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Tree-like decompositions

Everybody loves tree-like decompositions of graphs!
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� Useful for dynamic programming on graphs
� Enable efficient model checking algorithms
� Often yield fixed-parameter tractable (FPT) algorithms

Figures adapted from Wikipedia (David Eppstein)
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

Definition

A half-graph of order n is a bipartite graph (U,V ,E ) with
U = {a1, . . . , an},V {b1, . . . , bn} and edges E = {(ai , bj) | i ⩽ j}.

b1 b2 b3 b4

a1 a2 a3 a4

Figure: A half-graph of order n = 4.
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

b1 b2 b3 b4

a1 a2 a3 a4

Figure: 1-subdivision of K4,4.
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

b1 b2 b3 b4

a1 a2 a3 a4

Figure: Colored 1-subdivision of K4,4.
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

b1 b2 b3 b4

a1 a2 a3 a4

Now let’s apply

φ(x , y) ≡ Blue(x) ∧ Blue(y) ∧ ∃z (Green(z) ∧ E (x , z) ∧ E (y , z)) .
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

b1 b2 b3 b4

a1 a2 a3 a4

Figure: The result of applying φ to the colored graph.
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

b1 b2 b3 b4

a1 a2 a3 a4

Figure: We take an induced subgraph.
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Monadically stable classes of graphs

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

b1 b2 b3 b4

a1 a2 a3 a4

Fact

The class of all 1-subdivided bicliques is not monadically stable.
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(Definable) flips

We start with a graph and a subset S of its vertices (in blue).
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(Definable) flips

We partition the vertices of V (G ) by their neighborhoods on S .
Let’s flip the edges between these pairs of colors: ( , ), ( , ), ( , ).

4 / 12



(Definable) flips

The result of the flip.

4 / 12



(Definable) flips

Definition

Fix a graph G and a set S ⊆ V (G ). An S-flip of G is obtained as follows:
1. Partition V (G ) by their neighborhoods in S ;
2. For each pair or parts (P1,P2) (possibly P1 = P2) either keep the edges between P1

and P2 or complement them.
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Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.
Example play of the radius-2 batch-2 Flipper game:

5 / 12



Flipper Game

The radius-r batch-ℓ Flipper game is played on a graph G1. In round i

1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, P., Siebertz, Soko lowski, Toruńczyk, ’23]

The following are equivalent for a class of graphs C:
� C is monadically stable,

� ∀r ∃k ∃ℓ such that for every graph G ∈ C Flipper wins the radius-r batch-ℓ Flipper
game on G in at most k rounds.
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1. Flipper chooses a set Si with |Si | ⩽ ℓ and an Si -flip Hi of Gi .

2. Connector chooses Gi+1 as an induced subgraph given by radius-r ball in Hi .

Flipper wins once Gi has size 1.

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, P., Siebertz, Soko lowski, Toruńczyk, ’23]

The following are equivalent for a class of graphs C:
� C is monadically stable,

� ∀r ∃k ∃ℓ such that for every graph G ∈ C Flipper wins the radius-r batch-ℓ Flipper
game on G in at most k rounds.

This gives tree-like decompositions for monadically stable classes of graphs.
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Monadically stable classes of relational structures

Definition

A class of graphs is monadically stable if it does not transduce the class of all
half-graphs.

Our contribution:

� We give a definition of (definable) flips for relational structures.

� We characterize monadically stable classes of relational structures combinatorially,
in terms of flipper game.

� We characterize forking independence – a fundamental notion in model theory –
in terms of flips.
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What are flips?

Observation

The edges of an S-flip can be defined by a quantifier free formula φ(x , y) with
parameters from S .
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What are flips?

Flips are reversible – the edges of the original graph can be defined in a flip by a
quantifier free formula ψ(x , y) with parameters from S .

We need the access to the neighborhood classes in the original graph. Luckily, they are
also definable by a quantifier free formula!
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Flips of relational structures

Definition

Fix a Γ-structure N and a Σ-structure M on the same universe. We say that N is a flip
of M if they are quantifier-free bi-interpretable with parameters:

For each R(x̄) ∈ Γ there exists φR(x̄) a quantifier-free Σ-formula with parameters s.t.

N |= R(ā) ⇐⇒ M |= φR(ā) for every ā ∈ M x̄

and for each T (ȳ) ∈ Σ there exists ψT (ȳ) a q.f. Γ-formula with parameters s.t.

M |= T (b̄) ⇐⇒ N |= ψT (b̄) for every b̄ ∈ M ȳ .

We say that N is an S-flip of M if all the formulas mentioned above use only
parameters from S .

8 / 12



Flips of relational structures

Definition

Fix a Γ-structure N and a Σ-structure M on the same universe. We say that N is a flip
of M if they are quantifier-free bi-interpretable with parameters:

For each R(x̄) ∈ Γ there exists φR(x̄) a quantifier-free Σ-formula with parameters s.t.
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Example

Fix a rooted tree T . Take M = (V (T ), {(u, v ,w) | u = lca(v ,w)}).

Goal: Isolate a given vertex s.
Define N = (V (T ),R0,R1,R2) where

R0 = {(u, v ,w) ∈ R | u, v ,w ̸= s},

R1 = {(w , v) | (s,w , v) ∈ R},

R2 = {(u,w) | (u, s,w) ∈ R}.

Claim

N is an {s}-flip of M.

M |= R(x , y , z) ⇐⇒
N |= R0(x , y , z) ∨ (x = s ∧ R1(y , z)) ∨ (y = s ∧ R2(x , z)) ∨ (z = s ∧ R2(x , y)) .
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Flipper game for relational structures

Theorem [P., Toruńczyk]

The following are equivalent for a class of relational structures C:
� C is monadically stable,

� ∀r ∃k such that for every structure G ∈ C Flipper wins the radius-r Flipper game
on G in at most k rounds.
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Flipping and forking

Forking independence is an abstract notion of independence for arbitrary structures
introduced by Shelah.

It generalizes e.g. linear independence in vector spaces and algebraic independence in
fields.

For a, b ∈ M,C ⊆ M
a |⌣

C

b

means that the element a is forking independent from b over the set C .

Definition [GMMOPPSST’23, PT’25]

We say that a is distance-r flip independent from b over C (denoted a |⌣
r
C
b) if there

is a C -flip N of M such that the distance between a and b in the Gaifman graph of N
is ⩾ r .

Theorem [P., Toruńczyk]

For every monadically stable structure M, its elementary extension N, and two distinct
elements a, b ∈ N

a |⌣
M

b ⇐⇒ ∀r a
r

|⌣
M

b.
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Summary

� We defined flips for relational structures as quantifier-free bi-interpretations
with parameters.

� We gave a combinatorial characterization of monadically stable classes of
relational structures which yields tree-like decompositions.

� We characterized forking independence in terms of flips.

Thank you!
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