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The classical isoperimetric problem
Beyond the classical setting

Probability

The basic question

Among all closed planar curves of a given length, which one
encloses the greatest area?

or equivalently

Among all closed planar curves enclosing a fixed area, which
one minimizes the perimeter?

The “obvious” answer is

the circle.
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The classical isoperimetric problem
Beyond the classical setting

Probability

Modern version

Among all compact sets A ⊆ Rn with (piecewise) smooth
boundary ∂A and fixed Lebesgue measure, which one
minimizes the Hausdorff measure of the boundary?

The “obvious” answer is

the Euclidean ball
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Steiner’s symmetrization (1841)

Definition
Fix a hyperplane H of codimension 1. To obtain Steiner’s
symetrization of set A with respect to H (call it SHA), for each
line L perpendicular to H replace L ∩ A by a segment I ⊆ L,
symmetric wrt H and such that

λ1(A) = λ1(I).
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Steiner’s symmetrization

Properties of Steiner’s symmetrization
λn(A) = λn(SHA)

λn−1(∂A) ≥ λn−1(∂SHA).
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Steiner’s symmetrization

Fact
For any compact set A we can find a sequence of hyperplanes
Hn, such that SHnSHn−1 . . . S2S1A “converges” to a Euclidean
ball.
Hence to prove the isoperimetric inequality, it is enough to show
that in this limit the Lebesgue measure is preserved and the
boundary measure does not increase.
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A simple observation

For “nice” sets A,

λn−1(∂A) = lim
ε→0

λn(Aε)− λn(A)

ε
,

where
Aε = {x ∈ Rn, dist(x , A) ≤ ε}
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A simple observation

For example

4aε + 4ε2

ε
→ 4a

π(r + ε)2 − πr2

ε
=

2πrε + ε2

ε
→ 2πr
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The isoperimetric inequality revisited

Theorem
Let A be a Borel measurable set in Rn and B – a Euclidean ball
of the same measure. Then for any ε > 0 we have

λn(Aε) ≥ λn(Bε) = λn(B(0, r + ε)),

where r is the radius of B.
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The sphere
Convex geometry

The isoperimetric inequality on a sphere

Theorem (Levy, Schmidt, Beckner)

If A is a Borel measurable subset of Sn−1 (equipped with the
Euclidean or geodesic distance ρ and the surface measure µ)
and B – a “cap” of the same measure, than

µ(Aε) ≥ µ(Bε)
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The sphere
Convex geometry

A cap
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The sphere
Convex geometry

A digression on Beckner’s proof – two point
symmetrization
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The sphere
Convex geometry

Some computations – concentration of measure

Fact
Let us now consider the normalized surface measure µ (i.e.
µ(Sn+1) = 1). Assume that µ(A) ≥ 1/2. Let ρ be the geodesic
or Euclidean distance. Then

µ(Aρ
ε) ≥ 1−

√
π

8
e−nε2/2.
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The sphere
Convex geometry

A little bit of Science-Fiction

Corollary (The “thick” equator)
If our earth was a high-dimensional sphere, we would all live in
the tropics.
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The sphere
Convex geometry

The median - a short revision of probability

Definition
For every random variable X there exists a number MX (not
necessarily unique), such that both

P(X ≥ MX ) ≥ 1/2

and
P(X ≤ MX ) ≥ 1/2

We call MX a median of X .
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The sphere
Convex geometry

Concentration of measure again - Lipschitz functions

Theorem

Let f : Sn+1 → R be a 1-Lipshitz function (wrt to the Euclidean
or geodesic metric). Then, for all t ≥ 0

µ({x ∈ Sn+1 : f (x) ≥ Mf + t}) ≤
√

π

8
e−nt2/2.

In consequence

µ(|f −Mf | ≥ t) ≤
√

π

2
e−nt2/2.

In other words:
In high dimensions, all 1-Lipschitz functions on the unit sphere
are essentially constant.
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How can it be useful? Proofs of existence

If we have sets A1, . . . , An such that

n∑
i=1

µ(Ac
i ) < 1,

then

µ(
n⋂

i=1

Ai) > 0,

so there exists

x ∈
n⋂

i=1

Ai .
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Convex geometry

The Dvoretzky theorem

Theorem (Dvoretzky, Milman)

Let K be a convex, symmetric body in Rn. Then, for every
ε > 0, we can find a hyperplane H of dimension greater than
c(ε) log n and an ellipsoid E ⊆ H, such that

E ⊆ H ∩ K ⊆ (1 + ε)E .

In other words H ∩ K looks “almost” like an ellipsoid.
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Concentration of measure in the Gauss space
Some applications
Isoperimetric inequality for Gaussian measures
Beyond Gaussian measures

Another revision of probability - Gaussian measures

Definition
The standard Gaussian measure on Rn is the measure γn with
density

gn(x) =
1

(2π)n/2 e−|x |
2/2,

where |x | denotes the Euclidean norm.
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The Poincaré observation

Theorem
Let X = (X1, . . . , XN) be a random vector distributed according
to the normalized surface measure on SN−1. Moreover, let νN
be the distribution of

√
N(X1, . . . , Xn). Then, for any n

νN
α→ γn, as N →∞,

where α→ denotes convergence in distribution. Even more is
true, for every Borel set A ⊆ Rn, we have

νN(A) → γn(A).
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Gaussian concentration inequality

Theorem (Sudakov, Tsirelson, Borell)

Let f : Rn → R be a 1-Lipschitz function. Then for all t ≥ 0,

γn({x : f (x) ≥ Eγn f + t}) ≤ e−t2/2.

In consequence

γn({x : |f (x)− Eγn f | ≥ t}) ≤ 2e−t2/2.
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Random matrices

Consider an n × n symmetric matrix Mn , whose entries on and
above the diagonal are i.i.d. N (0, 1) random variables
(Gaussian Orthogonal Ensemble). Let

λ
(n)
1 ≥ λ

(n)
2 ≥ . . . ≥ λ

(n)
n

be the eigenvalues of Mn.

Corollary
For each k ≤ n and t ≥ 0

P(|λ(n)
k − Eλ

(n)
k | ≥ t) ≤ 2e−t2/4
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It can be proven that
Eλ

(n)
1√
n
→ 2.

Thus, concentration of measure for λ
(n)
1 and the Borel-Cantelli

Lemma give

Theorem
With probability 1

λ
(n)
1√
n
→ 2.
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Is there a corresponding Gaussian isoperimetric
inequality?

Theorem (Sudakov, Tsirelson, Borell, Ehrhard)

Let A be a Borel measurable subset of Rn and H a halfspace,
such that γn(H) = γn(A). Then, for all ε > 0,

γn(Aε) ≥ γn(Hε).
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Ehrhard’s symmetrization
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Bakry-Emery criterion

Theorem
Let ν be a Borel probability measure on Rn, with density

ν(dx)

dx
= e−V (x),

where V : Rn → R satisfies

HessV ≥ λId,

for some λ > 0. Then for all 1-Lipschitz functions f : Rn → R
and all t ≥ 0,

ν({x : f (x) ≥ Eν f + t}) ≤ e−λt2/2
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Convex functions

Theorem (Talagrand)

Let ν be arbitrary product measure on [0, 1]n. Then for any
convex 1-Lipschitz function f : [0, 1]n → R and any t ≥ 0 we
have

ν({x : |f (x)− Eν f | ≥ t}) ≤ 2e−t2/2.

this immediately implies e.g. the Khintchine inequality (in
Banach spaces)
often enough for applications, e.g. to norms of random
vectors
we do not know if it is sufficient for eigenvalues of random
matrices (some open problems)
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Other developments

more general class of measures (log-concave measures),
concentration on abstract product spaces,
isoperimetry on graphs (expander graphs, with
applications in computer science),
isoperimetry on other spaces (homogeneous spaces,
Riemannian manifolds),
connections to parabolic pde’s, entropy methods,
convergence to equilibrium,
connections with fixed point properties for group actions,
applications in statistics.
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