1
i−1

)
is the number of different ways one can put k

indistinguishable balls in i distinguishable urns, without leaving any urn empty). If we look
on the right-hand side and count these multi-indicies α for which s(α)∩{D,D+1, . . . , n} = I,
we get

(
D−1
k−i
)
, because we can add to these i fixed indicies any k − i indicies from the set

{1, 2, . . . , D − 1}. Of course any term corresponding to the selected multi-indicies on the
right-hand side is bigger than any term from the chosen terms on the left-hand side (recall
that |a1| ≥ |a2| ≥ . . . ≥ |an|). Thus it is enough to show that

(
D−1
k−i
)
≥ C4(k−i)(k−1

k−i
)
, but we

have (
D − 1
k − i

)
/

(
k − 1
k − i

)
=

(D − 1)(D − 2) · · · (D − k + i)
(k − 1)(k − 2) · · · (k − (k − i))

=
dC4(k − 1)e

k − 1
dC4(k − 1)e − 1

k − 2
· · · dC

4(k − 1)e − (k − i− 1)
i

≥ C4(k−i).

16



Since we can repeat this procedure for every I ⊆ {D,D + 1, . . . , n}, (2.1) holds.

As an immediate consequence we get the following corollary.

Corollary 4. Let X1, X2, . . . , Xn and C be as in Lemma 5 then

E
( n∑
i=dC4(k−1)e+1

aiXi

)2k
≤ E

( n∑
i=1

aiεi

)2k
.

Proof. We have

E
( n∑
i=1

aiεi

)2k
=
∑
|α|=k

(2k)!
(2α)!

a2αEε2α1
1 Eε2α2

2 · · ·Eε2αnn =
∑
|α|=k

(2k)!
(2α)!

a2α ≥ (2k)!
2k

∑
|α|=k
|s(α)|=k

a2α

≥ E
( n∑
i=dC4(k−1)e+1

aiXi

)2k
.

where the last inequality follows by Lemma 5.

If E is a random variable with symmetric exponential distribution with variance 1 then
EE2l = (2l)!/2l. Therefore if X1, X2, . . . , Xn have logarithmically concave tails then C = 1 by
Proposition 1 from [7] and we get a different proof of Theorem 1 from [7] for p = 2k. From
the corollary above we can conclude the following results.

Corollary 5. Let X1, X2, . . . , Xn and C be as in Lemma 5 then

γ2k

( n∑
i=k

a2
i

)1/2
≤
∥∥∥ n∑
i=1

aiXi

∥∥∥
2k
≤ γ2k‖a‖2 + 2dC4(k − 1)e‖a‖∞.

Proof. The lower bound follows by Corollary 4 for Xi ∼ N (0, 1) and by the fact that∥∥∑n
i=1 aiεi

∥∥
2k
≤
∥∥∑n

i=1 aiXi

∥∥
2k

. Let S =
∑n

i=1 aiXi and D = dC4(k − 1)e. We have

‖S‖2k − γ2k‖a‖2 ≤ ‖S‖2k −
∥∥∥ n∑
i=D+1

aiXi

∥∥∥
2k
≤
∥∥∥ D∑
i=1

aiXi

∥∥∥
2k
≤ ‖a‖∞

∥∥∥ D∑
i=1

Xi

∥∥∥
2k

≤ ‖a‖∞
∥∥∥ 2D∑
i=1

εi

∥∥∥
2k
≤ 2D‖a‖∞,

where we used the fact that γ2k‖a‖2 ≥ ‖
∑n

i=1 aiεi‖2k, the triangle inequality, Lemma 4 and
Corollary 4 twice.

Corollary 6. Let X1, X2, . . . , Xn and C be as in Lemma 5 then

∣∣∣∥∥∥ n∑
i=1

aiXi

∥∥∥
2k
− γ2k‖a‖2

∣∣∣ ≤ 2dC4(k − 1)e‖a‖∞.
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Proof. The upper bound follows by Corollary 5. To prove the lower bound we use the lower
estimate from Corollary 5, the triangle inequality, Lemma 4 and Corollary 4

∥∥∥ n∑
i=1

aiXi

∥∥∥
2k
≥ γ2k

( n∑
i=k

a2
i

)1/2
≥ γ2k‖a‖2 − γ2k

( k−1∑
i=1

a2
i

)1/2

≥ γ2k‖a‖2 −
∥∥∥ 2(k−1)∑

i=1

εi

∥∥∥
2k
‖a‖∞ ≥ γ2k‖a‖2 − 2(k − 1)‖a‖∞.

2.1.2. Random variables with mean 0

We begin with a lemma which is very similar to Lemma 5 but since our variables are no
longer symmetric we get a weaker conclusion.

Lemma 6. Let X1, X2, . . . , Xn be independent random variables with mean 0 and variance
1 and let C ≥ 1 be such that

|EXm
i | ≤ Cm

m!
2m/2

for m, k ∈ N, 3 ≤ m ≤ 2k, 1 ≤ i ≤ n,

then

E
( n∑
i=dC6 k(k−1)

2
e+1

aiXi

)2k
≤ (2k)!

2k
∑
|α|=k
|s(α)|=k

a2α. (2.2)

Proof. Let D = dC6 k(k−1)
2 e+ 1. We have

E
( n∑
i=D

aiXi

)2k
=

∑
|α|=2k, sing(α)=∅

pD−1(α)=0

(2k)!
α!

aαEXαD
D EXαD+1

D+1 · · ·EX
αn
n

≤
∑

|α|=2k, sing(α)=∅
pD−1(α)=0

(2k)!
α!

aα
αD!αD+1! · · ·αn!

2αD/22αD+1/2 · · · 2αn/2
C2(k−|doub(α)|)

=
(2k)!

2k
∑

|α|=2k, sing(α)=∅
pD−1(α)=0

aαC2(k−|doub(α)|) ≤ (2k)!
2k

∑
|α|=2k, sing(α)=∅

pD−1(α)=0

aαC6(k−|s(α)|).

The last inequality follows from the estimate |doub(α)| ≥ |s(α)|−(|α|−2|s(α)|) = 3|s(α)|−2k
which holds for such α that sing(α) = ∅. Thus it is enough to show∑

|α|=2k, sing(α)=∅
pD−1(α)=0

aαC6(k−|s(α)|) ≤
∑
|α|=k
|s(α)|=k

a2α,

where we sum over n-dimensional indicies on both sides. Again if I is a nonempty subset of
{D,D + 1, . . . , n} and |I| = i ≤ k then there are exactly

(
2k−i−1
i−1

)
=
(
2k−i−1
2(k−i)

)
multi-indicies

α on left-hand side which satisfy s(α) = I (because
(
2k−i−1
i−1

)
is the number of different

ways one can put 2k indistinguishable balls in i distinguishable urns in such a way that in
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each urn there are at least two balls). If we look on the right-hand side and count these
multi-indicies α for which s(α) ∩ {D,D + 1, . . . , n} = I, we get

(
D−1
k−i
)
. We notice again

that any term corresponding to the selected multi-indicies on the right-hand side is bigger
than any term from the chosen terms on the left-hand side. Thus it is enough to show that(
D−1
k−i
)
≥ C6(k−i)(2k−i−1

2(k−i)
)
, but we have

(
D − 1
k − i

)
/

(
2k − i− 1
2(k − i)

)
=

(2(k − i))!
(k − i)!

(D − 1)(D − 2) · · · (D − (k − i))
(2k − i− 1) · · · (i+ 1)i

=
(2(k − i))!

(k − i)!
dC6k(k − 1)/2e − (k − i− 1)

i(2k − i− 1)
dC6k(k − 1)/2e − (k − i− 2)

(i+ 1)(2k − i− 2)
· · · dC

6k(k − 1)/2e
(k − 1)k

≥ 2k−iC6(k−i)k(k − 1)/2− (k − i− 1)
i(2k − i− 1)

k(k − 1)/2− (k − i− 2)
(i+ 1)(2k − i− 2)

· · · k(k − 1)/2
(k − 1)k

= C6(k−i)k(k − 1)− 2(k − i− 1)
i(2k − i− 1)

k(k − 1)− 2(k − i− 2)
(i+ 1)(2k − i− 2)

· · · k(k − 1)
(k − 1)k

,

and therefore it suffices to show that k(k− 1)− 2(k− j− 1) ≥ j(2k− j− 1) for 1 ≤ j ≤ k− 1.
By substituting j for k − j we get a simpler inequality j2 − 3j + 2 ≥ 0, which is true for
j ∈ N+. Since we can repeat this procedure for every I ⊆ {D,D + 1, . . . , n}, (2.2) holds.

We get as a consequence the following corollaries.

Corollary 7. Let X1, X2, . . . , Xn and C be as in Lemma 6 then

E
( n∑
i=dC6 k(k−1)

2
e+1

aiXi

)2k
≤ E

( n∑
i=1

aiεi

)2k
.

Corollary 8. Let X1, X2, . . . , Xn and C be as in Lemma 6 then

∥∥∥ n∑
i=1

aiXi

∥∥∥
2k
≤ γ2k‖a‖2 + 2

⌈
C6k(k − 1)

2
⌉
‖a‖∞.

Proof. Let S =
∑n

i=1 aiXi and D = dC6 k(k−1)
2 e. We have

‖S‖2k − γ2k‖a‖2 ≤ ‖S‖2k −
∥∥∥ n∑
i=D+1

aiXi

∥∥∥
2k
≤
∥∥∥ D∑
i=1

aiXi

∥∥∥
2k

≤
∥∥∥ 2D∑
i=1

a◦i εi

∥∥∥
2k
≤ ‖a‖∞

∥∥∥ 2D∑
i=1

εi

∥∥∥
2k
≤ 2D‖a‖∞,

where a◦i = a1 for i ≤ D and a◦i = ai−D for D < i ≤ 2D. We used here the triangle inequality,
Corollary 7 twice, Lemma 4 and the fact that γ2k‖a‖2 ≥ ‖

∑n
i=1 aiεi‖2k.

We will now try to generalize results for natural even orders to all real orders bigger than
4.
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2.2. An attempt to generalize previous results to arbitrary or-
ders

Lemma 7. Let ε1, ε2, . . . , εn be independent Rademacher variables, then for k ≥ 1

2k + 1
2k − 1

(
E
( n∑
i=1

aiεi

)2k
)2

≥ (2k + 2)!
2k+1

( ∑
|α|=k+1

|s(α)|=k+1

a2α

)
E
( n∑
i=1

aiεi

)2k−2
. (2.3)

Proof. We have(
E
( n∑
i=1

aiεi

)2k
)2

=
( ∑
|α|=k

(2k)!
(2α)!

a2α · Eε2α1
1 Eε2α2

2 · · ·Eε2αnn

)2

=
( ∑
|α|=k

(2k)!
(2α)!

a2α

)2

= (2k!)2
∑

|α|=|β|=k

a2(α+β)

(2α)!(2β)!

and

(2k + 2)!
2k+1

( ∑
|α|=k+1

|s(α)|=k+1

a2α

)
E
( n∑
i=1

aiεi

)2k−2
= (2k + 2)!(2k − 2)!

∑
|α|=k+1,|β|=k−1

|s(α)|=k+1

a2(α+β)

2k+1(2β)!
.

We define two subsets of Nn
0 × Nn

0 as follows

L = {(α, β) : |α| = |β| = k},
R = {(γ, δ) : |γ| = k − 1, |δ| = k + 1, |s(δ)| = k + 1}.

Since 2k+1
2k−1(2k)!2 = k

k+1(2k + 2)!(2k − 2)! to prove (2.3) we need to show

k

k + 1

∑
(α,β)∈L

a2(α+β)

(2α)!(2β)!
≥

∑
(γ,δ)∈R

a2(γ+δ)

2k+1(2γ)!
. (2.4)

To prove (2.4) we will divide R into disjoint subsets. For each such subset we will find a
corresponding subset of L. We will make sure that these subsets are also disjoint and that
the sums over corresponding subsets satisfy the desired inequality.
For (γ, δ) ∈ R we define

R(γ, δ) = {(γ′, δ′) : γ′ + δ′ = γ + δ,

γ′i = γi and δ′i = δi for i /∈ sing(γ + δ),
|γ′| = k − 1, |δ′| = k + 1,
|s(δ)| = k + 1} ⊆ R

and

L(γ, δ) = {(α, β) : α+ β = γ + δ,

αi = γi and βi = δi for i /∈ sing(γ + δ),
|γ′| = |δ′| = k} ⊆ L.
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One can easily see that both familiesR = {R(γ, δ) : (γ, δ) ∈ R} and L = {L(γ, δ) : (γ, δ) ∈ R}
are pairwise disjoint. Moreover R is a partition of R. It is also not difficult to notice that
R(γ, δ) = R(γ′, δ′) if and only if L(γ, δ) = L(γ′, δ′). By the definition of R(γ, δ) and L(γ, δ) it
follows also that the function (α, β) 7→ a2(α+β)

(2α)!(2β)! is constant on R(γ, δ) and L(γ, δ) and takes
the same value on both sets. Thus to prove (2.6) it is enough to show

k

k + 1
|L(γ, δ)| ≥ |R(γ, δ)|, for every (γ, δ) ∈ R. (2.5)

Let us fix (γ, δ) ∈ R. We have

s(γ) \ (sing(γ) ∩ sing(γ + δ)) ⊇ s(δ) \ (sing(δ) ∩ sing(γ + δ)),

since all indicies in δ are single and these indicies from δ which are not single in γ + δ must
appear in γ. Thus we have

k − 1− |sing(γ) ∩ sing(γ + δ)| ≥ |s(γ) \ (sing(γ) ∩ sing(γ + δ))|
≥ |s(δ) \ (sing(δ) ∩ sing(γ + δ))|
= k + 1− |sing(δ) ∩ sing(γ + δ)|,

and therefore
|sing(δ) ∩ sing(γ + δ)| ≥ |sing(γ) ∩ sing(γ + δ)|+ 2. (2.6)

To simplify notation we define g = |sing(γ)∩ sing(γ+ δ)| and d = |sing(δ)∩ sing(γ+ δ)|. The
idea behind the definition of the set R(γ, δ) is that it contains elements resulting from (γ, δ)
by replacing the original sets sing(γ) ∩ sing(γ + δ) and sing(δ) ∩ sing(γ + δ) by new subsets
of sing(γ + δ) while preserving the cardinality of these sets. Thus |R(γ, δ)| =

(
d+g
d

)
. We can

interpret L(γ, δ) similarly but this time we change cardinality of the sets of single indicies in
a proper way and we get |L(γ, δ)| =

(
d+g
d−1

)
. From (2.6) we get |L(γ, δ)| =

(
d+g
d−1

)
= d

g+1

(
d+g
d

)
≥

g+2
g+1

(
d+g
d

)
≥ k+1

k

(
d+g
d

)
= k+1

k |R(γ, δ)|, because g + 2 ≤ d ≤ k + 1, which ends the proof.

Remark 3. One can see that the constant 2k+1
2k−1 in the above lemma is optimal. If a1 = a2 =

. . . = an = 1/
√
n then by Theorem 3

∥∥∥∑n
i=1 εi√
n

∥∥∥2k

2k

n→∞−→ γ2k
2k = (2k − 1)!!. Thus we have that

the left-hand side of (2.3) converges to (2k + 1)!!(2k − 3)!! and we see that

(2k + 2)!
2k+1

∑
|α|=|s(α)|=k+1

a2α =
(2k + 2)!
2k+1nk+1

(
n

k + 1

)
n→∞−→ (2k + 1)!!,

and thus the right-hand side of (2.3) also goes to (2k+ 1)!!(2k− 3)!! as n approaches infinity.

Now we can prove an inequality about moments of arbitrary order which is weaker than
previous results for even moments because of its non-unital constant.

Proposition 2. Let X1, X2, . . . , Xn be independent random variables with variance 1 and
mean 0 and let C ≥ 1 be such that

|EXm
i | ≤ Cm

m!
2m/2

for m, k ∈ N, 3 ≤ m ≤ 2k, 1 ≤ i ≤ n,

then for 2 ≤ p ≤ 2k
2bp/2c+ 1
2bp/2c − 1

E
∣∣∣ n∑
i=1

aiεi

∣∣∣p ≥ E
∣∣∣ n∑
i=Cp

aiXi

∣∣∣p, (2.7)

where Cp = dC4bp/2ce+1 when Xi are symmetric and Cp = dC6 bp/2c(bp/2c+1)
2 e+1 otherwise.
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Proof. We will use the fact that for every random variable X the function p 7→ log E|X|p is
convex. We define the following two functions

f(p) = log
[
E
∣∣∣ n∑
i=1

aiεi

∣∣∣p],
g(p) = log

[
2bp/2c − 1
2bp/2c+ 1

E
∣∣∣ n∑
i=Cp

aiXi

∣∣∣p].
f(p) is convex on (0,∞) and g(p) is convex on (2l, 2l + 2) for every 1 ≤ l ≤ k, since bp/2c is
constant on such intervals. Let us fix l. By convexity of g(p) on (2l, 2l + 2) we can identify
this function with its continuous extension to the closed interval [2l, 2l + 2]. We will show
that (2.7) holds on [2l, 2l + 2]. Let p ∈ [2l, 2l + 2]. Since f(p) is convex we have

f(p) ≥ f(2l) +
p− 2l

2
(
f(2l)− f(2l − 2)

)
=: f(p)

and since g(p) is convex on [2l, 2l + 2] we get

g(p) ≤ g(2l) +
p− 2l

2
(
g(2l + 2)− g(2l)

)
=: g(p)

Therefore it is enough to show that f(p) ≥ g(p). By Corollaries 4 and 7 we have f(2l) =
f(2l) ≥ g(2l) = g(2l) and because of linearity of both f(p) and g(p) we only need to show
that f(2l + 2) = 2 log E|

∑n
i=1 aiεi|2l − log E|

∑n
i=1 aiεi|2l−2 ≥ log 2l−1

2l+1E|
∑n

i=C2l
aiXi|2l+2 =

g(2l + 2). That follows by Corollary 5, Corollary 7 and Lemma 7.
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