Isoperimetry and the concentration of measure phenomenon

Radosław Adamczak¹

Institute of Mathematics Polish Academy of Sciences

Warszawa 2006

The basic question

Among all closed planar curves of a given length, which one encloses the greatest area?

or equivalently

Among all closed planar curves enclosing a fixed area, which one minimizes the perimeter?

The "obvious" answer is

the circle.

The basic question

Among all closed planar curves of a given length, which one encloses the greatest area?

or equivalently

Among all closed planar curves enclosing a fixed area, which one minimizes the perimeter?

The "obvious" answer is

the circle.

Modern version

Among all compact sets $A \subseteq \mathbb{R}^n$ with (piecewise) smooth boundary ∂A and fixed Lebesgue measure, which one minimizes the Hausdorff measure of the boundary?

The "obvious" answer is

the Euclidean ball

Modern version

Among all compact sets $A \subseteq \mathbb{R}^n$ with (piecewise) smooth boundary ∂A and fixed Lebesgue measure, which one minimizes the Hausdorff measure of the boundary?

The "obvious" answer is

the Euclidean ball

Steiner's symmetrization (1841)

Definition

Fix a hyperplane H of codimension 1. To obtain Steiner's symetrization of set A with respect to H (call it S_HA), for each line L perpendicular to H replace $L \cap A$ by a segment $I \subseteq L$, symmetric wrt H and such that

$$\lambda_1(A) = \lambda_1(I).$$

Properties of Steiner's symmetrization

•
$$\lambda_n(A) = \lambda_n(S_H A)$$

•
$$\lambda_{n-1}(\partial A) \geq \lambda_{n-1}(\partial S_H A)$$
.

Fact

For any compact set A we can find a sequence of hyperplanes H_n , such that $S_{H_n}S_{H_{n-1}}...S_2S_1A$ "converges" to a Euclidean ball.

Hence to prove the isoperimetric inequality, it is enough to show that in this limit the Lebesgue measure is preserved and the boundary measure does not increase.

A simple observation

For "nice" sets A,

$$\lambda_{n-1}(\partial A) = \lim_{\varepsilon \to 0} \frac{\lambda_n(A_\varepsilon) - \lambda_n(A)}{\varepsilon},$$

where

$$A_{\varepsilon} = \{x \in \mathbb{R}^n, \operatorname{dist}(x, A) \leq \varepsilon\}$$

A simple observation

For example

$$\frac{4a\varepsilon+4\varepsilon^2}{\varepsilon} \to 4a$$

$$\frac{\pi(r+\varepsilon)^2 - \pi r^2}{\varepsilon} = \frac{2\pi r\varepsilon + \varepsilon^2}{\varepsilon} \to 2\pi r$$

The isoperimetric inequality revisited

Theorem

Let A be a Borel measurable set in \mathbb{R}^n and B – a Euclidean ball of the same measure. Then for any $\varepsilon > 0$ we have

$$\lambda_n(A_{\varepsilon}) \geq \lambda_n(B_{\varepsilon}) = \lambda_n(B(0, r + \varepsilon)),$$

where r is the radius of B.

The isoperimetric inequality on a sphere

Theorem (Levy, Schmidt, Beckner)

If A is a Borel measurable subset of S^{n-1} (equipped with the Euclidean or geodesic distance ρ and the surface measure μ) and B – a "cap" of the same measure, than

$$\mu(A_{\varepsilon}) \geq \mu(B_{\varepsilon})$$

A cap

A digression on Beckner's proof – two point symmetrization

Some computations – concentration of measure

Fact

Let us now consider the normalized surface measure μ (i.e. $\mu(S^{n+1})=1$). Assume that $\mu(A)\geq 1/2$. Let ρ be the geodesic or Euclidean distance. Then

$$\mu(A_{arepsilon}^{
ho}) \geq 1 - \sqrt{rac{\pi}{8}} e^{-narepsilon^2/2}.$$

A little bit of Science-Fiction

Corollary (The "thick" equator)

If our earth was a high-dimensional sphere, we would all live in the tropics.

The median - a short revision of probability

Definition

For every random variable X there exists a number M_X (not necessarily unique), such that both

$$\mathbb{P}(X \geq M_X) \geq 1/2$$

and

$$\mathbb{P}(X \leq M_X) \geq 1/2$$

We call M_X a median of X.

Concentration of measure again - Lipschitz functions

Theorem

Let $f: S^{n+1} \to \mathbb{R}$ be a 1-Lipshitz function (wrt to the Euclidean or geodesic metric). Then, for all $t \ge 0$

$$\mu(\{x \in S^{n+1}: f(x) \geq M_f + t\}) \leq \sqrt{\frac{\pi}{8}}e^{-nt^2/2}.$$

In consequence

$$\mu(|f-M_f|\geq t)\leq \sqrt{\frac{\pi}{2}}e^{-nt^2/2}.$$

In other words:

In high dimensions, all 1-Lipschitz functions on the unit sphere are essentially constant.

How can it be useful? Proofs of existence

If we have sets A_1, \ldots, A_n such that

$$\sum_{i=1}^n \mu(A_i^c) < 1,$$

then

$$\mu(\bigcap_{i=1}^n A_i) > 0,$$

so there exists

$$x \in \bigcap_{i=1}^n A_i$$
.

The Dvoretzky theorem

Theorem (Dvoretzky, Milman)

Let K be a convex, symmetric body in \mathbb{R}^n . Then, for every $\varepsilon > 0$, we can find a hyperplane H of dimension greater than $c(\varepsilon) \log n$ and an ellipsoid $\mathcal{E} \subseteq H$, such that

$$\mathcal{E} \subseteq H \cap K \subseteq (1 + \varepsilon)\mathcal{E}$$
.

In other words $H \cap K$ looks "almost" like an ellipsoid.

The Dvoretzky theorem

Another revision of probability - Gaussian measures

Definition

The standard Gaussian measure on \mathbb{R}^n is the measure γ_n with density

$$g_n(x) = \frac{1}{(2\pi)^{n/2}} e^{-|x|^2/2},$$

where |x| denotes the Euclidean norm.

The Poincaré observation

Theorem

Let $X = (X_1, ..., X_N)$ be a random vector distributed according to the normalized surface measure on S^{N-1} . Moreover, let ν_N be the distribution of $\sqrt{N}(X_1, ..., X_n)$. Then, for any n

$$u_{\text{N}} \stackrel{\alpha}{\rightarrow} \gamma_{\text{n}}, \quad \text{as} \quad \text{N} \rightarrow \infty,$$

where $\stackrel{\alpha}{\to}$ denotes convergence in distribution. Even more is true, for every Borel set $A \subseteq \mathbb{R}^n$, we have

$$\nu_N(A) \rightarrow \gamma_n(A)$$
.

Gaussian concentration inequality

Theorem (Sudakov, Tsirelson, Borell)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a 1-Lipschitz function. Then for all $t \geq 0$,

$$\gamma_n(\{x\colon f(x)\geq \mathbb{E}_{\gamma_n}f+t\})\leq e^{-t^2/2}.$$

In consequence

$$\gamma_n(\{x\colon |f(x)-\mathbb{E}_{\gamma_n}f|\geq t\})\leq 2e^{-t^2/2}.$$

Random matrices

Consider an $n \times n$ symmetric matrix M_n , whose entries on and above the diagonal are i.i.d. $\mathcal{N}(0,1)$ random variables (Gaussian Orthogonal Ensemble). Let

$$\lambda_1^{(n)} \ge \lambda_2^{(n)} \ge \ldots \ge \lambda_n^{(n)}$$

be the eigenvalues of M_n .

Corollary

For each $k \le n$ and $t \ge 0$

$$\mathbb{P}(|\lambda_k^{(n)} - \mathbb{E}\lambda_k^{(n)}| \ge t) \le 2e^{-t^2/4}$$

It can be proven that

$$\frac{\mathbb{E}\lambda_1^{(n)}}{\sqrt{n}} \to 2.$$

Thus, concentration of measure for $\lambda_1^{(n)}$ and the Borel-Cantelli Lemma give

Theorem

With probability 1

$$\frac{\lambda_1^{(n)}}{\sqrt{n}} \rightarrow 2$$

Is there a corresponding Gaussian isoperimetric inequality?

Theorem (Sudakov, Tsirelson, Borell, Ehrhard)

Let A be a Borel measurable subset of \mathbb{R}^n and H a halfspace, such that $\gamma_n(H) = \gamma_n(A)$. Then, for all $\varepsilon > 0$,

$$\gamma_n(A_{\varepsilon}) \geq \gamma_n(H_{\varepsilon}).$$

Concentration of measure in the Gauss space Some applications Isoperimetric inequality for Gaussian measures Beyond Gaussian measures

Ehrhard's symmetrization

Bevond Gaussian measures

Bakry-Emery criterion

Theorem

Let ν be a Borel probability measure on \mathbb{R}^n , with density

$$\frac{\nu(dx)}{dx}=e^{-V(x)},$$

where $V: \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\operatorname{Hess} V > \lambda \operatorname{Id}$$
,

for some $\lambda > 0$. Then for all 1-Lipschitz functions $f: \mathbb{R}^n \to \mathbb{R}$ and all t > 0,

$$\nu(\{x\colon f(x)\geq \mathbb{E}_{\nu}f+t\})\leq e^{-\lambda t^2/2}$$

Convex functions

Theorem (Talagrand)

Let ν be arbitrary **product** measure on $[0,1]^n$. Then for any **convex** 1-Lipschitz function $f:[0,1]^n \to \mathbb{R}$ and any $t \ge 0$ we have

$$\nu(\{x\colon |f(x)-\mathbb{E}_{\nu}f|\geq t\})\leq 2e^{-t^2/2}.$$

- this immediately implies e.g. the Khintchine inequality (in Banach spaces)
- often enough for applications, e.g. to norms of random vectors
- we do not know if it is sufficient for eigenvalues of random matrices (some open problems)

Other developments

- more general class of measures (log-concave measures),
- concentration on abstract product spaces,
- isoperimetry on graphs (expander graphs, with applications in computer science),
- isoperimetry on other spaces (homogeneous spaces, Riemannian manifolds),
- connections to parabolic pde's, entropy methods, convergence to equilibrium,
- connections with fixed point properties for group actions,
- applications in statistics.

