Isoperimetry and the concentration of measure phenomenon

Radosław Adamczak¹

Institute of Mathematics Polish Academy of Sciences

Warszawa 2006

K ロ ⊁ K 何 ⊁ K ヨ ⊁ K ヨ

E

The basic question

Among all closed planar curves of a given length, which one encloses the greatest area?

or equivalently

Among all closed planar curves enclosing a fixed area, which one minimizes the perimeter?

The "obvious" answer is

the circle.

K ロ ⊁ K 何 ⊁ K ヨ ⊁ K ヨ

The basic question

Among all closed planar curves of a given length, which one encloses the greatest area?

or equivalently

Among all closed planar curves enclosing a fixed area, which one minimizes the perimeter?

The "obvious" answer is

the circle.

4 個 ▶ 4 ヨ ▶ 4

Modern version

Among all compact sets $A \subseteq \mathbb{R}^n$ with (piecewise) smooth boundary ∂*A* and fixed Lebesgue measure, which one minimizes the Hausdorff measure of the boundary?

The "obvious" answer is

the Euclidean ball

∢ 伊 ≯ ∢ 重 ≯

Modern version

Among all compact sets $A \subseteq \mathbb{R}^n$ with (piecewise) smooth boundary ∂*A* and fixed Lebesgue measure, which one minimizes the Hausdorff measure of the boundary?

The "obvious" answer is

the Euclidean ball

Steiner's symmetrization (1841)

Definition

Fix a hyperplane *H* of codimension 1. To obtain Steiner's symetrization of set A with respect to H (call it S_HA), for each line *L* perpendicular to *H* replace *L* ∩ *A* by a segment *I* ⊆ *L*, symmetric wrt *H* and such that

$$
\lambda_1(A)=\lambda_1(I).
$$

K ロ ⊁ K 何 ⊁ K ヨ ⊁ K ヨ

Steiner's symmetrization

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

Steiner's symmetrization

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

Steiner's symmetrization

Properties of Steiner's symmetrization

$$
\bullet \ \lambda_n(A) = \lambda_n(S_H A)
$$

$$
\bullet \ \lambda_{n-1}(\partial A) \geq \lambda_{n-1}(\partial S_H A).
$$

K ロ ⊁ K 何 ⊁ K ヨ ⊁ K ヨ

Steiner's symmetrization

Fact

For any compact set A we can find a sequence of hyperplanes Hn, such that SHnSHn−¹ . . .*S*2*S*1*A "converges" to a Euclidean ball.*

Hence to prove the isoperimetric inequality, it is enough to show that in this limit the Lebesgue measure is preserved and the boundary measure does not increase.

K ロ ト K 倒 ト K ミ ト K

A simple observation

For "nice" sets *A*,

$$
\lambda_{n-1}(\partial \mathcal{A}) = \lim_{\varepsilon \to 0} \frac{\lambda_n(\mathcal{A}_{\varepsilon}) - \lambda_n(\mathcal{A})}{\varepsilon},
$$

where

$$
A_{\varepsilon} = \{x \in \mathbb{R}^n, \text{dist}(x, A) \leq \varepsilon\}
$$

 4 ロ } 4 6 } 4 \pm } 4 \pm }

 2990

遥

A simple observation

For example

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

The isoperimetric inequality revisited

Theorem

Let A be a Borel measurable set in \mathbb{R}^n and B - a Euclidean ball *of the same measure. Then for any* ε > 0 *we have*

$$
\lambda_n(A_\varepsilon)\geq \lambda_n(B_\varepsilon)=\lambda_n(B(0,r+\varepsilon)),
$$

where r is the radius of B.

イロト イ伊 トイヨ トイヨ

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

The isoperimetric inequality on a sphere

Theorem (Levy, Schmidt, Beckner)

If A is a Borel measurable subset of Sn−¹ *(equipped with the Euclidean or geodesic distance* ρ *and the surface measure* µ*) and B – a "cap" of the same measure, than*

 $\mu(A_{\varepsilon}) > \mu(B_{\varepsilon})$

イロト イ押ト イヨト イヨト

[The sphere](#page-13-0)

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

A digression on Beckner's proof – two point symmetrization

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

 4 ロ } 4 6 } 4 \pm } 4

÷.

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

Some computations – concentration of measure

Fact

Let us now consider the normalized surface measure µ *(i.e.* $\mu(\mathcal{S}^{n+1})=$ 1). Assume that $\mu(\mathcal{A})\geq$ 1/2. Let ρ be the geodesic *or Euclidean distance. Then*

$$
\mu(A_{\varepsilon}^{\rho}) \geq 1 - \sqrt{\frac{\pi}{8}} e^{-n \varepsilon^2/2}.
$$

イロト イ押 トイヨ トイヨ トー

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

A little bit of Science-Fiction

Corollary (The "thick" equator)

If our earth was a high-dimensional sphere, we would all live in the tropics.

 4 ロ } 4 6 } 4 \pm } 4 \pm }

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

The median - a short revision of probability

Definition

For every random variable X there exists a number M_X (not necessarily unique), such that both

 $\mathbb{P}(X \geq M_X) \geq 1/2$

and

$$
\mathbb{P}(X \leq M_X) \geq 1/2
$$

We call *M^X* a *median* of *X*.

イロメ イ何 メイヨメ イヨメ

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

Concentration of measure again - Lipschitz functions

Theorem

Let f : *S ⁿ*+¹ → R *be a* 1*-Lipshitz function (wrt to the Euclidean or geodesic metric). Then, for all t* ≥ 0

$$
\mu({x \in S^{n+1}: f(x) \geq M_f + t}) \leq \sqrt{\frac{\pi}{8}}e^{-nt^2/2}.
$$

In consequence

$$
\mu(|f-M_f|\geq t)\leq \sqrt{\frac{\pi}{2}}e^{-nt^2/2}.
$$

In other words: In high dimensions, all 1-Lipschitz functions on the unit sphere are essentially constant. イロト イ押 トイヨ トイヨ トー

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

How can it be useful? Proofs of existence

If we have sets A_1, \ldots, A_n such that

$$
\sum_{i=1}^n \mu(A_i^c) < 1,
$$

then

$$
\mu(\bigcap_{i=1}^n A_i)>0,
$$

so there exists

4 ロ) (何) (日) (日)

 2990

遥

[Convex geometry](#page-21-0)

The Dvoretzky theorem

Theorem (Dvoretzky, Milman)

Let *K* be a convex, symmetric body in \mathbb{R}^n . Then, for every $\varepsilon > 0$, we can find a hyperplane H of dimension greater than $c(\varepsilon)$ log *n* and an ellipsoid $\mathcal{E} \subseteq H$, such that

$$
\mathcal{E}\subseteq H\cap K\subseteq (1+\varepsilon)\mathcal{E}.
$$

In other words H ∩ *K looks "almost" like an ellipsoid.*

イロトス 伊 トス ミトス ミ

[The sphere](#page-13-0) [Convex geometry](#page-21-0)

The Dvoretzky theorem

 4 ロ > 4 dP > 4 \exists > 4

∍

₹

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Another revision of probability - Gaussian measures

Definition

The standard Gaussian measure on \mathbb{R}^n is the measure γ_n with density

$$
g_n(x)=\frac{1}{(2\pi)^{n/2}}e^{-|x|^2/2},
$$

where |*x*| denotes the Euclidean norm.

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

The Poincaré observation

Theorem

Let $X = (X_1, \ldots, X_N)$ *be a random vector distributed according to the normalized surface measure on SN*−¹ *. Moreover, let* ν*^N be the distribution of* [√] *N*(*X*1, . . . ,*Xn*)*. Then, for any n*

$$
\nu_N\stackrel{\alpha}{\rightarrow}\gamma_n,\quad\text{as}\quad N\rightarrow\infty,
$$

where [△] *denotes convergence in distribution. Even more is true, for every Borel set A* ⊆ \mathbb{R}^n *, we have*

$$
\nu_N(A) \to \gamma_n(A).
$$

K ロメ K 御 メ K 君 メ K 君 X

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Gaussian concentration inequality

Theorem (Sudakov, Tsirelson, Borell)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a 1*-Lipschitz function. Then for all t* ≥ 0 ,

$$
\gamma_n(\{x\colon f(x)\geq \mathbb{E}_{\gamma_n}f+t\})\leq e^{-t^2/2}.
$$

In consequence

$$
\gamma_n(\{x\colon |f(x)-\mathbb{E}_{\gamma_n}f|\geq t\})\leq 2e^{-t^2/2}.
$$

イロメ イ何 メイヨメ イヨメ

 QQ

遥

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Random matrices

Consider an $n \times n$ symmetric matrix M_n , whose entries on and above the diagonal are i.i.d. $\mathcal{N}(0, 1)$ random variables (Gaussian Orthogonal Ensemble). Let

$$
\lambda_1^{(n)} \geq \lambda_2^{(n)} \geq \ldots \geq \lambda_n^{(n)}
$$

be the eigenvalues of *Mn*.

Corollary

For each $k < n$ *and* $t > 0$

$$
\mathbb{P}(|\lambda_k^{(n)}-\mathbb{E}\lambda_k^{(n)}|\geq t)\leq 2e^{-t^2/4}
$$

K ロ ⊁ K 何 ⊁ K ヨ ⊁ K ヨ

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

It can be proven that

$$
\frac{\mathbb{E}\lambda_1^{(n)}}{\sqrt{n}} \to 2.
$$

Thus, concentration of measure for $\lambda_1^{(n)}$ $1''$ and the Borel-Cantelli Lemma give

Theorem

With probability 1

$$
\frac{\lambda_1^{(n)}}{\sqrt{n}} \to 2.
$$

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

 $($ ロ) $($ θ) $($ θ $)$ $($ θ $)$ $($ θ $)$

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Is there a corresponding Gaussian isoperimetric inequality?

Theorem (Sudakov, Tsirelson, Borell, Ehrhard)

Let A be a Borel measurable subset of \mathbb{R}^n and H a halfspace, *such that* $\gamma_n(H) = \gamma_n(A)$ *. Then, for all* $\varepsilon > 0$ *,*

 $\gamma_n(A_\varepsilon) \geq \gamma_n(H_\varepsilon)$.

イロメ イ何 メイヨメ イヨメ

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Ehrhard's symmetrization

Radosław Adamczak [Isoperimetry and the concentration of measure phenomenon](#page-0-0)

 $($ ロ) $($ θ) $($ θ $)$ $($ θ $)$ $($ θ $)$

 $2Q$

G

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Bakry-Emery criterion

Theorem

Let *ν* be a Borel probability measure on \mathbb{R}^n , with density

$$
\frac{\nu(dx)}{dx}=e^{-V(x)},
$$

where V : ℝ^{*n*} → ℝ *satisfies*

Hess $V > \lambda$ Id,

for some $\lambda > 0$. Then for all 1-Lipschitz functions $f: \mathbb{R}^n \to \mathbb{R}$ *and all t* > 0 ,

$$
\nu(\lbrace x\colon f(x)\geq \mathbb{E}_\nu f+t\rbrace)\leq e^{-\lambda t^2/2}
$$

4 ロ > 4 何 > 4 ミ > 4 ミ >

重

 2990

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Convex functions

Theorem (Talagrand)

Let ν *be arbitrary* **product** *measure on* [0, 1] *n . Then for any* **convex** 1-Lipschitz function $f: [0, 1]^n \rightarrow \mathbb{R}$ and any $t \ge 0$ we *have*

$$
\nu({x:|f(x)-\mathbb{E}_{\nu}f|\geq t})\leq 2e^{-t^2/2}.
$$

- **•** this immediately implies e.g. the Khintchine inequality (in Banach spaces)
- often enough for applications, e.g. to norms of random vectors
- we do not know if it is sufficient for eigenvalues of random matrices (some open problems)

メロメメ 御きメ ミカメ モド

[Concentration of measure in the Gauss space](#page-24-0) [Some applications](#page-26-0) [Isoperimetric inequality for Gaussian measures](#page-28-0) [Beyond Gaussian measures](#page-30-0)

Other developments

- more general class of measures (log-concave measures),
- concentration on abstract product spaces,
- isoperimetry on graphs (expander graphs, with applications in computer science),
- **isoperimetry on other spaces (homogeneous spaces,** Riemannian manifolds),
- connections to parabolic pde's, entropy methods, convergence to equilibrium,
- connections with fixed point properties for group actions,
- applications in statistics.

イロメ イ何 メイヨメ イヨメ